
SAS® 9.4 Companion for
z/OS, Sixth Edition

SAS® Documentation
June 12, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Companion for z/OS, Sixth Edition. Cary, NC:
SAS Institute Inc.

SAS® 9.4 Companion for z/OS, Sixth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire
this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal
and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of
copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only
those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

June 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P8:hosto390

Contents

Syntax Conventions for the SAS Language . xi
What's New in SAS 9.4 Companion for z/OS . xvii

PART 1 Initializing and Configuring SAS Software 1

Chapter 1 / Invoking SAS in the z/OS Environment . 3
Invocation Methods . 3
Invoking SAS under TSO: the SAS CLIST . 4
Invoking SAS under TSO: the SASRX exec . 4
Commands for Invoking SAS . 5
Invoking SAS in Batch Mode: the SAS Cataloged Procedure . 6
What If SAS Does Not Start? . 6
Connecting to SAS under z/OS . 6
HFS, UFS, and zFS Terminology . 8
Support for Longer TSO User IDs . 8

Chapter 2 / Customizing Your SAS Session . 9
Overview of Customizing Your SAS Session . 10
Customizing Your SAS Session at Start Up . 10
Configuration Files . 11
Autoexec Files . 14
Sasuser Library . 16
SAS System Options . 19
The SAS Registry File . 23

Chapter 3 / SAS Software Files . 25
Overview of SAS Software Files . 25
Work Library and Other Utility Files . 26
SAS Log File . 31
SAS Procedure Output File . 33
Console Log File . 35
Parmcards File . 35
TKMVSENV File . 35
Summary Table of SAS Software Files . 36
Transporting SAS Data Sets between Operating Environments 39
Accessing SAS Files in Other Operating Environments . 40
Using Input/Output Features . 40
Reserved z/OS Ddnames . 40

PART 2 Running SAS Software under z/OS 43

Chapter 4 / Using SAS Libraries . 45
Introduction . 45
SAS Library Engines . 46
SAS View Engines . 50
Library Implementation Types for Base and Sequential Engines 51
Assigning SAS Libraries . 72

Chapter 5 / Specifying Physical Files . 89
Overview of Physical Files . 89
Specifying Physical Files with the INCLUDE Command . 90
Handling of Nonstandard Member Names . 91

Chapter 6 / Assigning External Files . 93
Introduction to External Files . 94
Ways of Assigning External Files . 94
Using the FILENAME Statement or Function to Assign External Files 96
Using the JCL DD Statement to Assign External Files . 100
Using the TSO Assign Command to Assign External Files . 100
Assigning External Files on Tape . 101
Assigning External Files to a Pipe . 101
Assigning Generation Data Sets . 102
Assigning Other Types of External Files . 104
Concatenating External Files . 104
Displaying Information about External Files . 105
Deassigning External Files . 105

Chapter 7 / Accessing External Files . 107
Referring to External Files . 108
How SAS Determines the File System . 109
Writing to External Files . 110
Reading from External Files . 119
Accessing Other File Types . 127
Accessing UNIX System Services Files . 129
Writing Your Own I/O Access Methods . 138
Accessing SAS Statements from a Program . 138
Using the INFILE/FILE User Exit Facility . 139

Chapter 8 / Directing SAS Log and SAS Procedure Output . 141
Types of SAS Output . 142
Directing Output to External Files with the PRINTTO Procedure 145
Directing Output to External Files with System Options . 146
Directing Output to External Files with the DMPRINT Command 148
Directing Output to External Files with the FILE Command . 149
Directing Output to External Files with DD Statements . 149
Directing Output to a Printer . 150
Directing Output to a Remote Destination . 159
Directing Procedure Output: ODS Examples . 160
Sending Email from within SAS Software . 169
Using the SAS Logging Facility to Direct Output . 183

iv Contents

Chapter 9 / Universal Printing . 185
Introduction to Universal Printing . 186
Using Universal Printing in the Windowing Environment . 186
Using Universal Printing in a Batch Environment . 194
Using FTP with Universal Printing . 202
Example Programs and Summary . 203
The SASLIB.HOUSES Data Set . 216

Chapter 10 / SAS Processing Restrictions for Servers in a Locked-Down State 219
Overview of SAS Processing Restrictions for Servers in a Locked-down State . . . 219
Restricted Features . 219
Disabled Features . 220
Specifying Functions in the Lockdown Path List . 220

Chapter 11 / Using the SAS Remote Browser . 223
What Is the Remote Browsing System? . 223
Starting the Remote Browser Server . 223
Setting Up the Remote Browser . 224
Remote Browsing and Firewalls . 225
Using Remote Browsing with ODS Output . 226

Chapter 12 / Using Item Store Help Files . 227
Accessing SAS Item Store Help Files . 227
Using User-Defined Item Store Help Files . 228
Creating User-Defined Item Store Help Files . 229
Converting Item Store Help to HTML Help . 230
Creating User-Defined Help Files in HTML . 233

Chapter 13 / Exiting or Terminating Your SAS Session in the z/OS Environment 235
Preferred Methods for Exiting SAS . 235
Additional Methods for Terminating SAS . 235

PART 3 Troubleshooting SAS under z/OS 237

Chapter 14 / Solving Problems under z/OS . 239
Overview of Solving Problems under z/OS . 239
Problems Associated with the z/OS Operating Environment . 240
Solving Problems with Scroll Bars, Borders, Buttons, and Text 241
Solving Problems within SAS Software . 242

Chapter 15 / Support for SAS Software . 247
Overview of Support for SAS Software . 247
Working with Your On-Site SAS Support Personnel . 248
SAS Technical Support . 248
Generating a System Dump for SAS Technical Support . 248

Contents v

PART 4 SAS Windows and Commands in z/OS Environments 251

Chapter 16 / Windows in z/OS Environments . 253
Overview of Windows in the z/OS Environment . 254
Using the Graphical Interface . 254
Terminal Support in the z/OS Environment . 257
SAS System Options That Affect the z/OS Windowing Environment 261
Host-Specific Windows in the z/OS Environment . 261
Dictionary . 262

Chapter 17 / Host-Specific Windows of the FORM Subsystem . 273
Host-Specific Windows of the FORM Subsystem . 273

Chapter 18 / SAS Window Commands under z/OS . 277
Overview of Window Commands in the z/OS Environment . 277
Dictionary . 278

PART 5 Application Considerations 291

Chapter 19 / SAS Interfaces to ISPF and REXX . 293
SAS Interface to ISPF . 293
SAS Interface to REXX . 313

Chapter 20 / Using the INFILE/FILE User Exit Facility . 323
Introduction . 323
Writing a User Exit Module . 324
Function Descriptions . 328
SAS Service Routines . 335
Building Your User Exit Module . 338
Activating an INFILE/FILE User Exit . 338
Sample Program . 339

Chapter 21 / SAS Data Location Assist for z/OS . 351
Overview of SAS Data Location Assist for z/OS . 351
A Simple zDLA Application . 352
Sample Invocations of zDLA Functions . 354
Dictionary . 355

Chapter 22 / Data Representation . 399
Representation of Numeric Variables . 399
Using the LENGTH Statement to Save Storage Space . 400
How Character Values Are Stored . 402

Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines 405
Overview of Load Libraries in SAS . 406
SASCBTBL Attribute Table . 407
Grouping SAS Variables as Structure Arguments . 413
Invoking the CALL MODULE Routine . 413

vi Contents

Using Constants and Expressions as Arguments to the CALL
MODULE Function . 414

Specifying Formats and Informats to Use with MODULE Arguments 415
Understanding MODULE Log Messages . 421
Examples of Accessing Load Executable Libraries . 423

PART 6 Host-Specific Features of the SAS Language 429

Chapter 24 / Data Set Options under z/OS . 431
Data Set Options in the z/OS Environment . 431
Summary of SAS Data Set Options in the z/OS Environment . 432
Dictionary . 436

Chapter 25 / Formats under z/OS . 443
Formats in the z/OS Environment . 443
Considerations for Using Formats in the z/OS Environment . 444
Dictionary . 446

Chapter 26 / Functions and CALL Routines under z/OS . 453
Functions and CALL Routines under z/OS . 454
Dictionary . 454

Chapter 27 / Informats under z/OS . 499
Informats in the z/OS Environment . 499
Considerations for Using Informats under z/OS . 500
Dictionary . 503

Chapter 28 / Macros under z/OS . 511
Macros in the z/OS Environment . 511
Macro Variables . 512
Macro Statements . 514
Macro Functions . 515
Autocall Libraries . 515
Stored Compiled Macro Facility . 518
Other Host-Specific Aspects of the Macro Facility . 519
Dictionary . 520

Chapter 29 / Procedures under z/OS . 525
Procedures in the z/OS Environment . 525
Dictionary . 526

Chapter 30 / Statements under z/OS . 599
Statements in the z/OS Environment . 599
Dictionary . 600

Chapter 31 / System Options under z/OS . 685
System Options in the z/OS Environment . 689
Definition of System Options . 689
SAS System Options for z/OS by Category . 690
Dictionary . 702

Contents vii

Chapter 32 / TKMVSENV Options under z/OS . 895
TKMVSENV Options in the z/OS Environment . 895
Dictionary . 896

PART 7 Appendixes 901

Appendix 1 / Optimizing Performance . 903
Introduction to Optimizing Performance . 904
Collecting Performance Statistics . 904
Optimizing SAS I/O . 905
Efficient Sorting . 913
Some SAS System Options That Can Affect Performance . 916
Managing Memory . 917
Loading SAS Modules Efficiently . 920
Other Considerations for Improving Performance . 921

Appendix 2 / Using EBCDIC Data on ASCII Systems . 923
About EBCDIC and ASCII Data . 923
Moving Data from EBCDIC to ASCII Systems . 926
Moving Data from ASCII to EBCDIC Systems . 934

Appendix 3 / Encoding for z/OS Resource Names . 939
Overview of Encoding for z/OS Resource Names . 939
z/OS Resource Names and Encoding . 939
Reverting to SAS 9.2 Behavior . 942

Appendix 4 / Starting SAS with SASRX . 943
Overview of SASRX . 944
Option Syntax . 944
SASRX Options . 946
Site Customizations . 962

Appendix 5 / 64–Bit SAS Metadata Server . 965
Overview of the SAS Metadata Server . 965
Advantages of 64-Bit SAS Metadata Server . 966
Special Considerations for the 64-Bit SAS Metadata Server . 966

Appendix 6 / Accessing BMDP, SPSS, and OSIRIS Files . 967
The BMDP, SPSS, and OSIRIS Engines . 968
Accessing BMDP Files . 969
Accessing OSIRIS Files . 970
Accessing SPSS Files . 972

Appendix 7 / The cleanwork Utility . 975
Overview of the cleanwork Utility . 975
Installing the cleanwork Utility . 976
Configuring the cleanwork Utility . 976
See Also . 978

viii Contents

Appendix 8 / Host-System Subgroup Error Messages . 979
Host-System Subgroup Error Messages in the z/OS Environment 979
Messages from the SASCP Command Processor . 980
Messages from the TSO Command Executor . 982
Messages from the Internal CALL Command Processor . 984

Appendix 9 / ICU License . 987
ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . 987
Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 988
Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later . . . 995

Contents ix

x Contents

Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the
SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)

CALL RANBIN (seed, n, p, x);

xi

ALTER (alter-password)

BEST w.

REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...

END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<
>).

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string has
a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are
allowed. Separate arguments with a space. Punctuation, such as a comma (,) is
not required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument

xii Syntax Conventions for the SAS Language

pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>

INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

Style Conventions xiii

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

xiv Syntax Conventions for the SAS Language

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and External
Files

Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

References to SAS Libraries and External Files xv

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

xvi Syntax Conventions for the SAS Language

What's New in SAS 9.4
Companion for z/OS

Overview
SAS for z/OS has added the following new and enhanced features:

User exit for SASRX

SAS for z/OS has enhanced the following language elements:

n Statements

FILE INFILE
FILENAME LIBNAME

n System Options

CARDIMAGE MVARSIZE
CONFIG VALIDMEMNAME
LRECL

SAS for z/OS has added the following language elements:

n Function

ZDSLIST

n SASRX Switch Option

WORKLARGE

n System Options

ALIGNSASIOFILES HOSTINFOLONG
DLLBI SORTBLKREC
FILEBUFNO SORTCUT
HELPTOC

n Threaded Kernel Option

set TKOPT_TKIOP_DIAG_SPACE

xvii

SAS Software Enhancements
The following software enhancements have been made to SAS for z/OS:

Support for Pervasive Encryption
Starting in SAS 9.4M8, support for pervasive encryption is available for SAS
direct access bound libraries in z/OS through the Execute Channel Program
(EXCP). For more information, see “IBM z/OS Pervasive Encryption for Data
Sets with SAS 9.4M8” in Encryption in SAS.

Support for LE COBOL Routines
SAS 9.4M3 adds support for LE COBOL routines to the ROUTINE statement of
the SASCBTBL attribute table. For more information, see “ROUTINE Statement”
on page 408.

Support for Longer TSO User IDs
SAS 9.4M5 adds support for 8-character TSO user IDs on z/OS V2R3. For more
information, see “Support for Longer TSO User IDs” on page 8.

Support for CSSMTP
SAS 9.4M5 adds support for the CSSMTP email server on z/OS V2R3.

IBM z/OS V2R2 GDG
SAS 9.4M4 adds support for the IBM z/OS V2R2 Extended Format Generation
Data Groups (GDG), which allow up to 999 generation data sets to be
associated with the GDG.

zHPF Support
SAS 9.4M3 added support to automatically generate zHPF channel programs
when reading or writing direct access bound libraries that reside in DSORG=PS
data sets if the appropriate level of zHPF is available and enabled on the
processor, the disk controller, and the channels that connect them. Otherwise,
SAS generates CCW channel programs to process these libraries, as was done in
prior releases. zHPF channel programs perform I/O in less elapsed time than the
CCW channel programs, and they also use less channel capacity, which might
avoid delays for other I/O being processed on the same channel.

Large Block Size Support for SAS Libraries on Tape Devices
SAS 9.4M2 added support for the block size for a sequential access bound
library on a tape device to exceed 32760. Block size values greater than 32760
reduce elapsed time for tape devices and can also improve tape utilization. For
more information, see the DLLBI option of the “LIBNAME Statement: z/OS” on
page 656 and “DLLBI System Option: z/OS” on page 729.

LOCKDOWN for Foundation Servers
SAS 9.4M2 for z/OS supports the LOCKDOWN feature. LOCKDOWN enables
the server administrator to specify a restricted set of z/OS data sets and UFS
paths that are available to clients of the server. When SAS is in the locked-down
state, access to certain system interfaces is also disabled. For more information,

xviii What's New in SAS 9.4 Companion for z/OS

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en

see Chapter 10, “SAS Processing Restrictions for Servers in a Locked-Down
State,” on page 219.

SAS/CONNECT Spawner
The SAS/CONNECT spawner for UNIX and z/OS has been replaced with a new
cross-platform spawner. The new spawner is named CNTSPAWN. For more
information, see the “Administration” topic in SAS/CONNECT User’s Guide.

SASRX User Exit
The SASRX -USEREXIT option specifies the name of an exec that the SASRX
exec calls as a user exit instead of executing SASCP.

Enhanced SAS Procedures
RELEASE

SAS 9.4M5 does not support using PROC RELEASE to release unused space in a
PDSE. SAS writes a note to the log if you issue PROC RELEASE against a PDSE.
SAS writes an error to the log if you issue PROC RELEASE against any other
type of unsupported data set.

Enhanced SAS Functions
The following function has been enhanced:

ZDSLIST
supports the specification of up to thirty path components in a UFS directory
path.

New SAS Functions
The following function is new:

ZDSRATT
returns RACF security attributes for a z/OS data set name, or UNIX security
attributes (including ACL definitions) for a UFS file or directory.

New SAS Functions xix

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Enhanced SAS Statements
The following SAS statements have been enhanced:

FILE statement
In the May 2019 release of SAS 9.4M6, the FILE statement cannot modify or
override the device type that was set by an earlier FILENAME statement.

SAS 9.4M3 adds support for the PERMISSION option. This option specifies
permissions to set for the specified fileref.

FILENAME statement
SAS 9.4M7 adds PRESERVELRECL that retains spaces at the end of fixed-
length records of email attachments.

SAS 9.4M5 supports the CSSMTP Access Method.

SAS 9.4M3 has the following changes and enhancements:

PERMISSION
specifies the permissions to set for the specified fileref.

The FILENAME statement supports the following device types:

DATAURL
specifies the access method that enables you to read data from the data-url-
spec.

EMAIL
enables you to send electronic mail programmatically from SAS.

WebDAV
specifies the access method that enables you to use WebDAV (Web
Distributed Authoring and Versioning) to read from or write to a file from any
host machine that you can connect to on a network with a WebDAV server
running.

ZIP
specifies the access method that enables you to use ZIP files.

Note: The ZIP access method supports only UFS files.

INFILE statement
In the May 2019 release of SAS 9.4M6, the INFILE statement cannot modify or
override the device type that was set by an earlier FILENAME statement.

LIBNAME statement
SAS 9.4M8 adds support for the DSKEYLBL= option, which specifies the
encryption key label to access a library that uses pervasive encryption.

xx What's New in SAS 9.4 Companion for z/OS

SAS 9.4M2 adds support for the DLLBI option. This option specifies whether
SAS is to use the device optimum block size, or 32760 as the BLKSIZE default
when creating new sequential access bound libraries.

Enhanced SAS System Options
The following SAS system options have been enhanced or changed:

CARDIMAGE
has a default value of NOCARDIMAGE.

CONFIG
can have a value that is a ddname, a data set name, a UNIX filename, or a list of
any combination of these that is enclosed in parentheses. Multiple instances of
the CONFIG option are supported on the command line.

LRECL
has a default value of 256 if you are using RECFM=F to specify fixed length
records. Otherwise, it is 32,767.

MSYMTABMAX
SAS 9.4M6 has a default value of 2,097,152 bytes (2MB) for the MSYMTABMAX
option.

MVARSIZE
SAS 9.4M3 has a default value of 65,534 bytes for the MVARSIZE option.

VALIDMEMNAME
requires that you include the full extension delimiter of a member name when
the EXTEND value is specified.

New SAS System Options
The following SAS system options are new:

DLDSKEYLBL
SAS 9.4M8 adds the DLDSKEYLBL option, which specifies a default data set
pervasive encryption key label for accessing SAS libraries.

FILEBUFNO
SAS 9.4M5 adds the FILEBUFNO option, which specifies how many memory
buffers to allocate for reading and writing.

SORTBLKREC
SAS 9.4M3 adds the SORTBLKREC option, which is used to control the size of
the SORTBLKMODE buffers used for DFSORT host sort utility.

New SAS System Options xxi

DLLBI
SAS 9.4M2 adds the DLLIBI option, which specifies whether SAS can create a
sequential access bound library on tape with block sizes larger than 32760.

ALIGNSASIOFILES
aligns output data on a page boundary for SAS data sets written to UFS
libraries.

HELPTOC
specifies the table of contents files for the online SAS Help and Documentation.

HOSTINFOLONG
specifies to print additional operating environment information in the SAS log
when SAS starts.

SORTCUT
specifies that SAS uses the host sort utility if the number of observations is
greater than or equal to the value of SORTCUT.

Deprecated SAS System Options
The following SAS system options have been deprecated:

n AUTHENCR

n HELPCASE

n PRIMARYPROVIDERDOMAIN

New SASRX Switch Option
WORKLARGE SASRX

SAS 9.4M3 adds support for the WORKLARGE SASRX switch option, which
enables you to allocate the WORK library with DSNTYPE(LARGE).

New Threaded Kernel Option
The following threaded kernel option is new:

xxii What's New in SAS 9.4 Companion for z/OS

set TKOPT_TKIOP_DIAG_SPACE
This option results in the production of diagnostic messages when an output
utility file is closed. These messages detail the space allocation that is
associated with the utility file allocation and the amount of space that the
utility file actually used.

Documentation Enhancements
The following enhancements have been made to SAS Companion for z/OS:

n SAS 9.4M3 has the following changes and enhancements:

o SAS Companion for z/OS is reorganized to enhance faster retrieval of
information. “Initializing and Configuring SAS Software,” the first chapter of
previous versions of the documentation, has been separated into several
smaller chapters. These new chapters now appear with other chapters that
contain related information. “Initializing and Configuring SAS Software” is
now the title of Part 1 of the documentation. Other chapters have been
moved to appear in Parts of the documentation that contain similar
information. For more information about the documentation reorganization,
see the Table of Contents.

o Appendix 2, “Using EBCDIC Data on ASCII Systems,” on page 923 has been
added to the SAS Companion for z/OS. The appendix contains information
about moving data from EBCDIC to ASCII systems, and from ASCII to
EBCDIC systems.

n “Solving Problems with Scroll Bars, Borders, Buttons, and Text” on page 241 has
a new section about solving problems with scroll bars, borders, buttons, and
text on SAS windows.

n “Using SAS to Read a PDS or PDSE Directory Sequentially” on page 122
describes how SAS simplifies the process for reading the directory contents for
a PDS or PDSE when you do not supply a member name.

n “Using the LENGTH Statement to Save Storage Space” on page 400 has a new
table that contains variable lengths and largest exact integer values for IEEE.

n Chapter 23, “The SASCBTBL Attribute Table and SAS MODULEx CALL
Routines,” on page 405 contains information about load libraries and the
SASCBTBL attribute table for SAS on z/OS.

n Documentation has been added about “CALL MODULE Routine: z/OS” on page
456 for SAS on z/OS.

n The “Summary Table of System Options” has been deleted from the SAS
Companion for z/OS. For information about SAS system options that are
supported on z/OS, see “System Options under z/OS” on page 685 and SAS
System Options: Reference.

Documentation Enhancements xxiii

n “SAS System Options for z/OS by Category” on page 690 lists all of the system
options by their specified category.

n The descriptions of the TKMVSENV options are now in “TKMVSENV Options
under z/OS” on page 895.

n The information about optimizing performance is now in Appendix 1, “Optimizing
Performance,” on page 903.

n Appendix 3, “Encoding for z/OS Resource Names,” on page 939 describes z/OS
resource names and the contexts in which they might be specified or displayed
by SAS.

xxiv What's New in SAS 9.4 Companion for z/OS

PART 1

Initializing and Configuring SAS Software

Chapter 1
Invoking SAS in the z/OS Environment . 3

Chapter 2
Customizing Your SAS Session . 9

Chapter 3
SAS Software Files . 25

1

2

1
Invoking SAS in the z/OS
Environment

Invocation Methods . 3

Invoking SAS under TSO: the SAS CLIST . 4

Invoking SAS under TSO: the SASRX exec . 4

Commands for Invoking SAS . 5

Invoking SAS in Batch Mode: the SAS Cataloged Procedure . 6

What If SAS Does Not Start? . 6

Connecting to SAS under z/OS . 6

HFS, UFS, and zFS Terminology . 8

Support for Longer TSO User IDs . 8

Invocation Methods
You can invoke SAS with any of the following methods:

n in interactive mode under TSO using the SAS CLIST

n in interactive mode under TSO using the SASRX exec

n in batch mode with the SAS cataloged JCL procedure

n by using the SIGNON command with SAS/CONNECT software

Note: Additional configuration steps are necessary before you can run SAS in
interactive mode. For more information, see the Configuration Guide for SAS
Foundation for z/OS.

3

Invoking SAS under TSO: the SAS CLIST
To invoke SAS under TSO, you execute the SAS CLIST by entering a command
(usually SAS) at the READY prompt. The SAS CLIST is an external file that contains
TSO commands and control instructions.

You can execute a CLIST explicitly by specifying the full data set name. Or, your
support personnel might have put the SAS CLIST in a common library so that you
can execute it by using a simple command such as SAS. Ask your support personnel
for site-specific information about the CLIST.

Depending on the defaults that have been specified in the CLIST, it starts one of
the following sessions:

n a SAS windowing environment session

n an interactive line mode session

n a noninteractive session.

To override the mode of running SAS that is specified in the CLIST, you use
commands similar to those shown in Table 1.1 on page 5. The exact commands
that you use might be site-specific.

Invoking SAS under TSO: the SASRX
exec

SASRX is a REXX program that you can use to invoke SAS. It is provided as an
alternative to the SAS CLIST. SASRX supports the same command-line syntax as
the SAS CLIST. It also supports these additional features:

n mixed-case option values

n additional options

n option specifications that have a UNIX style

n direct specification of SAS system options

n UFS file and directory names as option values

You can execute a SASRX exec explicitly by specifying the full data set name. Or,
your support personnel might have put the SASRX exec in a common library so that
you can execute it by using a simple command such as SAS. Ask your support
personnel for site-specific information about the SASRX exec. For details about the
SASRX exec, see “Invoking SAS under TSO: the SASRX exec” on page 4.

4 Chapter 1 / Invoking SAS in the z/OS Environment

Throughout this document, references to the SAS CLIST apply equally to the
SASRX exec.

Commands for Invoking SAS
Commands for invoking SAS are issued from a command line, not by submitting
code. The following table contains examples of commands that you can use to
invoke SAS:

Table 1.1 Commands for Invoking SAS

Mode To Invoke
To
Terminate Description

SAS
windowing
environment

sas options('dms')

or

sasrx -dms

bye or
endsas

enables you to write and execute
SAS programs and to view the SAS
log and SAS procedure output in an
interactive windowing
environment. If this is the default
at your site, then you can invoke it
by entering sas (or sasrx) with no
options.

Explorer sas options('explorer')

or

sasrx -explorer

bye or
endsas

enables you to manipulate SAS
data and files visually, launch SAS
applications, and access SAS
windowing environment windows
and Output Delivery System
hierarchies.

interactive
line mode

sas options('nodms')

or

sasrx -nodms

/* starting
in first
column of
submitted
code or
endsas;
statement

prompts you to enter SAS
statements at your terminal, one
line at a time.

noninteractive
mode

sas input('''my.sas.program''')

or

sasrx -input 'my.sas.program'

not
applicable

executes interactively, but it is
called noninteractive because the
program runs with no intervention
from the terminal.

Commands for Invoking SAS 5

Invoking SAS in Batch Mode: the SAS
Cataloged Procedure

To invoke SAS during a batch job, use a JCL EXEC statement that executes the SAS
cataloged procedure that invokes SAS, such as

//MYJOB EXEC SAS

By specifying parameters in the JCL EXEC statement, you can change how SAS is
invoked.

At each site, the JCL EXEC statement that you use and the cataloged procedure
itself might have been modified by your on-site SAS support personnel. Ask your
support personnel for site-specific information.

What If SAS Does Not Start?
If SAS does not start, the SAS log might contain error messages that explain the
failure. Any error messages that SAS issues before the SAS log is initialized are
written to the SAS Console Log, which is the SASCLOG ddname destination. Under
TSO, the SASCLOG ddname destination is normally the terminal. However, the
destination might be changed by the on-site SAS support personnel by changing
the CLIST or SASRX exec that invoked SAS. Similarly, a batch job or started task
normally assigns the SASCLOG ddname to a spooled SYSOUT class. However, the
destination might have been changed by the on-site SAS support personnel by
changing the catalog procedure used to invoke SAS. Spooled SYSOUT data can be
printed or viewed online with a JES spool viewer such as SDSF, IOF, or EJES.

Note: If SAS does not run in batch mode, check the messages in the JES job log.

Connecting to SAS under z/OS
Under z/OS, you can access or connect to a SAS session in any of the following
ways:

6 Chapter 1 / Invoking SAS in the z/OS Environment

3270 terminals
You can use devices that support extended data streams as well as those that
do not. For more information about terminal support, see “Terminal Support in
the z/OS Environment” on page 257.

terminal emulators
SAS best supports the terminal emulators that closely conform to the original
IBM specifications for the 3270 terminal. If you have problems with the SAS
vector graphics in your emulator session, make sure that the settings for your
emulator match these specifications as closely as possible.

SAS/CONNECT software
SAS/CONNECT supports cooperative and distributed processing between z/OS
and Windows, and between z/OS and UNIX. It supports the TCP/IP
(Transmission Control Protocol/Internet Protocol) and XMS (Cross-Memory
Services) communications access methods. TCP/IP and XMS enable local
clients who are running SAS to communicate with one or more SAS applications
or programs that are running in remote environments. For more information, see
the “Administration” topic in SAS/CONNECT User’s Guide.

SAS/SHARE software
SAS/SHARE enables local and remote clients in a heterogeneous network to
update SAS data concurrently. It also provides a low-overhead method for
multiple remote clients to read local SAS data. For more information, see the
“Administration” topic in SAS/CONNECT User’s Guide.

SAS/SESSION software
SAS/SESSION enables terminal users who are connected to the Customer
Information Control System (CICS) to communicate with SAS software in a
z/OS environment. It uses the LU6.2 (APPC/MVS) protocol. Your on-site SAS
support personnel can find more information about SAS/SESSION in the
installation instructions for SAS software in the z/OS environment.

Note: Starting with SAS 9.4M8, SAS/Session is not available from SAS. If you
have an existing installation of SAS/Session in your environment and plan to
upgrade or migrate to SAS 9.4M8 or later, SAS recommends that you first
uninstall SAS/Session. For more information, see Unconfiguring and
Uninstalling Retired Products.

SAS Intelligence Platform
SAS creates and delivers enterprise intelligence through the SAS Intelligence
Platform. This cohesive platform is based on an architecture that fully
integrates SAS technologies in data extraction, transformation, and loading;
data storage; business intelligence; and analytics. These capabilities provide the
end-to-end infrastructure necessary for exploring, analyzing, optimizing,
reporting, and understanding your data. For more information, see SAS
Intelligence Platform: System Administration Guide at support.sas.com.

Connecting to SAS under z/OS 7

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=whatsdiff&docsetTarget=p0rnmms86wf7b0n1682c6c54kl7x.htm

HFS, UFS, and zFS Terminology
Historically, the term HFS was used to refer to UNIX file systems in general on
z/OS as well as to a particular physical file system implementation. However, since
IBM has introduced zFS as a functional replacement for the HFS physical file
system, the term HFS can be misleading. Therefore, SAS documentation now uses
the term UFS to refer to UNIX file systems in general. The terms HFS, zFS, and NFS
designate three different physical file system implementations. Except in rare
cases, SAS processing for UFS files and directories is identical, regardless of the
physical file system implementation.

Your systems administrator, not SAS, controls whether the HFS or zFS
implementation is used for a particular file system.

Most occurrences of HFS in the documentation have been changed to UFS. HFS is
still used in feature names and in syntax statements and prefixes where it is the
correct term. UFS cannot be substituted for HFS in these contexts.

The following table lists the terminology changes that have been made:

Table 1.2 Terminology Changes

Old Term New Term

HFS file system UFS file system

HFS file UFS file

HFS library UFS library

For more information about the UFS file system, UFS libraries, and UFS files, see
“UFS Libraries” on page 63.

Support for Longer TSO User IDs
Prior to z/OS 2.3, TSO user IDs could be from 1 to 7 characters in length. Beginning
with z/OS 2.3, TSO user IDs can be from 1 to 8 characters in length.

SAS 9.4M5 adds support for 8-character TSO user IDs on z/OS 2.3. If you want to
use SAS with an 8-character TSO user ID, you must use SAS 9.4M5 with z/OS 2.3.

8 Chapter 1 / Invoking SAS in the z/OS Environment

2
Customizing Your SAS Session

Overview of Customizing Your SAS Session . 10

Customizing Your SAS Session at Start Up . 10

Configuration Files . 11
Overview of Configuration Files . 11
Creating a User Configuration File . 11
Format of a Configuration File's Contents . 12
Specifying a User Configuration File . 13

Autoexec Files . 14
Overview of Autoexec Files . 14
Displaying Autoexec Statements in the SAS Log . 15
Using an Autoexec File under TSO . 15
Using an Autoexec File in Batch Mode . 15
Concatenating Autoexec Files . 16

Sasuser Library . 16
Overview of the Sasuser Library . 16
Creating Your Own Sasuser Libraries . 17
Specifying Your Own Sasuser Library . 18

SAS System Options . 19
Overview of SAS System Options . 19
Specifying or Changing System Option Settings . 19
Determining How an Option Was Set . 20
Default Options Table and Restricted Options Table . 21
Displaying System Option Settings . 22
OPTIONS Procedure . 22
OPTIONS Window . 22
Precedence for Option Specifications . 23

The SAS Registry File . 23

9

Overview of Customizing Your SAS
Session

Whether you are using interactive processing under TSO or batch processing, you
might want to customize certain aspects of your SAS session. For example, you
might want to change the line size or page size for your output, or you might want
to see performance statistics for your SAS programs.

You can customize your SAS sessions by setting SAS system options that control
SAS behavior. For more information about SAS system options, see “System
Options in the z/OS Environment” on page 689.

Customizing Your SAS Session at Start
Up

You can customize your SAS session in five ways:

n Under TSO, pass operands into the SAS CLIST or SASRX exec that your site
uses to invoke SAS. This method is usually used for one-time overrides of CLIST
or SASRX exec operands. For more information about passing operands at SAS
invocation, see “Invoking SAS under TSO: the SAS CLIST” on page 4. Here are
three examples:

o sas options('nocenter linesize=80')

o sasrx -options (nocenter linesize=80)

o sasrx -nocenter -linesize 80

n In batch mode, pass parameters into the SAS cataloged procedure that your site
uses to invoke SAS. This method is usually used for one-time overrides of
parameters in the cataloged procedure. Here is an example:

//MYJOB EXEC SAS,
// OPTIONS='NOCENTER, LINESIZE=80'

Note: The length limit of the parameter string is 100 characters. If the
procedure uses any of the parameter string, then that amount is deducted from
the number of characters that you can use.

n Specify SAS system options in a user configuration file. This method is useful if
you, as an individual user, always want to override the values of system options

10 Chapter 2 / Customizing Your SAS Session

that are specified in your site's system configuration file. For more information
about specifying SAS system options in a configuration file, see “Configuration
Files” on page 11. The following examples use a TSO command to specify a
user configuration file:

sas config('''my.config.file''')

or

sasrx -config 'my.config.file'

The following example specifies a user configuration file with JCL:

//MYJOB EXEC SAS,
// CONFIG='MY.CONFIG.FILE'

n Execute SAS statements (such as OPTIONS, LIBNAME, and FILENAME
statements) in an AUTOEXEC file. For more information, see “Autoexec Files”
on page 14. This method is most useful for specifying options and allocating
files that pertain to a particular SAS application.

n In interactive mode, specify a Sasuser library that contains a user Profile
catalog. For more information, see “Sasuser Library” on page 16.

For information about the order of precedence for options specified using these
methods, “Precedence for Option Specifications” on page 23.

Configuration Files

Overview of Configuration Files
A configuration file contains SAS system options that are set automatically when
you invoke SAS. SAS uses two types of configuration files:

n the system configuration file, which is used by all users at your site by default.
Your on-site SAS support personnel maintain the system configuration file for
your site.

n a user configuration file, which is generally used by an individual user or
department.

Creating a User Configuration File
To create a user configuration file, use any text editor to write SAS system options
into a physical file. The configuration file can be a sequential data set member, a
partitioned data set, or a UFS file. It can have any record length, and either fixed
length or variable length records.

Configuration Files 11

Format of a Configuration File's Contents
Each line of a configuration file can contain one or more system options or
comments. If you specify more than one system option on a line, use either a blank
space or a comma to separate the options. If the file has the legacy configuration
file format of LRECL=80 and RECFM=FB, then only columns 1-72 are used. The
contents of columns 73-80 are ignored. If the file has any other format, then the
entire line is used.

Two different types of comments are supported. If a line contains an asterisk in
column one, then the entire line is a comment. If a comment of this type requires
multiple lines, each line must begin with an asterisk. Comments beginning with /*
and ending with */ can appear anywhere between option specifications, but cannot
be embedded within an option specification. Comments of this type can continue
across line boundaries.

Note: An */ that ends a comment cannot be in column one. If it is in column one, it
starts a separate comment for the entire line.

Some options can be on (enabled) or off (disabled). Specifying only the keyword
enables the option, and specifying the keyword prefixed with NO disables the
option. For example, a configuration file might contain the following option
specifications to disable the options:

NOCENTER
NOSTIMER
NOSTATS

Options that take a value must be specified in the following way:

option-name=value

For example, a configuration file might contain the following lines:

LINESIZE=80
PAGESIZE=60

Note: When you specify SAS system options in a configuration file, blank spaces
are not permitted before or after an equal sign.

A configuration file can contain the CONFIG= option. A CONFIG= option in a
configuration file can name a single ddname, a data set name, or a UFS filename. It
can also be a list that is contained in parentheses of any combination of ddnames,
data set names, or UFS filenames. The contents of the named configuration file or
files are logically inserted in place of the CONFIG= specification. If a CONFIG=
option specifies a file that has already been read as a configuration file, a warning
message is written to the log and the file is not read again during this session.

The configuration file is processed as if all of the lines (other than comments) were
concatenated into a single string with one blank space separating the lines. Options
whose value can contain blank spaces can be continued across line boundaries. For

12 Chapter 2 / Customizing Your SAS Session

example, the specification of the option in the following example is on five separate
lines, but it would be processed as if it is on one line:

jreoptions=(
 -jreoption1
 -jreoption2
 -jreoption3
)

In cases where separating concatenated lines with a blank space is not suitable,
two alternative methods of explicit concatenation are provided.

n If the file has the legacy format, and there is a non-blank character in column 72,
then the next line is concatenated without an intervening blank space. The
character in column 72 is not ignored, it is included in the concatenated value.

n If the legacy method of explicit concatenation does not apply, and the last non-
blank character of the line (or of columns 1-71 in a legacy format file) is a hyphen
(-) or a plus sign (+), then that character is deleted. The next uncommented line
is concatenated without an added blank space. If the character is a hyphen, then
the line is concatenated as is. If the character is a plus sign, then any leading
blank spaces of the next line are removed.

For example, the following option specification is invalid because a blank space is
inserted between the equal sign and the value.

YEARCUTOFF=
1950

The following option specification is valid because the value is concatenated
immediately following the equal sign, and a blank space is not inserted.

YEARCUTOFF=+
1950

Option values in SAS configuration files can contain symbolic references. The
values of these symbolic references are resolved from a variable that is set in the
TKMVSENV file. For example, the localized member of the default configuration
file concatenation contains a statement similar to the following:

SASHELP='MVS:&HLQ..ENW0.SASHELP'

In this option value, &HLQ. is a variable symbol. The variable HLQ is assigned a
value in the TKMVSENV file, in a statement similar to the following:

set HLQ=<high-level-qualifier>

where "<high-level-qualifier>" is your actual high-level-qualifier for SAS that
is set at install time. Therefore, the final value of the SASHELP option is resolved
as the following:

SASHELP=’<high-level-qualifier>.ENW0.SASHELP’

Specifying a User Configuration File
To tell SAS where to find your user configuration file, do the following:

Configuration Files 13

n If you use the SAS CLIST or SASRX exec to invoke SAS under TSO, use the
CONFIG operand - for example:

sas config('''my.config.file''')

or

sasrx -config 'my.config.file'

n If you use the SAS cataloged procedure to invoke SAS in batch mode, use the
CONFIG= parameter - for example:

//S1 EXEC SAS,CONFIG='MY.CONFIG.FILE'

The user configuration file that you specify is executed along with the system
configuration file that your installation uses. This happens because the SAS CLIST,
the SASRX exec, or the SAS cataloged procedure concatenates the file that you
specified to the system configuration file.

During initialization, the specified value of the CONFIG= option is replaced with the
list of all configuration files that are actually processed. PROC OPTIONS displays
this new value.

Note: SAS system options that you specify in the user configuration file override
system options that are specified in the system configuration file.

Normally, CONFIG is specified as a PROC option or REXX or CLIST option, and not
as a SAS command line system option. However, it can be specified as a SAS
command line option. Unlike most such options, if there are multiple instances of
CONFIG= on the command line, all instances are processed instead of just the last
one. You can take advantage of this to mix types of configuration files that cannot
be concatenated. For example, to append a private UNIX configuration file named
~/sas.cfg in batch JCL, use one of the following statements:

// OPTIONS='CONFIG=CONFIG CONFIG="~/sas.cfg"'

or

// OPTIONS='CONFIG=(CONFIG "~/sas.cfg")'

Explicitly specifying the default of CONFIG=CONFIG allows the second CONFIG=
value to be appended to the default instead of superseding it.

Autoexec Files

Overview of Autoexec Files
Under z/OS, an autoexec file can be a sequential data set, a member of a
partitioned data set, or a UFS file. Unlike configuration files, which contain SAS
system options, an autoexec file contains SAS statements. These statements are

14 Chapter 2 / Customizing Your SAS Session

executed immediately after SAS has been fully initialized and before any SAS input
source statements have been processed. For example, an autoexec file could
contain the following lines:

options fullstats pagesize=60 linesize=80;
libname mylib 'userid.my.lib';
dm 'clock';

The OPTIONS statement sets some SAS system options, the LIBNAME statement
assigns a library, and the DM statement executes a command.

Note: Some SAS system options can be specified only when you invoke SAS.
These system options cannot be specified in an OPTIONS statement. Therefore,
they cannot be specified in an autoexec file. For information about SAS system
options and where they can be specified, see “System Options under z/OS” on page
685 and SAS System Options: Reference

Displaying Autoexec Statements in the SAS Log
SAS statements that are submitted from an autoexec file usually are not displayed
in the SAS log. However, if you specify the ECHOAUTO system option when you
invoke SAS, then SAS writes (or "echoes") the autoexec statements to the SAS log
as they are executed.

Using an Autoexec File under TSO
Under TSO, use the AUTOEXEC operand when you invoke SAS to tell SAS where to
find your autoexec file. For example, the following commands invoke SAS and tell
SAS to use an autoexec file that is named MY.EXEC.FILE:

sas autoexec('''my.exec.file''')

sasrx -autoexec 'my.exec.file'

Using an Autoexec File in Batch Mode
To specify an autoexec file in a batch job, use a JCL DD statement to assign the
ddname SASEXEC to your autoexec file. This DD statement must follow the JCL
EXEC statement that invokes the SAS cataloged procedure. For example, the
following two lines of JCL can be used to accomplish the same results in a batch
job as the previous example did under TSO:

//MYJOB EXEC SAS
//SASEXEC DD DSN=MY.EXEC.FILE,DISP=SHR

Autoexec Files 15

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Concatenating Autoexec Files
You can concatenate multiple AUTOEXEC files in the ddname that is the value of
the AUTOEXEC system option. Under TSO, you can list multiple AUTOEXEC files
on the REXX or CLIST AUTOEXEC command-line option:

autoexec("autoexec1.sas autoexec2.sas")

The REXX or CLIST then allocates these data sets to the SASEXEC ddname.

You can also concatenate AUTOEXEC files with the APPEND on page 705 and
INSERT on page 783 system options if all of the files are UFS files:

autoexec='~/autoexec2.sas' insert=(autoexec='~/autoexec1.sas')

If you use the INSERT option, the file is prepended to the existing autoexec file.

If any file in a concatenated autoexec list does not exist or cannot be opened (for
example, if you are not authorized for Read access), then SAS issues error
messages to the log that indicate system start-up failure. SAS terminates without
executing any of the files in the autoexec concatenation list.

Sasuser Library

Overview of the Sasuser Library
SAS enables you to customize certain features while your SAS session is running
and to save these changes. The Sasuser library contains various SAS files in which
SAS records these settings. For example, in Base SAS software, any changes that
you make to function key settings or to window attributes are stored in a catalog
named SASUSER.PROFILE. The Sasuser library can also contain personal catalogs
for other SAS software products. You can also store SAS data files, SAS data views,
SAS programs, SAS/ACCESS descriptor files, and additional SAS catalogs in your
Sasuser library. In addition to storing function key settings and window attributes,
the SASUSER.PROFILE catalog is used to store your DEFAULT.FORM. The
DEFAULT.FORM is created by the FORM subsystem. It is used to control the
default destination of all output that is generated by the PRINT command. For
information about the FORM subsystem, see “Using the PRINT Command and the
FORM Subsystem” on page 154 and the SAS System Options: Reference.

Use these methods to set up your Sasuser library:

n Establish a permanent Sasuser library with Read and Update access. You must
use this method to set up Sasuser if you want settings that are modified in the
current SAS session to be in effect for a subsequent SAS session. This situation

16 Chapter 2 / Customizing Your SAS Session

is the typical arrangement when you run SAS interactively. Creating a
permanent Sasuser library is also necessary if you intend to save other
application files in the Sasuser library for use in a later session. When accessing
a permanent Sasuser library for Read and Update, only one SAS session at a
time can use the Sasuser library. To access a personal Sasuser library for Read
and Update, leave the Sasuser option unspecified and allocate the ddname
Sasuser to the Sasuser library. The SAS CLIST and SASRX exec that are
supplied by SAS to invoke SAS under TSO work this way by default. They also
create the Sasuser library data set if it does not exist. The default data set name
that they use is <prefix>.SAS9.SASUSER, where <prefix> is the system prefix
that is defined in your user profile, or with your user ID if no prefix is defined.

n Establish a permanent Sasuser library with Read access but not Update access.
This method enables you to create a single Sasuser library that is shared by
multiple SAS sessions that are running simultaneously. This method also
enables you to provide other users with a Sasuser library that contains a set of
pre-configured settings that are protected from Write access with system
authorization facilities (for a bound library) or with UFS permissions (for a UFS
library). To access a Sasuser library in either a shared or read-only manner, you
must specify the RSASUSER option. For more information about RSASUSER,
see “RSASUSER System Option” in the SAS System Options: Reference.

n Establish a temporary Sasuser library that exists only for the lifetime of the
current session. This method is appropriate for applications that can use the
default settings and that do not need to save settings. If you do not specify the
SASUSER option and do not allocate the SASUSER ddname, then SAS uses this
method in the batch environment by default. You can also run interactive
sessions in this manner by specifying the SASRX option NOSASUSER. When
you do not specify a Sasuser library, SAS creates a new PROFILE catalog that is
used to store profile information for use during the current SAS session. This
catalog is placed in the Work library, and a note to this effect is written to the
SAS log. The Work library is typically deleted at the end of your session, which
means that any changes made to the PROFILE catalog are not available in a
subsequent SAS session.

If you are running SAS under TSO and you want to specify SASUSER in your SAS
configuration file, then you need to specify the SASRX option NOSASUSER to
prevent SASRX from allocating the Sasuser library before the configuration file is
processed. This specification is available only if you are using SASRX. It is not
available if you are using the CLIST because the CLIST does not have the
NOSASUSER option.

Creating Your Own Sasuser Libraries
By creating your own Sasuser libraries, you can customize SAS software to meet
the requirements of a number of different types of jobs. For example, suppose you
want to create a user profile for a particular type of task that requires a unique set
of key definitions.

To create this user profile, you must first create a SAS library that can be used as
the Sasuser library. The easiest way to create this library is to start a SAS session

Sasuser Library 17

and then use a LIBNAME statement to create the library, as explained in “Assigning
SAS Libraries Internally” on page 74. For example, to create a SAS library with a
physical filename of ABC.MY.SASUSER, submit the following LIBNAME statement:

libname newlib 'abc.my.sasuser' disp=(new,catlg);

Note: A NEWLIB libref of was used in this example because SASUSER is a
reserved libref and cannot be reassigned during a SAS session.

To use the new SAS library as the Sasuser library, you must end your SAS session
and start a second session. When you start a second session, you can use the
SASUSER option of the SAS CLIST or SASRX exec to specify ABC.MY.SASUSER as
the Sasuser library.

Specifying Your Own Sasuser Library
After creating your own permanent SAS library, designate that library as your
Sasuser library. You can do this in either of the following ways:

n Use the SASUSER option of the SAS CLIST or SASRX exec to specify the
physical filename of your SAS library. For example, if you create a library with a
name of ABC.MY.SASUSER, then you use the following CLIST command to
invoke SAS:

sas sasuser('''abc.my.sasuser''')

Or, you would use the following SASRX command to invoke SAS:

sasrx -sasuser 'abc.my.sasuser'

When you enter this command, the libref SASUSER is associated with the SAS
library whose physical filename is ABC.MY.SASUSER. Any profile changes that
you make during your session are saved in the SAS catalog SASUSER.PROFILE,
which is a member of the Sasuser library. These changes are retained when you
end your SAS session.

n Use the SASUSER= system option to specify the ddname that identifies your
SAS library. For more information, see “SASUSER= System Option: z/OS” on
page 838.

Both of these methods require that you identify the SAS library when you invoke
SAS; you cannot change the Sasuser library during a SAS session.

18 Chapter 2 / Customizing Your SAS Session

SAS System Options

Overview of SAS System Options
SAS system options control many aspects of your SAS session, including output
destinations, the efficiency of program execution, and the attributes of SAS files
and libraries.

After a system option is set, it affects all subsequent DATA and PROC steps in a
process until it is specified again with a different value. For example, the
CENTER|NOCENTER option affects all output in the SAS session or program,
regardless of the number of steps in the process.

Specifying or Changing System Option Settings
The default values for SAS system options are appropriate for many of your SAS
programs. If you need to specify or change the value of a system option, you can do
so in the following ways:

n Create a user configuration file to specify values for the SAS system options
whose default values you want to override. For more information, see “Creating
a User Configuration File” on page 11.

n Under TSO, specify any SAS system options following the OPTIONS parameter
in the SAS CLIST command:

sas options('option-list')

On the SASRX command line, specify any SAS system options with this
command:

sasrx option-list

For options that can be on or off, just list the keyword that corresponds to the
appropriate setting. For options that take a value, list the keyword identifying
the option followed by an equal sign and the option value, as in the following
example:

sas options('nodate config=myconfig')

For detailed information about the SASRX exec, see Appendix 4, “Starting SAS
with SASRX,” on page 943.

n In batch mode, specify any SAS system option in the EXEC SAS statement:

// EXEC SAS,OPTIONS='option-list'

For example:

SAS System Options 19

// EXEC SAS,OPTIONS='OPLIST LS=80 NOSTATS'

n Specify SAS system options in an OPTIONS statement in an autoexec file. This
file is executed when you invoke SAS, or in an OPTIONS statement at any point
during a SAS session. Options specified in an OPTIONS statement apply to the
process in which they are specified. They are reset for the duration of the SAS
session or until you change them with another OPTIONS statement.

For example:

options nodate linesize=72;

To find out whether a particular option can be specified in the OPTIONS
statement, see “System Options under z/OS” on page 685 and SAS System
Options: Reference. For more information about autoexec files, see “Autoexec
Files” on page 14. For more information about the OPTIONS statement, see SAS
System Options: Reference and Step-by-Step Programming with Base SAS
Software.

n Change SAS system options from within the OPTIONS window. On a command
line, enter the keyword OPTIONS. The OPTIONS window appears. Place the
cursor on any option setting and type over the existing value. The value is saved
for the duration of the SAS session only. Not all options are listed in the
OPTIONS window. For more information, see “OPTIONS Window” on page 22.

n Specify PROC OPTLOAD or the DMOPTLOAD command to load a set of options
that you have saved in a file or data set by using PROC OPTSAVE or the
DMOPTSAVE command. For example, specifying

proc optload data=options1;
run;

loads the set of options that you have saved in a file that is named options1.
You can save multiple sets of options, and then use the OPTLOAD procedure to
load any of your sets of options at any time during a SAS session. The ability to
load the options at any time during a SAS session provides advantages over
using a configuration file, which you can use only when you invoke SAS.
However, not all options are saved by PROC OPTSAVE. For information about
which options cannot be saved with PROC OPTSAVE, see “The OPTSAVE
Procedure” in Base SAS Procedures Guide.

Determining How an Option Was Set
Because of the relationship between some SAS system options, SAS might modify
an option's value. This modification might change your results.

To determine how an option was set, enter the following code in the SAS Program
Editor:

proc options option=option value; run;

After you submit this code, the SAS log displays the value that was set for the
option, and how the value was set. For example, the following log message is
displayed when you enter

proc options option=CATCACHE value; run;

20 Chapter 2 / Customizing Your SAS Session

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Output 2.1 Results of the OPTIONS Procedure for the CATCACHE Option

Option Value Information for SAS Option CATCACHE
 Value: 0
 Scope: Default
 How option value set: Shipped Default

Contact your on-site SAS support personnel for more information.

Default Options Table and Restricted Options
Table

Your on-site SAS support personnel might have created a default options table or a
restricted options table. Information about creating and maintaining these tables is
provided in the Configuration Guide for SAS Foundation for z/OS.

The default options table is created by your site administrator and provides a global
set of defaults that are specific to your site. It reduces the need to duplicate
options in every system configuration file at your site.

The restricted options table is created by your site administrator. It specifies option
values that are established at start-up and cannot be overridden. If an option is
listed in the restricted options table, any attempt to set it is ignored. An attempt to
set it with the options statement causes a warning message to be written to the
log, for example:

1 options vsamload;

 36
WARNING 36-12: SAS option VSAMLOAD is restricted by your Site Administrator and
cannot be updated.

To find out which options are in the restricted options table, submit this statement:

PROC OPTIONS RESTRICT;
RUN;

For a list of restricted options, see “Restricted Options” in SAS System Options:
Reference.

Some SAS system options cannot be added to a restricted options table. To find
out whether an option can be restricted, run PROC OPTIONS with the DEFINE
option. For example:

PROC OPTIONS OPTION=option-name DEFINE;
RUN;

The output that is returned by the preceding statement includes either of the
following messages:

Your Site Administrator can restrict modification of this option.

or

SAS System Options 21

Your Site Administrator cannot restrict modification of this option.

If an ineligible option has been placed in the restricted options table, the following
message is issued:

SAS option option-name cannot be restricted by your Systems Administrator.

SAS terminates with an abend. If you receive such an error, you should immediately
notify your site administrator.

Displaying System Option Settings
To display the current settings of SAS system options, use the OPTIONS procedure
or the OPTIONS window.

Some options might seem to have default values even though the default value
listed in “System Options under z/OS” on page 685 and SAS System Options:
Reference is none. This situation happens when the option is set in a system
configuration file, in the default options table, or in the restricted options table.

You can use the VALUE parameter of the OPTIONS procedure to see when an
option's value was set.

OPTIONS Procedure
The OPTIONS procedure writes system options that are available under z/OS to
the SAS log. By default, the procedure lists one option per line with a brief
explanation of what the option does. To list the options with no explanation, use
the SHORT option:

proc options short;
run;

To list all the options in a certain category, use the GROUP= option:

proc options group=sort;
run;

Some options, such as system options that are specific to SAS/ACCESS interfaces
or to the SAS interface to ISPF, are listed only if you specify the GROUP= option.
For more information, see “OPTIONS Procedure Statement: z/OS” on page 552.

OPTIONS Window
To display the OPTIONS window, enter OPTIONS on a command line. The OPTIONS
window displays the settings of many SAS system options.

22 Chapter 2 / Customizing Your SAS Session

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Precedence for Option Specifications
When the same option is set in more than one place, the order of precedence is as
follows:

1 restricted options table, if there is one

2 OPTIONS statement or OPTIONS window

3 SAS invocation, including invocation by way of an EXEC SAS JCL statement (in
batch) or by way of the SAS CLIST or SASRX exec commands (under TSO)

4 user configuration file, if there is one

5 system configuration file (as SAS software is initialized)

6 default options table, if there is one

For example, options that you specify during your SAS session (using the OPTIONS
statement or OPTIONS window) take precedence over options that you specified
when you invoked SAS. Options that you specify with the SAS CLIST or SASRX
exec commands take precedence over settings in the configuration file. The
settings in the user configuration file take precedence over settings in the system
configuration file and in the default options table.

Note: Options that are specified in the restricted options table can be updated
only by your SAS administrator.

The SAS Registry File
For information about using the SAS Registry file to customize your SAS session,
see the information about the REGEDIT command and the SAS Registry Editor
window in the SAS online Help.

The SAS Registry File 23

24 Chapter 2 / Customizing Your SAS Session

3
SAS Software Files

Overview of SAS Software Files . 25

Work Library and Other Utility Files . 26
Overview of the Work Library . 26
Direct Access Bound Library (DSORG=PS) . 27
UFS Library . 28
Hiperspace Library . 29
User Library . 30
Utility Files That Do Not Reside in Work . 30

SAS Log File . 31
Overview of the SAS Log File . 31
Changing the Contents of the SAS Log . 31
Changing the Appearance of the SAS Log . 33

SAS Procedure Output File . 33
Overview of the SAS Procedure Output File . 33
Changing the Appearance of Procedure Output . 34

Console Log File . 35

Parmcards File . 35

TKMVSENV File . 35

Summary Table of SAS Software Files . 36

Transporting SAS Data Sets between Operating Environments . 39

Accessing SAS Files in Other Operating Environments . 40

Using Input/Output Features . 40

Reserved z/OS Ddnames . 40

Overview of SAS Software Files
Configuration files (described in “Configuration Files” on page 11) and Sasuser files
(described in “Sasuser Library” on page 16) are only two of several SAS software
files that are automatically identified to your session by either the SAS CLIST or

25

SASRX exec (under TSO) or the SAS cataloged procedure (in batch). This section
describes several other SAS software files that are significant to SAS users under
z/OS.

For brief descriptions of all the SAS software files that are frequently used by the
SAS CLIST, the SASRX exec, or by the SAS cataloged procedure, see “Summary
Table of SAS Software Files” on page 36.

Work Library and Other Utility Files

Overview of the Work Library
The Work library is a special-purpose SAS library that contains temporary files,
including certain types of utility files that are created by SAS as part of processing
the current SAS session or job. The Work library is also the default location for one-
level member names and user settings. One-level member names are member
names that are specified without a libref. They reside in the Work library unless a
User library has been identified. For more information about User libraries, see
“User Library” on page 30. In a single-user SAS session or job, if the Sasuser library
is not assigned, then the Work library also houses temporary user settings in files,
such as the PROFILE catalog and the SAS registry item store.

In a single-user SAS session or job, the Work library is typically created at the
beginning of a SAS session or job and deleted at the end. Multi-user SAS servers
also create a Work library (referred to as a client Work library) for each client that
connects to the server. Client Work libraries contain the temporary files created as
part of the processing done by the server on behalf of the client. The server creates
a distinct client Work library for each client so that files used by one client are not
commingled with files belonging to another client. These libraries are created when
the client establishes a connection with the server, and they exist until the client
disconnects. Each client Work library has the same library implementation type as
the Work library for the server.

The Work library is always processed by the BASE engine, which requires that you
use one of the following library implementation types for Work:

n “Direct Access Bound Library (DSORG=PS)” on page 27

n “UFS Library” on page 28

n “Hiperspace Library” on page 29

The advantages of each of these library implementation types for use with the
Work library are detailed in the following topics, along with usage notes. For
information about each type of library, see “Library Implementation Types for Base
and Sequential Engines” on page 51.

26 Chapter 3 / SAS Software Files

Direct Access Bound Library (DSORG=PS)
Assigning a direct access bound library in a physical sequential (DSORG=PS) data
set for the Work library is generally the best choice for single-user SAS sessions or
jobs. Follow these steps to set up the Work library:

1 Accept the default value, WORK, for the WORK option.

2 Ensure that the DDNAME WORK is allocated to a physical sequential data set
that has an unspecified record format, or has a record format that is set to
RECFM=FS. The SASRX exec sets this format automatically unless a WORK
SASRX option specifies a data set name or a UFS directory path. The DDNAME
WORK is also allocated by the SAS CLIST or SAS JCL procedure in most cases.

Note: At SAS invocation, do not specify the SAS system options HSWORK or
FILESYSTEM=HFS.

For SAS processing to complete successfully, the Work library data set must be
large enough to accommodate the maximum number of library blocks that are in
use at any one time during the SAS session. Otherwise, it must be possible to add
enough additional disk space to the library data set to satisfy the requirements of
SAS processing. If the Work library becomes full and cannot be expanded, an
attempt to create or extend a member fails. Such a failure usually results in a
message similar to this one:

ERROR: Write to WORK <member>.<type> failed. File is full and might be damaged.

In most cases, SAS processing cannot succeed if the Work library data set has
insufficient space and cannot be expanded. There are two possible causes for
situations in which the library data set cannot be expanded:

n The system did not have enough disk space available to satisfy the secondary
allocation request when SAS needed to expand the library.

n The combination of the primary and secondary allocation amounts did not
specify sufficient space to accommodate the number of library blocks that SAS
required.

For information about how the primary and secondary allocation amounts influence
the amount of space available for the library data set, see “z/OS Disk Space
Allocation” on page 84.

If you specified sufficient space for the Work library but the space was not
available, contact your z/OS systems administrator for assistance. Otherwise,
increase the primary and secondary allocation amounts. If you are starting a single-
user SAS session with the SASRX exec, you can increase these allocation amounts
by specifying the appropriate values for the SASRX option WORK. Otherwise, if
you are using a SAS CLIST or SAS JCL procedure to start a single-user SAS session
or job, specify the appropriate parameters or modify the allocation statement
directly.

Work Library and Other Utility Files 27

If a client work library that resides in a direct access bound library (DSORG=PS)
becomes full, then contact the SAS administrator who is responsible for the SAS
server to which you were connected. The amount of disk space available to each
client Work library can be increased by modifying the CLIENTWORK system option.
For more information, see “CLIENTWORK System Option: z/OS” on page 719.

Allocating an excessive amount of space for the Work library reserves disk space
that could be used by other jobs. To avoid wasting system resources by allocating
more space to the Work library than is required, it might be necessary to run the
SAS job or session to perform a typical processing job, and then measure the
amount of Work library space that the job uses. To measure the amount of library
space, include the following statement at the end of your job:

proc datasets lib=work; quit; run;

In the information that is listed for the library directory, the statistic "Highest
Formatted Block" represents the largest number of blocks in simultaneous use at
any time during the SAS session. Divide this statistic by the "Blocks per Track"
statistic to convert it to the maximum number of disk tracks required for the Work
library during this session. Using this information, you can derive the primary and
secondary space allocation for the Work library data set with the following method:

1 Select a primary allocation that is approximately equivalent to the minimum
expected space utilization.

2 Select a secondary allocation that enables sufficient growth up to the maximum
expected space utilization.

Some SAS procedures write utility files to the Work library only if the NOTHREADS
system option has been specified. Therefore, a smaller amount of Work library
space might be required if you specify THREADS.

For processing performed by a multi-user SAS server, the libref Work refers to the
client Work library only in certain contexts, such as in SAS code submitted for
execution by the server. See the documentation for the specific SAS server to
determine how to access the client Work library.

Allocating the Work library data set to virtual I/O (VIO) can avoid physical I/O and
thus decrease the elapsed time required for a SAS job to run. Therefore, VIO is
often preferable to actual disc devices, especially for jobs with modest workspace
requirements. To use VIO, a particular UNIT name typically must be specified with
the SASRX exec, SAS CLIST, or JCL procedure. For assistance, contact your z/OS
systems administrator. If you are using a SAS CLIST, a SASRX exec, or JCL
procedure to invoke SAS, contact your SAS systems administrator for information
about how to control the allocation of the DDNAME Work.

UFS Library
Placing the Work library in a UFS directory eliminates the need to specify the
amount of space that is allocated to the Work library (including client Work
libraries). This feature is particularly valuable for multi-user SAS servers because
the space requirements for individual client Work libraries might vary widely and be
difficult to predict. When you place your Work library in a UFS directory, each Work

28 Chapter 3 / SAS Software Files

library uses only the space it actually needs for the files that are created. This
space is drawn from a large pool. A pool consists of the free space available in the
UFS file system in which the directory is located.

Note: Contact your system administrator if you have questions about the space
available in the UFS file system in which you have placed the Work library.

To use UFS libraries, follow these guidelines:

n Specify the path to the directory in which the Work library (or libraries) are to
reside with the SAS system option WORK, as shown in the following example:

WORK="/mydir"

Each Work library (or client Work library) resides in a subdirectory within the
UFS directory that you specify with the WORK option. These subdirectories are
created automatically as they are needed.

If SAS jobs or sessions that run under different user accounts are to specify the
same directory path for the WORK option, then SAS recommends that the
specified UFS path correspond to a directory with its sticky bit turned on. When
the sticky bit is on for a directory, directories that are contained within that
directory can be removed only by one of the following users:

o the owner of the directory

o the owner of the directory that is being deleted

o a superuser

This setting enables multiple SAS users to place temporary directories in the
same location without the risk of accidentally deleting each other's files.

n If necessary, specify the SAS system option WORKTERM to remove the Work
library subdirectories and their contents when they are no longer needed. For
more information about using WORKTERM, see “WORKTERM System Option:
z/OS” on page 888.

n Avoid allocating the DDNAME WORK (if possible), or allocate the minimum
amount of space. The data set allocated to the DDNAME WORK is not used
when a UFS path is specified for the WORK option.

For more information about UFS, see “HFS, UFS, and zFS Terminology” on page 8.

Hiperspace Library
A hiperspace library is a temporary direct access bound library in which each library
block resides in a 4K block in a z/OS hiperspace. Specifying the SAS system option
HSWORK causes the Work library to be a hiperspace library. Hiperspaces reside in
memory, and specifying HSWORK can reduce the elapsed time that is required for
SAS processing because I/O operations to disk are not required for Work library
processing. When HSWORK is specified at the invocation of a SAS server, any
client Work libraries that are created are hiperspace libraries. For more information,
see “Hiperspace Libraries” on page 66.

Work Library and Other Utility Files 29

Note: Some installations might place limits on hiperspace use. Consequently, using
hiperspace for Work might be more appropriate for SAS jobs or servers with
modest Work space requirements. Contact your systems administrator for
information about hiperspace limitations.

Follow these guidelines to specify that the Work library and any client Work
libraries are hiperspace libraries:

n Specify the SAS system option “HSWORK System Option: z/OS” on page 782.

n Avoid allocating the DDNAME WORK (if possible), or allocate the minimum
amount of space, because the data set allocated to the DDNAME WORK is not
used when HSWORK is specified.

n Specify values that provide sufficient total space for the entire SAS job or
server for the following SAS system options:

o HSLXTNTS

o HSMAXPGS

o HSMAXSPC

For more information, see “HSLXTNTS= System Option: z/OS” on page 779,
“HSMAXPGS= System Option: z/OS” on page 780, and “HSMAXSPC= System
Option: z/OS” on page 781.

User Library
You can identify a permanent library in which SAS stores members specified with
one-level names (that is, without a libref). This feature can be useful for
applications that require a default location for SAS files that is permanent or that
exists beyond the end of the current SAS session. You might also find that it is
useful to allocate a larger amount of temporary space when you have already
started SAS and cannot increase the size of WORK. More temporary workspace is
also useful when you do not want to increase the size of WORK for every user who
is connecting to a specific server.

To use a User library, follow these guidelines:

n Assign a libref to the User library data set.

n Specify the libref as a value of the “USER= System Option: z/OS” on page 877.

Utility Files That Do Not Reside in Work
In SAS®9, some SAS procedures create a new type of utility file that does not reside
in Work but rather in a location specified via the UTILLOC system option. In some
cases, these utility files are created only if the THREADS system option is set to a

30 Chapter 3 / SAS Software Files

nonzero value. These utility files, which provide certain performance benefits, can
reside in one of two different types of locations on z/OS:

temporary z/OS data set
Each utility file resides in a separate, temporary, sequential data set on disk (or
VIO) that has a system-generated name that is allocated by a system-generated
DDNAME. The amount of disk space available to each utility file is specified by
an ALLOC command, which is specified as the value of the UTILLOC option.
Specify the UCOUNT keyword to allow these files to reside in multi-volume
data sets.

UFS file
Each utility file is a UFS file residing in a temporary directory subordinate to the
UFS path specified for the UTILLOC option.

For more information about the UTILLOC system option and the UCOUNT keyword,
see “UTILLOC= System Option: z/OS” on page 877.

SAS Log File

Overview of the SAS Log File
The SAS log file is a temporary physical file that has a ddname of SASLOG in the
SAS cataloged procedure, the SAS CLIST, and the SASRX exec. In batch mode, the
SAS cataloged procedure assigns default data control block (DCB) characteristics
to this file as follows:

BLKSIZE=141

LRECL=137

RECFM=VBA

Under TSO, either interactively or noninteractively, the SASLOG file is routed to the
terminal by default. In the windowing environment, the SAS log is directed to the
Log window.

For more information about the SAS log and about how to route output in a batch
job, see “Types of SAS Output” on page 142.

Changing the Contents of the SAS Log
The particular information that appears in the SAS log depends on the settings of
several SAS system options. For more information, see “Collecting Performance
Statistics” on page 904.

SAS Log File 31

In addition, the following portable system options affect the contents of the SAS
log:

CPUID
controls whether CPU information is printed at the beginning of the SAS log.

DETAILS
specifies whether to include additional information when files are listed in a
SAS library.

ECHOAUTO
controls whether the SAS source statements in the autoexec file are written
(echoed) to the SAS log.

MLOGIC
controls whether macro trace information is written to the SAS log when
macros are executed.

MPRINT
controls whether SAS statements that are generated by macros are displayed.

MSGLEVEL=
controls the type of messages that are displayed.

NEWS=
specifies an external file that contains messages to be written to the SAS log
when SAS software is initialized. Typically, the file contains information such as
news items about the system.

NOTES
controls whether NOTES are printed in the log. NOTES is the default setting for
all methods of running SAS. Do not specify NONOTES unless your SAS program
is completely debugged.

OPLIST
specifies whether options given at SAS invocation are written to the SAS log.

PAGESIZE=
specifies the number of lines that compose a page of SAS output.

PRINTMSGLIST
controls whether extended lists of messages are printed.

SOURCE
controls whether SAS source statements are written to the log. NOSOURCE is
the default setting for SAS interactive line mode. Otherwise, SOURCE is the
default.

SOURCE2
controls whether secondary source statements from files that are included by
%INCLUDE statements are written to the SAS log.

SYMBOLGEN
controls whether the macro processor displays the results of resolving macro
references.

32 Chapter 3 / SAS Software Files

Changing the Appearance of the SAS Log
The following portable system options are used to change the appearance of the
SAS log:

DATE
controls whether the date and time, based on when the SAS job or session
began, are written at the top of each page of the SAS log and of any print file
that SAS software creates. Use NODATE to suppress printing of the date and
time.

LINESIZE=
specifies the line size (printer line width) for the SAS log and the SAS procedure
output file. LS= is an alias for this option. LINESIZE= values can range from 64
through 256.

NUMBER
controls whether the log pages are numbered. NUMBER is the default. Use the
NONUMBER option to suppress page numbers.

OVP
controls whether lines in SAS output are overprinted.

SAS Procedure Output File

Overview of the SAS Procedure Output File
Whenever a SAS program executes a PROC step that produces printed output, SAS
sends the output to the procedure output file. Under TSO, either interactively or
noninteractively, the procedure output file is routed to the terminal by default. In
the windowing environment, output is directed to the Output window.

In batch mode, the SAS procedure output file is identified in the cataloged
procedure by the ddname SASLIST. Unless you specify otherwise, SAS writes most
procedure output to this file. (A few procedures, such as the OPTIONS procedure,
route output directly to the SAS log by default.) PUT statement output might also
be directed to this file by a FILE statement that uses the fileref PRINT. (PRINT is a
special fileref that can be specified in the FILE statement.) A DATA step can also
send output to this file by using the PUT statement when a FILE PRINT; statement
is the active FILE statement.

The following DCB characteristics of the procedure output file are controlled by the
cataloged procedure, typically with the following values:

SAS Procedure Output File 33

BLKSIZE=264

LRECL=260

RECFM=VBA

The SAS procedure output file is often called the print file. However, any data set
that contains carriage-control information (identified by a trailing A as part of the
RECFM= specification) can be called a print file.

Changing the Appearance of Procedure Output
The following portable system options are used to change the appearance of
procedure output:

CENTER
controls whether the printed results are centered or left-aligned on the
procedure output page. CENTER is the default; NOCENTER specifies left
alignment.

DATE
controls whether the date and time, based on when the SAS job or session
began, are written at the top of each page of the SAS log and of any print file
that SAS software creates. Use NODATE to suppress printing of the date and
time.

LINESIZE=
specifies the line size (printer line width) for the SAS log and the SAS procedure
output file. LS= is an alias for this option. LINESIZE= values can range from 64
through 256.

NUMBER
controls whether the page number is printed on the first title line of each SAS
printed output page. NUMBER is the default. Use the NONUMBER option to
suppress page numbers.

PAGENO=
specifies a beginning page number for the next page of output that SAS
software produces.

PAGESIZE=
specifies how many lines to be printed on each page of SAS output. PS= is an
alias for this option. In the windowing environment or in an interactive line mode
session, the PAGESIZE= option defaults to the terminal screen size, if this
information is available from the operating environment. PAGESIZE= values can
range from 15 through 500.

34 Chapter 3 / SAS Software Files

Console Log File
The SAS console log file is a physical file that is automatically allocated at the start
of SAS initialization. The console log file records log messages generated when the
regular SAS log is either unavailable or is not yet initialized. The SAS CLIST, the
SASRX exec, and cataloged procedures allocate this file using the ddname
SASCLOG.

Parmcards File
The parmcards file is a temporary physical file that is identified by the ddname
SASPARM. It is created automatically by the SAS cataloged procedure and by the
SAS CLIST or SASRX exec. SAS uses the parmcards file for internal processing.
Lines that follow a PARMCARDS statement in a PROC step are first written to the
parmcards file. Then they are read into the procedure.

TKMVSENV File
A TKMVSENV file is created during installation. You can use the ddname
TKMVSENV with the SAS cataloged procedure, the SASRX exec, and CLISTs to
point to the file. The file must be a sequential file or a member of a PDS with a
record format of fixed blocked.

The TKMVSENV file is used to create pseudo-environment variables. Environment
variables are supported for customizing applications. Some environment variables
are used at the request of SAS Technical Support to investigate problems that are
reported by users.

Each record in the TKMVSENV file must contain a single command: SET or RESET.
The RESET command clears all previously set environment variables. The SET
name=value command enables you to create the variable name and assign it the
value value.

Each command must begin in column 1 of the record. No blank spaces are permitted
in the name=value specification on the SET command, except when the value is
enclosed in quotation marks. Some variables have a Boolean effect. These
variables are turned on when they are defined and turned off when they are not

TKMVSENV File 35

defined. Such variables do not need to have a value and can be defined by using the
SET name= command without a value.

You can include comments after the command specification by adding one or more
blank spaces between the command specification and the comment. Any record
that has an asterisk in column 1 is ignored, and the entire record is treated as a
comment.

For more information, see “TKMVSENV Options under z/OS” on page 895.

Summary Table of SAS Software Files
Table 3.1 on page 36 lists all of the SAS software files that are frequently used in
the SAS CLIST, the SASRX exec, or in the SAS cataloged procedure. In the CLIST,
SASRX, and cataloged procedure, logical names are associated with physical files.
The logical names listed in the table are those that are used by the standard SAS
CLIST, SASRX, or cataloged procedure. Your installation might have changed these
names.

The system option column in the table lists the SAS system options that you can
pass into the SAS CLIST or SASRX (using the OPTIONS operand) or into the SAS
cataloged procedure (using the OPTIONS parameter) when you invoke SAS. You
can use these system options to change the defaults that were established by the
CLIST, SASRX, or by the cataloged procedure. For more information, see
“Specifying or Changing System Option Settings” on page 19.

Note: If a system option exists for a particular logical name, such as CONFIG or
TKMVSENV, you should not provide a DD statement or TSO ALLOC statement for
your own file. You should use only the system option that is shown to make
overrides of the default value.

Some of these logical names have related options that are more complex than can
be summarized in this table. For more information, see “System Options under
z/OS” on page 685.

Table 3.1 SAS Software Files

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

CONFIG system
configuration
file

CONFIG= ddname not applicable sequential data set or PDS
member

Description: contains system options that are processed automatically when you invoke SAS. The
system configuration file is usually maintained by your data center.

36 Chapter 3 / SAS Software Files

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

CONFIG user
configuration
file

CONFIG= ddname CONFIG(dsn) sequential data set or PDS
member

Description: also contains system options that are processed automatically when you invoke SAS. Your
user configuration file is concatenated to the system configuration file.

LIBRARY format library not applicable not applicable SAS library

Description: contains formats and informats.

SAMPSIO sample SAS
library

not applicable not applicable SAS library

Description: is the SAS library that is accessed by SAS programs in the sample library provided by SAS
Institute.

SASnnnnn command
processor file

not applicable not applicable sequential data set or PDS
member

Description: is used by the SASCP command in the SAS CLIST or the SASRX exec.

SASAUTOS system autocall
library

not applicable MAUTS(dsn) PDS

Description: contains source for SAS macros that were written by your data center or provided by SAS
Institute.

SASAUTOS user autocall
library

SASAUTOS=
specification1

SASAUTOS(dsn) PDS

Description: contains a user-defined autocall library to which the system autocall library is
concatenated.

SASCLOG console log not applicable CLOG(dsn) sequential data set or PDS
member

Description: SAS console log file.

SASEXEC autoexec file AUTOEXEC=
ddname

AUTOEXEC(dsn) sequential data set or PDS
member

Description: contains statements that are executed automatically when you invoke SAS.

SASHELP HELP library SASHELP=
ddname

SASHELP(dsn) SAS library

Description: contains system default catalogs and Help system information.

Summary Table of SAS Software Files 37

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

SASLIB format library
(V5)

SASLIB= ddname not applicable load library

Description: a load library that contains user-written procedures and functions or Version 5 formats and
informats. It is searched before the SAS software load library.

SASLIST procedure
output file

PRINT= ddname PRINT(dsn) sequential data set or PDS
member

Description: contains SAS procedure output.

SASLOG log file LOG= ddname LOG(dsn) sequential data set or PDS
member

Description: SAS log file.

SASMSG system
message file

SASMSG= ddname SASMSG(dsn) PDS

Description: contains SAS software messages.

SASPARM parmcards file PARMCARD=
ddname

PARMCARD(size) sequential data set or PDS
member

Description: a temporary data set that is used by some procedures. The PARMCARD= system option
assigns a ddname to the parmcards file; the PARMCARD CLIST or SASRX operand specifies the file
size. You can use the DDPARMCD operand to specify an alternate name for the parmcards file via the
CLIST or SASRX.

SASSNAP SNAP dump file not applicable not applicable sequential data set or PDS
member

Description: SNAP output from dump taken during abend recovery.

SASSWKnn sort work files DYNALLOC
SORTWKDD=
SORTWKNO=

not applicable sequential

Description: temporary files that are used by the host sort utility when sorting large amounts of data.

SASUSER Sasuser library SASUSER=
ddname

SASUSER(dsn) SAS library

Description: contains the user profile catalog and other personal catalogs.

STEPLIB STEPLIB library not applicable LOAD(dsn)
SASLOAD(dsn)

load library

38 Chapter 3 / SAS Software Files

Default
Logical
Name Purpose System Option CLIST Operands Type of OS Data Set

Description: a load library that contains SAS procedure and user-written load modules. (Allocate with a
STEPLIB DD statement in a batch job.)

SYSIN primary input
file

SYSIN= ddname INPUT(dsn) sequential data set or PDS
member

Description: contains SAS statements. The primary input file can be specified with the INPUT operand
under TSO, or allocated with a DD statement in a batch job.

TKMVSENV TKMVSENV file not applicable TKMVSENV(dsn) sequential data set or PDS
member

Description: contains a list of pseudo-environment variables that are available to threaded kernel
applications.

USER User library USER= ddname |
dsn

not applicable SAS library

Description: specifies a SAS library in which to store SAS data sets that have one-level names (instead
of storing them in the Work library).

WORK Work library WORK= ddname WORK(parms) SAS library

Description: contains temporary SAS files that are created by SAS software during your session.

1 SASAUTOS: specification can be a fileref, a partitioned data set name enclosed in quotation marks, or a series of file
specifications enclosed in parentheses.

Transporting SAS Data Sets between
Operating Environments

SAS supports three ways of transporting SAS data sets between z/OS and other
SAS operating environments: the XPORT engine, the CPORT and CIMPORT
procedures, and SAS/CONNECT software, which is licensed separately. The
process of moving a SAS file to or from z/OS with the XPORT engine or with the
CPORT and CIMPORT procedures involves three general steps:

1 Convert the SAS file to the intermediate form known as transport format.

2 Physically move the transport format file to the other operating environment.

3 Convert the transport format file into a normal, fully functional SAS file, in the
format required by the other operating environment.

Transporting SAS Data Sets between Operating Environments 39

For further information about the XPORT engine and on the CPORT and CIMPORT
procedures, including limited restrictions, see Moving and Accessing SAS Files.

SAS/CONNECT software enables you to move files between operating
environments without using the intermediate transport format. For further
information about SAS/CONNECT, including limited restrictions, see
SAS/CONNECT User’s Guide.

Accessing SAS Files in Other Operating
Environments

SAS supports read-only cross-environment data access (CEDA) for certain types of
SAS files created in the format of SAS Version 7 or later. CEDA enables you to read
files in other operating environments as if those files were stored under z/OS. For
more information about CEDA, see Moving and Accessing SAS Files and the
information about the Migration focus area at support.sas.com/migration.

Using Input/Output Features
SAS 5 and SAS 6 data sets generally need to be migrated to SAS 9 to enable you to
use the I/O features introduced in SAS 9 and SAS 8. For example, to add integrity
constraints to a SAS 6 data set, you must first migrate that data set to SAS 9. For
information about migrating your data sets, see the Migration focus area at
support.sas.com/migration.

Reserved z/OS Ddnames
In addition to the logical names shown in Table 3.1 on page 36, which have a special
meaning to SAS, you should be aware of the following reserved ddnames. These
ddnames have a special meaning to the operating environment:

JOBCAT
specifies a private catalog that the operating environment is to use instead of
the system catalog for the duration of the job (including jobs with more than
one job step).

40 Chapter 3 / SAS Software Files

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

JOBLIB
performs the same function as STEPLIB except that it can be used in a job that
has more than one job step. For more information, see Table 3.1 on page 36.

SORTLIB
is used by some host sort utilities.

SORTMSG
is used by some host sort utilities to print messages.

SORTWKnn
specifies sort work data sets for the host sort utility. If allocated, this ddname is
used instead of the SASSWKnn data sets.

STEPCAT
specifies a private catalog that the operating environment is to use instead of
the system catalog for the current job step.

SYSABEND
in the event of an abnormal job termination, SYSABEND specifies a data set
that receives a medium-sized dump that consists of the following information:

n user-allocated storage and modules

n system storage related to current tasks and open files

n system and programs related to the terminated job

For more information, see the following information about SYSMDUMP and
SYSUDUMP.

SYSHELP
is used by TSO HELP libraries (not the SAS HELP facility).

SYSLIB
is used by some IBM system utility programs.

SYSMDUMP
in the event of an abnormal job termination, SYSMDUMP specifies a data set
that receives a system dump in IPCS format. The contents of the dump are
determined by z/OS installation options. SYSMDUMP generally includes all
user-allocated storage, all system-allocated storage used to control job
execution, and all program modules (system modules and user programs) that
were in use when the dump was taken.

SYSOUT
is used by some utility programs to identify an output data set.

SYSPRINT
is used by some utility programs to identify a data set for listings and messages
that might be sent to the printer.

SYSUADS
is used by some TSO commands that might be invoked under SAS software.

SYSUDUMP
in the event of an abnormal job termination, SYSUDUMP specifies a data set
that receives a “short” system dump. This dump consists of user-allocated
storage and modules and system storage related to current tasks and open files.
For more information, see the previous discussions about SYSABEND and
SYSMDUMP.

Reserved z/OS Ddnames 41

SYSnnnnn
is reserved for internal use (for dynamic allocation) by the operating
environment.

42 Chapter 3 / SAS Software Files

PART 2

Running SAS Software under z/OS

Chapter 4
Using SAS Libraries . 45

Chapter 5
Specifying Physical Files . 89

Chapter 6
Assigning External Files . 93

Chapter 7
Accessing External Files . 107

Chapter 8
Directing SAS Log and SAS Procedure Output . 141

Chapter 9
Universal Printing . 185

Chapter 10
SAS Processing Restrictions for Servers in a Locked-Down State 219

Chapter 11
Using the SAS Remote Browser . 223

Chapter 12
Using Item Store Help Files . 227

Chapter 13
Exiting or Terminating Your SAS Session in the z/OS Environment 235

43

44

4
Using SAS Libraries

Introduction . 45

SAS Library Engines . 46
Overview of SAS Library Engines . 46
The V9 Engine . 46
The V9TAPE Engine . 47
Compatibility Engines . 48

SAS View Engines . 50

Library Implementation Types for Base and Sequential Engines . 51
Overview of Library Implementation Types . 51
Direct Access Bound Libraries . 51
Sequential Access Bound Libraries . 57
UFS Libraries . 63
Hiperspace Libraries . 66
Pipe Libraries . 68

Assigning SAS Libraries . 72
Overview of Assigning SAS Libraries . 72
Allocating the Library Data Set . 73
Assigning SAS Libraries Internally . 74
Assigning SAS Libraries Externally . 77
How SAS Assigns an Engine . 81
Assigning Multiple Librefs to a Single SAS Library . 82
Listing Your Current Librefs . 82
Deassigning SAS Libraries . 83
Allocating Disk Space for SAS Libraries . 84
Allocating a Multivolume Generation Data Group . 88

Introduction
The following information explains how to create, identify, and manage SAS
libraries that reside in MVS data sets or UNIX file system directories on z/OS. For
example, creating certain types of SAS libraries on z/OS requires the specification
of physical characteristics such as block size. It can also require the identification

45

of system resources such as disk space. In addition, z/OS provides robust facilities,
such as MVS JCL, for identifying the MVS data sets in which some SAS libraries
reside. The MVS ddname associated with an MVS data set can be used to assign a
library within SAS. The following information describes how to control the physical
characteristics of SAS libraries to optimize performance and take full advantage of
the z/OS environment. For more information, see “SAS Libraries” in SAS Language
Reference: Concepts and “SAS Engines” in SAS Programmer’s Guide: Essentials.

The topics in the following list discuss the use of library engines and SAS libraries:

SAS Library Engines
describes how to use various types of engines under z/OS to access SAS
libraries. For the base, sequential, and certain compatibility engines, the SAS
libraries can exist in various formats. For more information, see “SAS Library
Engines” on page 46.

Library Implementation Types for Base and Sequential Engines
describes the purpose for each of the various library formats as well as how to
select the format that is most appropriate for your application. For more
information, see “Library Implementation Types for Base and Sequential
Engines” on page 51.

Assigning SAS Libraries
describes the various means for specifying that a particular library be used
within a SAS session. For more information, see “Assigning SAS Libraries” on
page 72.

SAS Library Engines

Overview of SAS Library Engines
SAS provides different engines that enable you to access and, in most cases, to
update files of different types and different formats.

The V9 Engine
The default Base SAS engine for SAS libraries is V9. The V9 engine creates libraries
in the V9 format, and it can also read and write libraries created using the V7 and
V8 engines.

The V9 engine is the appropriate choice for most applications because it supports
the full SAS data set functionality. The V9 engine also exploits the random access
capabilities of disk devices to achieve greater performance than is possible with
sequential engines.

46 Chapter 4 / Using SAS Libraries

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1sc357rgi0fc5n12n8qcu7ligjo.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1sc357rgi0fc5n12n8qcu7ligjo.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en

The V9 engine is the default engine in most cases, but you can change the specified
default engine with the ENGINE system option. The V9 engine can be used only for
the types of devices that support it.

Note: Use BASE as the engine name if you write programs that create new SAS
libraries and you want to create the libraries in the latest available format. In
SAS®9, BASE is an alias for V9, and it will be an alias for newer engines in
subsequent releases of SAS.

The V9TAPE Engine
The sequential engine for SAS libraries is V9TAPE. The V9TAPE engine creates
sequential libraries in the V9TAPE format, and it can also read and write libraries
created using the V7TAPE and V8TAPE engines.

The V9TAPE engine provides a way to store files on devices such as tape that do
not support random access. Some of the uses of the V9TAPE engine on z/OS
include

n archiving SAS files to tape for long-term storage.

n transporting SAS files between your z/OS system and another z/OS system via
tape.

n sending SAS data, via a pipe connection, for immediate consumption by another
job running in parallel.

In contrast to the V9 engine, V9TAPE has the following limitations:

n does not support indexing, compression of observations, or audit trail
capabilities

n does not support direct access to individual observations (using the POINT= or
KEY= options in the SET or MODIFY statements)

n provides limited support for the following types of SAS library members:
ACCESS, CATALOG, PROGRAM, and VIEW. You can move or transport these
member types, but you cannot use the V9TAPE engine to access the
information within these members.

Note: Use TAPE as the engine name if you write programs that create new SAS
libraries and you want to create the libraries in the latest available format. TAPE is
an alias for V9TAPE, and it will be an alias for any sequential engines that can be
made available in subsequent releases of SAS.

SAS Library Engines 47

Compatibility Engines

Overview of Compatibility Engines

SAS provides compatibility engines for processing libraries that were created by
previous versions of SAS. The engine that should be used depends on the engine
format of the library. In most cases, SAS can detect the engine format and
automatically select the appropriate engine to use. However, if you are using SAS
to create a new library, or members in a library, that you want to access using an
earlier version of SAS, then you should specify the appropriate engine as described
in the following text. For more information about cross-release compatibility and
migration, see support.sas.com/migration.

The following Base SAS engine library formats can be read and written by SAS:

V9 library
Libraries created by the default Base SAS engine in V8 or V7 are identified by
SAS as being in V9 format.

V6 library
These libraries were created using the default Base SAS engine in V6 or using
the V6 compatibility engine under a later version of SAS.

Specifying one of the following compatibility engines has the indicated effect:

V8
creates a V9 library but does not allow creation of members with format names
longer than 8 bytes.

V7
has the same effect as V8.

V6
creates a V6 format library.

The following sequential engine library formats can be read and written by SAS 9:

V9TAPE library
Libraries created by the default sequential engine in V8 or V7 are identified by
SAS 9.4 as being in V9TAPE format.

V6TAPE library
These libraries were created using the default sequential engine in V6 or using
the V6TAPE compatibility engine under a later version of SAS.

Specifying one of the following compatibility engines has the indicated effect:

V8TAPE
creates a V9TAPE library but does not allow creation of members with format
names longer than 8 bytes.

V7TAPE
has the same effect as V8TAPE.

48 Chapter 4 / Using SAS Libraries

V6TAPE
creates a V6TAPE format library.

Long Format Names

The V9 and V9TAPE engines support long format names in data sets. These long
format names can have a maximum length of 32 bytes. SAS 8 and SAS 7 can
process V9 and V9TAPE format libraries, including new data sets that were created
using SAS 9.2. However, the data sets cannot have format names longer than 8
bytes. If you are using SAS 9.2 to create data sets that you intend to process using
SAS 8 or SAS 7, specify the V8 or V8TAPE engine, as appropriate, to ensure that the
format names do not exceed eight characters.

SAS 6.06 Format Data Sets

Data sets that were created under SAS 6.06 cannot be read or written by SAS 9.2
because their storage format differs from that used in subsequent releases of SAS
6. To make a SAS 6.06 data set available for processing in SAS 9.2, first use a later
release of SAS 6 (6.07, 6.08, or 6.09) to copy the SAS 6.06 data set to a new SAS
data set, either in the same library or in a new library. (Beginning with SAS 9.2, SAS
can process libraries that were originally created by SAS 6.06, if the library
members have been converted to the engine format associated with a later release
of SAS, such as SAS 6.09.) The newly copied data set automatically receives the
new SAS 6 format, which allows the new data set to be processed by the V6 or
V6TAPE engine in SAS 9.2.

V5 and V5TAPE Engines

SAS 9.2 can read, but not update, libraries that were created in the V5 and V5TAPE
formats. Libraries that were created in the V5 format cannot reside in Extended
Addressing Space on Extended Address Volumes.

Other SAS Engines

In addition to the engines described in the preceding sections, SAS provides other
LIBNAME engines to support a wide variety of different types of libraries. The
following engines can be used on z/OS to access libraries of these engines that
reside in native z/OS data sets:

XPORT
The XPORT engine converts SAS files to a format suitable for transporting the
file from one operating environment to another. For general information about
how to use this engine, see Moving and Accessing SAS Files. For information

SAS Library Engines 49

about the LIBNAME syntax to use with this engine, see “LIBNAME Statement:
z/OS” on page 656.

Interface Engines
The BMDP, OSIRIS, and SPSS engines provide Read-Only access to BMDP,
OSIRIS, and SPSS (including SPSS-X) files, respectively. For more information
about the LIBNAME syntax to use with these engines, see “Host Options for the
XPORT, BMDP, OSIRIS, and SPSS Engines” on page 671 and Appendix 6,
“Accessing BMDP, SPSS, and OSIRIS Files,” on page 967.

SAS View Engines
SAS view engines enable SAS software to read SAS data views and DATA step
views that are described by the DATA step, SQL procedure, or by SAS/ACCESS
software. Under z/OS, the following view engines are supported. These engines
support the SAS data set model only and are not specified in the LIBNAME
statement or LIBNAME function.

ADB
accesses ADABAS database files.

DDB
accesses CA-DATACOM/DB database files.

IDMS
accesses CA-IDMS database files.

IMS
accesses IMS-DL/I database files.

DATASTEP
accesses data sets that are described by a SAS DATA step.

These engines support the SAS data view and are also specified in the LIBNAME
statement and the LIBNAME function:

DB2
accesses DB2 database files.

ORACLE
accesses Oracle database files.

SQL
accesses data sets that are described by the SQL procedure.

For more information about the SQL view engine, see SAS SQL Procedure User’s
Guide. For information about the other view engines, see the appropriate
SAS/ACCESS software documentation.

50 Chapter 4 / Using SAS Libraries

Library Implementation Types for Base
and Sequential Engines

Overview of Library Implementation Types
For a given engine, a SAS library can be implemented in a variety of forms that have
different usability and performance characteristics. These implementation types
and the engines with which they can be used are listed in the following table. A
complete description of each library can be found in the sections that follow.

Table 4.1 Types of Libraries and Supported Engines

Implementation Type Engines Supported

Direct Access Bound Library V9, V8, V7, V6

Sequential Access Bound Library V9TAPE, V8TAPE, V7TAPE, V6TAPE

UFS Library V9, SPD Engine, V8, V7, V9TAPE,
V8TAPE, V7TAPE

Hiperspace Library V9, V8, V7, V6

Pipe Library V9TAPE, V8TAPE, V7TAPE, V6TAPE

Direct Access Bound Libraries

Overview of Direct Access Bound Libraries

A direct access bound library is a single z/OS data set, accessed on disk or
hiperspace. It logically contains one or more SAS files in a manner similar to that of
a z/OS partitioned data set (PDS). However, unlike a PDS, the members of a direct
access bound library can be read, written, or managed only by SAS. Direct access
bound libraries support the requirements of the Base SAS engines, particularly the
need to randomly access SAS files and to have open more than one SAS file

Library Implementation Types for Base and Sequential Engines 51

simultaneously. Direct access bound libraries can extend to as many as 59 physical
direct access storage device (DASD) volumes. As with a PDSE, SAS can reuse
space in these libraries when a member is deleted or shortened. SAS performs most
of its I/O asynchronously to direct access bound libraries. This process enables
SAS servers that are accessing these libraries to perform other work while I/O
operations to these libraries are in progress. For more information, see “Allocating
Disk Space for SAS Libraries” on page 84 and “CONTENTS Procedure Statement:
z/OS” on page 527.

Creating Direct Access Bound Libraries

There are many ways to create a direct access bound library, but all methods have
two points in common: First, the library physical name must correspond to a new or
empty z/OS data set on DASD. Second, the library data set must have the DCB
attribute DSORG=PS, and RECFM, if specified, must be FS. The second requirement
is met if a Base SAS engine is explicitly specified in the LIBNAME statement that is
used to identify the library.

The first time a new direct access bound library is used, it is initialized with the
control structures that are necessary to manage library space and maintain the
directory of library members.

The following example uses the LIBNAME statement with the default library
options:

libname study '.study1.saslib' disp=(new,catlg);
data study.run1;
 ...
run;

These SAS statements use the V9 engine to create a library named
prefix.STUDY1.SASLIB where prefix is the value of the SYSPREF system option. The
amount of space allocated to the library is derived from the value of the FILEUNIT,
FILESPPRI, and FILESPSEC system options. SAS automatically sets the appropriate
DCB attributes. In an interactive session, it is possible to omit the DISP option; in
this case, SAS assumes a status of NEW and prompts for the value of the normal
disposition.

The following example creates an external assignment using JCL:

//jobname JOB ...
// EXEC SAS
//STUDY DD DSN-USER489.STUDY1.SASLIB,DISP=(NEW,CATLG),
// UNIT=DISK,SPACE=(CYL,(200,50)),DCB=DSORG=PS
data study.run1;
 ...
run;

Assuming that the ENGINE system option uses the default of V9, these SAS
statements create a library named USER489.STUDY1.SASLIB.

As in the previous example, SAS automatically sets the appropriate DCB attributes.
Note that it is not necessary to specify the LIBNAME statement.

52 Chapter 4 / Using SAS Libraries

The following example explicitly specifies the V6 compatibility engine:

//jobname JOB ...
// EXEC SAS
//HIST DD DSN=USER489.HISTORY1.SASLIB,DISP=(NEW,CATLG),
// UNIT=3390,SPACE=(CYL,(10,10)),
// DCB=(DSORG=PS,BLKSIZE=27648)
libname hist V6;
data hist.analysis;
 ...
run;

Like the previous JCL example, this example uses external assignment. However,
the V6 compatibility engine is explicitly specified in the LIBNAME statement. This
library can now be processed by SAS Version 6. In addition, the DD statement in the
JCL explicitly specifies the library block size.

General Usage Notes

n Only one SAS session can open a direct access bound library for update at a
given time. It is necessary to specify a disposition status of NEW, OLD, or MOD
in order to update a SAS library. However, multiple SAS sessions can share a
SAS library for Read-Only access using DISP=SHR. Except for a special case of
relevance only during the installation of the SAS product, SAS does not allow
updates of a library that is allocated DISP=SHR.

n The mode in which SAS opens the library data set is governed by the disposition
status with which the library data set is allocated. The RACF authorization the
user has to the library data set also governs the mode in which SAS opens the
library data set. If the disposition is SHR, then SAS treats the library as read-
only. Otherwise, SAS assumes that the user has read-write access. SAS then
issues a RACROUTE call to verify that the SAS job step is authorized to open
the library data set in the requested manner (read-only or read-write). If read-
write access is requested but not authorized, then SAS checks to determine
whether Read-Only access is authorized. If permitted, SAS treats the library as
read-only even though DISP=OLD is specified. After that series of checks, SAS
then opens the library in the authorized manner: INPUT mode is used for read-
only libraries. For read-write libraries, OUTPUT mode is used to open the data
set on the last (or only) volume; UPDATE mode is used for volumes that are not
the last one. Of course, if SAS is not authorized to access the library at all, it
does not attempt to open the library. Note, however, that the RACF
authorization check is not performed if the system option FILEAUTHDEFER has
been specified.

n The data set in which a direct access library resides is itself a simple physical
sequential data set. Therefore, the library data set can be copied or backed up
(subject to the following restrictions) to disk or to tape by using any z/OS
utilities such as IEBGENER, ISPF 3.3, DF/HSM, or DFDSS that honors the
requirements of RECFM=FS. The library data can be copied to a different disk
device type (with a different track size) than the original, and SAS can then
successfully process the copy. The library data set can also be copied by using
FTP if the FTP mode is set to binary and the copy of the data set has the same

Library Implementation Types for Base and Sequential Engines 53

DSORG, RECFM, BLKSIZE, and LRECL attributes as the original. However, even
though the library data set can be copied to tape (such as for the purposes of
transport or archive), SAS cannot open the data set unless it resides on DASD.

n The library data set for a direct access bound library must not be copied or
backed up while SAS has the library open for update. Failure to respect this
restriction can lead to loss of data. Utility programs that respect the DISP=OLD
allocation, and that run in an address space separate from the SAS session,
comply with this restriction.

n Multivolume direct access bound libraries that were last processed by SAS 9 (or
SAS 8) can be successfully copied by standard utilities, regardless of the engine
format. However, multivolume direct access bound libraries that were last
processed by earlier versions of SAS could have the DS1IND80 bit (last volume
flag) turned on for each volume. Utilities that honor the DS1IND80 flag
terminate the copy operation at the first volume for which the flag is on.
Libraries for which the DS1IND80 flag is on for all volumes (or any volume
except the last volume with data) cannot be copied in their entirety by such
utilities. This problem exists for any library that was last processed by SAS 6.
The problem might also exist for any library last processed by SAS 8 but only if
the SAS session abended. For this reason, SAS recommends using the COPY
procedure for libraries that are processed by those older versions of SAS.

n When rewriting a SAS file in a direct access bound library, SAS does not delete
the old copy of the file until the entire SAS file has been completely rewritten.
The library grows large enough to contain both the old and new version of the
file.

n SAS reclaims free space in a direct access bound library for its own use. It does
not release free space back to the operating system as part of normal
processing. To make free space available for other z/OS data sets, use the
COPY procedure to copy all of the members of the library to another smaller
library, and then delete the original copy. Unformatted free space at the end of
the library data set (that is, the difference between “Total Library Blocks” and
“Highest Formatted Block” in the CONTENTS procedure output) can be
released by specifying the RLSE subparameter of the SPACE parameter when
accessing a library for update. The RELEASE procedure can release both
formatted and unformatted free space at the end of a library (that is, space that
follows “Highest Used Block” as indicated by the CONTENTS procedure or the
DATASETS procedure), but it can be used only for libraries that reside on a
single volume. Neither the RLSE subparameter nor PROC RELEASE can be used
to release embedded free space in a direct access bound library, that is, free
blocks below the “Highest Used Block.”

n PROC CONTENTS, PROC DATASETS, and LIBNAME LIST do not report the
existence of allocated space on disk volumes beyond the last used volume in
the library data set. In other words, any volumes beyond the volume that
contains the "Highest Formatted Block" are disregarded in the list of volumes
("Volume" statistic) and the total allocated space ("Total Library Blocks"). The
library data set might actually be cataloged and have allocated space on
subsequent volumes. However, SAS does not recognize that space until it is
necessary to extend the library to one of those subsequent volumes.

n The COPY procedure can also be used to re-organize a direct access bound
library so that all the blocks of each SAS file reside in contiguous library blocks.

54 Chapter 4 / Using SAS Libraries

This re-organization could improve the efficiency of frequently processed
libraries.

n Because SAS uses EXCP to process direct access bound libraries, the direct
access bound libraries cannot reside in extended format sequential data sets.
However, direct access bound libraries can reside in DSNTYPE=LARGE data
sets. In that case, more than 64K tracks can be used on each volume.

n For direct access bound libraries that reside in DSNTYPE=BASIC data sets, a
maximum of 64K tracks can be used on any single volume. Because a single
data set cannot reside on more than 59 volumes, the maximum size for a such a
library is approximately 199 G bytes (assuming optimal half-track blocking on a
3390 device).

n For direct access bound libraries that reside in DSNTYPE=LARGE data sets, a
maximum of 224–1 (about 16 million) tracks can be used on any single volume. In
addition, the total number of blocks for the entire library on all volumes cannot
exceed 231–1 (about 2 billion). To avoid encountering the block limitation for
multi–volume data sets that reside on EAV volumes, use half-track blocking
(27648 on a 3390 device).

n A direct access bound library that is externally allocated with DISP=MOD
cannot be assigned if the library has been extended to more than one volume.
This restriction also applies when re-assigning a library using an external
allocation that was previously used in the current SAS session or a previous
SAS session. (Libraries can be re-assigned by issuing a LIBNAME statement that
names the libref with which the library is currently assigned. Certain SAS
procedures, the DOWNLOAD procedure in particular, also re-assign libraries.)
Moreover, a direct access bound library that is externally allocated with
DISP=NEW cannot be re-assigned once the library has been extended to more
than one volume, and the library is temporary, not cataloged, or resides in a
generation data group (GDG). (However, a library that is allocated with
DISP=(NEW,CATLG) can be re-assigned even after it has been extended to
multiple volumes.) The previously stated restrictions can be circumvented by
establishing a DISP=OLD or DISP=SHR allocation to continue processing the
library. Under TSO, the restrictions can be circumvented by deassigning the
library, freeing the external allocation, and using the SAS LIBNAME statement
or TSO ALLOCATE command to establish a new allocation. In batch, the
restrictions can be circumvented by passing the library to a subsequent job step
for further processing.

n Leading blanks on member names are ignored.

n SAS does not support multi-volume direct access bound libraries with zero
DASD extents on the first volume. To avoid this situation, always specify a
nonzero primary allocation value when you assign a new direct access bound
library that can extend to multiple volumes.

n Values that are specified for the BUFNO option of the DD statement are
ignored. Use the SAS system option BUFNO to tune SAS I/O processing. For
more information, see Appendix 1, “Optimizing Performance,” on page 903 and
“BUFNO= Data Set Option” in SAS Data Set Options: Reference.

Library Implementation Types for Base and Sequential Engines 55

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n01nz6qxgpcwykn1bi1ihjh5vh8q.htm&locale=en

Controlling Library Block Size

The block size of a direct access bound library affects performance because it is the
minimum value for the page size for all SAS files in the library. Moreover, the page
size of any SAS file in the library must be an integral multiple of the library block
size. For more information, see “Optimizing SAS I/O” on page 905.

The block size of a direct access bound library is set at initialization time, and it
does not change for the duration of the library data set. SAS begins the process of
determining the library block size by selecting the first applicable value from the
following hierarchy of sources:

n for a preallocated but uninitialized data set, the block size value specified for
the first or only volume of the data set.

n for a data set allocated using DISP=NEW, the block size value specified on
allocation, either in the LIBNAME statement or, for external allocation, in the
DD statement or TSO ALLOCATE command. For a description of how and when
SAS dynamically allocates the library data set, see “Allocating the Library Data
Set” on page 73.

n value of the BLKSIZE= system option, if nonzero.

n value of the BLKSIZE(device-type) system option for the device type on which
the library resides, provided the value is nonzero.

n 6144.

SAS then adjusts the block size value selected from the previous list as necessary
to meet the unique requirements of direct access bound libraries. The following
procedure is used to adjust the value:

n If the value is greater than the maximum for the device, it is decreased to the
maximum for the device.

n If the value is less than 4096, it is increased to 4096.

n After the previous two calculations are completed, if the value is not a multiple
of 512, it is rounded down to the nearest multiple of 512.

Note: For example, suppose that a block size of 27,998 (optimum half-track
blocking for an IBM 3390) was specified for a given library by one or more of the
means listed in this section, and it was specified that the library would reside on a
3390 device. SAS would not use the specified block size. Instead, SAS would set
the library block size to 27,648, because that is the largest multiple of 512 that is
less than or equal to 27,998.

56 Chapter 4 / Using SAS Libraries

Sequential Access Bound Libraries

Overview of Sequential Access Bound Libraries

A sequential access bound library is a single z/OS data set that resides on disk or
tape and logically contains one or more SAS files, each file written sequentially one
after another. The primary purpose of this library implementation, like the
sequential engines that it supports, is for storing SAS data sets on sequential
devices such as tapes. Sequential access bound libraries can extend to multiple
volumes, subject only to the limitations of the device type.

For more information about the contents of a sequential access bound library, see
“CONTENTS Procedure Statement: z/OS” on page 527.

Definitions

SASIO
refers to datasets that are created and updated by one of the SAS library
engines via SAS proprietary input/output. These datasets can reside on
HFS/ZFS or in z/OS Native datasets.

EXTIO
refers to z/OS Native datasets. BSAM and BPAM are two examples that are
supported through the SAS statements LIBNAME, FILENAME, FILE, INFILE, and
so on. For more information see DFSMS Using Data Sets.

Creating Sequential Access Bound Libraries

The following example shows how to create a new multivolume tape library that
resides on more than five volumes. As the sample JCL DD statement shows, the
library can be assigned externally.

//MYTAPE DD DSN=USER489.TAPE.SASLIB,DISP=(NEW,CATLG,DELETE),
// UNIT=CART,LABEL=(1,SL),VOLUME=(PRIVATE,,,7)

The library data set can also be assigned internal to SAS using the SAS LIBNAME
statement, as is shown in the following example, which is equivalent to the
previous DD statement:

libname mytape tape 'user489.tape.saslib' disp=(new,catlg,delete)
 unit=cart label=(1,sl) volcount=7;

Regardless of how the library data set was assigned (either with a DD statement or
with a LIBNAME), specify the libref, or externally assigned ddname, as the library in
which a new member is to be created, as is shown in the following example:

Library Implementation Types for Base and Sequential Engines 57

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/idad400_v3r1.pdf

data mytape.member1; /* new member */
...

Note:

n The engine ID must be specified when you internally assign a new library on
tape. However, when you externally assign a new library on tape, the value of
the SEQENGINE system option determines the engine that is used to create the
library, unless it is overridden by a LIBNAME statement.

n The volume count must be specified for a tape library that extends to more than
five volumes. Refer to the documentation for the VOLUME parameter of DD
statement in IBM MVS JCL Reference for details.

The following example shows how to create a new, multivolume sequential access
bound library on disk that uses as many as three volumes. As this sample JCL DD
statement shows, the library can be assigned externally:

//SEQDISK DD DSN=USER489.SEQDISK.SASLIB,DISP=(NEW,CATLG),
// UNIT=(3390,3),SPACE=(CYL,(200,200)),BLKSIZE=27998
...
 LIBNAME SEQDISK TAPE; /* use TAPE engine */
 DATA SEQDISK.MEMB01;
 ...

The library data set can also be assigned internal to SAS using the SAS LIBNAME
statement, as shown in the following example, which is equivalent to the previous
DD statement:

libname seqdisk tape 'user489.seqdisk.saslib' disp=(new,catlg)
 unit=(3390,3) space=(cyl,(200,200)) blksize=27998;
data seqdisk.memb01;
...

Note:

n To ensure the most complete use of the DASD track, specify the optimum half-
track BLKSIZE for the type of disk device used. For sequential access bound
libraries, this value must be specified in the DD or LIBNAME statement. The
SAS BLKSIZE system options are not used for sequential access bound libraries.

n The maximum number of disk volumes to which the library data set can extend
is governed by the unit count in the previous examples.

n Sequential access bound libraries can reside in extended format sequential data
sets. Extended format sequential data sets can be defined as compressed by
SMS, and they can also occupy more than 64K tracks per volume.

General Usage Notes

n Due to the nature of sequential devices, SAS allows only two types of
operations with members of a sequential bound library: reading an existing

58 Chapter 4 / Using SAS Libraries

member and writing a new copy of a member to the library. The following types
of operations are not supported for sequential access bound libraries:

o having multiple members in the library open at the same time

o updating the contents or attributes of a member of the library

o renaming or deleting a member of the library.

o An abend that is handled by SAS results if both of the following conditions
are met:

n you attempt to access a tape library that has a BLKSIZE greater than
32760 with SAS 9.4M1 or earlier

n that version of SAS does not contain LBI support or support for large-
block SAS libraries

Here is an example of the messages that are produced in the SAS log when
SAS version 9.4 attempts to access a library with large block sizes:

1 libname mytape tape '.saslib.lbi';
NOTE: Libref MYTAPE was successfully assigned as follows:
 Engine: TAPE
 Physical Name: SASJOB.SASLIB.LBI
ERROR: OPEN failed for library data set SASJOB.SASLIB.LBI.
Abend code 013. Return code E1.
ERROR: An I/O error has occurred on file MYTAPE.ALL..
ERROR: OPEN failed for library data set SASJOB.SASLIB.LBI.
Abend code 013. Return code E1.
ERROR: An I/O error has occurred on file MYTAPE.
NOTE: The SAS System stopped processing this step because of errors.

For information about the IBM log message that is also issued, see MVS
System Messages Volume 7 (IEB - IEE).

CAUTION
SAS deletes all members of a sequential bound library that are subsequent to
the library member that you replace.

n By default, when writing a member of a sequential bound library, SAS scans the
entire library from the beginning to determine whether a member having the
specified name already exists in the library. If such a member already exists in
the library, then the new copy of the member is written starting at the position
in the library data set where the old copy of the member began, and all
subsequent members of the library are deleted. If the specified member does
not already exist in the library, it is appended to the end of the library. This
behavior is not influenced by the REPLACE system option because
NOREPLACE is not supported by the TAPE engine.

n When the FILEDISP=NEW data set option is specified for a member to be
written to a sequential access bound library, SAS replaces all of the members
that previously existed in the library, even if they were protected by an ALTER
password. The ALTER password is not checked even for the member being
replaced.

n When the COPY procedure is used to write members to a sequential access
bound library, the rules regarding member replacement (discussed in the

Library Implementation Types for Base and Sequential Engines 59

previous topic) apply only to the first member being processed by a COPY
statement or PROC COPY invocation. All other members involved in the COPY
operation are appended to the end of the library data even if they already exist
in the library. Therefore, it is possible to cause a library to contain two copies of
the member, only the first of which is recognized. You should plan all COPY
operations carefully so that you avoid this outcome.

n Some specialized SAS procedures repeatedly process a group of observations
that have the same value for a specific variable. This situation requires SAS to
interrupt its sequential access pattern and reposition to a previous location in
the library data set. However, SAS does not support repositioning to a location
on a previous volume of a multi-volume tape data set. When this situation
occurs, SAS issues the following error message:

ERROR: A POINT operation was attempted on sequential library SEQLIB.
 A volume switch has occurred on this library since the last NOTE
 operation, making the POINT results unpredictable.

Should this situation occur, you can avoid the limitation by copying the member
to a library on disk.

n When using the LIBNAME statement to dynamically allocate SAS libraries on
tape, it is not possible to simultaneously allocate multiple MVS data sets on the
same tape volume. Therefore, it is necessary to use the SAS LIBNAME CLEAR
statement to deassign the library before you attempt to assign another MVS
data set on the tape.

n The mode in which SAS opens the library data set is primarily governed by the
type of access that is being performed. When reading a member, listing the
members in the library, or retrieving information about the library, the library
data set is opened for INPUT. When writing a member, the library data set is
opened for INOUT (unless DISP=NEW and the data set has not been previously
opened. In that case, OUTIN is used). SAS does not write to a library that is
allocated with DISP=SHR or LABEL=(,,,IN), issuing an ERROR message instead.
Before opening the library data set, SAS first checks the RACF authorization,
but only for libraries that reside on disk, and only if NOFILEAUTHDEFER is in
effect.

Optimizing Performance

n Specify the DLLBI SAS system option or the DLLBI=YES LIBNAME statement
option when you create sequential access bound libraries on tape that do not
need to be processed by SAS 9.4M1 or earlier. DLLBI=YES allows for block size
(BLKSIZE) values to exceed 32760. Unless overridden on the allocation, SAS
selects the optimum block size for the device, typically 224K-256K. Setting the
optimum BLKSIZE results in significant improvements in the I/O rate (bytes per
elapsed second) relative to BLKSIZE=32760, and can also improve tape
utilization.

n For sequential access bound libraries that reside in data sets on disk, avoid
specifying BLKSIZE when you allocate the library data set. SAS uses the

60 Chapter 4 / Using SAS Libraries

optimum BLKSIZE, typically half-track blocking, regardless of how the DLLBI
LIBNAME option or DLLBI system option has been specified.

n To release the library data set before the end of the SAS session, specify the
SAS TAPECLOSE=FREE system option before the SAS DATA step or procedure
that writes the members of the library. For tape libraries, this step is necessary
to make the tape device and volumes available for other jobs before the end of
the SAS session.

n In some cases, it is convenient to create multiple tape libraries on the same tape
volume. To avoid having the operating system unmount and re-mount the tape
volume for each library data set, allocate the libraries with JCL DD statements
that specify UNIT=AFF and VOLUME=(,RETAIN,REF=<ddname>), as the
following example shows:

//jobname JOB job-accounting-info
//* ---
//* create multiple sequential libs stacked on single tape volume
//* ---
//SAS EXEC SAS
//SASLOG DD SYSOUT=*
//SASLIST DD SYSOUT=*
//TAPLIB01 DD DSN=USERA.TAPELIB1,DISP=(NEW,CATLG,DELETE),
// UNIT=(CART,,DEFER),
// LABEL=(1,SL),VOLUME=(PRIVATE,RETAIN)
//TAPLIB02 DD DSN=USERA,TAPLIB2,DISP=(NEW,CATLG,DELETE),
// UNIT=AFF=TAPLIB01,
// LABEL=(2,SL),VOLUME=(PRIVATE,RETAIN,REF=*.TAPLIB01)
//TAPLIB03 DD DSN=USERA.TAPLIB,DISP=(NEW,CATLG,DELETE),
// UNIT=AFF=TAPLIB01,
// LABEL=(3,SL),VOLUME=(PRIVATE,RATAIN,REF=*.TAPLIB01)
//SYSIN DD *
 data taplib01.memb01;
 ...
 run;

 data taplib02.memb02;
 ...
 run;

 data taplib03.memb03;
 ...
 run;
/*
//

n When attempting to read multiple SAS libraries that reside on the same tape
volume, specifying the SAS system option TAPECLOSE=LEAVE can
significantly reduce the elapsed time required for the job. TAPECLOSE=LEAVE
causes the operating system to leave the tape volume positioned at the end of
the library data set when it is closed. Otherwise, the operating system rewinds
to the beginning of the library data set and then advances to the next library
data set. Those two redundant operations could require significant elapsed
time. The following sample job reads the three data libraries that are created by
the preceding example.

//jobname JOB job-accounting-info

Library Implementation Types for Base and Sequential Engines 61

//*
//SAS EXEC SAS
//SASLOG DD SYSOUT=*
//SASLIST DD SYSOUT=*
//TAPLIB01 DD DSN=USERA.TAPELIB1,DISP=SHR
//TAPLIB02 DD DSN=USERA.TAPELIB2,DISP=SHR
//TAPLIB03 DD DSN=USERA.TAPELIB3,DISP=SHR
//SYSIN DD *
 options tapeclose=leave;
 data _null_;
 set taplib01.memb01;
 run;

 data _null_;
 set taplib02.memb02;
 run;

 data _null_;
 set taplib03.memb03;
 run;

/*
//

Controlling Library Block Size

Because sequential access bound libraries use RECFM=U, the block size value is an
upper limit for the maximum size of a block. The value that SAS uses for any given
session, for either a new or existing library, is specified by the user from the
following hierarchy of sources:

n the block size value specified on allocation, either in the LIBNAME statement
or, for external allocation, in the DD statement or TSO ALLOCATE command.

n the block size value specified in the data set label (that is, the value in effect
when the library data set was created).

n the block size value specified for tape devices:

o If DLLBI=YES is in effect for the assignment, the optimum block size for the
device is used. DLLBI=YES is in effect if either DLLBI=YES is specified in the
LIBNAME statement, or if DLLBI is omitted from the LIBNAME statement
and the SAS system option DLLIB is in effect.

o If DLLBI=NO is in effect, 32760 is used as the library block size.

n the optimum block size specified for disk devices (typically half-track blocking)
is used regardless of the DLLBI LIBNAME option or DLLBI system option.

62 Chapter 4 / Using SAS Libraries

UFS Libraries

Overview of UFS Libraries

A UNIX file system (UFS) library is a collection of SAS files of the same engine type
that is stored in a single directory of the z/OS UNIX System Services (USS) file
system. Each SAS library member resides in a separate UFS file. UFS is a default
component of z/OS, and its availability is limited only by the extent to which it has
been implemented at a particular installation.

Note: In addition to the original UFS implementation, z/OS also provides another
UNIX file system known as zFS. zFS, which provides certain performance and
manageability benefits, is functionally equivalent to UFS from the perspective of a
SAS user. All information about UFS libraries applies equally to SAS files that
reside in a zFS file system. Your system administrator, not SAS, controls whether
the UFS or zFS implementation is used for a particular file system.

UFS libraries provide many important capabilities that are not available in other
types of library implementations:

n SAS data sets (that is, SAS files of member type DATA) in UFS libraries can be
processed by versions of SAS running in other operating environments via the
SAS cross-environment data access (CEDA) facility. The individual SAS files
can be copied (via a utility such as FTP) to other operating environments and
can be directly read by the versions for the target operating environment.
Conversely, SAS files created in most other operating environments can be
copied to a UFS directory and read directly by the z/OS version of SAS via
CEDA. This technique can be further extended by using the network file system
(NFS) capability of z/OS to either mount directories that exist on remote hosts
(NFS client) or to share a UFS directory with other hosts (NFS server).

n UFS directory names can contain mixed case, and they can also be longer than a
z/OS data set name. The directory hierarchy provides more flexibility for
organizing files.

n Multiple SAS jobs can simultaneously update different members of the same
library. This capability provides more flexibility than that of direct access and
sequential access bound libraries, which permit only one SAS job to have
Update access to a library at a given time.

n Allocating and assigning a UFS library is very straightforward. The LIBNAME
statement merely needs to specify the libref, the USS directory path, and
perhaps the engine. The various options for reserving space and specifying DCB
attributes are not required, nor do they apply to UFS libraries.

For more information about the contents of a library in a UFS directory, see
“CONTENTS Procedure Statement: z/OS” on page 527.

Library Implementation Types for Base and Sequential Engines 63

Creating UFS Libraries

Creating a UFS library is as simple as creating a SAS file in a particular library
directory, as shown in the following example:

libname myproj '/u/user905/MyProject';
data myproj.member1;
 ...
run;

If the library directory does not exist, SAS automatically creates the directory if
possible. In the previous example, the directory node MyProject would have been
created if it did not already exist, provided the SAS session had adequate authority
to do so. However, the other directories in the directory path must exist before you
attempt to create the library.

General Usage Notes

n The fully qualified name of a SAS file in a UFS library is:

<fully-qualified-path>/<member-name>.<SAS-extension>

The member name in this construction is formed by converting to lowercase the
member name that is specified in the SAS session. The file extension for a SAS
file is automatically supplied by SAS and indicates the member type and the
engine that was used to create the file. For a list of extensions that are used, see
Table 4.2 on page 65. Do not change the file extension of a SAS file because
that could cause unpredictable results. The total length of the fully qualified
name must not exceed 254 characters. This value is more restrictive than the
IBM limits on UFS filenames.

n When SAS creates or updates a member of a UFS library, it places an exclusive
lock on the individual file (but not on the library). The lock prevents other jobs,
processes, or SAS sessions from reading, writing, or updating that file until SAS
finishes using the file, at which time the lock is removed. It is still possible for
other SAS sessions to access other SAS files in the library, provided they are
unlocked. The write lock is analogous to the SYSDSN enqueue that is issued
when a data set is allocated with DISP=OLD.

n When SAS reads an existing member of a UFS library, it places a read (or
shared) lock on the individual file. This lock prevents other jobs, processes, or
SAS sessions from updating the file, although it is still possible for others to
read the file. The read lock is analogous to the SYSDSN enqueue that is issued
when a data set is allocated with DISP=SHR.

n If another SAS session or UNIX process has a lock on a UFS file, then a message
in the SAS log contains the Process ID (PID) number associated with the
session or process in decimal format. You can issue the following command to
find the user’s ID:

ps –f –s <PID>

64 Chapter 4 / Using SAS Libraries

n In performance testing at SAS, native UFS libraries have demonstrated I/O
throughput rates that, for a variety of access patterns, generally match or
exceed the rates demonstrated for direct access bound libraries.

n Although it is possible to externally allocate a UFS library via JCL or the TSO
ALLOCATE command, doing so does not lock or reserve the library in any way.
The main benefit of external allocation is to provide a convenient way to specify
a different library for a particular job.

n When using NFS client capability to access SAS files in other operating
environments, specify the xlat(n) option for the NFS mount point on z/OS.
Similar options might need to be specified in other operating environments
when you are accessing SAS files shared by an NFS server running on z/OS. For
information about the xlat option, see the IBM documentation for the z/OS
Network File System (NFS).

n If a user wants to run a SHARE server with a UMASK of 077, and the user wants
to allow clients of that server to be able to access the library members that they
replace through the server, then the user might need to define the RACF profile
for the CHOWN.UNRESTRICTED resource. Otherwise, the group ID (GID) of the
replaced files is set according to the normal rules. That is, they are set to either
the GID of the server account or to the GID of the library directory (if the SET-
GROUP-ID flag is set for the directory and a FILE.GROUPOWNER.SETGID
profile is defined). These normal rules might cause the GID for the replacement
file to differ from the GID of the original file. To prevent this difference in the
GIDs from occurring, define CHOWN.UNRESTRICTED to allow SAS to set the
GID of the new file to match that of the original copy.

Table 4.2 File Extensions for SAS Files in UFS Libraries

Random
Access Files

Sequential
Access Files

SAS
Member
Type Description

.sas7bdat .sas7sdat DATA SAS data file

.sas7bndx .sas7sndx INDEX data file index; not treated by SAS
software as a separate file

.sas7bcat .sas7scat CATALOG SAS catalog

.sas7bpgm .sas7spgm PROGRAM stored program (DATA step)

.sas7bvew .sas7svew VIEW SAS data view

.sas7bacs .sas7sacs ACCESS access descriptor file

.sas7baud .sas7saud AUDIT audit file

.sas7bfdb .sas7sfdb FDB consolidation database

.sas7bmdb .sas7smdb MDDB multidimensional database

Library Implementation Types for Base and Sequential Engines 65

Random
Access Files

Sequential
Access Files

SAS
Member
Type Description

.sas7bods .sas7sods SASODS output delivery system file

.sas7bdmd .sas7sdmd DMDB data mining database

.sas7bitm .sas7ssitm ITEMSTOR item store file

.sas7butl .sas7sutl UTILITY utility file

.sas7bput .sas7sput PUTILITY permanent utility file

.sas7bbak .sas7sbak BACKUP backup file

.spds9 .saspds9 multiple used by the SPD Engine and the SPD
Engine server

Hiperspace Libraries

Overview of Hiperspace Libraries

A hiperspace library is a temporary library in which each library block resides in a
4K block in a z/OS hiperspace, a form of electronic storage internal to the
processor. Hiperspace libraries have the same internal format as that of a direct
access bound library, but a hiperspace library has no associated data set or file in
which it resides.

Placing small to moderately sized SAS data sets in a hiperspace can dramatically
decrease the elapsed time required for SAS to process such data sets. The
performance increase is usually at least as great as for direct access bound libraries
allocated to VIO and can be even greater for data sets that are accessed randomly.
However, the actual performance benefit depends on various factors, including the
aggregate system demand for central storage frames.

Hiperspace libraries are created when they are assigned. A hiperspace library exists
until the libref with which it was originally assigned is freed, which happens
automatically at the end of the SAS session or when the libref is re-assigned.

66 Chapter 4 / Using SAS Libraries

Creating Hiperspace Libraries

These sample statements demonstrate how to create a hiperspace library by
specifying the HIPERSPACE option of the LIBNAME statement:

libname hiperlib ' ' hiperspace;
data hiperlib.memb01;
 ...
run;

SAS generates a simulated physical name for the hiperspace library to use in
messages. This information is also displayed when you issue the CONTENTS
procedure, or you issue a LIBNAME statement with a LIST argument.

Note: The simulated name cannot be used in any context to assign the library.

When the HSWORK system option is specified, and you issue a
libname work list statement, the statement returns the following note in the SAS
log.

Output 4.1 Output from the LIBNAME WORK LIST Statement

 LIBNAME WORK LIST;

NOTE: Libref= WORK
 Scope= CONFIG
 Engine= V9
 Access= TEMP
 Physical Name= In-Memory Library Number 0000000001
 Disposition= (temporary)
 Device= (hiperspace)
 Blocksize= 4096
 Total Library Blocks= 1500
 Total Used Blocks= 24
 Percent Used Blocks= 1.5%
 Total Free Blocks= 1476
 Highest Used Block= 32
 Highest Formatted Block= 24
 Members= 3
 Data Representation= MVS_32

See the following system options for information about controlling how SAS
processes hiperspace libraries:

n “HSLXTNTS= System Option: z/OS” on page 779

n “HSMAXPGS= System Option: z/OS” on page 780

n “HSMAXSPC= System Option: z/OS” on page 781

n “HSWORK System Option: z/OS” on page 782

Library Implementation Types for Base and Sequential Engines 67

General Usage Notes

n The syntax of the LIBNAME statement requires the specification of some library
physical name in quotation marks or double quotation marks, but the library
physical name is disregarded for hiperspace libraries. Therefore, to avoid
confusion, specify a null or blank string for the library physical name.

n SAS generates a simulated physical name for the hiperspace library for use in
messages and the information that is displayed by LIBNAME LIST and PROC
CONTENTS, but that name cannot be used in any context to assign the library.

n The number of hiperspace pages used for hiperspace libraries is governed by the
HSLXTNTS, HSMAXPGS, and HSMAXSPC SAS system options. When a
hiperspace library is created, a hiperspace with HSLXTNTS pages is created.
When the library needs to be extended, another hiperspace is established with
that same number of pages. This process can continue until a total hiperspace in
use by SAS in the current session for all hiperspace libraries exceeds
HSMAXSPC, or the total number of hiperspace pages in use by SAS the current
session for all hiperspace libraries exceeds HSMAXPGS.

Pipe Libraries

Overview of Pipe Libraries

The IBM product BatchPipes on z/OS provides a way to reduce the elapsed time for
processes in which one job creates a data set that is read by a second job in the
process. Piping can also be done with SAS/CONNECT. For example code, see the
last example in “Sample JCL” on page 70. SAS supports the use of BatchPipes with
SAS data sets that were created with the TAPE and V6TAPE engines. With
BatchPipes, each page of a SAS data set written to a pipe can be read immediately
by a second SAS session. Because the second session does not have to wait for the
entire data set to be written, the two SAS sessions can run largely in parallel,
subject to available system resources. The resulting increase in throughput can be
particularly important for sequences of batch jobs that must complete within a
certain time frame.

In order to use BatchPipes on z/OS, verify that the BatchPipes product is installed
and that at least one instance of the BatchPipes subsystem is started. Second,
consult the IBM documentation, particularly the IBM BatchPipes z/OS Users Guide
and Reference, for general background on how to use the product.

Using SAS with BatchPipes requires two jobs, one that writes a SAS data set into
the pipe and a second that reads the data set from the pipe. Both sending to, and
receiving from, a pipe are inherently sequential operations, so only the V9TAPE
engine or the V6TAPE engine can be used. SAS generally treats the pipe as a

68 Chapter 4 / Using SAS Libraries

special type of sequential access bound library. Additional exceptions and
restrictions are noted in the following text.

You can also use the MP CONNECT facility of SAS/CONNECT to pipe data to a
second SAS session. For more information, see “MP CONNECT” in SAS/CONNECT
User’s Guide. For example code, see the last example in “Sample JCL” on page 70.

General Usage Notes

n The pipe library must be allocated externally to SAS either for output (meaning
that SAS is sending member contents to another job) or for input (meaning that
SAS is receiving member contents from another job). It is not possible to
dynamically allocate a pipe library (via the LIBNAME statement), so it is not
possible during a SAS session to change the manner (that is, sending or
receiving) in which the pipe library is being used. For information about how to
allocate pipe libraries, see “Allocating a SAS Library to a Pipe” on page 70.

n Only one member can be written to a pipe library by a single DATA step or SAS
procedure. Likewise, one pipe library member can be read by a single DATA step
or SAS procedure. It is possible, however, to transfer multiple members between
jobs by pairing each sending step or procedure in one job with a receiving step or
procedure in a second job. A single member is transferred by each pair with this
process.

n Only output SAS operations can be attempted on the sending side of a pipe,
which is consistent with the nature of pipes. Therefore, the job that has
allocated a pipe library format should not attempt to use PROC CONTENTS to
list the library directory. Likewise, only input SAS operations should be
attempted on the receiving side of a pipe library. Moreover, since the pages in
the pipe are transient (that is, they exist only until they are read by the receiving
job), it is not possible to re-read a previously read member or to list the
directory after the library has already been read.

n SAS does not support a mode of operation in which there are multiple readers or
multiple writers for a pipe library. For example, using two different jobs to
simultaneously write to a pipe that is being read by another SAS job would lead
to errors, incorrect results, or both.

n It is important to monitor and verify that pipe-related jobs are running as
expected. Under normal circumstances, the receiving SAS DATA step or
procedure reads all of the member pages sent by the sending SAS DATA step or
procedure. After sending the last member page, the sending step or procedure
closes the pipe library, The receiving step or procedure then receives an end-of-
file indication after reading the last member page. However, if the receiving step
or procedure encounters an error condition (such as out-of-space on a library or
external file to which it is copying the member data), then the receiving step or
procedure closes the pipe library before it has read all of the member pages that
the sending step or procedure has sent (or will send). To avoid the sending job
suspending indefinitely in this case, specify the option ERC=DUMMY on the
SUBSYS parameter of the DD statement for the sending job. If the receiving step
or procedure closes the pipe library prematurely, the ERC=DUMMY option

Library Implementation Types for Base and Sequential Engines 69

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p1sszj6a6otsy2n1pnseg8vh98l8.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p1sszj6a6otsy2n1pnseg8vh98l8.htm&locale=en

causes the sending step or procedure to continue processing. In this case, the
member pages are discarded instead of being sent to the receiving job.

n If you receive a message that the PIPE command was stopped, contact your
systems administrator. You might need to update your profile. For information
about determining the minimum requirements that are needed to use the pipe
engine, see the Configuration Guide for SAS Foundation for z/OS.

Allocating a SAS Library to a Pipe

n Externally assign the pipe library using a JCL DD statement. In this DD
statement, use the SUBSYS parameter to specify the name of the BatchPipes
subsystem that manages the pipe. Within the SAS job, refer to this pipe library
using the ddname specified as the libref. Specify the DSN parameter in the DD
statement using a data set name that conforms to the standards for your
installation.

n Distinguish between the sending and receiving sides of the pipe library using the
LABEL parameter of the DD statement. In the DD statement for the pipe library,
specify LABEL=(,,,OUT) to indicate that SAS sends SAS data sets to the pipe
library. Specify LABEL=(,,,IN) to indicate that SAS reads SAS data sets from
the pipe library.

n The DCB attributes for a pipe library vary from the DCB attributes used for
other sequential access bound libraries. Specify DSORG=PS, RECFM=F for both
the sending and receiving sides of the pipe library. Specify an LRECL between
1024 and 32760 for the pipe library. The values specified for LRECL in the
sending and receiving sides of the pipe library must match exactly.

n Identify, if necessary, the engine to be used for processing the pipe library. By
default, SAS uses the value of the SEQENGINE option to determine the engine
to use for processing the pipe library. If this value is appropriate and set
identically for both the sending and receiving jobs, it is not necessary to identify
the engine. To use another engine, specify a LIBNAME statement with the libref
and engine and no other parameters.

n No other DD statement parameters other than those described in this section
should be specified unless they are described in the IBM documentation.

Sample JCL

The following code example illustrates how to write a SAS library to a pipe:

//jobname JOB
 // EXEC SAS
 //*--
 //* This job writes a SAS data set to a pipe.
 //*--
 //PIPESND DD DSN=TEST.SAS.BATCHPIPES,
 // LRECL=6144,RECFM=F,DSORG=PS,
 // SUBSYS=(BP01,CLOSESYNC,ERC=DUMMY),

70 Chapter 4 / Using SAS Libraries

 // LABEL=(,,,OUT)
 //*
 //SYSIN DD *
 data pipesnd.member1;
 ...
 output;
 run;
 /*
 //

The following code example illustrates how to read a SAS library from a pipe:

//jobname JOB
 // EXEC SAS
 //*---
 //* This job reads a SAS data set from a pipe.
 //*---
 //PIPERCV DD DSN=TEST.SAS.BATCHPIPES,
 // LRECL=6144,RECFM=F,DSORG=PS,
 // SUBSYS=(BP01,CLOSESYNC,EOFREQUIRED=NO),
 // LABEL=(,,,IN)
 //*
 //SYSIN DD *
 data ...;
 set pipercv.member1;
 ...
 run;
 /*
 //

The following code examples demonstrate how to use multiple SAS DATA step or
procedure pairs in a single pair of jobs. Note that only one member can be written
to a pipe library in a SAS step, and that there is a one-to-one correspondence of
steps and procedures between receiving and sending pipe jobs.

Sending job:

DATA PIPEOUT.MEMBER1; X=1; RUN;

DATA PIPEOUT.MEMBER2; Y=2; RUN;

Receiving job:

/* receives MEMBER1 from sending job */
DATA X; SET PIPEIN.MEMBER1; RUN;

/* will copy MEMBER2 to WORK library: */
PROC COPY IN=PIPEIN OUT=WORK; RUN;

The following code example demonstrates how to use the piping facility of
SAS/CONNECT MP Connect to pipe data to a second SAS session:

signon TASK1;
signon TASK2;

RSUBMIT task1 cwait=no;
libname pipe1 sasesock ":9003" timeout=200;
data PIPE1._symbol ;
 do i=1 to 10000000;
 r=ranuni(3003);

Library Implementation Types for Base and Sequential Engines 71

 output;
 end;
run;
ENDRSUBMIT;

RSUBMIT task2 cwait=no;
libname pipe1 sasesock ":9003" timeout=200;
proc univariate data=pipe1._symbol;;
run;
ENDRSUBMIT;

waitfor _all_ task1 task2;

rget task1 ;
rget task2;
signoff task1;
signoff task2;

Assigning SAS Libraries

Overview of Assigning SAS Libraries
To use a particular SAS library within a SAS program, the library must be identified
to SAS. This process, termed assigning a library, has the following aspects:

n specifying a logical name, or libref, by which such items as SAS statements and
procedures can refer to the library.

n determining which engine is used to process the library. In some cases, you must
specify the engine when you assign the library. In most cases, however, SAS can
select the appropriate engine automatically.

n identifying and reserving the z/OS resources required to process the library,
which is described in detail in “Allocating the Library Data Set” on page 73.

n specifying options that govern SAS processing for the library during the lifetime
that it is assigned under this libref. These options can be specified in the
LIBNAME statement or LIBNAME function. For information about LIBNAME
statement options that are common to all SAS host platforms, see SAS DATA
Step Statements: Reference. For information about the LIBNAME statement
options that are specific to z/OS, see “LIBNAME Statement: z/OS” on page 656.

Under z/OS, you can assign a new or existing SAS library in the following ways:

internally (within a SAS session)
using a LIBNAME statement, LIBNAME function, SAS Explorer New Library
Assignment dialog box, or a reference that is explicitly assigned to members
using quoted name syntax. For more information, see “Accessing SAS Data Sets

72 Chapter 4 / Using SAS Libraries

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

without a Libref Using Quoted References” on page 76 and “Assigning SAS
Libraries Internally” on page 74.

externally
using a JCL DD statement or a TSO ALLOCATE command. For more
information, see “Assigning SAS Libraries Externally” on page 77.

In addition to describing how to assign a SAS library internally and externally, this
section also discusses the following topics:

n “How SAS Assigns an Engine” on page 81

n “Assigning Multiple Librefs to a Single SAS Library” on page 82

n “Listing Your Current Librefs” on page 82

n “Deassigning SAS Libraries” on page 83

n “Allocating Disk Space for SAS Libraries” on page 84

n “Allocating a Multivolume Generation Data Group” on page 88

Allocating the Library Data Set
Assigning a direct or sequential access bound library involves allocating the z/OS
data set in which the library resides. This z/OS process includes the following
actions:

n Identifying a logical name (ddname) by which the data set is accessed by the
operating system.

n Creating the data set and reserving an initial allocation of disk space if it is a
new data set on disk.

n Identifying, either directly or indirectly, the volumes on which the data set
resides for a new or existing data set.

n Establishing a disposition status (also known as a data set enqueue) to prevent
other jobs or users on the z/OS system from accessing the data set in a manner
inconsistent with your SAS job.

o Specifying a disposition status of OLD, NEW, or MOD requests exclusive
access to the library data set. The allocation does not succeed unless no
other jobs or users have the library allocated, and z/OS prevents any other
jobs or users from allocating the library until you deallocate the library. In
order to update any member of a library, you must request exclusive access
to the library data set.

o Specifying a disposition status of SHR requests shared access to the library.
The allocation succeeds if no other job or users have allocated the library for
exclusive access, and z/OS prevents other jobs or users from allocating the
library for exclusive access until you deallocate the library. However, other
SHR allocations can exist concurrent with yours.

You can allocate the z/OS data set externally to SAS using z/OS facilities such as
JCL or the TSO ALLOCATE command. In most cases, SAS uses the external
allocation to process the library. SAS always uses the external allocation if the

Assigning SAS Libraries 73

ddname of the allocation is specified as the libref. However, if SAS does not find an
external allocation of the library data set, it dynamically allocates the library data
set when assigning a library internally. When this dynamic allocation is necessary,
SAS allocates a library with a disposition status of OLD, unless a different status
has been specified. The ddname used for this allocation is the same as the libref
unless the libref is not a valid ddname or is a ddname that matches another libref
that is already allocated. In those cases, SAS must let the operating system
generate a unique ddname, which would be in the format SYSnnnnn.

After SAS has allocated a library data set, it uses that allocation to process the
library, regardless of how many librefs are assigned to the library and provided that
the same disposition status is specified (or implied) on all the assignments. For
more information, see “Assigning Multiple Librefs to a Single SAS Library” on page
82. However, if a library is assigned with a disposition status of SHR and later, an
additional assignment is made with a status of OLD, SAS attempts to dynamically
allocate the library data set a second time using a disposition status of OLD and a
system-generated ddname. If successful, this second allocation is used for all
subsequent processing of the library until all librefs associated with the library
have been deassigned. Note that in this case SAS does not (and cannot) release
exclusive access to the library even when you release the assignment that specified
a status of OLD.

Assigning SAS Libraries Internally

Overview of Assigning SAS Libraries Internally

SAS provides two methods for assigning SAS libraries internally, that is, via SAS
statements without relying on operating environment facilities such as JCL:

n The LIBNAME statement or LIBNAME function can be used to assign a SAS
library.

In the following example, the library USER934.MYLIB.SASLIB has been assigned
to the libref MYLIB. The z/OS allocation parameter DISP=SHR requests shared
access to the library data set. Since no engine was specified, SAS examines the
format of the library data set to determine which engine to use.

libname mylib 'user934.mylib.saslib' disp=shr;

In the following DATA step, the libref MYLIB is used to refer to the library.
MYLIB can be used for the remainder of the SAS session until it is cleared by a
LIBNAME CLEAR statement.

data mylib.member1;
...
run;

Except for a few special cases, the LIBNAME statement or function can perform
all of the assignment functions that are required for SAS libraries. The LIBNAME
statement or function supports the options that are necessary to create a new
direct or sequential access bound library, and it also provides a way to specify

74 Chapter 4 / Using SAS Libraries

the engine that is used to create the library. For more information and examples,
see “LIBNAME Statement: z/OS” on page 656 and “LIBNAME Function” in SAS
Functions and CALL Routines: Reference in the SAS Functions and CALL
Routines: Reference.

In most cases, the engine does not need to be specified when assigning existing
SAS libraries. SAS also uses a default engine if no engine was specified for a
new library. For a description of how SAS determines which engine to use when
no engine has been specified, see “How SAS Assigns an Engine” on page 81.

n In certain contexts in which the name of a SAS file is specified in libref.member
syntax, it is possible to directly specify the full library name and member name,
as shown in the following example:

data 'user934.mylib.saslib(member1)';
...
run;

The previous statement has the same effect in most cases as the previous
LIBNAME statement example. This syntax can be used only if neither the engine
name nor LIBNAME options are required to assign the library. For more
information, see “Accessing SAS Data Sets without a Libref Using Quoted
References” on page 76.

Advantages of Allocating SAS Libraries Internally

Although you can use a JCL DD statement or a TSO ALLOCATE command to
allocate SAS libraries externally, the LIBNAME statement or LIBNAME function can
do much more. Here are several reasons why it is better to allocate SAS libraries
internally with the LIBNAME statement or function.

n If you use the LIBNAME statement or function, you can allocate your library for
only as long as you need it, and then deassign and deallocate it. By contrast,
ddnames that are allocated externally remain allocated for the duration of the
SAS session or job. The LIBNAME CLEAR statement deassigns an externally
allocated libref, but it does not deallocate the file unless FREE=CLOSE is
specified on the external allocation and the library is a direct access bound
library. Similarly, by conditionally executing a LIBNAME statement or function
within macro statements, you can allocate a library data set only if it is required
for execution of your particular job.

n The LIBNAME statement or function provides an easy way to do dynamic
allocation in the batch environment. SAS programs that have LIBNAME
statements or functions instead of external allocations can be executed either
in the TSO environment or in the batch environment without requiring
additional supporting allocation statements in JCL or TSO CLISTs.

n The JCL DD statement and the TSO ALLOCATE command are not portable to
operating environments other than to another z/OS environment. The LIBNAME
statement or function is portable with minor changes to the physical-filename
and options parameters.

Assigning SAS Libraries 75

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

n ddnames that are allocated externally cannot be reassigned later by a LIBNAME
statement or a LIBNAME function. You would receive an error message in the
SAS log stating that the ddname is currently assigned.

n Using a LIBNAME statement or a LIBNAME function enables you to specify an
engine. Also, the following SAS engines must be specified in a LIBNAME
statement or function because they are not assigned by default: XPORT, BMDP,
SPSS, and OSIRIS.

n ddnames that are allocated externally are not included in the list that is
produced by the LIBNAME LIST statement nor in the SAS Explorer window until
after they have been used as librefs in your SAS session. For more information,
see “Listing Your Current Librefs” on page 82.

Accessing SAS Data Sets without a Libref Using
Quoted References

As an alternative to the libref.member syntax, it is possible to refer to some SAS
files directly by merely specifying the library and member name. This alternative is
supported even in cases in which the library has not yet been assigned (such as via
external allocation or a LIBNAME statement). SAS automatically assigns the
library, if necessary, when the first reference to the library is made. The engine is
determined by default according to the rules described in “How SAS Assigns an
Engine” on page 81.

Note: This method of identifying SAS files should be used only for SAS files that
are residing in libraries that can be allocated internally via a LIBNAME statement or
function and for which no LIBNAME options need to be specified. SAS determines
which engine to use by following the rules described in Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219. However, for SAS
files in UFS libraries, it is possible also to specify the file extension and thus control
which engine should be used. This technique is described in the following text.
When a SAS server is in a locked-down state, SAS data sets or views cannot be
accessed unless they reside in a library directory named in the lockdown list that is
maintained by the server administrator. For more information, see Chapter 10, “SAS
Processing Restrictions for Servers in a Locked-Down State,” on page 219.

Members of Direct Access and Sequential Access
Bound Libraries

Members of existing direct access bound libraries and sequential access bound
libraries can be identified without a libref using the following syntax:

'<z/OS-data-set-name>(member)'

For example:

76 Chapter 4 / Using SAS Libraries

data 'user489.test.saslib(member1)'; x=1; run;
proc print data='user489.test.saslib(member1)'; run;

If the value of the SYSPREF= system option was USER489, the following
equivalent syntax could have been used:

data '.test.saslib(member1)'; x=1; run;
proc print data='.test.saslib(member1)'; run;

Although the syntax is similar to the notation used for partitioned data set (PDS)
members, a SAS library is not a PDS. Only SAS files can be accessed in this manner.

Members of UFS Libraries

Members of new or existing UFS libraries can be identified without a libref using
the following syntax:

'<directory-path>'/member

If the library directory (that is, the lowest level directory in the specified path) does
not exist, SAS creates it automatically, if possible.

The directory path can be fully qualified, as in the following example:

data '/u/user905/MyProject/Member1'; x=51; run;
proc print data='/u/user905/MyProject/Member1'; run;

A partially qualified directory path can also be specified, in which the path
specified is relative to the current working directory. For example, if the current
working directory is /u/user905, the following example would be equivalent to the
previous example:

data 'MyProject/Member1'; x=51; run;
proc print data='MyProject/Member1'; run;

It is not necessary to specify the SAS file extension to a member if the member
type is implied by the context, and if the default engine is the desired engine.
However, if you wanted to access TAPE engine files that exist in the same directory
as BASE engine files, you would need to specify the extension as shown here:

proc print data='NewProject/member1.sas7sdat'; run;

Assigning SAS Libraries Externally

Overview of Assigning SAS Libraries Externally

SAS libraries can be assigned externally by first allocating a ddname to the library
via JCL or a TSO command. Assignment of the library is then completed by
specifying the ddname as a libref within SAS. At that point, SAS selects an engine
for the library according to the rules detailed in the section “How SAS Assigns an
Engine” on page 81. However, if the reference to the libref is in a LIBNAME

Assigning SAS Libraries 77

statement that explicitly specifies which engine should be used, SAS uses the rules
described in “Specifying an Engine for Externally Allocated SAS Libraries” on page
81.

Despite the advantages of assigning SAS libraries internally, assigning SAS libraries
externally also has advantages, which might be important in some cases.

n You might not want to allow a SAS job running in batch to start until the
libraries that it needs to access are available. If you allocate the libraries using
DD statements in JCL, the z/OS job scheduler automatically ensures that the
libraries are accessible:

o by granting the job exclusive access to the library if DISP=OLD is specified

o by granting the job shared access to the library if DISP=SHR is specified.

n The syntax of the JCL DD statement and the TSO ALLOCATE command is more
comprehensive than that of the LIBNAME statement. For example, in order to
specify a list of more than 30 volumes, it is necessary to use external allocation.

n If a particular SAS program uses an externally assigned SAS library, it is possible
to change the library that the program acts upon merely by changing the JCL or
TSO CLIST that invokes SAS, as opposed to changing the program. This
capability might prove to be convenient in some circumstances.

Note:

n Because direct bound libraries are not partitioned data sets (PDS or PDSE), they
cannot be concatenated via external allocation. An attempt to concatenate
library data sets in this way is ignored with a warning, and only the first library in
the concatenation is recognized. However, sequential access bound libraries can
be concatenated if they are allocated with DISP=SHR.

n SAS does not attempt to deallocate a library data set that was allocated
externally to SAS. Therefore, externally assigned bound libraries remain
allocated until the end of the job step or until a TSO FREE command is issued.
However, if FREE=CLOSE is specified on the external allocation for a direct
access bound library, the library is deallocated by the system when the last
libref assigned to the library is cleared. This exception does not apply to
sequential access bound libraries; they would not be freed at deassign time
even if FREE=CLOSE was specified.

When a SAS server is in a locked-down state, SAS does not complete the
assignment for an externally allocated SAS library unless the server
administrator has enabled access to the library through the lockdown list. For
more information, see Chapter 10, “SAS Processing Restrictions for Servers in a
Locked-Down State,” on page 219.

JCL DD Statement Examples

n Allocating an existing SAS library

78 Chapter 4 / Using SAS Libraries

The following JCL DD statement allocates the cataloged data set
LIBRARY.CATALOG.DATA and assigns the ddname BOOKS to it:

//BOOKS DD DSN=LIBRARY.CATALOG.DATA,
// DISP=OLD

The following JCL DD statement allocates an existing SAS library, which is
stored in a UFS directory:

//UFSLIB DD PATH='/corp/dev/test1'

Note that UNIX System Services recognizes and distinguishes between
uppercase and lowercase letters in pathnames. Also, in contrast to bound
libraries, allocating UFS libraries merely provides a convenient way to establish
an external logical name (ddname) for a UFS library. It does not place any
enqueue that would prevent the library from being accessed by other jobs on
the z/OS system.

n Allocating a new SAS library

This example allocates a new SAS library on tape:

//INTAPE DD DSN=USERID.V9.SEQDATA,
// UNIT=TAPE,LABEL=(1,SL),

// DCB=(RECFM=U,BLKSIZE=32760),

// DISP=(NEW,KEEP),VOL=SER=XXXXXX

Notice that DCB attributes are specified. When you allocate a new SAS library
externally, you must either specify DCB attributes or accept the default DCB
attributes that SAS supplies.

n Specifying additional options for a previously allocated SAS library

For more information, see “Specifying an Engine for Externally Allocated SAS
Libraries” on page 81.

Using Environment Variables to Externally Assign a
SAS Library

You can use an environment variable that was defined with the SET system option
to externally assign a libref to a SAS library. For example, if you specify the
following SAS option

SET='MYLIB ("USERID.MYLIB.SASLIB")'

then the following SAS statement

libname mylib list;

assigns the libref MYLIB to the SAS library USERID.MYLIB.SASLIB. Libraries that
are assigned in this way are allocated as DISP=OLD unless they are already
internally assigned DISP=SHR or externally allocated.

Assigning SAS Libraries 79

TSO ALLOCATE Command Examples

n Allocating an existing SAS library

The following TSO ALLOCATE command allocates the cataloged data set
LIBRARY.CATALOG.DATA and assigns the ddname BOOKS to it:

alloc dd(books) da('lib.cat.data') old

The following command performs the same allocation, this time using the SAS X
statement to submit the TSO ALLOC command.

x alloc dd(books) da('lib.cat.data') old;

For more information, see “X Statement: z/OS” on page 681.

The following command allocates a directory as a SAS library with the ddname
RESULT2:

x alloc dd(result2) path('/corp/dev/test2');

Note that allocating UFS libraries in this way provides a convenient way to
establish an external logical name (ddname) for a UFS library. No enqueue is
placed on the library.

n Allocating a new SAS library

The following TSO command allocates a new sequential SAS library on disk:

alloc fi(intape) da(V9.seqdata) dsorg(ps) recfm(u) new

Notice that DCB attributes are specified. When you allocate a new SAS library
externally, you must either specify DCB attributes or accept the default DCB
attributes that SAS supplies.

n Specifying additional options for a previously allocated SAS library

For more information, see “Specifying an Engine for Externally Allocated SAS
Libraries” on page 81.

Using a Ddname as a Libref

Even though a library has been allocated to a ddname externally to SAS, the
assignment process is not complete until the library has been referred to within a
SAS program or feature that specifies the ddname as a libref. At that point SAS
completes the assignment process and adds the ddname to its table of active
librefs. For example:

proc contents data=books._all_; run;

The first time the ddname BOOKS is used in this manner, SAS assigns it as a libref
for the SAS library.

80 Chapter 4 / Using SAS Libraries

When a ddname is allocated externally, it is not listed by the LIBNAME LIST
statement or in the SAS Explorer until after you have used it as a libref in your SAS
session. For more information, see “Listing Your Current Librefs” on page 82.

Specifying an Engine for Externally Allocated SAS
Libraries

In most cases, SAS can identify the proper engine to use for existing libraries.
However, when creating new libraries that were allocated externally, you might
need to use the LIBNAME statement or LIBNAME function to override the engine
that SAS would use by default. For example, suppose you used an X statement to
submit the following TSO ALLOCATE command, which allocates the SAS library
QUARTER1.MAILING.LIST:

x alloc f(mail) da('quarter1.mailing.list') new
 dsorg(ps) space(10 1) cyl;

You could instruct SAS to use the V9TAPE engine for this new library with the
following statement:

libname mail tape;

This LIBNAME statement does not need to specify the name of library data set or
any other options, because that information was supplied on the external allocation
referenced by the ddname mail.

How SAS Assigns an Engine
In some cases, you might choose not to specify an engine name in the LIBNAME
statement or LIBNAME function, or you might choose not to issue a LIBNAME
statement or function for a library that was allocated externally. The following
information describes how SAS determines which engine to use when you do not
specify one. The engine that SAS selects depends on which type of library you are
accessing. For more information about libraries, see “Library Implementation Types
for Base and Sequential Engines” on page 51.

If the library that you specify corresponds to a new or empty z/OS data set, SAS
assigns the default engine specified by the ENGINE= system option unless a
sequential engine must be used. Sequential engines are used for the following
situations:

n The library data set is on a tape device, or it is a subsystem data set managed by
BatchPipes.

n The DCB characteristics DSORG=PS and RECFM=U are specified for the data
set.

If a sequential engine is used, SAS assigns the engine specified by the
SEQENGINE= system option. For empty UFS libraries, SAS assigns the engine
specified by the ENGINE= system option.

Assigning SAS Libraries 81

If the library data set has already been initialized, or, for UFS, if the library directory
already contains members, SAS generally assigns the engine that has been used to
process the library in the past. The following list contains details about how SAS
assigns engines for the different types of libraries:

direct access bound library
SAS automatically assigns the V5 engine if the library data set has the DCB
characteristic DSORG=DA. Otherwise, SAS reads the library header and assigns
the engine that was originally used to initialize the library.

sequential access bound library
SAS reads the first member header record and assigns the engine that was used
to write the first member of the library.

UFS library
SAS examines the extension of each SAS file in the library directory, because
the extension indicates the engine with which the library member was created.
If all of the SAS files in the directory were created with the same engine, that
engine is assigned to the library. If the SAS files were created using a mix of
different engines, SAS assigns the engine specified by the ENGINE= system
option.

hiperspace library
SAS automatically assigns the V9 engine when assigning hiperspace libraries.

Note: Identifying the engine with the LIBNAME statement or function saves
system resources.

Assigning Multiple Librefs to a Single SAS Library
You can assign more than one libref to the same SAS library.

For example, suppose that in two different programs, you used different librefs for
the same libraries. Later you develop a new program from parts of the two old
programs, or you include two different programs with the %INCLUDE statement. In
the new program, you could simply assign the two original librefs to each library
and proceed.

Any assigned libref can be used to access the library with the following exception:
if ACCESS=READONLY was specified or implied (by DISP=SHR) for one
assignment, then that libref can be used only to read the library, even though
Update access is available to the library through another libref.

Listing Your Current Librefs
You can use either the LIBNAME command or a form of the LIBNAME statement to
list your currently assigned librefs.

82 Chapter 4 / Using SAS Libraries

n When you issue the LIBNAME command, the SAS Explorer window is displayed.
The SAS Explorer window lists all of the librefs that are currently assigned for
your session.

The SAS Explorer window displays the full z/OS data set name of the SAS
library, and displays the engine that is used to access the library.

n The following form of the LIBNAME statement writes to the SAS log the
attributes of all the librefs that are currently assigned for your session:

LIBNAME _ALL_ LIST;

Deassigning SAS Libraries
Once a libref has been assigned to a library, it remains assigned until it is cleared by
using the LIBNAME libref CLEAR statement. As noted in “Assigning Multiple Librefs
to a Single SAS Library” on page 82, more than one libref can be assigned to a given
library. A library remains assigned to SAS as long as at least one libref is currently
assigned to the library. However, when the last libref assigned to a library is
cleared, SAS releases the resources used to process this library. For bound libraries,
the following actions are taken:

n The library data set is physically closed (if it is not already closed). If
FREE=CLOSE was specified on the external allocation for a direct access bound
library, the system automatically deallocates the library data set at this point.
However, FREE=CLOSE is not honored for a sequential access bound library.

n If SAS allocated the library data set (as opposed to using an allocation that had
been established externally to SAS), SAS releases the allocation. However, SAS
does not release allocations that were established externally. These allocations
are released at the end of the job step or, in the TSO environment, when a TSO
FREE command is issued for the allocation. When an allocation is released, the
enqueue on the library is released, making the library available for use by other
jobs. Normal disposition processing, such as cataloging or deleting the library
data (as specified by the DISP parameter), is also performed at deallocation
time.

Note: All libraries assigned during a SAS session are automatically deassigned at
the end of the session.

The method that you use to deallocate a SAS library depends on how the library
was allocated.

n To deassign and deallocate a SAS library that was allocated with a LIBNAME
statement or LIBNAME function, issue a LIBNAME statement or function in one
of the following forms, using the libref for the library that you want to
deallocate:

LIBNAME statement: LIBNAME libref <CLEAR>;

LIBNAME function: LIBNAME (libref, ' ');

Assigning SAS Libraries 83

This statement deassigns the libref. All libraries assigned during a SAS session
are automatically deassigned at the end of the session.

n To deassign and deallocate a library that was allocated with a TSO command,
first issue a LIBNAME statement or LIBNAME function to deassign the libref.
Then issue a TSO FREE command to deallocate the data set.

For example, suppose that a SAS library with the libref MYLIB is stored in the
z/OS data set MYID.RECENT.DATA. The following two statements would clear
the libref and deallocate the library data set:

libname mylib clear;
x free da('myid.recent.data');

CAUTION
Do not attempt to release the allocation for a library data set without first
deassigning the libref.

n You can deassign a SAS library in the SAS Explorer window by selecting the
DELETE menu.

Allocating Disk Space for SAS Libraries

Overview of Allocating Disk Space for SAS Libraries

SAS direct access bound libraries and SAS sequential access bound libraries reside
in a z/OS data set. When creating a new bound library, you must specify various
parameters that control the amount and type of disk space to be allocated to the
new z/OS data set in which the library is to reside. When using an existing bound
library, you can specify parameters that control the increments of space (secondary
allocations) to be added if the data library needs to be enlarged. This section
provides recommendations and examples for allocating disk space for SAS libraries
in z/OS data sets. It gives particular attention to the z/OS features that support
large data libraries (such as those with a size exceeding 1 terabyte).

This section does not pertain to UNIX file system libraries. Members of UFS
libraries reside in files, and UNIX file systems automatically manage space for the
individual files that they contain. Allocation of the disk space for UNIX file systems
is the responsibility of the system programmer, not the individual z/OS user.

z/OS Disk Space Allocation

This topic provides a brief summary of the main concepts, terms, and rules involved
in allocation of disk space for SAS libraries on disk. This summary is not intended to
address all points of this broad subject. For more information, see the following

84 Chapter 4 / Using SAS Libraries

IBM publications and documentation for any third-party DASD space management
software that is installed on z/OS at your site:

n DFSMS Using Data Sets

n MVS JCL Reference

n MVS JCL User's Guide

Both direct access and sequential access bound libraries reside in data sets that
have the attribute DSORG=PS. On disk, these data sets can be extended to as many
as 59 volumes. Each time space is requested for a library data set, the disk space is
supplied in extents, which are one or more chunks of contiguous space. A regular
format DSORG=PS data set can have up to 16 extents per volume. Extended format
DSORG=PS data sets can have as many as 123 extents per volume, but they can be
used only for sequential access bound libraries.

SAS library data sets can be allocated externally with JCL or TSO statements. Data
sets can also be allocated internally with the SAS LIBNAME statement, which uses
the dynamic allocation interface to establish the MVS allocation, if necessary. For
more information, see “Assigning SAS Libraries” on page 72.

Regardless of which method you use, when you allocate a new library data set, you
must specify the size of the initial (primary) disk space allocation as well as the
size of the extent (secondary) that is to be obtained when the library data set
needs to be enlarged. Each request to extend the size of the library data set is
satisfied by a secondary extent on the current last volume until 16 extents are
allocated for the data set on that volume, the volume does not contain enough free
space to satisfy the request, or, for DSNTYPE=BASIC data sets, until more than
64K tracks have been used on the last (or only) volume. If the space request cannot
be satisfied, the system attempts to find space on the next volume, if any, that is
allocated to the library data set. If no additional volumes are allocated to the data
set, then the system issues a system B37 abend. SAS intercepts the abend and
reports a library full condition. The operation that was adding data to the library
also fails with an error.

The z/OS platform provides a number of facilities that increase the amount of disk
space that is available for allocating z/OS data sets. SAS supports the use of the
following facilities for SAS libraries in z/OS data sets:

DSNTYPE=LARGE
increases the number of tracks that a data set can occupy on a single disk
volume from 65535, which is the limit for the default, DSNTYPE=BASIC, to a
theoretical maximum of more than 16 million for z/OS data sets that are created
with this attribute.

Extended Address Volumes (EAV)
can have a size greater than 65520 cylinders, which is the architectural limit for
ordinary disk volumes. SAS fully supports the EAV feature. Note that EAV
support requires the appropriate release of z/OS and the appropriate level of
DASD hardware. For more information, see the IBM documentation about EAV.

Multi-Volume Data Sets
allow a disk data set to be extended to as many as 59 volumes on z/OS.

Assigning SAS Libraries 85

Recommendations for Allocating Libraries
Efficiently

The following recommendations contain information that is helpful when you
allocate space for a library:

n When you plan disk space allocation for SAS libraries, consult with your
systems programmer or DASD systems administrator for your z/OS system.
They can provide information that is important when you allocate large SAS
libraries.

n Use DSNTYPE=LARGE for all SAS libraries. This feature is available for all
supported releases of z/OS, and the feature has no performance cost. Even if a
library is smaller than 64K tracks, DSNTYPE=LARGE simplifies management of
the library if the library exceeds 64K tracks in the future.

n If EAV volumes are available, then use them for large SAS libraries, particularly
for libraries that exceed 64K cylinders. Specify EATTR=OPT so that the library
data set can reside in the extended address space (EAS) of the volume. EAS is
the area above 65520 cylinders. The EATTR option is supported in the
LIBNAME statement.

n If your SAS library exceeds the amount of space that is available on a single disk
volume, then SAS provides complete support for multi-volume data libraries.
Space for SAS multi-volume libraries does not need to be pre-allocated. SAS
can dynamically extend SAS libraries to additional volumes whenever additional
space is required in the library for member data. Therefore, unless space
management policies at your installation require pre-allocating disk space, SAS
recommends allocating only enough space for the initial requirements of the
library.

Examples

The following examples show how to request space for SAS libraries in z/OS data
sets.

The following LIBNAME statement allocates a temporary library of up to three
volumes:

libname tmp '&lib' unit=(sysda,3) space=(cyl,(300,100)) DSNTYPE=LARGE;

The following DD statement creates a direct access bound library. The unit count
makes three volumes available for the job that creates the library. Note that there
must be three available units in the system for this example to work, even if the
library does not require space on all three volumes, because the system chooses
the candidate volumes at allocation time.

//MASTER DD DSN=MY.MASTER.LIBRARY,DISP=(NEW,CATLG,DELETE),
// UNIT=(DISK,3),SPACE=(CYL,(300,100)),
// DSNTYPE=LARGE

86 Chapter 4 / Using SAS Libraries

To extend the preceding library to as many as five volumes using another job, you
can use the following DD statement. The secondary space allocation specified at
library creation time is used to determine the size of the secondary extents added.
DSNTYPE=LARGE does not need to be specified because it is a property of the
data set that is established when the data set is created.

//MASTER DD DSN=MY.MASTER.LIBRARY,DISP=OLD,UNIT=(DISK,5)

Note: If you want to extend an existing library, but only on the volumes on which it
is already cataloged, it is not necessary to specify the UNIT parameter.

You can also use the LIBNAME statement EXTEND option to extend an existing
library that is not managed with SMS . Using the EXTEND option is equivalent to
specifying UNIT=(,n), where n is one more than the current number of volumes in
the existing library:

libname payroll 'my.master.library' disp=old extend;

The following DD statement creates an SMS-managed library, which can extend to
as many as four volumes. For SMS-managed libraries that are allocated without a
specific list of volumes, the unit count that is specified when creating the library
specifies the volume count for the library data set. Note that the volume count can
also be specified with the data class instead of the unit count.

//TEST1 DD DSN=MY.PROJECT.LIBRARY,DISP=(NEW,CATLG),
// UNIT=(DISK,4),SPACE=(CYL,(200,200)),
// STORCLAS=SASSTD,DATACLAS=SASSTD,DCB=(DSORG=PS,RECFM=FS),
// DSNTYPE=LARGE

For SMS-managed data sets, the volume count represents the maximum number of
volumes in which the data set can be extended when you create a job, as well as in
subsequent jobs. Therefore, this library can be extended to as many as four
volumes using the following DD statement:

//TEST1 DD DSN=MY.PROJECT.LIBRARY,DISP=OLD

The following LIBNAME statement can be used as well:

libname project 'my.project.library';

Extending an existing SMS-managed library does not require a UNIT count, and
using a UNIT count does not have any effect. To increase the volume count for an
existing SMS-managed library, use the ADDVOL command of the IDCAMS utility.

Note: An SMS storage class with the GUARANTEED SPACE attribute is not
required as it is when you are preallocating libraries.

When you create a SAS library on an EAV volume, EATTR=OPT must be specified
so that the data set uses the extended address space (EAS) of the volume.
Otherwise, the data set can reside only in the first 65520 cylinders of the volume,
which negates the benefit of using an EAV. The following example also specifies a
particular SMS storage class that is associated with a pool of EAV volumes. A
similar technique might be required at your installation.

libname largelib 'prod.large.saslib' disp=(new,catlg)
 eattr=opt storclas=eavpool space=(cyl,(1000,1000));

Assigning SAS Libraries 87

Allocating a Multivolume Generation Data Group
A collection of SAS libraries, including multivolume libraries, can be stored and
managed as a z/OS GDG. Before creating any libraries, you must first create the
GDG base, as shown in the following example:

// JOB ...
//* --
//* CREATE GDG BASE FOR SAS LIBRARIES
//* --
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE GDG +
 (+
 NAME(PROD.WEEKLY.PERFSTAT) +
 LIMIT(5) +
 SCRATCH +
)
//* --

When the GDG base exists, libraries that are members of the GDG can be created
using JCL, for example:

// JOB ...
//* ---
//* CREATE MULTI-VOLUME SAS LIBRARY WHICH IS MEMBER OF GDG
//* ---
//STEP01 EXEC SAS
//NEWLIB DD DSN=PROD.WEEKLY.PERFSTAT(+1),DISP=(NEW,CATLG),
// UNIT=(DISK,2),SPACE=(CYL,(50,10)),
// DCB=PROD.WEEKLY.MODEL
//SYSIN DD *
 DATA NEWLIB.MEMB01;
 ...
//* ---

Each execution of the job creates an entirely new library that is a member of the
GDG named PROD.WEEKLY.PERFSTAT. The DD statement parameter DCB= is
required to specify a data set from which the model DCB attributes for the library
are copied.

Note:

n A LIBNAME statement should not be used to create a new GDG library, but it
can be used to refer to an existing GDG member.

n The z/OS GDG facility is somewhat similar to, but is unrelated to, the SAS
concept of generation data groups. A z/OS GDG is a group of SAS libraries. A
SAS GDG is a group of members within a SAS library. The former group is
managed by z/OS. The latter group is managed by SAS.

88 Chapter 4 / Using SAS Libraries

5
Specifying Physical Files

Overview of Physical Files . 89

Specifying Physical Files with the INCLUDE Command . 90

Handling of Nonstandard Member Names . 91

Overview of Physical Files
Wherever you specify the name of a physical file internally (for example, in a SAS
LIBNAME or FILENAME statement, in a LIBNAME or FILENAME function, in a
DATA step, or in a SAS procedure), the name can be in any of these forms:

n a fully qualified data set name such as 'SAS.SAS9.AUTOEXEC'. A PDS member
name, such as 'MY.PDS(MEMBER)', might also be specified, although not for a
LIBNAME statement or function.

n a partially qualified data set name such as '.CNTL'. SAS inserts the value of the
SYSPREF= system option (which by default is the user ID) in front of the period.
For more information, see “SYSPREF= System Option: z/OS” on page 873. In the
following example, an OPTIONS statement is used to assign a value of
USER12.SAS9 to the SYSPREF= system option. When SAS executes the
FILENAME statement, it interprets '.RAW.DATAX' as
'USER12.SAS9.RAW.DATAX'.

options syspref=user12.sas9;
filename raw2 '.raw.datax' disp=old;

n a temporary data set name such as '&MYTEMP'.

n a UFS path. It can be a full path that begins with a slash (/) or a tilde (~), as the
following examples indicate:

filename fullpath '~/subdir/filename.sas';
filename relative 'subdir/filename.sas';

n a concatenated series of names or a wildcard name consisting of multiple UNIX
File System (UFS) files or members of a partitioned data set (PDS, PDSE). For
more information, see “Concatenating External Files” on page 104. However,

89

note that the LIBNAME statement and LIBNAME function does not support the
wildcard syntax for members of partitioned data sets. It is possible to
concatenate SAS libraries. For more information, see “LIBNAME Statement:
z/OS” on page 656.

SAS on z/OS does not support specifying physical files that have a member type of
AUDIT. Specifying physical filenames such as the following returns an error:

n filename mylib './saslib/memb01.sas7baud';

Note: Names of physical files should be enclosed in quotation marks.

For information about encodings for z/OS resources such as data set names and
UFS paths, see Appendix 3, “Encoding for z/OS Resource Names,” on page 939.

Specifying Physical Files with the
INCLUDE Command

Here are examples of the INCLUDE command that illustrate the various ways that
you can specify physical files:

INCLUDE MYPGM
MYPGM is a fileref that was previously associated with an external file.

INCLUDE MYPGM(PGM1)
PGM1 is a member of the partitioned data set that is associated with the fileref
MYPGM.

INCLUDE 'USERID.TEST.PGMS'
This is an example of a sequential data set name.

INCLUDE 'MVS:USERID.TEST.PGMS'
This is an example of a sequential data set name that uses the designator for
the MVS file system.

INCLUDE 'USERID.TEST.PGMS(AAA)'
This is an example of a data set name with a member specified.

INCLUDE '.TEST.MYPGM'
Assuming that the FILESYSTEM= system option is set to MVS, SAS adds a
prefix to this data set name that contains the value of the SAS system option
SYSPREF=, which defaults to your system prefix. If FILESYSTEM=HFS, SAS
looks into your default UNIX System Services directory for the “hidden”
file .TEST.MYPGM.

INCLUDE 'HFS:/u/userid/mypgms/mypgm1.c'
This is an example of a path to a UNIX File System (UFS) file in the Hierarchical
File System (HFS), represented by a fully qualified path. For more information
about HFS and UFS, see “HFS, UFS, and zFS Terminology” on page 8.

90 Chapter 5 / Specifying Physical Files

INCLUDE 'pgms/mypgms/mypgm1.c'
This is an example of a relative path to a UNIX File System file. Any filename
containing a slash (/) is assumed to be in UNIX File System, regardless of the
value of the FILESYSTEM= system option. If the pathname does not begin with
a slash (/), then SAS searches for the file in the default UFS directory for that
user.

Handling of Nonstandard Member
Names

You can use the SAS system option FILEEXT= to specify how extensions in member
names of partitioned data sets are to be handled. For more information, see
“FILEEXT= System Option: z/OS” on page 746.

Handling of Nonstandard Member Names 91

92 Chapter 5 / Specifying Physical Files

6
Assigning External Files

Introduction to External Files . 94

Ways of Assigning External Files . 94
Overview of Assigning External Files . 94
Assigning a File for a Single Use . 95
Assigning a File for Multiple Uses . 95

Using the FILENAME Statement or Function to Assign External Files 96
Overview of Using the FILENAME Statement or Function to

Assign External Files . 96
FILENAME Statement Syntax . 96
FILENAME Statement Examples . 97
Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access Types) . . . 99

Using the JCL DD Statement to Assign External Files . 100

Using the TSO Assign Command to Assign External Files . 100

Assigning External Files on Tape . 101

Assigning External Files to a Pipe . 101

Assigning Generation Data Sets . 102
Overview of Generation Data Sets . 102
Assigning a New Generation of a Generation Data Group . 103
Assigning an Existing Generation of a Generation Data Group . 103

Assigning Other Types of External Files . 104
Assigning UNIX System Services Files . 104
Assigning PDSEs . 104

Concatenating External Files . 104

Displaying Information about External Files . 105

Deassigning External Files . 105

93

Introduction to External Files
External files are files whose format is determined by the operating environment
rather than by SAS software. External files include raw data files, JCL libraries, files
that contain SAS programming statements, load libraries, and UFS files, which are
part of UNIX System Services (USS). In batch and noninteractive line modes, the
SAS log and procedure output files are also external files.

Note: If you are using files in the UFS file system, SAS views the z/OS file system
(zFS) and the Hierarchical File System (HFS) as functionally equivalent.

For information about encodings for z/OS resources such as data set names and
UFS paths, see Appendix 3, “Encoding for z/OS Resource Names,” on page 939.

Ways of Assigning External Files

Overview of Assigning External Files
To work with an external file in SAS software, you must first assign the file. File
allocation is the process of identifying an external file to SAS software.

After you assign a file to SAS, you can identify the file by using a short name called
a fileref. Filerefs can be assigned dynamically using the FILENAME statement. Any
DD name allocated in JCL or by a TSO ALLOCATE command is implicitly available
as a fileref with no additional action in your SAS program.

If you are assigning a new data set, such as a sequential file, partitioned data set
(PDS), or partitioned data set extended (PDSE), you must specify that it is new.
You must also describe its structure and format. These actions are not required for
new files in the UNIX System Services (USS) file system.

The method that you use to assign an external file depends on whether you plan to
use the file more than once in your SAS program. For more information, see
“Assigning a File for a Single Use” on page 95 and “Assigning a File for Multiple
Uses” on page 95.

94 Chapter 6 / Assigning External Files

Assigning a File for a Single Use
If you plan to use an existing external file only once in your SAS program, then you
can assign it by specifying the physical filename in a SAS statement or command.
For example, this INCLUDE command assigns an existing sequential data set and
includes it into the PROGRAM EDITOR window:

include 'myid.report.data'

Similarly, this PROC PRINTTO statement assigns a new PDS member:

proc printto print='userid.output.data(rockport)' new;

Assigning a File for Multiple Uses
If you plan to use the same external file several times in your SAS program, then
use one of the following methods to assign the file:

SAS FILENAME statement or function
You can use these methods in all modes for most types of files. For more
information, see “Using the FILENAME Statement or Function to Assign
External Files” on page 96 or “FILENAME Function: z/OS” on page 474.

JCL DD statement
You can use this method if you use z/OS in batch mode. For more information,
see “Using the JCL DD Statement to Assign External Files” on page 100.

Note: Unlike the other two methods, if you use the JCL DD statement to assign
a file, there is no way to deassign the file until the job ends.

TSO ALLOCATE command
You can use this method if you use TSO under z/OS. For more information, see
“Using the TSO Assign Command to Assign External Files” on page 100.

Each of these methods establishes a fileref or a ddname that you can subsequently
use to refer to the file instead of specifying the data set name again. For more
information, see “Referring to External Files” on page 108.

Ways of Assigning External Files 95

Using the FILENAME Statement or
Function to Assign External Files

Overview of Using the FILENAME Statement or
Function to Assign External Files

The FILENAME statement and FILENAME function associate a SAS fileref (file
reference name) with the operating environment's name for an external file. This
association is equivalent to assigning a physical file externally (using a JCL DD
statement or a TSO ALLOCATE command) and assigning a fileref to it.

In interactive mode, if you issue a FILENAME statement or function or attempt to
assign a file with the FNAME window for a file that does not exist, and if you do not
specify DISP=NEW, and if the file is not a UFS file, one of the following actions
occurs:

n If the SAS system option FILEPROMPT is in effect (the default), then a dialog
box asks whether you want to create the external file. If you reply Yes, SAS
creates the external file, using any attributes that you specified in the
FILENAME statement. If you do not specify any attributes, SAS uses the values
of the SAS system options FILEDEV=, FILEVOL=, FILEUNIT=, FILESPPRI=, and
FILESPSEC=. For information about these options, see “System Options in the
z/OS Environment” on page 689.

n If the SAS system option NOFILEPROMPT is in effect, an error message
indicating that the file could not be assigned is written to the SAS log.

For more information about the FILENAME function, see “FILENAME Function:
z/OS” on page 474.

FILENAME Statement Syntax
This section provides only a brief overview of FILENAME statement syntax. For
complete information about the FILENAME statement, see “FILENAME Statement:
z/OS” on page 616.

The syntax of the FILENAME statement is

FILENAME fileref <device-type > 'physical-filename' <options … >;

96 Chapter 6 / Assigning External Files

fileref
identifies the external file. The fileref must conform to the rules for ddnames.
That is, it can consist of one to eight letters, numbers, or the national characters
$, @, and #. The first character must be either a letter or a national character,
and an underscore (_) can appear in any position of the name. You can
subsequently use the fileref to refer to this file in your SAS session or batch job.
For more information, see “Referring to External Files” on page 108.

device-type
enables you to route output to an output device, disk, or tape file by specifying
device type. If device-type is not defined for a new file, its value is taken from
the SAS system option FILEDEV=.

'physical-filename' | ('physical-filename-1' . . . 'physical-filename-n') | 'physical-
filename (*)' | 'physical-filename(beg*)' | 'physical-filename(*end)'

is the physical filename of the data set, enclosed in quotation marks (see
Chapter 5, “Specifying Physical Files,” on page 89), or it can be a concatenation
of physical filenames. For a concatenation, enclose each data set name in
quotation marks, and enclose the entire group of file-specifications in
parentheses. The maximum number of data sets in a concatenation is 200.

For a concatenation of members in a PDS, an asterisk (*) can be used in a
wildcard file specification. The syntax 'physical-filename (*)' applies to all
members of the PDS; (beg*) applies to all members or files whose names begin
with beg, and (*end) applies to all files whose names end with end.

options
include standard options such as file disposition as well as options for SYSOUT
data sets such as the destination for output and the number of copies desired.
These options are described in detail in “FILENAME Statement: z/OS” on page
616. Generally, values for options can be specified either with or without
quotation marks. However, values that contain special characters must be
enclosed in quotation marks.

FILENAME Statement Examples
The following table provides examples of the FILENAME statement for z/OS:

Table 6.1 FILENAME Statement Examples

Type of File New or Existing File? Example

sequential existing filename raw 'myid.raw.datax' disp=old;

new filename x
'userid.newdata' disp=new
 space=(trk,(5,1)) unit=3380 volume=xyzabc
 recfm=fb lrecl=80 blksize=6160;

Using the FILENAME Statement or Function to Assign External Files 97

Type of File New or Existing File? Example

member of
partitioned

existing filename raw 'sas.raw.data(mem1)' disp=old;

new filename dogcat 'userid.sas8.physn(optwrk)'
 disp=new space=(trk,(1,3,1))
 volume=xxx111 recfm=fb lrecl=255
 blksize=6120 dsorg=po;

partitioned
extended

existing filename mypdse 'sas.test.pdse' disp=old;

new filename tpdse 'sas.test.pdse' dsntype=library
 space=(trk,(5,2,2)) lrecl=80 blksize=6160
 recfm=fb disp=(new,catlg) dsorg=po;

UFS: HFS files existing filename myhfs '/u/userid/myfile';

new filename myhfs '/u/userid/myfile';

temporary new filename nextone '&mytemp' disp=new
 space=(trk,(3)) lrecl=80 blksize=6160;

tape existing filename mytape 'prod.data' vol=myvol unit=tape
label=(1,SL);

new filename tranfile 'sas.cport.file'
label=(1,SL)
 vol='042627' unit=cart blksize=8000
 disp=(new,keep);

concatenated existing filename concat12
 ('prod.payroll.data' 'prod.trans(may)');

wildcard existing, in PDS filename wild 'prod.payroll(d*)';

existing, in HFS filename all '/u/userid/*.sas';

terminal not applicable filename term1 '*';
 or
filename term2 terminal;

printer not applicable filename prnt unit=printer sysout=a;
 or
filename prnt printer sysout=a;

98 Chapter 6 / Assigning External Files

Assigning Filerefs to Files on Other Systems (FTP
and SOCKET Access Types)

You can access files on other systems in your network by using the FTP and
SOCKET access methods. The forms of the FILENAME statement are:

FILENAME fileref FTP 'external-file' <ftp-options>;

FILENAME fileref SOCKET 'hostname:portno' <tcpip-options>;

FILENAME fileref SOCKET ':portno' SERVER <tcpip-options>;

These access methods are documented in the SAS DATA Step Statements:
Reference. On z/OS, the FTP access method supports an additional option:

MACH='machine'
identifies which entry in the .netrc file should be used to get the user name and
password. You cannot specify the MACH option and the HOST option on the
same FILENAME statement. The .netrc file resides on z/OS.

The SAS FTP access method accesses the .netrc file per the following search
precedence:

1 NETRC DD statement

2 userid.NETRC

3 UFS Home directory (~/.netrc)

The .netrc file contains the machine name, user ID, and password of various hosts
that a user can FTP to, for example:

MACHINE hostname LOGIN userid PASSWORD xxxxxxx

If you are transferring a file to any UNIX or Windows file system from SAS in the
z/OS operating environment and you want to use either the S370V or S370VB
format to access that file, then the file must be of type RECFM=U and
BLKSIZE=32760 before you transfer it.

Note:

n The permissions of the .netrc file on UFS are not checked.

n All characters of the .netrc keywords MACHINE, LOGIN, PASSWORD, and
PASSWD must be uppercase or lowercase. Mixed case keywords are not
supported.

n Line numbers are not recommended in z/OS .netrc files, but they are
supported.

Using the FILENAME Statement or Function to Assign External Files 99

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Using the JCL DD Statement to Assign
External Files

The syntax of the JCL DD statement is

//ddname DD DSN=data-set-name,options

options include options such as file disposition as well as options that describe the
format of the file.

Here are some examples:

n Assigning an existing sequential data set:

//BOOKS DD DSN=LIBRARY.CATALOG.DATA,DISP=SHR

n Assigning a new sequential data set:

//REPORT DD DSN=LIBRARY.REPORT.FEB08,DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=6160)

n Concatenating sequential data sets:

//INPUT DD DSN=LIBRARY.DATA.QTR1,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR2,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR3,DISP=SHR
// DD DSN=LIBRARY.DATA.QTR4,DISP=SHR

For complete information about the JCL DD statement, see the appropriate JCL
User's Guide and JCL Reference for your OS level.

Using the TSO Assign Command to
Assign External Files

The syntax of the TSO ALLOCATE command is

ALLOC FILE(ddname) DA('data-set-name') options

options include options such as file disposition as well as options that describe the
format of the file.

Here are some examples:

n Assigning an existing member of a PDS:

alloc fi(in1) da('my.pds(mem1)') shr

100 Chapter 6 / Assigning External Files

n Assigning a new sequential data set:

alloc fi(report) da('library.report.feb08')
 new sp(1,1) cyl lrecl(80) recfm(f b)
 blksize(6160)

n Concatenating sequential data sets:

alloc fi(input) da('library.data.qtr1' 'library.data.qtr2'
 'library.data.qtr3' 'library.data.qtr4') shr

For complete information about the TSO ALLOCATE command, see the appropriate
TSO reference for your OS level.

Assigning External Files on Tape
Tapes are used primarily in batch mode. Some sites might restrict or prohibit tape
mounts in interactive sessions. Because file allocation for external files on tape is
done infrequently, the FILENAME statement and FILENAME function give only
limited support for parameters that are normally associated with data sets on tape.
However, you can use the FILENAME statement or FILENAME function to assign a
cataloged tape file, provided that you specify the data set name and disposition (as
you would normally do in a JCL DD statement). To assign an uncataloged tape file,
do the following:

n For a data set on an IBM standard-label tape (label type SL, the most common
type), you must specify the data set name, UNIT= parameter, and volume serial
number. You can also specify the label number and type and the disposition, or
you can allow default values to be used for these parameters. For example:

filename mytape 'prod.data' vol=myvol
 unit=tape label=(2,SL);

n For a data set on a nonlabeled tape (label type NL), you must supply the
previous information plus DCB information. For more information, see “DCB
Attribute Options” on page 628. For example:

filename tranfile 'sas.cport.data'
 disp=(new,keep) unit=tape vol=xvol
 label=(1,NL) recfm=fb
 lrecl=80 blksize=8000;

Assigning External Files to a Pipe
BatchPipes offers a way to connect jobs so that data from one job can move to
another job without going to DASD or tape. SAS permits both SAS data sets and
external files to be written and read with BatchPipes.

Assigning External Files to a Pipe 101

Note: To use BatchPipes with SAS on z/OS, make sure the BatchPipes service is
running before you start your SAS session.

To write an external file using BatchPipes:

 //jobname JOB jobinfo...
 // EXEC SAS9
 //*
 //PIPESND DD DSN=TEST.SAS.EXTFILE.BATCHPIPES,
 // LRECL=80,BLKSIZE=3120,RECFM=FB,
 // DISP=NEW,
 // SUBSYS=(BP01,CLOSESYNC)
 //*
 //SYSIN DD *
 data _null_;
 file pipesnd;
 put " Line 1 ";
 put " Line 2 ";
 run;
 /*
 //

To read an external file using BatchPipes:

 //jobname JOB jobinfo...
 // EXEC SAS9
 //*
 //PIPERCV DD DSN=TEST.SAS.EXTFILE.BATCHPIPES,
 // DISP=OLD,
 // SUBSYS=(BP01,CLOSESYNC)
 //*
 //SYSIN DD *
 data _null_;
 infile pipercv;
 input;
 list;
 run;
 /*
 //

See the IBM documentation about BatchPipes z/OS for more information.

Assigning Generation Data Sets

Overview of Generation Data Sets
A generation data set (or generation) is a version of a z/OS data set that is stored
as a member of a generation data group. These generations are supported by z/OS;
they differ from the generation data sets supported by SAS. For detailed

102 Chapter 6 / Assigning External Files

information about z/OS generations, see your IBM documentation. For information
about SAS generation data sets, see SAS V9 LIBNAME Engine: Reference.. For more
information, see “Allocating a Multivolume Generation Data Group” on page 88.

Both standard external files and SAS libraries can be stored and managed as
generation data groups. The following sections describe the various methods of
assigning new and existing generations.

Assigning a New Generation of a Generation Data
Group

To assign a new generation of a generation data group, use one of the following
methods:

n In a JCL DD statement, you can specify either the relative form of the data set
name or the absolute form.

Relative form:
//DD1 DD DSN=PROD.GDG(+1),DISP=(NEW,CATLG)

Absolute form:
//DD1 DD DSN=PROD.GDG.G0008V00,DISP=(NEW,CATLG)

n In a SAS FILENAME statement or FILENAME function (for external files) or in a
TSO ALLOCATE command, you must specify the absolute form of the data set
name.

FILENAME statement:
filename dd1 'prod.gdg.g0008v00' disp=(new,catlg);

TSO ALLOCATE command:
alloc fi(dd1) da('prod.gdg.g0008v00') new

Assigning an Existing Generation of a Generation
Data Group

To access an existing generation of a generation data group, you can use either the
relative form of the data set name or the absolute form in a FILENAME statement
FILENAME function, JCL DD statement, or TSO ALLOCATE command.

n Relative form:

FILENAME statement:
filename gdgds 'my.gdg.data(-1)';

JCL DD statement:
//DD1 DD DSN=PROD.GDG(-1),DISP=SHR

TSO ALLOCATE command:
alloc fi(dd1) da('prod.gdg(-1)') shr

Assigning Generation Data Sets 103

n Absolute form:

FILENAME statement:
filename gdgds 'my.gdg.data.g0008v01';

JCL DD statement:
//DD1 DD DSN=PROD.GDG.G0008V01,DISP=SHR

TSO ALLOCATE command:
alloc fi(dd1) da('prod.gdg.g0008v01') shr

Assigning Other Types of External Files

Assigning UNIX System Services Files
For more information, see “Accessing UNIX System Services Files” on page 129.

Assigning PDSEs
To assign a partitioned data set extended (PDSE), specify the appropriate options
in the FILENAME statement or FILENAME function, as shown in the example in
Table 6.1 on page 97.

For definitions of SMS options, see “Options That Specify SMS Keywords” on page
632.

You can use a PDSE wherever you can use a PDS, and you can write to multiple
members in a PDSE at the same time.

Concatenating External Files
Multiple sequential data sets can be concatenated with JCL DD statements, a TSO
ALLOCATE command, a FILENAME statement, or a FILENAME function. (When
accessing concatenated files, performance is better when either of the first two
methods is used.) See the examples in

n “Using the FILENAME Statement or Function to Assign External Files” on page
96

n “Using the JCL DD Statement to Assign External Files” on page 100

104 Chapter 6 / Assigning External Files

n “Using the TSO Assign Command to Assign External Files” on page 100

n “Reading Concatenated Data Sets” on page 124

Displaying Information about External
Files

You can issue the FILENAME command from the command line to display the
FILENAME window. This window lists all current SAS filerefs plus the name of the
physical file to which each fileref has been assigned. Files that were assigned
externally (with a JCL DD statement or with the TSO ALLOCATE command) are
listed only after you have used them as filerefs in your SAS session.

Under z/OS, three additional windows--FNAME, DSINFO, and MEMLIST--also
provide information about external files. For information about these windows, see
“Host-Specific Windows in the z/OS Environment” on page 261.

Deassigning External Files
The method that you use to deassign a file depends on which method you used to
assign it:

n If you used the FILENAME statement or FILENAME function to assign the file,
specify the CLEAR argument to deassign it:

filename books clear;

Note: The CLEAR argument is optional. Specifying FILENAME fileref; has the
same effect.

n If you used the JCL DD statement to assign the file, then the file is
automatically deassigned when the job step ends. (There is no way to deassign
the file before the job step ends.)

n If you used the TSO ALLOCATE command to assign the file, then use the TSO
FREE command:

free fi(books)

Deassigning External Files 105

106 Chapter 6 / Assigning External Files

7
Accessing External Files

Referring to External Files . 108

How SAS Determines the File System . 109

Writing to External Files . 110
Overview of Writing to External Files . 110
FILE Statement . 110
Writing to Sequential Data Sets . 113
Writing to Members of PDS or PDSE Data Sets . 113
Writing to a Printer . 114
Writing to the Internal Reader . 114
Writing to a Temporary Data Set . 114
Using the FILE Statement to Specify Data Set Attributes . 115
Using the Data Set Attributes of an Input File . 115
Using the FILE Statement to Specify Data Set Disposition . 116
Writing to Print Data Sets . 117

Reading from External Files . 119
Overview of Reading from External Files . 119
INFILE Statement . 119
Reading from a Sequential File . 121
Reading from a Member of a PDS or PDSE . 122
Using SAS to Read a PDS or PDSE Directory Sequentially . 122
Reading from the Terminal . 123
Reading Concatenated Data Sets . 124
Reading from Multiple External Files . 125
Reading from Print Data Sets . 126
Getting Information about an Input Data Set . 126

Accessing Other File Types . 127
Accessing BSAM Files in Random Access Mode . 127
Accessing IMS and CA-IDMS Databases . 128
Accessing VSAM Data Sets . 128
Accessing the Volume Table of Contents (VTOC) . 128

Accessing UNIX System Services Files . 129
Overview of UNIX System Services . 129
Allocating UNIX System Services Files . 129
Allocating a UNIX System Services Directory . 130
Specifying File-Access Permissions and Attributes . 130
Using UNIX System Services Filenames in SAS Statements and Commands 132
Accessing a Particular File in a UNIX System Services Directory 135

107

Piping Data between SAS and UNIX System Services Commands 136

Writing Your Own I/O Access Methods . 138

Accessing SAS Statements from a Program . 138

Using the INFILE/FILE User Exit Facility . 139

Referring to External Files
After allocating an external file, you can use the fileref or ddname of the file as a
convenient way of referring to that file in any subsequent SAS language statement
or command.

Note: The first time the ddname of an external file is used in a SAS statement or
procedure, SAS assigns it as a fileref for the external file. Therefore, any
information provided here about filerefs also applies to the ddnames of external
files. For more information, see “Summary Table of SAS Software Files” on page 36
and “Reserved z/OS Ddnames” on page 40 for a list of files and ddnames that have
special meanings to SAS the operating environment.

In the following example, the FILENAME statement associates the fileref REPORT
with the sequential data set MYID.NEWDATA. The FILE statement later uses the
fileref rather than the data set name to refer to the data set.

filename report 'myid.newdata' disp=old;
data _null_;
 file report;
 put ...;
run;

Here is a similar example in which a JCL DD statement associates the ddname IN
with a member of a partitioned data set. The INFILE statement later uses the
ddname rather than the data set name and member name to refer to the PDS
member.

//IN DD DSN=MYID.NEWDATA(TRIAL1),DISP=SHR
//SYSIN DD *
data out;
 infile in;
 input ...;
run;

When referring to a member of a PDS or a PDSE, you also have the option of
specifying only the data set name in the FILENAME statement, in the FILENAME
function, or in the DD statement. Then, in subsequent references, you specify the
member name with the fileref. For example:

//IN DD DSN=MYID.NEWDATA,DISP=SHR
//SYSIN DD *
data out;
 infile in(trial1);

108 Chapter 7 / Accessing External Files

 input ...;
run;

If an external data set is not cataloged, you must also provide the volume serial
number. If SAS requires that a file must be identified only by its physical name, that
name must represent a cataloged data set or HFS file. Temporary data sets are not
cataloged, and SAS cannot locate temporary data sets if you provide only a
physical name. For information about other options that you can specify, see
“FILENAME Statement: z/OS” on page 616.

Note: If you are using files in the USS file system, SAS makes no distinction
between the z/OS file system (zFS) and the Hierarchical File System (HFS).

For information about encodings for z/OS resources such as data set names and
UFS file paths, see Appendix 3, “Encoding for z/OS Resource Names,” on page 939.

How SAS Determines the File System
A fileref can refer to a native z/OS data set or to a file that is stored in a UFS file
system. SAS uses several methods to determine the file system of a particular file.

If a physical name does not contain a slash (/) or a tilde (~) character to identify it
as an HFS filename, then SAS uses the following algorithm to determine the device
type:

1 Use the access method from the allocation statement, if provided, as in the
following example:

FILE 'example' HFS;

or

FILENAME XXX HFS 'example';

If the access method is not specified or is MVS, use the MVS access method.

2 Use the access method specified by the MVS: or HFS: prefix in the physical
filename, if one is provided, such as in this example.

FILENAME XXX 'HFS:first';
FILENAME XXX 'MVS:first';

3 Use the HFS access method if a slash character (/) or tilde character (~)
appears in the physical filename, as in the following example:

FILENAME XXX '~/first';

4 Use the access method specified by the FILESYSTEM= system option. See
“FILESYSTEM= System Option: z/OS” on page 761.

How SAS Determines the File System 109

Writing to External Files

Overview of Writing to External Files
After allocating an external file, you can use the FILE statement, FILE command, or
FOPEN function to write to the file. This section describes the FILE statement.

Note: You can also use FOPEN, FWRITE, FPUT, FNOTE, FPOINT, and FCLOSE to
access external files. For more information, see SAS Functions and CALL Routines:
Reference.

FILE Statement

About the FILE Statement

The FILE statement specifies the current output file for PUT statements in the
DATA step. For a complete description of the PUT statement, see SAS DATA Step
Statements: Reference.

When multiple FILE statements are present, the PUT statement builds and writes
output lines to the file that was specified in the most recent FILE statement. If no
FILE statement was specified, the PUT statement writes to the SAS log.

The specified output file must be an external file, not a SAS library, and it must be a
valid access type.

The FILE statement is executable. Therefore, you can use it in conditional
processing (in an IF/THEN statement, for example).

As with INFILE, it is possible to alternatively access multiple external files. See the
example in “Reading from Multiple External Files” on page 125. You cannot write to
multiple members of a single PDS at the same time. However, you can write to
multiple members of a PDSE at one time.

Under z/OS, SAS uses the IBM ENQUEUE/DEQUEUE facility to prevent multiple
users from writing to the same physical file simultaneously. This facility also
prevents SAS software and ISPF from overwriting each other.

110 Chapter 7 / Accessing External Files

FILE Statement Syntax

This section provides a brief overview of FILE statement syntax. For complete
information about the FILE statement, see “FILE Statement: z/OS” on page 604.

The syntax of the FILE statement is

FILE file-specification <type> <options > <host-options>;

file-specification
identifies the file. It can be in the following forms:

Table 7.1 File Specification Examples for the FILE Statement

Form Example

fileref report

fileref(member) report(feb)

'physical-filename' 'library.daily.report'

'physical-
filename(member)'

'library.daily.output(report1)'

reserved filerefs LOG or PRINT

HFS file '/u/userid/file'

'HFS:myfile'

See Chapter 5, “Specifying Physical Files,” on page 89 for details about different
ways of specifying physical-filename.

type
specifies the type of file. Nonstandard (host-specific) file types that you can
specify for z/OS are

DLI
for IMS databases. For more information, see “Accessing IMS and CA-IDMS
Databases” on page 128.

HFS and PIPE
for files in UNIX System Services. For more information, see “Accessing UNIX
System Services Files” on page 129.

MVS
for z/OS data sets.

VSAM
for VSAM files. For more information, see “Accessing VSAM Data Sets” on
page 128.

Writing to External Files 111

options
describe the output file's characteristics and specify how it is to be written with
a PUT statement. Many of these options are not host-dependent and are
documented in SAS System Options: Reference. For information about options
that are specific to z/OS, see “FILE Statement: z/OS” on page 604. You can use
these options to do the following:

n define variables that contain information about the external file

n specify special open and close processing

n specify file characteristics

FILE Statement Examples

The following table contains examples of the FILE statement for different types of
data sets.

Table 7.2 Examples of the FILE Statement

Type of Data Set Example

sequential file 'my.new.dataset';

member of a PDS or PDSE file out(newdata);

or

file 'my.new.dataset(newdata)';

sequential or member of a PDS or
PDSE1

file myfilerf;

HFS file '/usr/tmp/newdata';

HFS file 'newmem.dat' hfs;

HFS file 'HFS:raw';

MVS file 'newmem.dat' mvs;

MVS file 'MVS:raw';

VSAM file payroll vsam;

IMS file psb dli;

SAS log file log;

1 The type depends on what the fileref is associated with.

112 Chapter 7 / Accessing External Files

Writing to Sequential Data Sets
The disposition of a sequential data set can be OLD, MOD, or SHR. Using OLD
eliminates the possibility of another job writing to the data set at the same time as
your job is writing to it.

If you specify OLD or SHR, SAS begins writing at the beginning of the data set,
replacing existing information. To append new information to the existing
information, specify the MOD option in the FILE statement.

The following example assigns the fileref RAW to the data set MYID.RAW.DATAX
and uses the fileref in a simple DATA step:

filename raw 'myid.raw.datax' disp=old;
data _null_;
 file raw;
 msgline='write this line';
 put msgline;
run;

Writing to Members of PDS or PDSE Data Sets
To write to a member of a PDS, include the following information:

n the member name along with the data set name in the FILE statement

n the FILENAME statement

n the FILENAME function

n the TSO ALLOCATE command or the JCL DD statement.

Omitting the member name causes an error message because SAS tries to treat the
PDS as a sequential data set.

The disposition of the PDS member can be OLD or SHR; you cannot use a
disposition of MOD for a member of a PDS. In both cases, SAS begins writing at the
beginning of the member, replacing existing information. Using OLD eliminates the
possibility of another job writing into the member at the same time as your job is
writing into it.

You can write to only one member of a particular PDS in a single DATA step.
However, you can write to members of separate PDSs. To write to more than one
member of a given PDS, you must use a separate DATA step for each member. In a
single DATA step, you can write to multiple members of a PDSE.

The following example assigns the fileref RAW to the PDS member MEM1 and then
uses the fileref in a simple DATA step:

/* PDS Example */
filename raw 'myid.raw.data(mem1)' disp=old;
data _null_;

Writing to External Files 113

 file raw;
 put 'write this line';
run;

This next example assigns the fileref MYPDSE to the PDSE and then uses the
fileref in a simple DATA step:

/* PDSE Example */
filename mypdse 'sales.div1.reg3' disp=shr;
data a;
 x=1;
 file mypdse(june97);
 put x;
 file mypdse(jul97);
 put x;
run;

Writing to a Printer
This example uses the FILENAME and FILE statements to route output to a printer:

filename prnt printer sysout=a;
data _null_;
 file prnt;
 put 'text to write';
run;

Writing to the Internal Reader
This example uses the FILENAME and FILE statements to write to an internal
reader:

filename injcl '.misc.jcl' disp=shr;
filename outrdr sysout=a pgm=intrdr
 recfm=fb lrecl=80;
data _null_;
 infile injcl(myjcl);
 file outrdr noprint notitles;
 input;
 put _infile_;
run;

Writing to a Temporary Data Set
The following examples use the FILENAME and FILE statements to write to a
temporary data set.

114 Chapter 7 / Accessing External Files

n This example shows how to use default attributes to define a temporary file:

filename tempfile '&mytemp' ;
data out;
 file tempfile;
 put ...;
run;

n The next example defines a temporary file and specifies some of its attributes:

filename nextone '&mytemp' disp=new
 lrecl=80 blksize=320 space=(trk,(3));
data out;
 file nextone;
 put ...;
run;

For information about specifying a temporary data set, see “FILETEMPDIR
System Option: z/OS” on page 762.

Using the FILE Statement to Specify Data Set
Attributes

You can specify data set attributes in the FILE statement as well as in the
FILENAME statement or FILENAME function. SAS supplies default values for any
attributes that you do not specify. For information about default values, see
“Overview of DCB Attributes” on page 630 and “DCB Option Descriptions” on page
628.

This example specifies values for LRECL= and RECFM= in the FILE statement and
allows SAS to use the default value for BLKSIZE=:

filename x 'userid.newdata' disp=new
 space=(trk,(5,1)) volume=xyz111;
data out;
 file x lrecl=80 recfm=fb;
 put ... ;
run;

Using the Data Set Attributes of an Input File
In this example, data is read from the input file. Then the data is written to an
output file, using the same file characteristics. The DCB option in the FILE
statement tells SAS to use the same data set attributes for the output file as were
used for the input file.

filename in 'userid.input';
filename out 'userid.output';
data;
 infile in;

Writing to External Files 115

 input;
 file out dcb=in;
 put _infile_;
run;

Using the FILE Statement to Specify Data Set
Disposition

Appending Data with the MOD Option

In this example, the MOD option is used to append data to the end of an external
file:

filename out 'user.output';
data _null_;
 /* New data is written to 'user.output' */
 file out;
 put ... ;
run;

data _null_;
 /* data is appended to 'user.output' */
 file out mod;
 put ... ;
run;

Appending Data with the MOD Disposition

This example is similar to the previous one except that instead of using the MOD
option, the DISP= option is used. The OLD option is then used to overwrite the
data.

filename out 'user.output' disp=mod;
data _null_;
 /* data is appended to 'user.output' */
 file out;
 put ... ;
run;

data _null_;
 /* data is written at the beginning of */
 /* 'user.output' */
 file out old;
 put ... ;
run;

116 Chapter 7 / Accessing External Files

data _null_;
 /* data is written at the beginning of */
 /* 'user.output' */
 file out;
 put ... ;
run;

data _null_;
 /* data is appended to 'user.output' */
 file out mod;
 put ... ;
run;

Writing to Print Data Sets

Overview of Print Data Sets

A print data set contains carriage-control information (also called ASA control
characters) in column 1 of each line. These characters (blank, 0, −, +, and 1) control
the operation of a printer, causing it to skip lines, to begin a new page, and so on.
They do not normally appear on a printout. A nonprint data set does not contain
any carriage-control characters.

When you write to a print data set, SAS shifts all column specifications in the PUT
statement one column to the right to accommodate the carriage-control characters
in column 1. Therefore, if you expect to print an external file, you should designate
the file as a print data set either when you allocate it or when you write to it.

Designating a Print Data Set

The preferred method for designating a data set as a print data set is to specify the
RECFM= option when you allocate the data set with one of the following methods:

n the FILENAME statement

n the FILENAME function

n the JCL DD statement

n the TSO ALLOCATE command.

Adding the letter A to the end of the value for the RECFM= option (RECFM=FBA or
RECFM=VBA, for example) causes SAS to include carriage-control characters in
the data set that is being created. For information about the RECFM= option, see
“FILENAME Statement: z/OS” on page 616.

Writing to External Files 117

Designating a Nonprint Data Set as a Print Data Set

When you write to a data set that was not designated as a print data set when it
was allocated, you can designate it as a print data set in several ways. The method
that you use to designate it as a print data set depends on what you plan to do with
the data set. Here are some examples:

n Use the PRINT option in the FILE statement:

file saveit print;

SAVEIT is the fileref of the data set. The PRINT type in the FILE statement
includes a page number, date, and title; this method is the simplest way to
create a print data set.

n Use PRINT as the fileref in the FILE statement (different from the previously
discussed PRINT option):

file print;

The PRINT fileref in the FILE statement causes SAS to write the information
either to the standard SAS procedure output file (PRINT=SASLIST), or to
another output file if you have used a PROC PRINTTO statement to redirect
your output. For information about PROC PRINTTO, see “PRINTTO Procedure
Statement: z/OS” on page 566 and “Using the PRINTTO Procedure and the
FORM Subsystem” on page 152. In either case, this file contains carriage-control
characters by default. You can suppress the carriage-control characters by
specifying the NOPRINT option in the FILE statement. For more information,
see “Writing to External Files” on page 110.

n Use the letter A as part of the value in the RECFM= option in the FILE
statement:

file saveit recfm=vba;

As in the FILENAME statement or FILENAME function, the letter A in the
RECFM= option of the SAS FILE statement causes SAS to include carriage-
control characters in the data set that is being created. SAS also changes the
record format of the target data set.

For information about how to process print files as input, see “Reading from Print
Data Sets” on page 126.

Designating a Print Data Set as a Nonprint Data Set

The NOPRINT option is useful when you use a DATA step to copy a data set that
already contains carriage-control information. In this case, use NOPRINT to prevent
SAS from adding an additional column of carriage-control information.

If a data set has been allocated as a print data set, you can use the NOPRINT
option in the FILE statement to omit carriage-control information. For example,
suppose you specified RECFM=VBA, indicating a print data set, when you allocated

118 Chapter 7 / Accessing External Files

a file and that you assigned the fileref OUTDD. The following SAS statement
designates OUTDD as a nonprint data set:

file outdd noprint;

To write lines without carriage-control information to the SAS procedure output
file, specify:

file print noprint;

Reading from External Files

Overview of Reading from External Files
After you allocate an external file, you can read from the file in a SAS DATA step by
specifying it in the INFILE statement, the INCLUDE command, or the %INCLUDE
statement.

This section describes the INFILE statement. For information about the INCLUDE
command and the %INCLUDE statement, see SAS DATA Step Statements:
Reference. For information about the DATA step, see Base SAS Utilities: Reference.

INFILE Statement

Overview of the INFILE Statement

In a SAS DATA step, the INFILE statement specifies which external file is to be read
by a subsequent INPUT statement. Every external file that you want to read must
have a corresponding INFILE statement. The external file can be a sequential data
set on disk or tape, a member of a partitioned data set (PDS or PDSE), or any of
several nonstandard file types. For more information, see the description of the
type argument in “INFILE Statement Syntax” on page 120. The file can also be
entered from a terminal.

The INFILE statement is executable. Therefore, it can be used in conditional
processing - in an IF/THEN statement, for example.

When multiple INFILE statements are present, the INPUT statement reads from the
external file that was specified by the most recent INFILE statement. For a
complete description of the INPUT statement, see SAS DATA Step Statements:
Reference.

Reading from External Files 119

INFILE Statement Syntax

This section provides a brief overview of INFILE statement syntax. For complete
information about the INFILE statement, see “INFILE Statement: z/OS” on page
647.

The syntax of the INFILE statement is

INFILE file-specification <type> <options>;

file-specification
identifies the file. It can be in the following forms:

Table 7.3 File Specification Examples for the INFILE Statement

Form Example

fileref report

fileref(member) report(feb)

'physical-filename' 'library.daily.report'

'physical-
filename(member)'

'library.daily.source(report1)'

reserved fileref DATALINES

See “INFILE Statement: z/OS” on page 647 for information about partial
physical filenames and wildcard member names.

type
specifies the type of file. When you omit type, the default is a standard external
file. Nonstandard (host-specific) file types that you can specify for z/OS are

DLI
for IMS databases. For information about IMS options for the INFILE
statement, see SAS/ACCESS Interface to IMS: Reference.

HFS and PIPE
for files in UNIX System Services. For more information, see “Accessing UNIX
System Services Files” on page 129. PIPE enables you to issue UNIX System
Services commands from within the INFILE statement.

IDMS
specifies that the file is a CA-IDMS file. For information about CA-IDMS
options for the INFILE statement,
seeSAS/ACCESS DATA Step Interface to CA-IDMS: Reference .

ISAM
specifies that the file is an ISAM file. For more information, see “Accessing
Other File Types” on page 127.

120 Chapter 7 / Accessing External Files

VSAM
for VSAM files. Fore more information, see “Accessing VSAM Data Sets” on
page 128.

VTOC
specifies that the Volume Table of Contents (VTOC) is to be accessed.

options
describe the input file's characteristics and specify how it is to be read with an
INPUT statement. Many of these options are not host-dependent and are
documented in SAS System Options: Reference. Those options that are host-
specific are documented in “INFILE Statement: z/OS” on page 647. You can use
these options to do the following:

n define variables that contain information about the external file

n specify special open and close processing

n specify file characteristics

INFILE Statement Examples

Table 7.4 Examples of the INFILE Statement

Type of Data Set Example

sequential infile 'library.daily.data';

member of a PDS or
PDSE

infile report(feb);

or

infile 'lib.daily.src(rpt1)';

sequential or member
of a PDS or PDSE1

infile data;

IMS infile psb dli;

in-stream infile datalines;

1 The type depends on what the fileref is associated with.

Reading from a Sequential File
This example assigns the fileref RAW to the data set MYID.RAW.DATAX and uses
the fileref in a simple DATA step:

filename raw 'myid.raw.datax' disp=shr;

Reading from External Files 121

data out;
 infile raw;
 input ... ;
run;

This example is similar to the previous one. However, it specifies a value for the
SYSPREF= system option and then uses a partially qualified data set name in the
FILENAME statement:

options syspref=sys2.sas7;
filename raw2 '.raw.datax' disp=shr;
data out;
 infile raw2;
 input ... ;
run;

For information about using SYSPREF= and partially qualified data set names, see
Chapter 10, “SAS Processing Restrictions for Servers in a Locked-Down State,” on
page 219.

Reading from a Member of a PDS or PDSE
This example specifies the PDS name in the FILENAME statement and then
specifies the member name in parentheses following the fileref in the INFILE
statement:

filename mypds 'user.my.pds';
data out;
 infile mypds(mydata);
 input ... ;
run;

This example specifies both the PDS name and the member name in the FILENAME
statement. Therefore, only the fileref is specified in the INFILE statement:

filename mymember 'user.my.pds(mydata)';
data out;
 infile mymember;
 input ... ;
run;

Multiple members of a PDS can be open for Read access at the same time.

Using SAS to Read a PDS or PDSE Directory
Sequentially

If you request an OPEN operation in preparation to read from a PDS or PDSE and
do not specify a member name or override values for RECFM, LRECL, or BLKSIZE,
then SAS concludes that you want to read the directory and supplies the required
DCB attributes. The following example demonstrates the use of a FILENAME and

122 Chapter 7 / Accessing External Files

INFILE pair that specifies a PDS or PDSE name with no member names and no
overrides.

filename mypds 'user.my.pds';
data out;
 infile mypds;
 input ... ;
run;

The RECFM, LRECL, and BLKSIZE attributes associated with a PDS or PDSE pertain
only to its members. They do not pertain to the directory because it has its own
attributes.

z/OS looks for certain conditions to exist during OPEN processing in order to
determine that the request is to read a directory, not a member. The following list
contains some of these conditions:

n The specified data set name does not include a member name.

n The following attribute values are specified for the PDS or PDSE:

o RECFM=F or RECFM=U

o BLKSIZE=256

o LRECL=256

Note:

n All PDS and PDSE directories consist of 256-byte blocks.

n LRECL is required if you are using QSAM. Otherwise, LRECL is optional.

In the preceding code example, SAS provides the directory-specific values for
RECFM, BLKSIZE, and LRECL because it encountered an INFILE statement that
refers to an entire PDS or PDSE instead of a member or members. Also, no
overrides were specified for RECFM, BLKSIZE, or LRECL.

Note: If you supply overrides for any of these attributes, then you must supply
overrides for all of these attributes.

Reading from the Terminal
If you run SAS in interactive line mode or in noninteractive mode, you can read
input from the terminal. These examples illustrate ways to define a terminal file.

In the first example, TERMINAL is specified as the device type in the FILENAME
statement:

filename term1 terminal;
data one;
 infile term1;
 input ... ;

Reading from External Files 123

run;

In the next example, an asterisk is used in place of a physical filename to indicate
that the file is entered from the terminal:

filename term2 '*';
data out;
 infile term2;
 input ... ;
run;

Note: Enter "/*" to signify end-of-file after entering your input from the terminal.

Reading Concatenated Data Sets
Multiple sequential data sets can be concatenated (with a JCL DD statement, a
TSO ALLOCATE command, or a FILENAME statement) and read consecutively
using one pair of INFILE or INPUT statements.

Sequential data sets and individual PDS or PDSE members can also be
concatenated, as in the following example:

x alloc fi(in1)
 da('my.data1' 'my.pds(mem)' 'my.data2');
data mydata;
 infile in1;
 input ... ;
 /* SAS statements */
run;

Here is an example of using the FILENAME statement to concatenate data sets:

filename in1 ('my.data1' 'my.pds(mem)' 'my.data2');

You can also concatenate external files that are stored on different types of devices
and that have different characteristics.

If PDSs or PDSEs are concatenated and a member is specified in the INFILE
statement, then SAS searches each PDS or PDSE for that member. SAS searches in
the order in which the PDSs appear in the DD statement, the ALLOCATE command,
or the FILENAME statement or function. If the member is present in more than one
of the PDSs, SAS retrieves the first one that it finds.

124 Chapter 7 / Accessing External Files

Reading from Multiple External Files

Overview of Reading from Multiple External Files

You can read from multiple external files either sequentially or in random order
from multiple filerefs.

Reading from Multiple External Files in Sequential
Order

To read from multiple external files sequentially, use the END= option or the EOF=
option in each INFILE statement to direct program control to a new file after each
file has been read. For example:

filename outrdr sysout=a pgm=intrdr
 recfm=fb lrecl=80;
data _null_;
 length dsn $ 44;
 input dsn $;
 infile dummy filevar=dsn end=end;
 file outrdr noprint notitles;
 do until(end);
 input;
 put _infile_;
 end;
datalines;
PROD.PAYROLL.JCL(BACKUP)
PROD.PAYROLL.JCL(TRANS)
PROD.PAYROLL.JCL(PRINT)
;
run;

For more information about the END= and EOF= options of the INFILE statement,
see SAS DATA Step Statements: Reference.

Reading from Multiple External Files in Random
Order

To read multiple external files in random order, ensure that the files have different
filerefs. You can partially process one file, go to a different file, and return to the
original file. An INFILE statement must be executed each time you want to read a
file, even if you are returning to a file that was previously read. The DATA step

Reading from External Files 125

terminates when SAS encounters the EOF of any of the files. Consider the following
example:

filename exfile1 'my.file.ex1';
filename exfile2 'my.file.ex2';
data mydata;
 infile exfile1;
 input ... ;
 /* SAS statements */

 infile exfile2;
 input ... ;

 /* SAS statements */

 infile exfile1;
 input ... ;

 /* SAS statements */

run;

When a fileref has more than one INFILE statement, and options are specified in
each INFILE statement, the options apply cumulatively to successive files.

Note: Multiple files inside concatenations cannot be accessed in this manner.

Reading from Print Data Sets
When reading from a print data set, you can tell SAS to ignore the carriage-control
character that is in column 1 of print data sets by specifying SAS system option
FILECC. For more information, see “FILECC System Option: z/OS” on page 743.

Getting Information about an Input Data Set
In the following example, data set information is printed in the SAS log. Control
blocks are printed in hexadecimal format. The example can be used with either a
sequential data set or a PDS.

filename in 'user.data';
data out;
 infile in jfcb=jf dscb=ds volumes=vol
 ucbname=ucb devtype=dev;
 if (_n_ = 1) then
 put @1 'Data Set Name:' @17 jf $52. /
 @4 'Volume =' @20 vol $30. /
 @4 'JFCB =' @20 jf $hex200. /
 @4 'DSCB =' @20 ds $hex188. /

126 Chapter 7 / Accessing External Files

 @4 'Devtype =' @20 dev $hex48. /
 @4 'Device Addr =' @20 ucb $3. ;
run;

Accessing Other File Types

Accessing BSAM Files in Random Access Mode
Users of SAS 9.2 with IBM z/OS V1R7.0 or later can use random access (byte-
addressable) techniques to read and create BSAM files. For example, fonts files,
which previously conformed to certain restrictive rules (LRECL=1, RECFM=F, FS, or
FBS) can now be read regardless of their format, including existing as members of a
PDS or PDSE. Also, graph procedures can now be used to write image files as
BSAM data sets.

Random access (byte addressability) to BSAM files is achieved by copying or
creating files in 64-bit storage. The size of this storage is determined by the value
of MEMLIMIT, which is determined by the systems programmer at your site. The
value set for MEMLIMIT can be overridden in the JCL or by SMF parameters,
commands, or exits.

For input files, SAS BSAM allocates 64-bit storage by determining the size of the
existing file. For output files, SAS BSAM allocates 64-bit storage by using
information for the space allocation request. If no space allocation request is made,
then default values from SAS system options FILESPPRI, FILESPSEC and FILEUNIT
are used. It is possible that SAS might not be able to use 64-bit storage for a file
because of one of the following reasons:

n MEMLIMIT is not set, or it is too small for the file.

n Insufficient 64-bit storage is available due to other uses of this storage.

In cases like these, SAS attempts to open and process the file on disk, if it is an
input file and conforms to the file characteristics described. Otherwise, the attempt
to open the file for random processing fails. In addition to existing ERROR
messages, the following explanatory note is issued:

Note: Random access to sequential file dataset-name: storage array
could not be allocated, and mode or file characteristics do not permit
opening file as binary.

To avoid possible confusion caused by trailing blank spaces or nulls in the last
record, for BSAM random access files that are created with an RECFM, other than
V, VS, VB, or VBS, their RECFM is changed to VB. A message is then issued to the
SAS log.

Output data is written from above-the-bar storage to disk when the file is closed. If
there is more data in the storage array than has been allowed for in the disk space

Accessing Other File Types 127

allocation for the file, then an undetermined I/O error occurs. The following
message is then issued:

Note: Random access file <name>: output file might be incomplete.

Normal file definitions do not apply to a BSAM file resident in an above-the-bar
storage array. Certain characteristics are assigned while the file resides in that
location (LRECL=1, RECFM=fbs, BLKSIZE=total filesize) to enable seamless
processing. If you display the file's definition during this period, it returns those
characteristics.

Accessing IMS and CA-IDMS Databases
Both the SAS/ACCESS interface to IMS and the SAS/ACCESS interface to CA-
IDMS include a DATA step interface. Extensions for certain SAS statements (such
as INFILE, FILE, PUT, and INPUT) enable you to format database-specific calls in a
SAS DATA step. Therefore, you can access the IMS or CA-IDMS data directly,
without using SAS/ACCESS view descriptors. If your site licenses these interfaces,
see SAS/ACCESS Interface to IMS: Reference and SAS/ACCESS DATA Step Interface
to CA-IDMS: Reference for more information.

Note: The DATA step interface for IMS-DL/I is a read and write interface. The
DATA step interface for CA-IDMS is read only.

Accessing VSAM Data Sets
For information about accessing VSAM data sets, see SAS VSAM Processing for
z/OS.

Accessing the Volume Table of Contents (VTOC)
To access a disk's Volume Table of Contents (VTOC), specify the VTOC option in an
INFILE statement. For more information about VTOC options for the INFILE
statement, see “VTOC Options for the INFILE Statement under z/OS” on page 652.

Note: When a SAS server is in the locked-down state, the VTOC access method is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

128 Chapter 7 / Accessing External Files

http://documentation.sas.com/?docsetId=vsamref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=vsamref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Accessing UNIX System Services Files

Overview of UNIX System Services
IBMs UNIX System Services (USS) implements a directory-based file system that is
very similar to the file systems that are used in UNIX. SAS software under z/OS
enables you to read and write UNIX System Services files and to pipe data between
SAS and UNIX System Services commands. For information about USS terminology,
see “HFS, UFS, and zFS Terminology” on page 8.

Allocating UNIX System Services Files
You can allocate a UNIX System Services file either externally (using a JCL DD
statement or the TSO ALLOCATE command) or internally (using the SAS
FILENAME statement or FILENAME function). For information about allocating
USS files externally, see your IBM documentation.

There are four ways to specify that a file is in USS when you use the FILENAME
statement or FILENAME function:

n Include a slash or tilde in the pathname:

filename input1 '/u/sasusr/data/testset.dat';
filename input2 '~/data/testset2.dat';

n Specify HFS (for hierarchical file system) as the file type:

filename input hfs 'testset.dat';

n Specify HFS as the file prefix:

filename input 'HFS:testset.dat';

n Rely on the setting of the FILESYSTEM= system option:

options filesystem=HFS;
filename 'testset.dat';

You can also use these specifications in combination. For example, you can specify
the USS file type and use a slash in the pathname.

If you do not specify the entire pathname of a USS file, then the directory
component of the pathname is the working directory that was current when the file
was allocated, not when the fileref is used. For example, if your working directory
was

/usr/local/sasusr

Accessing UNIX System Services Files 129

when you allocated the file, then the following FILENAME statement associates
the INPUT fileref with the following path:

/usr/local/sasusr/testset.dat

filename input hfs 'testset.dat';

If you change your current working directory to

/usr/local/sasusr/testdata

the FILENAME statement still refers to

/usr/local/sasusr/testset.dat

not to

/usr/local/sasusr/testdata/testset.dat:
infile input;

Allocating a UNIX System Services Directory
To allocate a USS directory, create the directory if necessary, and then allocate the
directory using any standard method, such as a JCL DD statement, a TSO
ALLOCATE command, or a FILENAME statement (as shown in “Allocating UNIX
System Services Files” on page 129).

To open a particular file in a directory for input or output, you must specify the
filename in the SAS INFILE or FILE statement, as described in “Accessing a
Particular File in a UNIX System Services Directory” on page 135.

Specifying File-Access Permissions and Attributes

Overview of Specifying File-Access Permissions
and Attributes

How you specify file-access permissions and attributes depends on whether you
use SAS statements or operating system facilities to allocate a UNIX System
Services file.

Using SAS

If you use the FILENAME statement or FILENAME function to allocate a USS file,
or if you use a JCL DD statement or a TSO ALLOCATE command but do not specify
values for PATHMODE and PATHOPTS, then SAS uses the following values for
those options:

130 Chapter 7 / Accessing External Files

n For PATHMODE, SAS uses the file-access mode -rw-rw-rw-. However, this
mode can be modified by the current file-mode creation mask. (For detailed
information about the file-mode creation mask, see your IBM documentation.)

n For PATHOPTS, the file-access mode that SAS supplies depends on how the
fileref or ddname is being used:

o If the fileref or ddname appears only in a FILE statement, SAS opens the file
for writing only. If the file does not exist, SAS creates it.

o If the fileref appears only in an INFILE statement, SAS opens the file for
reading only.

o If the fileref appears in both FILE and INFILE statements within the same
DATA step, SAS opens the file for reading and writing. For the FILE
statement, SAS also creates the file if it does not already exist.

Using Operating System Facilities

When you use a JCL DD statement or a TSO ALLOCATE command to allocate a
USS file, you can use the PATHMODE and PATHOPTS options to specify file-
access permissions and attributes for the file. If you later use the file's ddname in a
SAS session, SAS uses the values of those options when it opens the file.

For example, if you use the following TSO ALLOCATE command to allocate the
ddname INDATA and SAS attempts to open it for output, then SAS issues an
“insufficient authorization” error message and does not permit the file to be opened
for output. (The ORDONLY value of PATHOPTS specifies "open for reading only.")

alloc file(indata)
 path('/u/sasusr/data/testset.dat')
 pathopts(ordonly)

In other words, you could use the ddname INDATA in a SAS INFILE statement, but
not in a FILE statement. Similarly, if you specify OWRONLY, then you can use the
ddname in a FILE statement but not in an INFILE statement.

CAUTION
PATHOPTS values OAPPEND and OTRUNC take precedence over FILE
statement options OLD and MOD. If you specify OAPPEND ("add new data to the
end of the file"), the FILE statement option OLD does not override this behavior.
Similarly, if you specify OTRUNC ("if the file exists, erase it and re-create it"), the FILE
statement options OLD and MOD do not override this behavior. For details about these
FILE statement options, see “Standard Host Options for the FILE Statement under z/OS”
on page 608.

Accessing UNIX System Services Files 131

Using UNIX System Services Filenames in SAS
Statements and Commands

Overview of Using UNIX System Services Filenames
in SAS Statements and Commands

To use an actual USS filename (rather than a fileref or ddname) in a SAS statement
or command, include a slash or tilde in the pathname, or use the HFS prefix with the
filename. You can use a USS filename anywhere that an external filename can be
used, such as in a FILE or INFILE statement, in an INCLUDE or FILE command in the
windowing environment, or in the SAS Explorer window. If the file is in the current
directory, specify the directory component as ./. Here is an example:

include './testprg.sas'

Concatenating UNIX System Services Pathnames

To concatenate USS files or directories, use any of the following methods:

n Associate a fileref with multiple explicit pathnames enclosed in parentheses.

n Specify a combination of explicit pathnames and pathname patterns enclosed in
parentheses.

n Use a single pathname pattern.

TIP

n A pathname pattern is formed by including one or more UNIX wildcards in
a partial pathname.

n Using wildcards in SAS is essentially the same as using them in the UNIX
shell.

n Wildcards that you specify when you pipe data from SAS to USS
commands are not expanded within the SAS session. These wildcards are
passed directly to the USS commands for interpretation by the UNIX
shell.

n Concatenation of directories and files is not allowed and results in an
error on the statement or command. Therefore, a thorough knowledge of
the directory tree is necessary to create patterns that guarantee that the
selected pathnames are limited to only files or only directories.

132 Chapter 7 / Accessing External Files

The parenthesis method is specified in the FILENAME statement. You can use the
wildcard method in the FILENAME, INFILE, and %INCLUDE statements and in the
INCLUDE command. The wildcard method is only for input. You cannot use
wildcards in the FILE statement. The parenthesis method supports input and
output. However, for output, data is written to the first file in the concatenation.
That first file cannot be the result of resolving a wildcard. By requiring the user to
explicitly specify the entire pathname of the first file, the possibility of accidentally
writing to the wrong file is greatly reduced.

The set of supported wildcard characters are the asterisk (*), the question mark(?),
the square brackets ([]), and the backslash (\).

Using the Asterisk Wildcard

The asterisk wildcard provides an automatic match to zero or more contiguous
characters in the corresponding position of the pathname except for a period (.) at
the beginning of the filename of a hidden file.

Note: Unless otherwise noted, all of the wildcard examples assume a directory
structure that is necessary and sufficient for the specified results.

Here are some examples that use the asterisk as a wildcard:

n In the following FILENAME statement with a stand-alone asterisk:

filename test '/u/userid/data/*';

If the data directory contains:

only files
the FILENAME statement concatenates all of the files, except hidden UNIX
files.

only subdirectories
the FILENAME statement concatenates all of the directories.

a mix of files and subdirectories
the FILENAME statement generates an error.

n In the following INCLUDE command, the leading asterisk includes all of the files
(in the specified directory) that end with test.dat.

 include '/u/userid/data/*test.dat'

n In the following INCLUDE command, the trailing asterisk includes all of the files
(in the specified directory) that begin with test.

 include '/u/userid/data/test*'

n In the following %INCLUDE statement, the period with a trailing asterisk selects
all of the hidden UNIX files in the specified directory.

%include '/u/userid/data/.*';

n In the following INFILE statement, the embedded asterisk reads in all of the files
(in the specified directory) that begin with test and end with file.

infile '/u/userid/data/test*file';

Accessing UNIX System Services Files 133

Using the Question Mark Wildcard

The question mark wildcard provides an automatic match for any character found in
the same relative position in the pathname. Use one or more question marks
instead of an asterisk to control the length of the matching strings.

Here are some examples that use the question mark as a wildcard:

n In the following FILENAME statement, the stand-alone question mark
concatenates all of the files (in the specified directory) that have a one-
character filename.

filename test '/u/userid/data/?';

n In the following INCLUDE command, the leading question mark includes all of
the files (in the specified directory) that have filenames that are nine characters
long and end with test.dat.

 include '/u/userid/data/?test.dat'

n In the following %INCLUDE statement, the trailing question mark includes all of
the files (in the specified directory) that have filenames that are five characters
long and begin with test.

 %include '/u/userid/data/test?';

n In the following INFILE statement, the embedded question mark reads in all of
the files (in the specified directory) with filenames that are ten characters long,
begin with test, and end with file.

 infile '/u/userid/data/test??file';

Using the Square Brackets Wildcard

Square brackets provide a match to all characters that are found in the list enclosed
by the brackets that appear in the corresponding relative character position in the
pathname. The list can be specified as a string of characters or as a range. A range
is defined by a starting character and an ending character separated by a hyphen (-).

The interpretation of what is included between the starting and ending characters
is controlled by the value of the LC_COLLATE variable of the locale that is being
used by UNIX System Services. Attempting to include both uppercase and
lowercase characters, or both alphabetic characters and digits in a range, increases
the risk of unexpected results. The risk can be minimized by creating a list with
multiple ranges and limiting each range to one of the following sets:

n a set of lowercase characters

n a set of uppercase characters

n a set of digits

Here are some examples of using square brackets as wildcard characters:

134 Chapter 7 / Accessing External Files

n In the following FILENAME statement, the bracketed list sets up a fileref that
concatenates any files (in the specified directory) that are named a, b, or c.

filename test '/u/userid/data/[abc]';

n In the following INCLUDE command, the leading bracketed list includes all of
the files (in the specified directory) that have filenames that are nine characters
long, start with m, n, o, p, or z, and end with test.dat.

include '/u/userid/data/[m-pz]test.dat'

n In the following %INCLUDE statement, the trailing bracketed list includes all
files (in the specified directory) with filenames that are five characters long,
begin with test, and end with a decimal digit.

%include '/u/userid/data/test[0-9]';

n In the following INFILE statement, the embedded bracketed list reads in all files
(in the specified directory) with filenames that are ten characters long, begin
with test, followed by an upper or lowercase a, b, or c, and end with file.

infile '/u/userid/data/test[a-cA-C]file';

Using the Backslash as an Escape Character

The backslash is used as an escape character. It indicates that the character that it
precedes should not be used as a wildcard.

All of the pathnames in a concatenation must be for USS files or directories. If your
program reads data from different types of files in the same DATA step, then you
can use the EOF= option in each INFILE statement to direct program control to a
new INFILE statement after each file has been read. For more information about
the EOF= option of the INFILE statement, see SAS DATA Step Statements:
Reference. A wildcard character that generates a list of mixed file types results in
an error.

Accessing a Particular File in a UNIX System
Services Directory

If you have associated a fileref with a USS directory or with a concatenation of USS
directories, then you can open a particular file in the directory for reading or writing
by using an INFILE or FILE statement in the following form:

infile fileref(file);
file fileref(file);

This form is referred to as aggregate syntax. If you do not enclose file in quotation
marks, and the filename does not already contain an extension, then SAS appends a
file extension to the filename. In the windowing environment commands INCLUDE
and FILE, and with the %INCLUDE statement, the file extension is .sas. In the
INFILE and FILE statements, the file extension is .dat.

Accessing UNIX System Services Files 135

If a filename is in quotation marks, or if it has a file extension, SAS uses the
filename as it is specified. If the filename is not in quotation marks, and if it does
not have a file extension, SAS converts the filename to lowercase before it
accesses the file.

If the file is opened for input, then SAS searches all of the directories that are
associated with the fileref in the order in which they appear in the FILENAME
statement or FILENAME function. If the file is opened for output, SAS creates the
file in the first directory that was specified. If the file is opened for updating but
does not exist, SAS creates the file in the first directory.

Piping Data between SAS and UNIX System
Services Commands

Overview of Piping Data between SAS and UNIX
System Services Commands

To pipe data between SAS and USS commands, you first specify the PIPE file type
and the command in a FILENAME statement or FILENAME function. Enclose the
command in single quotation marks. For example, this FILENAME statement
assigns the command ls -lr to the fileref OECMD:

filename oecmd pipe 'ls -lr';

To send the output from the command as input to SAS software, you then specify
the fileref in an INFILE statement. To use output from SAS as input to the
command, you specify the fileref in a FILE statement.

You can use shell command delimiters such as semicolons to associate more than
one command with a single fileref. The syntax within the quoted string is identical
to the one that you use to enter multiple commands on a single line when you use
an interactive UNIX shell. The commands are executed in the order in which they
appear in the FILENAME statement or FILENAME function during a single
invocation of a non-login UNIX shell. Commands have the ability to modify the
environment for subsequent commands only within this quoted string. This tool
enables you to manipulate and customize the environment for each command
group without affecting the settings that you have established in your SAS session.
The following example demonstrates this action:

filename oecmd pipe 'umask; umask 022; umask; umask';
data _null_;
infile oecmd;
input;
put _infile_;
run;

You should avoid using the concatenation form of the FILENAME command or
FILENAME function when you pipe data between SAS and USS. Members of
concatenations are handled by separate invocations of a non-login UNIX shell. Any

136 Chapter 7 / Accessing External Files

changes made to the environment by earlier members of the concatenation do not
persist. Running the following example demonstrates the drawback of this
technique:

filename oecmd pipe ('umask' 'umask 022; umask' 'umask');
data _null_;
infile oecmd;
input;
put _infile_;
run;

Note the difference in the FILENAME statements in the preceding two examples.
The first example places all of the UMASK shell variables in one set of single
quotation marks, and does not use parentheses. The second example includes the
variables in parentheses, and places each of the variables in single quotation marks.

The UMASK shell variable was selected for these examples to help emphasize the
point that the command or command group is now running in a non-login shell. The
use of a non-login shell suppresses the running of the ‘/etc/profile’ (site-wide
profile) and the ‘$HOME/.profile’ (personal profile). Suppressing the running of
these profiles eliminates the possibility of having the pipes contaminated by output
data that these files might generate. The elimination of profiles also ensures a
consistent starting environment for the command or group of commands. Setting
UMASK to a site-wide default is often done with the /etc/profile, which is one of
the profiles that runs when a log in shell is invoked.

Piping Data from a UNIX System Services
Command to SAS

When a pipe is opened for input by the INFILE statement, any output that the
command writes to standard output or to standard error is available for input. For
example, here is a DATA step that reads the output of the ls -l command and
saves it in a SAS data set:

filename oecmd pipe 'ls -l';
data dirlist;
 infile oecmd truncover;
 input mode $ 1-10 nlinks 12-14 user $ 16-23
 group $25-32 size 34-40 lastmod $ 42-53
 name $ 54-253;
run;

Piping Data from SAS to a UNIX System Services
Command

When a pipe is opened for output by the FILE statement, any lines that are written
to the pipe by the PUT statement are sent to the command's standard input. For
example, here is a DATA step that uses the USS od command to write the contents
of the file in hexadecimal format to the USS file dat/dump.dat, as follows:

Accessing UNIX System Services Files 137

filename oecmd pipe 'od -x -tc - >dat/dump.dat';
data _null_;
 file oecmd;
 input line $ 1-60;
 put line;
datalines;
SAS software is an integrated system of software
products, enabling you to perform data management,
data analysis, and data presentation tasks.
;
run;

Writing Your Own I/O Access Methods
You can write your own I/O access method to replace the default SAS access
method. This feature enables you to redirect external file I/O to a user-written
program.

Note: The user-written I/O access method applies only to external files, not to
SAS data sets.

See your on-site SAS support personnel for additional information about writing
I/O access methods.

Accessing SAS Statements from a
Program

You can redirect your SAS statements to come from an external program rather
than from a file by using the SYSINP= and PGMPARM= system options. SYSINP=
specifies the name of the program, and PGMPARM= specifies a parameter that is
passed to the program. For more information, see “SYSINP= System Option: z/OS”
on page 872 and “PGMPARM= System Option: z/OS” on page 827.

138 Chapter 7 / Accessing External Files

Using the INFILE/FILE User Exit Facility
User exit modules enable you to inspect, modify, delete, or insert records in a DATA
step. Here are some examples of how they can be used:

n encrypting and decrypting data

n compressing and decompressing data

n translating data from one character encoding to another.

User exit modules are an advanced topic. For more information, see Chapter 20,
“Using the INFILE/FILE User Exit Facility,” on page 323.

Using the INFILE/FILE User Exit Facility 139

140 Chapter 7 / Accessing External Files

8
Directing SAS Log and SAS
Procedure Output

Types of SAS Output . 142
Overview of Types of SAS Output . 142
SAS Log File . 142
SAS Procedure Output File . 142
SAS Console Log File . 143
Destinations of SAS Output Files . 143

Directing Output to External Files with the PRINTTO Procedure . 145

Directing Output to External Files with System Options . 146
Overview of Directing Output to External Files with System Options 146
Directing Output to an External File at SAS Invocation . 146
Copying Output to an External File . 147
Directing Output to External Files Using the Configuration File . 148

Directing Output to External Files with the DMPRINT Command . 148

Directing Output to External Files with the FILE Command . 149

Directing Output to External Files with DD Statements . 149

Directing Output to a Printer . 150
Overview of Directing Output to a Printer . 150
Using the PRINTTO Procedure and Universal Printing . 151
Using the PRINTTO Procedure and the FORM Subsystem . 152
Using the PRINT Command and Universal Printing . 153
Using the PRINT Command and the FORM Subsystem . 154
Using the PRTFILE and PRINT Commands . 156
SAS System Options That Relate to Printing When Using Universal Printing 158
SAS System Options That Relate to Printing When Using the FORM Subsystem . 158

Directing Output to a Remote Destination . 159

Directing Procedure Output: ODS Examples . 160
Overview of ODS Output . 160
Line-Feed Characters and Transferring Data between EBCDIC and ASCII 161
Viewing ODS Output on an External Browser . 162
Storing ODS HTML Output in a Sequential File, and FTPing It from UNIX 163
Storing ODS HTML Output in a z/OS PDSE, and FTPing It from UNIX 164
Writing ODS HTML Output Directly to UNIX . 165

141

Writing ODS XML Output to ASCII, and Binary FTP to UNIX . 166
Writing ODS XML Output to EBCDIC, and ASCII Transfer to UNIX 167
Directing ODS XML Output to UFS . 168
Directing Procedure Output to a High-Quality Printer via ODS . 168

Sending Email from within SAS Software . 169
Overview of SAS Support for Email . 169
Using CSSMTP to Send Email in SAS . 170
PUT Statement Syntax for Email . 170
Example: Sending Email from the DATA Step . 173
Sending Procedure Output as Email . 175
Example: Directing Output as an Email Attachment with Universal Printing 180
Example: Sending Email By Using SCL Code . 181

Using the SAS Logging Facility to Direct Output . 183

Types of SAS Output

Overview of Types of SAS Output
For each SAS process, SAS can create three types of output:

n SAS log file

n SAS procedure output file

n SAS console log file.

SAS Log File
The SAS log file contains information about the processing of SAS statements. As
each program step executes, notes are written to the SAS log along with any
applicable error or warning messages. For more information, see “SAS Log File” on
page 31.

SAS Procedure Output File
Whenever a SAS program executes a PROC step that produces printed output, SAS
sends the output to the procedure output file. Beginning with Version 7, SAS
procedure output is handled by the Output Delivery System (ODS), which enhances
your ability to manage procedure output. Procedures that fully support ODS can
perform the following actions:

142 Chapter 8 / Directing SAS Log and SAS Procedure Output

n combine the raw data that they produce with one or more templates to produce
one or more objects that contain the formatted results.

n store a link to each output object in the Results folder in the Results window.

n (optional) generate HTML files that contain the formatted results and links to
those results, as in a table of contents.

n (optional) generate data sets from procedure output.

n provide a way to customize procedure output by creating templates that you
can use whenever you run your procedure.

For more information about ODS, see SAS Output Delivery System: User’s Guide.

For more information about the procedure output file, see “SAS Procedure Output
File” on page 33.

SAS Console Log File
If an error, warning, or note must be written to the SAS log and the log is not
available, the console log is used instead. The console log file is particularly useful
for capturing log entries that are generated during SAS initialization, before the SAS
log file is opened. For more information about this file, see “Console Log File” on
page 35.

Destinations of SAS Output Files
The following table shows the default destinations of the SAS output files.

Table 8.1 Default Destinations for SAS Output Files

Processing Mode Log File Procedure Output File

batch printer printer

windowing environment (TSO) Log window Output window

interactive line (TSO) terminal terminal

noninteractive (TSO) terminal terminal

These default destinations are specified in the SAS cataloged procedure, in the SAS
CLIST, or in the SASRX exec, which you use to invoke SAS in batch mode and under
TSO. Your system administrator might have changed these default destinations.

If you want to change the destination of these files, use the following table to help
you decide which method you should choose.

Types of SAS Output 143

Table 8.2 Changing the Default Destination

Output Destination
Processing
Mode Method to Use Documentation

a printer any mode FILENAME statement and
PRINTTO procedure

“Using the PRINTTO
Procedure and Universal
Printing” on page 151 or
“Using the PRINTTO
Procedure and the FORM
Subsystem” on page 152

windowing
environment
under TSO

PRINT command and the
Universal Printing subsystem
option display

“Using the PRINT Command
and Universal Printing” on
page 153

PRINT command and the FORM
subsystem option display

“Using the PRINT Command
and the FORM Subsystem”
on page 154

PRTFILE and PRINT commands “Using the PRTFILE and
PRINT Commands” on page
156

an external file any mode PRINTTO procedure “Directing Output to External
Files with the PRINTTO
Procedure” on page 145

batch LOG= and PRINT= system
options

“Directing Output to an
External File at SAS
Invocation” on page 146

SASLOG DD and SASLIST DD
statements

“Directing Output to External
Files with DD Statements” on
page 149

its usual location
and to an external
file

any mode ALTLOG= and ALTPRINT=
system options

“Directing Output to External
Files with System Options”
on page 146

windowing
environment
under TSO

FILE command “Directing Output to External
Files with the FILE
Command” on page 149

a remote destination any mode FILENAME statement and
PRINTTO procedure

“Directing Output to a
Remote Destination” on page
159

144 Chapter 8 / Directing SAS Log and SAS Procedure Output

Beginning with SAS 8.2, SAS output can also be routed via electronic mail (email).
For information about how SAS implements email delivery, see “Sending Email from
within SAS Software” on page 169.

Directing Output to External Files with
the PRINTTO Procedure

Using the PRINTTO procedure with its LOG= and PRINT= options, you can direct
the SAS log or SAS procedure output to an external file in any mode. You can
specify the name of the external file in the PROC PRINTTO statement. For
example, the following statement directs procedure output to
MYID.OUTPUT.DATA(MEMBER):

proc printto print='myid.output.data(member)' new;

However, if you plan to specify the same external file several times in your SAS
program, you can allocate the file with one of the following methods:

n a FILENAME statement

n a JCL DD statement

n the TSO ALLOCATE command.

For details and examples, see “Introduction to External Files” on page 94. After the
external file is allocated, use the PROC PRINTTO statement options LOG= or
PRINT= at any point in your SAS session to direct the log or procedure output to
the external file. Specify the fileref or the ddname that is associated with the
external file. Here is an example that uses FILENAME statements to allocate
external files for both the log and the procedure output:

filename printout 'myid.output.prtdata' disp=old;
filename logout 'myid.output.logdata' disp=old;
proc printto print=printout log=logout new;

The log and procedure output continue to be directed to the designated external
file until another PROC PRINTTO statement redirects them.

The NEW option causes any existing information in the file to be cleared. If you
omit the NEW option from the PROC PRINTTO statement, the SAS log or
procedure output is appended to existing sequential data sets. You must specify
NEW when routing to a PDS or PDSE because you cannot append data to a member
of a partitioned data set.

If you want to direct both the log and procedure output to partitioned data set
members, the members must be in a PDSE or in different data sets. SAS enables
you to write to two members of a PDSE, but not to two members of a PDS.

To return the log and procedure output to their default destinations, submit the
following statements:

proc printto;

Directing Output to External Files with the PRINTTO Procedure 145

run;

For a list of the default destinations, see Table 8.1 on page 143.

Directing Output to External Files with
System Options

Overview of Directing Output to External Files with
System Options

You can use SAS system options to change the destination of the SAS log and
procedure output. The options that you use depend on which of the following tasks
you want to accomplish:

n directing your SAS log or procedure output to an external file instead of to their
default destinations. For more information, see “Directing Output to an External
File at SAS Invocation” on page 146.

n directing the log or output both to their default destinations and to an external
file. For more information, see “Copying Output to an External File” on page 147.

Specify the system options in any of the following ways:

n when you invoke the SAS CLIST

n when you invoke the SASRX exec

n in the JCL EXEC statement

n in your SAS configuration file.

For more information about specifying SAS system options, see “Specifying or
Changing System Option Settings” on page 19.

Directing Output to an External File at SAS
Invocation

Use the LOG= and PRINT= system options to change the destination of your SAS
log or procedure output. The log and procedure output are then not directed to
their default destinations.

When you invoke SAS, use the LOG= and PRINT= options to specify the ddnames
or physical filenames of the output data sets. For option syntax and other host-

146 Chapter 8 / Directing SAS Log and SAS Procedure Output

specific details, see “LOG= System Option: z/OS” on page 804 and “PRINT= System
Option: z/OS” on page 828.

SAS automatically allocates a file when a system option is specified with a physical
filename. The following example illustrates a SAS invocation in noninteractive
mode using the SAS CLIST with internal allocation of output files:

sas options ('log=myid.output.logdata
 print=myid.output.prtdata')
 input('''myid.sas.program''')

The following example illustrates a similar SAS invocation that uses SASRX:

sasrx -log 'myid.output.logdata' -print
'myid.output.prtdata' -input
'myid.sas.program'

This example illustrates the same SAS invocation using external allocation:

alloc fi(logout) da('myid.output.logdata') old
alloc fi(printout) da('myid.output.prtdata') old
sas options('log=logout print=printout')input('''myid.sas.program''')

The following example illustrates a similar SAS invocation that uses SASRX:

sasrx -log logout -print printout -input
'myid.sas.program'

This example illustrates a SAS invocation in batch mode, using a JCL EXEC
statement and internal allocation of output files:

//SASSTEP EXEC SAS,
// OPTIONS='LOG=<file> PRINT=<file>'

This example illustrates the same SAS invocation with external allocation:

//SASSTEP EXEC SAS,
// OPTIONS='LOG=LOGOUT PRINT=PRINTOUT'
//LOGOUT DD DSN=MYID.OUTPUT.LOGDATA,DISP=OLD
//PRINTOUT DD DSN=MYID.OUTPUT.PRTDATA,DISP=OLD
//SYSIN DD DSN=MYID.SAS.PROGRAM,DISP=SHR

The LOG= and PRINT= system options are normally used in batch, noninteractive,
and interactive line modes. These options have no effect in the windowing
environment, which still displays SAS log and procedure output data in the Log and
Output windows. To capture and print data in the Log and Output windows, use the
ALTLOG= and ALTPRINT= options, as described in the next section.

For option syntax and other host-specific details, see “ALTLOG= System Option:
z/OS” on page 703 and “ALTPRINT= System Option: z/OS” on page 704.

Copying Output to an External File
Use the ALTLOG= and ALTPRINT= system options to send a copy of your SAS log
or procedure output to an external file. After specifying ALTLOG= and ALTPRINT=,
the log and procedure output is still displayed in the Log and Output windows as
usual. The log and procedure output are still directed to their default SAS file

Directing Output to External Files with System Options 147

destinations or to the nondefault destinations specified by the LOG= and PRINT=
system options, as described in the preceding section.

When you invoke SAS, use the ALTLOG= and ALTPRINT= options as shown to
specify the ddnames or physical filenames of the allocated data sets:

sas options('altprint=myid.output.prtdata
 altlog=myid.output.logdata')

The following example illustrates a similar SAS invocation that uses SASRX:

sasrx -altprint 'myid.output.prtdata' -altlog
'myid.output.logdata'

See the previous section for complete examples of SAS invocations in various
modes.

Directing Output to External Files Using the
Configuration File

This example illustrates how to direct output to external files using the SAS
configuration file:

log=myid.output.logdata
* logout ddname must be allocated
log=logout

print=myid.output.prtdata
* printout ddname must be allocated
print=printout

altlog=myid.output.altlog
* altlogx ddname must be allocated
altlog=altlogx

Directing Output to External Files with
the DMPRINT Command

Beginning in SAS 8.2, you can use the DMPRINT command to copy the contents of
many different windows to external files. Issue the DMPRINT command on the
command line of the window whose contents you want to copy. SAS displays the
Print window. If the Use Forms check box is visible, verify that it is not selected.
Select the option Print to File. An input window asks you for the name of the file to
which to save the window contents. You must enter the fully qualified filename. If
the file does not exist, a dialog box asks whether you want to create the file and
whether you want to catalog it. If the file does exist, a dialog box asks whether you

148 Chapter 8 / Directing SAS Log and SAS Procedure Output

want to replace it or to append data to the existing data. This option is not
available if SAS is invoked with the NOUNIVERSALPRINT system option set.

Directing Output to External Files with
the FILE Command

You can use the FILE command to copy the contents of many different windows to
external files. Issue the FILE command on the command line of the window whose
contents you want to copy. For example, to copy the contents of the Log window to
a sequential data set, issue the following command on the command line of the Log
window:

file 'myid.log.out'

If the file exists, a dialog box asks whether you want to replace it or to append data
to the existing data.

You can also use the FILE command to copy the contents of a window to either a
PDS or PDSE member:

file 'myid.log.out1(test)'

If you have already associated a fileref or ddname with your PDS or PDSE, then you
can use the fileref or ddname in the command, followed by the member name in
parentheses:

file mylib(test)

If the member that you specify already exists, it is overwritten because you cannot
append data to existing PDS or PDSE members.

Directing Output to External Files with
DD Statements

In a z/OS batch job, you can use the SASLOG DD and SASLIST DD statements to
change the destination of the SAS log and procedure output file. These statements
override the DD statements in the SAS cataloged procedure. Therefore, the
position of these statements in your JCL is important. You must place the SASLOG
DD statement and the SASLIST DD statement in the same order as they appear in
the SAS cataloged procedure. Also, these statements must follow the JCL EXEC
statement, and they must precede the DD statements for any ddnames that are not
included in the cataloged procedure (such as SYSIN).

Directing Output to External Files with DD Statements 149

For example, the following example directs the SAS log to member DEPT of an
existing partitioned data set and directs the procedure output to an existing
sequential data set:

//REPORT JOB accounting-information,
// MSGLEVEL=(1,1)
//SASSTEP EXEC SAS,OPTIONS='LINESIZE=80 NOSTATS'
//SASLOG DD DSN=MYID.MONTHLY.REPORT(DEPT),
// DISP=OLD
//SASLIST DD DSN=MYID.MONTHLY.OUTPUT,DISP=MOD
//SYSIN DD *
SAS statements
//

Note: SASLOG and SASLIST are the default ddnames of the SAS log and
procedure output files. If these ddnames have been changed in your site's SAS
cataloged procedure, then use your site's ddnames in place of SASLOG and
SASLIST.

CAUTION
The SAS cataloged procedure specifies default DCB characteristics unless
you specify them in the SASLOG or SASLIST DD statement. If you are directing
the SAS log to a member of a partitioned data set whose DCB characteristics are
different from the characteristics given in “SAS Log File” on page 31, then you must
include the existing DCB characteristics in the SASLOG DD statement. Similarly, if you
are directing the SAS procedure output to a member of a partitioned data set whose
DCB characteristics are different from the characteristics that are given in “SAS
Procedure Output File” on page 33, then you must include the existing DCB
characteristics in the SASLIST DD statement. Otherwise, the existing DCB
characteristics of the partitioned data set are changed to the characteristics that are
specified for SASLOG or SASLIST in the SAS cataloged procedure, making the other
members of the partitioned data set unreadable.

Directing Output to a Printer

Overview of Directing Output to a Printer
Beginning in SAS 8.2, SAS supports two printing destinations for directing
procedure output on z/OS: Universal Printing and Xprinter (line) printing. A
Universal printer is an email message, network printer, or file that exists on a local
area network (LAN). Universal Printing is the default printing destination. Xprinter
translates to a printer device on an SNA network. The FORM subsystem is one way
to direct output that is destined for a line printer.

150 Chapter 8 / Directing SAS Log and SAS Procedure Output

The printing destination and default printer at a site are typically determined by
data center personnel. This section contains instructions for directing procedure
output using either of the printing destinations. You can direct SAS output to a
printer as follows:

n by using the PRINTTO procedure combined with Universal Printing

n by using the PRINT command or menu selection combined with Universal
Printing

n by using the PRINT command or menu selection combined with the FORM
subsystem

n by using the PRTFILE command and the PRINT command or menu selection
combined with the FORM subsystem.

Universal Printing and the FORM subsystem are portable and are documented in
the Base SAS section of the SAS Help and in SAS Language Reference: Concepts. To
help customer sites get started with Universal Printing, some common z/OS printer
definitions, sample printer setup programs, and sample print commands are also
provided in Chapter 9, “Universal Printing,” on page 185.

Using the PRINTTO Procedure and Universal
Printing

Overview of the PRINTTO Procedure and Universal
Printing

You can use the FILENAME statement with the PRINTTO procedure to route your
output directly to a printer. Specify a device type of UPRINTER to direct your
output to the default Universal Printing printer. Then specify the fileref with the
PRINT= or LOG= option in the PROC PRINTTO statement. The following example
establishes a fileref and uses it in the PROC PRINTTO statement to redirect the
procedure output:

filename output UPRINTER;
proc printto print=output;

The Universal Printing default printer is usually determined by your site's data
center personnel. You can define your own default printer in the windowing
environment by selecting File ð Print Setup or by issuing the DMSETPRINT
printer-name command, where printer-name is the name of the printer that you
want to make the default. You can also define a temporary default printer by
specifying the PRINTERPATH= system option. This option is typically used in the
batch environment.

Directing Output to a Printer 151

Example

Follow these steps to direct output to the default Universal Printing printer:

1 Identify a print destination:

filename myprint UPRINTER;

2 Identify the print destination to SAS:

proc printto print=myprint; run;

3 Submit a print procedure:

proc print data=work.myfile;
run;

4 Remove the print destination from SAS:

proc printto; run;

Using the PRINTTO Procedure and the FORM
Subsystem

Overview of the PRINTTO Procedure and the FORM
Subsystem

You can use the FILENAME statement or FILENAME function with the PRINTTO
procedure to route your output directly to a printer. Use the SYSOUT= option in the
FILENAME statement or function to direct your output to the system printer. The
default system printer is controlled by the FORM subsystem. Then specify the
fileref with the PRINT= or LOG= option in the PROC PRINTTO statement. The
following example establishes a fileref and uses it in the PROC PRINTTO statement
to redirect the procedure output:

filename output sysout=a;
proc printto print=output;

Usually, SYSOUT=A specifies that the destination is a printer. However, this value
is determined by the data center personnel at your site.

Example

Follow these steps to direct output to the system printer:

152 Chapter 8 / Directing SAS Log and SAS Procedure Output

1 Identify a print destination:

filename myprint dest=dest99 sysout=a hold;

2 Identify the print destination to SAS:

proc printto; print=myprint; run;

3 Submit a print procedure:

proc print data=work.myfile;
run;

4 Remove the print destination from SAS:

proc printto; run;

Using the PRINT Command and Universal Printing

Overview of the PRINT Command and Universal
Printing

Use the PRINT command or menu selection to direct the contents of a window to
your default printer. This method is the easiest way to print output. For example,
issue the PRINT command from the command line of your Output window to send
the contents of that window to your default printer. The default printer - as well as
other aspects of your output such as printer margins, printer control language, and
font control information - are controlled by the Universal Printing subsystem. The
Universal Printing subsystem consists of five windows that are described in detail
in SAS Language Reference: Concepts.

Selecting a Printer

To direct the contents of a window to a printer that is not your default printer, you
can issue a DMSETPRINT printer-name command, where printer-name is the name
of the printer that you want to make the default. You can also specify a temporary
default printer by using the PRINTERPATH= system option.

Modifying Printer Properties

To use the default printer and change one or more of its parameters, issue the
DMPRINT command on the command line of the window whose contents you want
to copy. SAS displays the Print window. If the Use Forms window check box is
visible, verify that it is not selected. Select Properties and change any of the
parameters. Select OK to accept and OK to print. The new definition is saved in

Directing Output to a Printer 153

your Sasuser file, and it overrides any definition of a printer of the same name in the
Sashelp file.

Creating a New Printer Definition

There are several ways to set up a printer using Universal Printing:

n Select File ð Print Setup from a menu.

n Issue the DMPRTSETUP command.

n Issue the DMPRTCREATE command.

n Override the active printer settings using PROC PRTDEF. You can also use
PROC PRTDEF to set up multiple printers at one time.

Typically, your system administrator sets up the printers. Your system
administrator can save printer definitions to Sashelp so that all users have access
to them. When you use PROC PRTDEF, you can save the definitions in the Sasuser
or Sashelp libraries.

Printing a Graphics Window

When printing a graphics window, you can print to the default printer, to any other
Universal Printer, or to a SAS/GRAPH graphics driver. To print from a printer that is
not the default, select from the list of available printers. To print with a
SAS/GRAPH driver, select the Use SAS/GRAPH Drivers check box in the Print
Method group box. The software displays a list of available drivers from which you
can select.

Previewing a Print Job

You cannot currently preview a print job on a mainframe.

Using the PRINT Command and the FORM
Subsystem

Overview of the PRINT Command and the FORM
Subsystem

Use the PRINT command or menu selection to direct the contents of a window to
your default printer. The default printer — as well as other aspects of your output

154 Chapter 8 / Directing SAS Log and SAS Procedure Output

such as printer margins, printer control language, and font control information — is
controlled by the FORM subsystem. The FORM subsystem consists of six frames
that are described in detail in SAS Language Reference: Concepts and in “Host-
Specific Windows of the FORM Subsystem” on page 273. You use these frames to
define a form for each printer that is available to you at your site. You can also
define multiple forms for the same printer. For more information, see “Adding a
Form” on page 156. Your on-site SAS support personnel can give you information
about your default form and about any other forms that have been defined at your
site.

Specifying a Form

To direct the contents of a window to a printer that is not your default printer, you
can use the FORM= option with the PRINT command. Use this option to specify a
form that has been defined for a different printer. For example, to copy output to a
printer destination that is described in a form named MYOUTPUT, you would enter
the following command-line command:

print form=myoutput

Modifying Your Default Form

To change the default destination printer and to customize other features of the
output that the PRINT command generates, you can modify the default form that
the FORM subsystem uses. To modify your default form, do the following:

1 Enter fsform default from the command line to display your default form. If
your SASUSER.PROFILE catalog contains a form named DEFAULT, then that
form is displayed. If you do not have a form named DEFAULT, then the Printer
Selection frame is displayed.

2 Select a printer from the Printer Selection frame. When you select a printer, SAS
copies the default form for that printer into your SASUSER.PROFILE catalog.

Note: Printer information is site-specific; see your system administrator if you
need help with selecting a printer.

3 Make other changes to the default form, if desired, by changing the information
in the other frames of the FORM subsystem. Issue the NEXTSCR command to
scroll to the next FORM frame, and issue the PREVSCR command to scroll to
the previous frame. The two Print File Parameters frames are used to specify
host-specific printer information; they are described in “Host-Specific Windows
of the FORM Subsystem” on page 273. The other frames are described in the
SAS Language Reference: Concepts.

4 Enter the END command to save your changes.

Directing Output to a Printer 155

Adding a Form

You can also add additional forms to the FORM subsystem. These forms can then
be used with the PRINT command, as described in “Specifying a Form” on page 155,
and they can be modified in the same manner as described in “Modifying Your
Default Form” on page 155. For example, to create a form named MYOUTPUT, do
the following:

1 Enter fsform myoutput from the command line.

2 Select a printer from the Printer Selection frame.

3 Use the NEXTSCR and PREVSCR commands to scroll through the other frames
of the FORM subsystem. Use these other frames to provide additional
information that is associated with the MYOUTPUT form.

4 Enter the END command to save your changes.

Examples

n To create or update a SAS form:

fsform myoutput

n To identify the SAS form:

FORMNAME myoutput

n To print the contents of a window:

PRINT

n To send a file to the printer:

FREE

Using the PRTFILE and PRINT Commands

Overview of the PRTFILE and PRINT Commands

You can also use the PRTFILE command, followed by the PRINT command, to print
the contents of windows. This method enables you to override some of the defaults
that are established by the FORM subsystem, such as the destination printer or the
SYSOUT class.

156 Chapter 8 / Directing SAS Log and SAS Procedure Output

Note: The PRTFILE command does not apply to Universal Printing printers. Default
values of system-defined printers in the Universal Printing subsystem can be
overridden in the Properties window. The modified printer definition is saved to the
SASUSER file, which overrides any definition of a printer of the same name in the
Sashelp file.

PRTFILE establishes the destination, and PRINT sends the contents of the window
to that destination. If you do not specify a destination with the PRTFILE command,
PRINT automatically sends the window contents to your default printer. For
information about using the PRINT command alone, see “Using the PRINT
Command and the FORM Subsystem” on page 154.

For example, to print the contents of your Output window on RMT5 instead of on
your default printer, follow these steps:

1 From the Program Editor window, submit a FILENAME statement or FILENAME
function to allocate a destination file for the output. You can use the DEST= and
SYSOUT= options to specify the destination and SYSOUT class, respectively.
You can also direct the output to the HOLD queue by specifying the HOLD
option. For information about other options that you can specify, see “SYSOUT
Data Set Options for the FILENAME Statement” on page 634.

filename myrpt dest=rmt5 sysout=a hold;

Note: The destination printer that you specify in the FILENAME statement or
FILENAME function must be the same type of printer as your default printer.

2 From a command line, issue the PRTFILE command, specifying the fileref from
your FILENAME statement or FILENAME function.

prtfile myrpt

3 From the command line of the window whose contents you want to print, issue
the PRINT command.

4 If you want to print the contents of any other windows, issue the PRINT
command from the command line of those windows. A dialog box warns you
that the destination file already exists. Enter A in the dialog box to append the
window contents to the destination file.

5 From the command line of the first window that you printed, issue the FREE
command.

6 From the Program Editor window, submit a FILENAME statement or FILENAME
function to clear (deassign) the fileref. Your output is not actually printed until
you perform this step.

filename myrpt clear;

Example

Follow these steps to print a file with PRTFILE and PRINT:

Directing Output to a Printer 157

1 Establish a print destination with the FILENAME statement:

filename myprint dest=dest99 sysout=a;

2 Identify the fileref as a print destination:

prtfile myprint replace

3 Print the file with the PRINT command or menu selection.

When directing output to a print device, for immediate printing use the FREE
command or menu selection, and then submit:

filename myprint clear;

For delayed printing, ending the SAS session or process forces printing to an output
device.

SAS System Options That Relate to Printing When
Using Universal Printing

The NOUNIVERSALPRINT system option is related to the printing of SAS output
when using Universal Printing. NOUNIVERSALPRINT turns Universal Printing off.

SAS System Options That Relate to Printing When
Using the FORM Subsystem

The following system options relate to the printing of SAS output when using the
FORM subsystem:

n SYSPRINT= is used when the PRINT command or PMENU selection is issued
and the print file default has not been established with the PRTFILE command,
Set Print File menu selection, or Set Form Name menu selection.

n FILEFORMS= specifies the default form that is used in the operating
environment. The default form is used when a printer file is dynamically
allocated, when FORMS= is not specified in the FILENAME statement, or when
the SAS form being used does not have a FORMS= value.

n FORMS= specifies the name of the default form that is used by the SAS FORM
subsystem in the windowing environment.

n FILESYSOUT= specifies the default SYSOUT= class that is used when a printer
file is allocated dynamically and SYSOUT= is omitted from the FILENAME
statement, or when the SAS form being used does not have a CLASS= value.

A valid sysout-class is a single character (number or letter only). Valid classes
are site dependent. At some sites, data center personnel might have set up a
default class that cannot be overridden.

158 Chapter 8 / Directing SAS Log and SAS Procedure Output

Directing Output to a Remote
Destination

For Universal Printing, you direct output to a remote destination by specifying the
DEST= option on the host option parameter of the printer definition. You can
modify or create a printer definition by using PROC PRTDEF, by issuing the
DMPRTSETUP command, or by selecting File ð Print Setup in the windowing
environment.

In the FORM subsystem, you use the DEST= option of the FILENAME statement or
FILENAME function to direct output to a remote destination. The destination can
be a workstation, a local or remote printer, or other device.

In order to direct your output to a remote destination, you must know the remote
station ID of the device that receives your output. The station ID is an identifying
label that is established by your data center; it is one to eight characters in length.
You must also know the appropriate SYSOUT class for output that is directed to
the remote device. Your data center personnel can provide you with this
information.

After determining the remote station ID and the SYSOUT class, you use either the
TSO ALLOCATE command or a SAS FILENAME statement or FILENAME function
to establish a ddname or fileref for the destination. Then use the ddname or fileref
with the PRINTTO procedure to direct your output. Here is an example that directs
the procedure output file to a remote printer:

filename output sysout=a dest=xyz16670;
proc printto print=output;
proc print data=oranges;
run;

The FILENAME statement includes the options SYSOUT=A and DEST=xyz16670.
The values of these options are site specific. In this case, the output class, A,
specifies that the output is directed to a printer. The destination, xyz16670, links
the fileref to a particular printer.

The PROC PRINTTO statement then specifies the fileref OUTPUT in the PRINT=
option. This option directs the procedure output file to the destination that was
associated with the fileref OUTPUT in the FILENAME statement. When the PRINT
procedure is executed, SAS sends the procedure output to the job entry subsystem
(JES); the output is not displayed in the Output window. JES holds the output until
the file identified by the fileref OUTPUT is closed and deassigned. Then the output
is printed at the remote destination.

To send the output to the printer for the previous example, submit:

proc printto; run;
filename output;

Directing Output to a Remote Destination 159

To direct the SAS log to a remote destination, use the same procedure, but use the
LOG= option instead of the PRINT= option with the PROC PRINTTO statement.

Directing Procedure Output: ODS
Examples

Overview of ODS Output
SAS supports three output formats for procedure output: the Output Delivery
System (ODS), SAS/GRAPH, and the FORM subsystem.

Most of ODS is portable and documented elsewhere, including the SAS Output
Delivery System: User’s Guide and the SAS Language Reference: Concepts. Two
format options provided by ODS are HTML and XML. This section shows examples
of how the ODS HTML and ODS XML statements are used and the steps that are
required to route the output between operating environments. A SAS/GRAPH
example is also provided.

In a mainframe environment, by default, ODS produces a binary file that contains
embedded record-separator characters. Although this approach means that the file
is not restricted by the line-length restrictions on ASCII files, it also means that if
you view the file in an editor, the lines all run together.

If you want to format the HTML files so that you can read them with an editor, use
RECORD_SEPARATOR=NONE. In this case, ODS writes one line of HTML at a time
to the file. When you use a value of NONE, the logical record length of the file that
you are writing to must be at least as long as the longest line that ODS produces. If
it is not, the HTML can wrap to another line at an inappropriate place. We
recommend that you use rs=none if you are writing to a standard z/OS file, but not
if you are writing to a UFS file. For an example that uses rs=none to format output,
see “Writing ODS XML Output to EBCDIC, and ASCII Transfer to UNIX” on page
167.

160 Chapter 8 / Directing SAS Log and SAS Procedure Output

Line-Feed Characters and Transferring Data
between EBCDIC and ASCII

Overview of Transferring Data between EBCDIC
and ASCII

When you exchange data between an operating environment that uses ASCII
encoding and an operating environment that uses EBCDIC encoding, formatting
errors can occur. EBCDIC and ASCII do not always use the same characters to
indicate the end of a line of data. EBCDIC indicates the end of a line with either a
line-feed character or a newline character. ASCII uses only the line-feed character
to indicate the end of a line. If you exchange data between an EBCDIC operating
environment, such as z/OS, and an ASCII operating environment, such as Windows,
then you should specify the ENCODING= option to match the operating
environment of the destination.

Details of Transferring Data

Software running on ASCII platforms requires that the end of the line be indicated
by a line-feed character. When data is transferred from z/OS to a machine that
supports ASCII encodings, formatting problems can occur, particularly in HTML
output, because the EBCDIC newline character is not recognized.

Software running on UNIX environments requires the ASCII line-feed character.
Software running on Windows environments requires a carriage return that is
followed by a new line. Use the TERMSTR= option to specify which line termination
to use.

SAS supports the following two sets of EBCDIC-based encodings for z/OS:

n The encodings with EBCDIC in their names generate or interpret the end-of-line
character that is to be the EBCDIC line-feed character. Many text-based file
transfer protocols map the EBCDIC line-feed character to something other than
the ASCII line-feed character when the text is being transcoded. This situation
could cause problems when the file is used in other environments.

n The encodings with OPEN_ED in their names generate or interpret the end-of-
line character to be the EBCDIC newline character. Many text-based file transfer
protocols map the EBCDIC newline character to the ASCII line-feed character
when the text is being transcoded.

For more information about these encodings, see the SAS National Language
Support (NLS): Reference Guide.

Directing Procedure Output: ODS Examples 161

If you need to exchange data between ASCII and EBCDIC, you can specify
encodings from the list of encodings in “ENCODING System Option” in the SAS
National Language Support (NLS): Reference Guide. There are several language
elements and commands that enable you to specify encodings when creating or
exchanging data:

n “FILE Statement: z/OS” on page 604

n “INFILE Statement: z/OS” on page 647

n “FILE Command: z/OS” on page 280

n “INCLUDE Command: z/OS” on page 283

n “ENCODING= Data Set Option” and “ENCODING System Option” in the SAS
National Language Support (NLS): Reference Guide

Viewing ODS Output on an External Browser
The following example stores ODS HTML output in a UNIX System Services (USS)
file. You can then display the output in an external HTML browser with the
universal resource locator (URL) appropriate to your site.

/* if needed, create web directory */
%sysexec mkdir '/u/myuid/public_html' ;

ods html
/* specify locations of HTML files */
 body='examplb.htm'
 page='examplp.htm'
 contents='examplc.htm'
 frame='example.htm'
 path='/u/myuid/public_html'(url=none);

/* Do not send output to proc output */
ods listing close;

title1 'z/OS UNIX System Services
 Example';

proc plan seed=9544455;
 factors a=3 b=4 c=5 ordered; run;
 title1;
 quit;

/* close the HTML destination */
ods html close;

Here is a typical URL for this example:

http://corp.dept.com/~myuid/example.htm

For more information about viewing ODS output with a browser, see “Using Remote
Browsing with ODS Output” on page 226.

162 Chapter 8 / Directing SAS Log and SAS Procedure Output

Storing ODS HTML Output in a Sequential File, and
FTPing It from UNIX

The following example runs partly on SAS in the z/OS operating environment and
partly on the command line in the UNIX operating environment.

ods html
/* specify HTML files and destination URLs */
 body='.seqb.htm' (url='seqb.htm')
 page='.seqp.htm' (url='seqp.htm')
 contents='.seqc.htm' (url='seqc.htm')
 frame='.seqf.htm'
 trantab=ascii;

/* Do not send output to procedure output destination*/
ods listing close;

title1 'z/OS HTML Example';

proc plan seed=9544455;
 factors a=3 b=4 c=5 ordered; run;
 title1;
 quit;

/* close the html destination */
ods html close;

When you use physical filename syntax and run in interactive mode, you are
prompted to specify whether you want to create the files. You are not prompted in
batch mode.

When you use JCL or a FILENAME statement, the disposition parameter controls
file creation.

The TRANTAB= option generates ASCII stream files. You cannot read ASCII stream
files with TSO ISPF browse. The default file characteristics are record format VB
and record length 8,196.

You might need to update links between the files after you transfer the files to
UNIX. To avoid the need to update links, use the URL= option in the ODS statement
to identify how you would like to generate the links.

This second part of the example transfers the ODS output file from z/OS to UNIX.
Issue the following commands on a UNIX workstation:

ftp
...
ftp> binary
...
ftp> get 'myuid.seqb.html'
 /u/myuid/public_html/seqb.htm
...

Directing Procedure Output: ODS Examples 163

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~myuid/seqb.htm

Storing ODS HTML Output in a z/OS PDSE, and
FTPing It from UNIX

The filename in this example stores ODS output as a member of a partitioned data
set extended (PDSE).

/* create a PDSE */
filename ODSPDSE '.exampl.pdse'
 dsntype=library
 disp=(new,catlg) dsorg=po ;

ods html
/* specify HTML files and destination URLs */
 body='examplb' (url='examplb.htm')
 page='examplp' (url='examplp.htm')
 contents='examplc' (url='examplc.htm')
 frame='examplf'
 path='.exampl.pdse' (url=none)
 trantab=ascii;

/* Do not send output to procedure output destination */
ods listing close;

title1 'z/OS PDSE Example';

proc plan seed=9544455;
 factors a=3 b=4 c=5 ordered; run;
 title1;
 quit;

/* close the HTML destination */
ods html close;

The TRANTAB= option generates ASCII stream files. You cannot read ASCII stream
files with TSO ISPF browse.

You might need to update links between the files after you transfer the files to
UNIX. To avoid the need to update links, use the URL= option in the ODS statement
to identify how you would like to generate the links.

In the UNIX operating environment, use the following FTP command to transfer a
file from the PDSE:

ftp> get 'myuid.exampl.pdse(examplb)'
 /u/myuid/public_html/examplb.html

164 Chapter 8 / Directing SAS Log and SAS Procedure Output

Writing ODS HTML Output Directly to UNIX
The following example uses the FTP access method to write HTML output that is
generated on z/OS directly to a UNIX file.

Each of the following FILENAME statements uses the FTP access method to
specify a file on a UNIX host. Each file contains part of the ODS HTML output that
is generated by this SAS job. You need to provide the correct host, user, password,
and directory information for your site. See the section on the FILENAME, FTP
access method in the SAS DATA Step Statements: Reference for more information
about the FTP access method options.

filename myfram ftp 'example_frame.htm' /* Specify frame file */
 cd='mydir' /* Specify directory */
 host='myhost.mycompany.com' /* Specify your host */
 user='myuser' /* Specify user */

 pass='mypass' /* Specify password */
 /* or */ /* prompt */ /* Password prompting */

 rcmd='site umask 022' /* Set permissions to */
 /* -rw-r--r-- */
 recfm=s /* binary transfer */
 debug; /* Write ftp messages */

filename mybody ftp 'example_body.htm' /* Specify body file */
 cd='mydir' /* Specify directory */
 host='myhost.mycompany.com' /* Specify your host */
 user='myuser' /* Specify user */

 pass='mypass' /* Specify password */
 /* or */ /* prompt */ /* Password prompting */

 rcmd='site umask 022' /* Set permissions to */
 /* -rw-r--r-- */
 recfm=s /* binary transfer */
 debug; /* Write ftp messages */

filename mypage ftp 'example_page.htm' /* Specify page file */
 cd='mydir' /* Specify directory */
 host='myhost.mycompany.com' /* Specify your host */
 user='myuser' /* Specify user */

 pass='mypass' /* Specify password */
 /* or */ /* prompt */ /* Password prompting */

 rcmd='site umask 022' /* Set permissions to */
 /* -rw-r--r-- */
 recfm=s /* binary transfer */
 debug; /* Write ftp messages */

Directing Procedure Output: ODS Examples 165

filename mycont ftp 'example_contents.htm' /* Specify contents */
 cd='mydir' /* Specify directory */
 host='myhost.mycompany.com' /* Specify your host */
 user='myuser' /* Specify user */

 pass='mypass' /* Specify password */
 /* or */ /* prompt */ /* Password prompting */

 rcmd='site umask 022' /* Set permissions to */
 /* -rw-r--r-- */
 recfm=s /* binary transfer */
 debug; /* Write ftp messages */

/* Specify the HTML files using the filerefs defined above */
ods html body=mybody
 page=mypage
 contents=mycont
 frame=myfram
 trantab=ascii;

/* Do not send output to procedure output destination */
ods listing close;

title1 'z/OS FTP Access Method Example';
proc plan seed=9544455;
 factors a=3 b=4 c=5 ordered; run;
 title1;
 quit;

/* Close the HTML destination */
ods html close;

Writing ODS XML Output to ASCII, and Binary FTP
to UNIX

The following ODS XML example generates ASCII output with embedded record
separators and does a binary transfer to UNIX.

/* Use FTP access method to direct the output to UNIX */

filename myxml ftp 'odsxml1.xml' /* specify xml file */
 cd='public_html/ods_test' /* specify directory */
 host='unix.corp.dept.com' /* specify host */
 user='userid' /* specify user */

 /* pass='mypass' */ /* specify password */
 /* or */ prompt /* password prompting */

 rcmd='site umask 022' /* set permissions to */
 /* -rw-r--r-- */
 recfm=s /* binary transfer */

166 Chapter 8 / Directing SAS Log and SAS Procedure Output

 debug; /* write ftp messages */

/* Do not write to output window */
ods listing close;

/* Specify XML file using fileref specified above */
/* Specify ascii representation and do a binary transfer */
ods xml file=myxml
 trantab=ascii;

title1 'z/OS ODS XML Example - Binary transfer to UNIX';
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~userid/ods_test/odsxml1.xml

Writing ODS XML Output to EBCDIC, and ASCII
Transfer to UNIX

This example generates ODS XML output in EBCDIC and uses RS=NONE to format
the output for a text (ASCII) transfer to UNIX.

/* Use FTP access method to direct the output to UNIX */

filename myxml ftp 'odsxml2.xml' /* specify xml file */
 cd='public_html/ods_test' /* specify directory */
 host='unix.corp.dept.com' /* specify host */
 user='userid' /* specify user */

 /* pass='mypass' */ /* specify password */
 /* or */ prompt /* password prompting */

 rcmd='site umask 022' /* set permissions to */
 /* -rw-r--r-- */
 recfm=v /* text transfer */
 debug; /* write ftp messages */

/* Do not write to output window */
ods listing close;

/* Specify XML file using fileref specified above */
/* Specify RS=NONE, generate EBCDIC and do a TEXT (ASCII) transfer */
ods xml file=myxml
 rs=none;

Directing Procedure Output: ODS Examples 167

title1 'z/OS ODS XML Example - TEXT transfer to UNIX';
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
with FTP, using a URL such as

http://corp.dept.com/~userid/ods_text/odsxml2.xml

Directing ODS XML Output to UFS
The following example stores ODS XML output in a UFS file.

/* Do not write to output window */
ods listing close;

/* Direct output to UNIX System Services (USS) file */
/* Specify ascii representation */
ods xml file='/u/userid/public_html/odsxml3.xml'
 trantab=ascii;

title1 'z/OS ODS XML Example - Output to UNIX System Services';
proc plan seed=9544455; factors a=3 b=4 c=5 ordered; run;
title1;
quit;

/* Close the XML destination */
ods xml close;

To view the output file, point your UNIX browser at the file that you moved to UNIX
System Services, using a URL such as

http://s390.corp.dept.com/~userid/ods_text/odsxml1.xml

Directing Procedure Output to a High-Quality
Printer via ODS

Follow these steps to send high-resolution procedure output created with the
Output Delivery System to a Universal Printing destination:

1 Establish the print destination with the PRINTERPATH= option:

options printerpath='prt23lj5';

168 Chapter 8 / Directing SAS Log and SAS Procedure Output

The OPTIONS statement assigns PRT23lJ5 as the default Universal printer.
PRT23lJ5 remains the default printer for the duration of the SAS session, unless
it is overridden by another OPTIONS statement.

2 Identify the print destination to SAS:

ods printer;

The ODS PRINTER statement opens an ODS printer destination, enabling
procedure output to be formatted for a high-resolution printer. Because the
ODS PRINTER statement does not specify a filename or a fileref, ODS output is
sent to the Universal Printing default printer (PRT23lJ5).

3 Run a SAS procedure, such as PROC PRINT, to produce output to the SAS
procedure output file:

proc print data=sashelp.shoes;
 where region="Canada";
run;

PROC PRINT generates procedure output in ODS format.

4 Remove the print destination:

ods printer close;

The ODS PRINTER CLOSE statement removes the ODS printing destination and
sends the procedure output to PRT23lJ5. Subsequent procedure output is
routed to the default Universal Printing destination.

Sending Email from within SAS Software

Overview of SAS Support for Email
SAS software enables you to send email by way of a DATA step, SAS procedure, or
SCL. Specifically, you can perform one of the following actions:

n use the logic of the DATA step or SCL to subset email distribution based on a
large data set of email addresses.

n send email automatically upon completion of a SAS program that you submitted
for batch processing.

n direct output through email that is based on the results of processing.

SAS email is implemented in the following language elements:

n the EMAILHOST= and EMAILPORT= SAS options. SAS software sends all email
over a socket to an SMTP server. You or your system administrator might have
to specify the EMAILHOST= system option to identify the host that runs an
SMTP server on your network. The EMAILHOST= option defaults to
localhost.The EMAILPORT= system option identifies the port number on the

Sending Email from within SAS Software 169

SMTP server for email access. The default port number is 25. For more
information about SMTP, see “The SMTP Email Interface” in SAS Language
Reference: Concepts.

n the FILE and FILENAME statements, which are used to specify the name of an
email fileref and the mailing instructions that are used to send it. For more
information, see “FILENAME Statement, EMAIL (SMTP) Access Method” in the
SAS DATA Step Statements: Reference. Options that you specify in the FILE
statement override any corresponding options that you specified in the
FILENAME statement.

n the PUT statement, which is used in the DATA step or SCL to create the email
message and to specify or change mailing directives. For more information, see
the PUT statement syntax for email in the following topic.

Using CSSMTP to Send Email in SAS
SAS 9.4M5 added support for Communications Server Simple Mail Transfer
Protocol (CSSMTP). CSSMTP is an interface that transports email across the
internet much like SMTP. CSSMTP is supported only on z/OS hosts. It supports
most of the functionality of SMTP.

IBM removed support for the SMTPD email server in z/OS V2R3. If you are running
SAS on z/OS V2R3, you cannot use the SMTPD server. You have to use the SMTP
email server. CSSMTP is a mail-forwarding SMTP client application. To use the
CSSMTP application, set EMAILSYS=CSSMTP. For information about the CSSMTP
configuration, contact your email or network administrator. For information about
CSSMTP, see the IBM documentation.

See Also

n “FILENAME Statement: EMAIL (CSSMTP and SMTP) Access Method” on page
640

n “FILENAME Statement: EMAIL (SMTP) Access Method” in SAS Global
Statements: Reference

n “EMAILSYS= System Option: z/OS” on page 736

PUT Statement Syntax for Email
In your DATA step, after using the FILE statement to define your email fileref as the
output destination, use PUT statements to define the body of the message.

You can also use PUT statements to specify email directives that override the
attributes of your electronic mail message (TO, CC, SUBJECT, TYPE, ATTACH) or

170 Chapter 8 / Directing SAS Log and SAS Procedure Output

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en

perform actions with it (such as SEND, ABORT, and start a NEWMSG). Specify only
one directive in each PUT statement; each PUT statement can contain only the text
associated with the directive that it specifies. Use quotation marks as necessary to
construct the arguments of the PUT statement. However, the final string written by
the PUT statement does not need to be enclosed in quotation marks.

The directives that change the attributes of a message are

!EM_TO! addresses
replaces the current primary recipient addresses with addresses. For example:

PUT "!EM_TO!" "joe@somplace.org";

or

user="joe@somplace.org"; put '!EM_TO!' user;

To specify more than one address, enclose the list of addresses in parentheses
and each address in single or double quotation marks, and separate each
address with a space:

PUT "!EM_TO!" "('joe@smplc.org' 'jane@diffplc.org')";

or

list="('joe@smplc.org' 'jane@diffplc.org')"; put '!EM_TO!' list;

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_TO!" "Joe Smith <joe@somplace.org>";

or

user="Joe Smith <joe@somplace.org>"; put '!EM_TO!' user;

!EM_CC! addresses
replaces the current copied recipient addresses with addresses. For example:

PUT "!EM_CC!" "joe@somplace.org";

or

user="joe@somplace.org"; put '!EM_CC!' user;

To specify more than one address, enclose the list of addresses in parentheses,
enclose the parentheses in double quotation marks, enclose each address in
single or double quotation marks, and separate the addresses with a space:

PUT "!EM_CC!" " "('joe@smplc.org' 'jane@diffplc.org')";

or

list="('joe@smplc.org' 'jane@diffplc.org')"; put '!EM_CC!' list;

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_CC!" "Joe Smith <joe@somplace.org>";

or

user="Joe Smith <joe@somplace.org>"; put '!EM_CC!' user;

Sending Email from within SAS Software 171

!EM_BCC! addresses
replaces the current blind copied recipient addresses with addresses. For
example:

PUT "!EM_BCC!" "joe@somplace.org";

or

user="joe@somplace.org"; put '!EM_BCC!' user;

To specify more than one address, enclose the list of addresses in parentheses
and each address in single or double quotation marks, and separate addresses
with a space:

PUT "!EM_BCC!" "('joe@smplc.org' 'jane@diffplc.org')";

or

list="('joe@smplc.org' 'jane@diffplc.org')"; put '!EM_BCC!' list;

To specify a name with the address, enclose the address in angle brackets, as
follows:

PUT "!EM_BCC!" "Joe Smith <joe@somplace.org>";

or

user="Joe Smith <joe@somplace.org>"; put '!EM_BCC!' user;

!EM_FROM! 'address'
replaces the current address of the sender of the message with address. For
example:

PUT "!EM_FROM! "john@hisplace.org"

or

user="john@hisplace.org"; put '!EM_FROM!' user;

!EM_SUBJECT! subject
replaces the current subject of the message with subject.

!EM_CONTENTTYPE! content-type
replaces the current content type of the message body with content-type. The
default value is text/plain.

Note: SAS does not scan file extensions on z/OS unless the file is on the UNIX
file system (UFS).

!EM_ATTACH! “file-specification”
replaces the current list of attachments with file-specification. Enclose the file-
specification in double quotation marks.

To attach more than one file or a file with additional attachment options,
enclose the list of file specifications or options in parentheses and separate
each file-specification with a space. The attachment options are

CONTENT_TYPE='content/type'
specifies the MIME content type that should be associated with this
attachment. The default content type is text/plain. CONTENT_TYPE= can
be specified as one of the following types:

172 Chapter 8 / Directing SAS Log and SAS Procedure Output

n CONTENT_TYPE=

n CONTENT-TYPE=

n TYPE=

n CT=

EXTENSION='extension'
specifies the file extension on the recipient's file that is attached. This
extension is used by the recipient's email system for selecting the
appropriate utility to use for displaying the attachment. The default
attachment extension is "txt". EXTENSION= can be specified as EXT=.

NAME='name'
specifies a different name to be used for the attachment.

The following examples show the syntax for specifying attachment options in a
PUT statement:

put '!EM_ATTACH!' "('user.misc.pds(member)' content_type='text/html' extension='html')";
put '!EM_ATTACH!' "('user.misc.jcl(sasjcl)' extension='doc', 'userid.sas.output' content_type='image/gif' extension='gif' name='Test Results')";
mycfg="'user.misc.jcl(sasjcl)'";
syscfg="'user.sas.output' content_type='image/gif' ext='gif'";
put '!EM_ATTACH!' "("mycfg","syscfg")";

These directives perform actions:

!EM_SEND!
sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS software
sends the message when it encounters the directive and again at the end of the
DATA step.

!EM_ABORT!
stops the current message. You can use this directive to stop SAS software from
automatically sending the message at the end of the DATA step.

!EM_NEWMSG!
clears all attributes of the current message, including TO, CC, SUBJECT, TYPE,
ATTACH, and the message body.

Example: Sending Email from the DATA Step
Suppose you want to share a copy of your SASV9 CONFIG file with your coworker
Jim, whose user ID is JBrown. You could send it by submitting the following DATA
step:

filename mymail email 'JBrown@ajax.com'
 subject='My SASV9 CONFIG file'
 attach="jbrown.tso.config(sasV9)";

data _null_;
 file mymail;
 put 'Jim,';

Sending Email from within SAS Software 173

 put 'This is my SASV9 CONFIG file.';
 put 'I think you might like the new options I added.';
run;

The following example sends a message and two attached files to multiple
recipients. It specifies the email options in the FILE statement instead of in the
FILENAME statement:

filename outbox email 'ron@acme.com';

data _null_;
 file outbox
 to=('ron@acme.com' 'lisa@acme.com')
 /* Overrides value in */
 /* filename statement */

 cc=('margaret@yourcomp.com'
 'lenny@laverne.abc.com')
 subject='My SAS output'
 attach=("my.sas.output" "my.sas.code")
 ;
 put 'Folks,';
 put 'Attached is my output from the
 SAS program I ran last night.';
 put 'It worked great!';
run;

You can use conditional logic in the DATA step to send multiple messages and to
control which recipients receive which message. For example, suppose you want to
send customized reports to members of two different departments. Here is a DATA
step example:

filename reports email 'Jim@corp.com';

data _null_;
 file reports;
 infile cards eof=lastobs;
 length name dept $ 21;
 input name dept;
 put '!EM_TO!' name;
 /* Assign the TO attribute */

 put '!EM_SUBJECT! Report for ' dept;
 /* Assign the SUBJECT attribute */

 put name ',';
 put 'Here is the latest report for ' dept '.';
 if dept='marketing' then
 put '!EM_ATTACH!' "userid.market.report";
 else
 /* ATTACH the appropriate report */

 put '!EM_ATTACH!' "userid.devlpmnt.report";
 put '!EM_SEND!';
 /* Send the message */

 put '!EM_NEWMSG!';
 /* Clear the message attributes */

174 Chapter 8 / Directing SAS Log and SAS Procedure Output

 return;
lastobs: put '!EM_ABORT!';
 /* Abort the message before the */
 /* RUN statement causes it to */
 /* be sent again. */

 datalines;
Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting email message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step.

Sending Procedure Output as Email

Overview of Sending Procedure Output as Email

Email can be used to send procedure output. ODS HTML procedure output must be
sent with the RECORD_SEPARATOR (RS) option set to NONE. For z/OS, ODS
produces an HTML stream with embedded record-separator characters, by default.
When the RS option is set to NONE, ODS writes one line of HTML at a time to the
file. Make sure that the file's record length is large enough to accommodate the
longest HTML line.

The following section contains examples that illustrate how to send ODS HTML
and graph output in the body of an email message and also as attachments to
email.

Examples: Sending Procedure Output via Email

The following example shows how to use ODS to send HTML output in email:

filename outbox email
 to='susan@mvs'
 type='text/html'
 subject='Temperature conversions'
 ;

Sending Email from within SAS Software 175

data temperatures;
 do centigrade = -40 to 100 by 10;
 fahrenheit = centigrade*9/5+32;
 output;
 end;
run;

ods html
 body=outbox /* Mail it! */
 rs=none;

 title 'Centigrade to Fahrenheit conversion table';
proc print;
 id centigrade;
 var fahrenheit;
run;

ods html close;

The following example shows how to create and send a GIF image in an email
message:

filename gsasfile email
 to='Jim@acme.com'
 type='image/gif'
 subject="SAS/GRAPH output."
 ;

goptions dev=gif gsfname=gsasfile;

proc gtestit pic=1; run;

The following example shows how to create ODS HTML and send it as attachments
to an email message:

 /* -- */
 /* allocate PDSE to contain the HTML output */
 /* -- */
filename odsout '.mvsmail1.pdse' disp=(new,catlg,delete)
 dsorg=po dsntype=library;

 /* ------------------------------------ */
 /* stop sending output to OUTPUT window */
 /* ------------------------------------ */
ods listing close;

 /* --- */
 /* Assign frame, contents and body files. */
 /* Specify the URLs to have the .html extension. */
 /* Specify the PATH to be the PDSE. */
 /* Specify RS=NONE to write one line of HTML per record. */
 /* This is necessary when emailing the HTML output. */
 /* --- */
ods html frame='shoes1f'
 contents='shoes1c' (url='shoes1c.html')
 body='shoes1b' (url='shoes1b.html')
 path=odsout

176 Chapter 8 / Directing SAS Log and SAS Procedure Output

 rs=none;

data newshoes;
 set sashelp.shoes;
 where Region in ('Canada' 'Central America/Caribbean'
 'South America' 'United States');
run;

 /* --- */
 /* sort the data set and generate the report */
 /* --- */
proc sort data=newshoes;
 by Region Subsidiary Product;
run;

options nobyline;
title1 'Sales for Regions #byval(Region)';
proc report data=newshoes nowindows;
 by Region;
 column Region Product Subsidiary Sales;
 define Region / noprint group;
 define Product / display group;
 define Subsidiary / display group;
 define Sales / display sum format=dollar8.;
 compute after Region;
 Product='Total';
 endcomp;
 break after Region / summarize style=rowheader;
run;

 /* -- */
 /* Close the HTML destination and open the listing output */
 /* -- */
ods html close;
ods listing;

 /* ----------------- */
 /* E-mail the report */
 /* ----------------- */
filename email email 'fred@bedrock.com'
 subject="Shoe report 1"
 type="text/plain"
attach=(".mvsmail1.pdse(shoes1f)" content_type='text/html' extension='html'
 ".mvsmail1.pdse(shoes1c)" content_type='text/html' extension='html'
 ".mvsmail1.pdse(shoes1b)" content_type='text/html' extension='html') ;
data _null_;
 file email;
 put 'Here is the latest Shoe sales report';
run;

The following example shows how to create ODS HTML and GIF files and send
them as email attachments:

 /* -- */
 /* Define the UNIX System Services USS directory to */
 /* contain the graphics and HTML output. */
 /* -- */

Sending Email from within SAS Software 177

filename odsout '/u/myhome/public_html';

 /* -- */
 /* stops sending output to GRAPH and OUTPUT windows */
 /* -- */
ods listing close;

 /* ---------------------------- */
 /* set the graphics environment */
 /* ---------------------------- */
goptions reset=global gunit=pct
 colors=(black blue green red)
 hsize=8.42 in vsize=6.31 in ftitle=zapfb
 ftext=swiss htitle=4 htext=2.5
 device=gif transparency noborder;

 /* --------------------------------- */
 /* add the HTML variable to NEWSHOES */
 /* --------------------------------- */
data newshoes;
 set sashelp.shoes;
 where Region in ('Canada' 'Central America/Caribbean'
 'South America' 'United States');
 length regdrill $40;

if Region='Canada' then
 regdrill='HREF="shoes1_regsales.html#IDX1"';

else if Region='Central America/Caribbean' then
 regdrill='HREF="shoes1_regsales.html#IDX2"';

else if Region='South America' then
 regdrill='HREF="shoes1_regsales.html#IDX3"';

else if Region='United States' then
 regdrill='HREF="shoes1_regsales.html#IDX4"';

run;

 /* --*/
 /* Assign the destination for the ODS graphics output */
 /* and ODS HTML files. */
 /* Specify RS=NONE to write one line of HTML per record. */
 /* This is necessary when emailing the HTML output. */
 /* --- */
ods html path=odsout
 body='shoe_report.html'
 rs=none
 nogtitle;

 /* ----------------------------------- */
 /* define title and footnote for chart */
 /* ----------------------------------- */
title1 'Total Sales for the Americas';
footnote1 h=3 j=l 'click on bars' j=r 'REPORT3D ';

178 Chapter 8 / Directing SAS Log and SAS Procedure Output

 /* ----------------------------------- */
 /* assign a pattern color for all bars */
 /* ----------------------------------- */
pattern color=cyan;

 /* --------------------------- */
 /* define axis characteristics */
 /* --------------------------- */
axis1 order=(0 to 7000000 by 1000000)
 minor=(number=1)
 label=none;
axis2 label=none offset=(4,4)
 value=('Canada' 'C. Amr./Car.'
 'S. America' 'USA');

 /* --------------------------- */
 /* generate vertical bar chart */
 /* --------------------------- */
proc gchart data=newshoes;
 vbar3d Region / discrete
 width=6
 sumvar=sales
 html=regdrill
 coutline=black
 cframe=blue
 maxis=axis2
 raxis=axis1
 name='shoes1 ';
run;
quit;

 /* --- */
 /* Open the HTML destination for the PROC PRINT output. */
 /* Specify RS=NONE to write one line of HTML per record. */
 /* This is necessary when emailing the HTML output. */
 /* --- */
ods html body='shoes1_regsales.html'
 rs=none
 path=odsout;

 /* --- */
 /* sort data set NEWSHOES in order by region */
 /* --- */
proc sort data=newshoes;
 by Region Subsidiary Product;
run;
quit;

 /* -- */
 /* print a report of shoe sales for each Region */
 /* -- */
goptions reset=footnote;
option nobyline;
title 'Sales Report for #byval(Region)';
proc report data=newshoes nowindows;
 by Region;

Sending Email from within SAS Software 179

 column Region Subsidiary Product Sales;
 define Region / noprint group;
 define Subsidiary / display group;
 define Product / display group;
 define Sales / display sum format=dollar12.;
 compute after Region;
 Subsidiary='Total';
 endcomp;
 break after Region / summarize style=rowheader page;
run;

 /* -- */
 /* Close the HTML destination and open the listing output */
 /* -- */
ods html close;
ods listing;

 /* ---------------- */
 /* Email the report */
 /* -----------------*/
filename email email 'barney@bedrock.com'
 subject="Shoe report 2"
 type="text/plain"
attach=("./public_html/shoe_report.html" content_type='text/html'
 "./public_html/shoes1_regsales.html" content_type='text/html'
 "./public_html/shoes1.gif" content_type='image/gif') ;
data _null_;
 file email;
 put 'Here is the latest Shoe sales report';
run;

Example: Directing Output as an Email Attachment
with Universal Printing

Follow these steps to send procedure output as an attachment to an email
message.

1 Define a Universal printer with a device type of 'EMAIL'.

2 Establish a printing destination with the PRINTERPATH= option:

options printerpath='emailjoe';

The OPTIONS statement assigns EMAILJOE as the default Universal printer.
EMAILJOE remains the default printer for the duration of the SAS session,
unless it is overridden by another OPTIONS statement.

3 Identify the print destination to SAS:

ods printer;

The ODS PRINTER statement enables procedure output to be formatted for a
high-resolution printer. Because the ODS PRINTER statement does not specify

180 Chapter 8 / Directing SAS Log and SAS Procedure Output

a filename or fileref, ODS output is sent to the Universal Printing default printer
(EMAILJOE).

4 Issue a PRINT command or procedure:

proc print data=sashelp.shoes;
 where region="Canada";
 run;

PROC PRINT generates procedure output in standard ODS format. The output is
sent to the attachment file associated with EMAILJOE.

5 Remove the print destination:

ods printer close;

The second ODS PRINTER statement removes the ODS print destination. The
procedure output is sent to EMAILJOE, which sends the email message with the
attached file to the email recipient.

The following program defines a registry entry for printing procedure output to an
email attachment:

/* STEP 1 */
data printers;
 name = 'emailjoe';
 protocol = 'Ascii';
 trantab = 'GTABCMS';
 model = 'PostScript Level 1 (Gray Scale)';
 device = 'EMAIL';
 dest = 'John.Doe@sas.com';
 hostopt = "recfm=vb ct='application/PostScript'
 subject='Canada Report' ";
 run;

/* STEP 2 */
proc prtdef data=printers replace list;
run;

Example: Sending Email By Using SCL Code
The following example is the SCL code that underlies a frame entry design for
email. The frame entry includes these text-entry fields:

mailto
the user ID of the email recipient

copyto
the user ID of the recipient of the email copy (CC)

attach
the name of the file to attach

subject
the subject of the email message

Sending Email from within SAS Software 181

line1
the text of the email message

The frame entry also contains a push button named SEND that causes this SCL
code (marked by the send: label) to execute.

send:

 /* set up a fileref */

 rc = filename('mailit','userid','email');

 /* if the fileref was successfully set up
 open the file to write to */

 if rc = 0 then do;
 fid = fopen('mailit','o');
 if fid > 0 then do;

 /* fput statements are used to
 implement writing the
 mail and the components such as
 subject, who to mail to, etc. */

 fputrc1 = fput(fid,line1);
 rc = fwrite(fid);

 fputrc2 = fput(fid,'!EM_TO! '||mailto);
 rc = fwrite(fid);
 fputrc3 = fput(fid,'!EM_CC! '||copyto);
 rc = fwrite(fid);

 fputrc4 = fput(fid,'!EM_ATTACH! '||attach);
 rc = fwrite(fid);
 fputrc5 = fput(fid,'!EM_SUBJECT! '||subject);
 rc = fwrite(fid);

 closerc = fclose(fid);
 end;
 end;
return;

cancel:
 call execcmd('end');
return;

182 Chapter 8 / Directing SAS Log and SAS Procedure Output

Using the SAS Logging Facility to Direct
Output

The SAS 9.2 logging facility enables the categorization and collection of log event
messages and to write them to a variety of output devices. The logging facility
supports problem diagnosis and resolution, performance and capacity
management, and auditing and regulatory compliance. The following features are
provided:

n Log events are classified by using a hierarchical naming system that enables you
to configure logging at either a broad level or a specific level.

n Log events can be directed to multiple output destinations, including files,
operating system facilities, databases, and client applications. For each output
destination, you can specify one of the following attributes:

o the categories and levels of events to report

o the message layout, including the types of data to be included, the order of
the data, and the format of the data

o filters based on criteria such as diagnostic levels and message content

n For each log destination, you can configure the message layout, including the
contents, the format, the order of information, and literal text.

n For each log destination, you can configure filters to include or exclude events
that are based on diagnostic levels and message contents.

n Logging diagnostic levels can be adjusted dynamically without starting and
stopping processes.

n Performance-related events can be generated for processing by an Application
Response Measurement (ARM) 4.0 server.

The logging facility is used by most SAS server processes. You can also use the
logging facility within SAS programs.

For z/OS, log messages can be written to “ZOSFacilityAppender” in SAS Logging:
Configuration and Programming Reference or “ZOSWtoAppender” in SAS Logging:
Configuration and Programming Reference.

For more information about using the logging facility in z/OS, see “Overview of the
SAS Logging Facility” in SAS Logging: Configuration and Programming Reference.

Using the SAS Logging Facility to Direct Output 183

http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n137j2tm1qo1j5n1f1rz7o82aurv.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n137j2tm1qo1j5n1f1rz7o82aurv.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n1xal20e6pk35on1jdejy6e2s5if.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n1xal20e6pk35on1jdejy6e2s5if.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n09ixzwi752s0cn1m3tvrrhu84ry.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=n09ixzwi752s0cn1m3tvrrhu84ry.htm&locale=en

184 Chapter 8 / Directing SAS Log and SAS Procedure Output

9
Universal Printing

Introduction to Universal Printing . 186

Using Universal Printing in the Windowing Environment . 186
Setting the Default Printer . 186
Defining a New Printer Interactively . 187
Changing the Default Printer . 187
Setting Printer Properties . 188
Changing the Default Font . 189
Setting Page Properties . 190
Testing Printer Properties . 190
Setting a Page Range Value . 191
Previewing a Print Job . 191
Printing Selected Text . 191
Printing the Contents of a SAS Window . 191
Directing the Contents of a SAS Window to a File . 192
Printing the Contents of a Graphics Window . 193
Creating Printer Definitions When Universal Printing Is Turned Off 193
Universal Printing and the SAS Registry . 193

Using Universal Printing in a Batch Environment . 194
Setting the Default Printer . 194
Directing Output to a Universal Printer . 195
Setting Up a Universal Printer with PROC PRTDEF . 196
Example PROC PRTDEF Jobs in z/OS . 198
Setting Up Printers in Your Environment . 199

Using FTP with Universal Printing . 202
Overview of Using FTP with Universal Printing . 202
Sending Output to a Printer . 202
Sending Output to a File . 202

Example Programs and Summary . 203
Overview of Example Programs and Summary . 203
Example 1: ODS and a Default Universal Printer . 203
Example 2: ODS and the PRINTERPATH System Option . 205
Example 3: ODS and the PRINTERPATH System Option (with FILEREF) 206
Example 4: PRINTERPATH and FILENAME UPRINTER Statement 207
Example 5: SAS/GRAPH: ODS and PRINTERPATH System Option 208
Example 6: SAS/GRAPH: No ODS or PRINTERPATH System Option 212

The SASLIB.HOUSES Data Set . 216
Contents of the SASLIB.HOUSES Data Set . 216

185

Summary of Printing Examples . 217

Introduction to Universal Printing
Universal Printing is a printing mechanism provided by SAS that supplies printing
support for all operating environments. It is especially helpful for those operating
environments in which printing can be a challenge. Universal Printing enables you
to direct output to printers that are attached to your local area network. You can
also use all of the font and graphic capabilities of those printers when you generate
output.

With SAS Release 8.2, Universal Printing became the default printing method in the
z/OS windowing environment. It is also the default printing method used to
generate ODS (Output Delivery System) and SAS/GRAPH output in all mainframe
environments. Universal Printing is not the default printing method used to
generate procedure output that is text based (such as PROC PRINT output), unless
ODS is also used.

Universal Printing is also the default in the UNIX operating environment. It is
supported, but it is not the default, in the Microsoft Windows operating
environment.

Universal Printing produces output in PostScript, PDF, PCL, GIF, or a file that is sent
directly to an output device.

Using Universal Printing in the
Windowing Environment

Setting the Default Printer
A default printer is required for Universal Printing. Unless you define a default
printer, SAS uses a predefined default printer that generates output in PostScript
Level 1 language with a 12-point Courier font.

On z/OS, output goes by default to a sequential data set called
<prefix>.SASPRT.PS where <prefix> is the value of the SYSPREF= SAS option.

186 Chapter 9 / Universal Printing

Defining a New Printer Interactively
To create a new printer definition interactively:

1 Select File ð Print Setup.

Or, issue the command DMPRTSETUP.

2 Select New ð Printer

The first of four Define a New Printer dialog boxes is displayed. Fill out the
fields in these dialog boxes to complete your new printer definition.
Alternatively, you can issue the command DMPRTCREATE PRINTER to start the
Define a New Printer dialog box directly.

Note: The Define a New Printer dialog box does not prompt you for printer
detail fields, including the Protocol and Translate Table (TRANTAB) fields. The
printer details are automatically initialized to the details in the prototype that
you select. When the Define a New Printer dialog boxes are complete, you are
returned to the Printer Setup window with the new printer highlighted.

Follow these steps if you need to change any of the printer detail fields:

1 Select Properties.

2 Select Advanced.

3 Change the values of Protocol and Translate Table as necessary.

4 Select OK.

For further details about values for Protocol and Translate Table, see “Setting Up
Printers in Your Environment” on page 199.

Changing the Default Printer
You can use any of the following procedures to change the default printer:

n Use the Print Setup window.

1 Select File ð Print Setup.

Or, issue the command DMPRTSETUP.

2 Select the printer that you want to use as the default.

3 Select OK.

n Issue the command DMSETPRINT <'printer-name'>, where <'printer-name'>
is the name of the printer that you want to set as the default.

Using Universal Printing in the Windowing Environment 187

n Submit the statement OPTIONS PRINTERPATH=('printer-name' <fileref>).
For more information about the PRINTERPATH option, see “The PRINTERPATH
SAS Option” on page 195.

Note: DMPRTSETUP and DMSETPRINT generate an entry in the Sasuser
library, and they remain in effect until they are changed. Setting a default printer
with the OPTIONS PRINTERPATH= command does not generate an entry in the
Sasuser library. It remains in effect for the duration of the session only.

Setting Printer Properties
Use the following procedure to set the properties for a printer:

1 Select File ð Print Setup.

Or, issue the command DMPRTSETUP.

2 From the Printer list box, select a printer.

3 Select Properties.

4 In the Printer Properties window, select the Destination tab to set the device
type, destination, and host options.

Device Type
refers to the type of device to which your output is routed, such as a printer
or a disk.

Destination
refers to the target location used by the device.

Host Options
includes any host-specific options that you can set for the selected device
type.

5 (Optional) Select Advanced to set resolution, protocol, translate table, buffer
size, previewer, and preview command information for the printer.

Resolution
specifies the resolution to use for printed output in dots per inch.

Protocol
specifies how to convert the output to a format that can be processed by a
protocol converter that connects the mainframe to an ASCII device. Protocol
information is applicable only to IBM hosts.

Translate Table
specifies the translate table to use for generating your printed output. A
translate table is needed when an EBCDIC host sends data to an ASCII
device.

Buffer Size
refers to the buffer size to use when sending output to the printer.

188 Chapter 9 / Universal Printing

6 (Optional) Select Font to open a window where you can set the default font
information for your printer.

Note: Printer properties are stored in the Sasuser library and remain in effect
until changed. For information about how printer properties are used in the
mainframe environment, see “Setting Up Printers in Your Environment” on page
199.

Changing the Default Font
The font included in the definition of the current default printer is the font used to
generate output, unless you override it with the SYSPRINTFONT= system option.
SYSPRINTFONT= sets the font to use when printing to the current default printer
or to the printer identified with the optional keywords NAMED or ALL. You can
specify SYSPRINTFONT= in your configuration file, at SAS invocation, or in an
OPTIONS statement.

The syntax is as follows:

SYSPRINTFONT=(face-name <weight> <style> <character-set> <point-size>
<NAMED printer-name | DEFAULT | CHOICE>)

face-name
specifies the name of the font face to use for printing. This value must be a valid
font face name. If the face-name consists of more than one word, it must be
enclosed in single or double quotation marks. Valid font face names are listed in
the Printer Properties window under the Font tab.

weight
specifies the weight of the font, such as bold. A list of valid values for your
specified printer appears in the Printer Properties window. The default value is
NORMAL.

style
specifies the style of the font, such as italic. A list of valid values for your
specified printer appears in the Printer Properties window. The default is
REGULAR.

point-size
specifies the point size to use for printing. This value must be an integer. If you
omit this argument, SAS uses the default point size.

character-set
specifies the character set to use for printing. Valid values are listed in the
Printer Properties window, under the Font tab. If the font does not support the
specified character set, the default character set is used. If the default character
set is not supported by the font, the font's default character set is used.

NAMED printer-name
must match exactly the name shown in the Print Setup window (except that the
printer name is not case sensitive). If it is more than one word, the printer-name
must be enclosed in double quotation marks.

Using Universal Printing in the Windowing Environment 189

DEFAULT
is the current default printer if you do not specify another printer.

ALL
updates the font information for all installed printers.

Setting Page Properties
1 Select File ð Page Setup.

Or, issue the command DMPAGESETUP.

2 From the Page Setup window, make selections that apply to the pages printed
for the remainder of your SAS session or until the values are changed again
through this window or through specification of options.

The selections that you can make in this window correspond to options that can be
set by submitting an OPTIONS statement. These options are listed in the following
table:

Table 9.1 Options That Control Page Setup

General Options Paper Margins Other

BINDING PAPERDEST TOPMARGIN ORIENTATION

COLLATE PAPERSIZE RIGHTMARGIN

DUPLEX PAPERSOURCE LEFTMARGIN

COLORPRINTING PAPERTYPE BOTTOMMARGIN

Changes made by issuing these options in an OPTIONS statement remain in effect
for the current SAS session only. Changes made through the Page Setup window
remain in effect for subsequent SAS sessions.

Options not supported by your default printer are dimmed and are not selectable.

Testing Printer Properties
1 Select File ð Print Setup.

Or, issue the command DMPRTSETUP.

2 Select a printer from the Printer list box.

3 Select Print Test Page.

190 Chapter 9 / Universal Printing

Setting a Page Range Value
When you print the contents of an active window in the SAS windowing
environment (such as the Program Editor or Log window), all pages are printed by
default. In certain situations, the Print window includes a Page Range group box
that you can use to control the page ranges that are printed.

1 Select the appropriate SAS window.

2 Select File ð Print.

Or, issue the command DMPRINT.

3 If the Page Range group box is available, select either All Pages, Current Page,
or Select Range from the Range combo box. If you choose Select Range, then
specify the pages that you want to print in the Pages field. You must separate
individual pages or page ranges with either a comma or a blank space.

n-m prints all pages from n to m (where n and m are both numbers).

-n prints all pages from page 1 to n.

n- prints all pages from page n to the last page.

Previewing a Print Job
You cannot preview a print job in the mainframe environment.

Printing Selected Text
You cannot print selected text in the mainframe environment.

Printing the Contents of a SAS Window
To print the contents of a SAS window with Universal Printing:

1 Select the window that you want to print.

2 Select File ð Print.

Or, issue the command DMPRINT.

3 If the Use Forms check box is visible, verify that it is not selected.

Using Universal Printing in the Windowing Environment 191

4 From the Printer group box, select the appropriate printer name and the number
of copies that you want to print.

Note: If you choose to print multiple copies and Collation is turned off, each
page prints the given number of times before the next page begins printing.

5 Select or deselect additional Print window fields, if any additional fields are
available.

The fields that appear depend on the content that exists in the SAS window
that you are trying to print. For example, if a window is active (such as the
Program Editor), then the Page Range group box is available.

6 Select the page range or specify the pages that you want to print.

For more information about printing the contents of a graphics window, see
“Printing the Contents of a Graphics Window” on page 193.

Directing the Contents of a SAS Window to a File
1 Select File ð Print.

Or, issue the command DMPRINT.

2 Select the Print to File check box in the Printer group box.

3 Select OK.

A window opens that enables you to save your contents to a specific filename.

n The filename must be fully qualified. Quotation marks are not needed, but
you can use them.

n If the file does not exist, you are asked if you want to create it, and if you
want to delete it or catalog it. The file is created as a variable blocked
(RECFM=VB) file.

n If the file does exist, you are asked if you want to replace it or append to it.

Note: The protocol and prototype properties of the selected printer definition
are used to format the records that are written to the file. Thus, if you select a
printer that has a protocol value of ASCII and a prototype value of PostScript
Level 1 (Gray Scale), you generate a file that contains PostScript records written
with the ASCII character set. To move this file to an ASCII platform, you must
execute a Binary (FTP) transfer.

192 Chapter 9 / Universal Printing

Printing the Contents of a Graphics Window
1 Select the graphics window that you want to print.

2 Select File ð Print.

Or, issue the command DMPRINT.

3 Select the appropriate printer name and the number of copies that you want to
print from the Printer group box.

Note: If you choose to print multiple copies and Collation is turned off, each
page prints the given number of times before the next page begins printing.

4 In the Print Method group box, verify that the Use SAS/GRAPH Drivers check
box is not selected.

Creating Printer Definitions When Universal
Printing Is Turned Off

You can create printer definitions with PROC PRTDEF when Universal Printing is
turned off, but the printer definitions do not appear in the Print window. When
Universal Printing is turned on, the menu options change to offer the Universal
Printing options. When Universal Printing is turned off, the Universal Printing
options are not available.

If you want to specify your printer definitions when Universal Printing is turned off,
do one of the following:

n Specify the printer definition as part of the PRINTERPATH SAS system option.

n Submit the following statement:

ODS PRINTER SAS PRINTER = myprinter;

where myprinter is the name of your printer definition.

Universal Printing and the SAS Registry
Universal Printing printer definitions are stored in the SAS registry. To access the
SAS registry:

1 Select: Solutions ð Accessories ð Registry Editor.

Using Universal Printing in the Windowing Environment 193

Or, issue the command REGEDIT.

2 Select: Core ð Printing ð Printers

The printer definitions in SASUSER are listed first, followed by the printer
definitions in Sashelp, along with all their options. You can modify any of the
options for the printer definitions in Sasuser if you have permission to write to the
Sasuser library. To modify the options:

Select: Edit ð Modify.

Or, click the right mouse button and select MODIFY.

CAUTION
Making a mistake in editing the registry can cause your system to become
unstable, unusable, or both.

Wherever possible, use the administrative tools, such as the New Library window,
the PRTDEF procedure, Universal Print windows, and the Explorer Options window
to make configuration changes, rather than editing the registry directly. Using the
administrative tools ensures that values are stored properly in the registry when
you change the configuration.

CAUTION
If you use the Registry Editor to change values, you are not warned if any
entry is incorrect. Incorrect entries can cause errors, and can even prevent
you from bringing up a SAS session.

Using Universal Printing in a Batch
Environment

Setting the Default Printer
A default printer is required for Universal Printing. Unless you specify a default
printer, SAS uses a predefined default printer that generates output in PostScript
Level 1 language with a 12-point Courier font.

On z/OS, output goes by default to a sequential data set called
<prefix>.SASPRT.PS where <prefix> is the value of the SYSPREF= SAS option.

194 Chapter 9 / Universal Printing

Directing Output to a Universal Printer

Sending Output to a UPRINTER Device

If you are using the SAS windowing environment, you can issue the DMPRINT
command in many windows, including the Log, Output, and Program Editor
windows, to send window contents to the Universal Printing default printer. You
can also use the FILENAME statement to associate a fileref with the default
printer, using the device type UPRINTER:

filename myuprt uprinter;

Once a fileref is associated with a printer, you can use that fileref in a PROC
PRINTTO statement to print the log or procedure output. For example, the
following statement directs any subsequent output to the default UPRINTER:

proc printto log=myuprt print=myuprt; run;

The fileref can also be used in other SAS statements that accept filerefs or in any
window command or field that accepts filerefs.

Note: The -ovp option (typically used when a PROC routes log output to a
universal printer) is incompatible with the UPRINTER driver. Messages are not
overprinted.

The PRINTERPATH SAS Option

Use the PRINTERPATH= SAS option to specify the destination printer for SAS print
jobs.

PRINTERPATH=('printer-name'
fileref)

printer-name
must be one of the defined printers. Quotation marks are required around the
printer name only when it contains blank spaces.

fileref
is an optional fileref. If a fileref is specified, it must be defined with a FILENAME
statement or external allocation. If a fileref is not specified, output is directed to
the destination defined in the printer definition or setup. Parentheses are
required only when a fileref is specified.

Using Universal Printing in a Batch Environment 195

Note: The PRINTERPATH= option is an important option in batch processing. It
causes Universal Print drivers to be used for SAS/GRAPH and ODS PRINTER
output whenever it is set.

Changing the Default Font

The font that is included in the definition of the current default printer is the font
used to generate output, unless you override it with the SYSPRINTFONT= system
option. SYSPRINTFONT= sets the font to use when printing to the current printer
or to the printer identified with the optional keywords NAMED or ALL. You can
specify SYSPRINTFONT= in your configuration file, at SAS invocation, or in an
OPTIONS statement.

The syntax is as follows:

SYSPRINTFONT=(face-name <weight> <style> <character-set> <point-size>
<NAMED printer-name | DEFAULT | ALL>)

For more information, see “Changing the Default Font” on page 189.

Setting Up a Universal Printer with PROC PRTDEF

Overview of Setting Up a Universal Printer with
PROC PRTDEF

Printer definitions can be created in batch mode for an individual or for all SAS
users at your site using PROC PRTDEF. The system administrator can create printer
definitions in the registry and make these printers available to all SAS users at your
site by using PROC PRTDEF with the SASHELP option. You can create printer
definitions for yourself by using PROC PRTDEF. Printer definitions that you create
with PROC PRTDEF, and without the SASHELP option, are stored in the SASUSER
registry. The complete syntax of the PROC PRTDEF statement is as follows:

PROC PRTDEF <DATA=SAS-data-set><SASHELP><LIST><REPLACE>;

DATA=
specifies a SAS data set that contains the printer definition records. The SAS
data set is required to have the variables name, model, device, and dest. The
variables hostopt, preview, protocol, trantab, lrecl, desc, and viewer are
optional. For more information about these variables, see “Required Variables”
on page 197 and “Optional Variables” on page 197.

SASHELP
specifies the output location where the printer definitions are stored. Use this
option to specify whether the printer definitions are available to all users or just

196 Chapter 9 / Universal Printing

the user who is running PROC PRTDEF. Specifying SASHELP makes the
definitions available to all users. You must have permission to write to the
Sashelp library. Otherwise, the definitions are stored in Sasuser and are
available to the users who are using that Sasuser library.

LIST
specifies that a list of printers that were created or replaced is written to the
log.

REPLACE
specifies that any printer name that already exists is to be modified using the
information in the printer definition data record.

The following sections contain information about the printer definition variables in
the input data set specified by DATA=.

Required Variables

name
The name of the printer is the key for the printer definition record. The name is
limited to 80 characters. If a record contains a name that already exists, the
record is not processed unless the REPLACE option has been specified. The
printer name must have at least one non-blank character and cannot contain a
backslash. Leading and trailing blanks are stripped from the name.

model
For a valid list of prototypes or model descriptions, look in the SAS registry
editor, which can be invoked with the regedit command. Once the SAS registry
editor is open, follow the path Core ð Printing ð Prototypes to the list of
prototypes. Or invoke the Print Setup window (DMPRTSETUP) and select New to
view the list that is displayed on the second window of the Printer Definition
wizard.

device
Valid devices are listed in the third window of the Printer Definition wizard and
in the SAS registry editor under Core ð Printing ð Device Types The device
column is not case-sensitive.

If you specify a device type of catalog, disk, ftp, socket, or pipe, you must
also specify the dest variable.

dest
The destination name is limited to 256 characters. Whether this name is case-
sensitive depends on the type of device that is specified.

Optional Variables

hostopt
The host options column is not case-sensitive. Host options are limited to 256
characters.

Using Universal Printing in a Batch Environment 197

preview
This variable is not used on mainframe platforms. It is used to specify the
printer to use for print preview.

protocol
This variable specifies the I/O protocol to use when sending output to the
printer. On IBM hosts, the protocol describes how to convert the output to a
format that can be processed by a protocol converter that connects the
mainframe to an ASCII device. For more information about the use of
PROTOCOL, see “Setting Up Printers in Your Environment” on page 199.

trantab
This variable specifies which translate table to use when sending output to the
printer. The translate table is needed when an EBCDIC host sends data to an
ASCII device. For more information about the use of TRANTAB, see “Setting Up
Printers in Your Environment” on page 199.

lrecl
This variable specifies the buffer size or record length to use when sending
output to the printer.

desc
This variable specifies the description of the printer. It defaults to the prototype
used to create the printer.

viewer
This variable is not used on mainframe platforms. It is used to specify the host
system command used during print previews.

Example PROC PRTDEF Jobs in z/OS

Example 1: Defining PostScript, PCL, and PDF
Universal Printers

The following SAS program provides an example of how to use PROC PRTDEF in
the z/OS operating environment to set up Universal Printing printer definitions.

The following example shows you how to set up various printers. The INPUT
statement contains the names of the four required variables. Each data line
contains the information that is needed to produce a single printer definition. The
DATA= option on the PROC PRTDEF specifies PRINTERS as the input data set that
contains the printer attributes. PROC PRTDEF creates the printer definitions for the
SAS registry.

Note: You can use an ampersand (&) to specify that two or more blanks separate
character values. This feature allows the name and model value to contain blanks.

data printers;
 dest = " ";

198 Chapter 9 / Universal Printing

 device = "PRINTER";

 input @1 name $14. @16 model $18. @35 hostopt $24.;
datalines;
Myprinter PostScript Level 1 SYSOUT=T DEST=printer1
Laserjet PCL 5 Printer SYSOUT=T DEST=printer5
Color LaserJet PostScript Level 2 SYSOUT=T DEST=printer2
;

proc prtdef data=printers;
run;

Note: SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to
ASCII conversion.

Example 2: Defining a Universal Printer for an Email
Message with a PostScript Attachment

The following SAS program provides an example of how to use PROC PRTDEF in
the z/OS operating environment to set up a Universal Printing printer definition
that generates an email message with a PostScript attachment.

data printers;
 name='email';
 protocol = 'None';
 model = 'PostScript Level 2 (color)';
 device = 'email';
 dest = 'John.Doe@sas.com';
 hostopt = "recfm=vb Subject='Weekly Report'
 ct='application/PostScript' ";
 run;
proc prtdef data=printers replace list; run;

Note: ct is an abbreviation for the MIME keyword content_type.

Setting Up Printers in Your Environment

Introduction to Output Variables

The following tables contain information about the required and optional variables
that you need to use to create different types of outputs. Use these option values
when you define variables for printing to a Universal Printer in a specific operating
environment.

Using Universal Printing in a Batch Environment 199

z/OS PostScript

Table 9.2 PostScript Variables

Print to a PostScript Printer
Generate PostScript Output and
Save to a File

Model One of these:

n PostScript

n Gray scale PostScript

n Color PostScript

n Duplex PostScript

n PostScript Level 1

n PostScript Level 2

One of these:

n PostScript

n Gray scale PostScript

n Color PostScript

n Duplex PostScript

n PostScript Level 1

n PostScript Level 2

Device Type PRINTER DISK

Destination not applicable <syspref>.SASPRT.PS

Host Options sysout=t dest=<printer-address>1 recfm=vb

Protocol ASCII ASCII

Translate Table NONE NONE

FTP not applicable Binary

1 SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to ASCII conversion. <printer-address> is the
LAN queue name, such as PRT23LJ5.

z/OS PCL

Table 9.3 PCL Variables

Print to a PCL Printer
Generate PCL Output
and Save to a File

Model One of these:

n PCL4

n PCL5

n PCL5e

One of these:

n PCL4

n PCL5

n PCL5e

200 Chapter 9 / Universal Printing

Print to a PCL Printer
Generate PCL Output
and Save to a File

n PCL5c n PCL5c

Device Type PRINTER DISK

Destination not applicable <syspref>.SASPRT.PDF

Host Options sysout=t dest=<printer-
address>1

recfm=vb

Protocol ASCII ASCII

Translate Table NONE NONE

FTP not applicable Binary

1 SYSOUT=T indicates a binary queue, which is a queue that has no EBCDIC to ASCII conversion.
<printer-address> is the LAN queue name, such as PRT23LJ5. Check with your system administrator
to determine the SYSOUT class and valid destination values at your location.

z/OS PDF

Table 9.4 PDF Variables

Generate PDF Output and Save to a
File

Model PDF

Device Type DISK

Destination Userid.sasprt.pdf

Host Options recfm=vb

Protocol ASCII

Translate Table NONE

Buffer Size 255

FTP to PC Binary

Using Universal Printing in a Batch Environment 201

Using FTP with Universal Printing

Overview of Using FTP with Universal Printing
SAS enables you to use FTP to send universal printing output to a printer or to a file
that is on another server, another machine, or another operating system. When you
use FTP, such as in the FILENAME statements in the following examples, you have
to specify the recfm=s parameter.

Sending Output to a Printer
The following code example sends PostScript output to the printer that you specify
with the host option of the FILENAME statement. The host option specifies the IP
address that your printer is connected to, and the user option specifies your user ID.
The pass option specifies your password. You can replace pass with the prompt
option if you prefer to be prompted for your password at run time.

The following example produces output that has a border and contains the text,
“Example Output with recfm=s.”

filename grafout ftp ' '
 host="IP address"
 user="username"
 recfm=s
 pass="user password";

options printerpath=('PostScript Level 2' grafout);
goptions reset=all dev=sasprtc gsfname=grafout gsfmode=replace;
proc gslide border;
 title 'Example Output with recfm=s';
run;
quit;
filename grafout clear;

Sending Output to a File
The following code example sends PostScript output to a file in a UFS directory on
a remote system that you specify with the host option of the FILENAME statement.
The host option specifies the name of the server that your UFS directory is located
on, and the user option specifies your user ID. The pass option specifies your

202 Chapter 9 / Universal Printing

password. You can replace pass with the prompt option if you prefer to be
prompted for your password at run time.

The following example produces output that has a border and contains the text,
“Example Output with recfm=s.”

filename grafout ftp '~username/filename.ps'
 host="hostname"
 user="username"
 recfm=s
 pass="user password";

options printerpath=('PostScript Level 2' grafout);
goptions reset=all dev=sasprtc gsfname=grafout gsfmode=replace;
proc gslide border;
 title 'Example Output with recfm=s';
run;
quit;
filename grafout clear;

Example Programs and Summary

Overview of Example Programs and Summary
All of the example programs access the SASLIB.HOUSES data set, which is shown
in “The SASLIB.HOUSES Data Set” on page 216. Examples 1 through 4 execute the
same PROC PRINT using different combinations of output formats and printing
destinations. Example 5 and Example 6 use SAS/GRAPH code to execute PROC
REG followed by PROC GPLOT, again with different output formats and printing
destinations. For a summary of the results, see “Summary of Printing Examples” on
page 217.

The example programs were developed on the z/OS platform. A printer device of
PostScript output is written to a file.

To generate output to other printer definitions, use the printers defined at your site,
or include your own printer definitions. For more information about printer
definitions, see “Setting Up a Universal Printer with PROC PRTDEF” on page 196.

Example 1: ODS and a Default Universal Printer
Output:

Default Universal Printer

Example Programs and Summary 203

Format:
ODS

options linesize=80 nodate;
libname saslib '.saslib.data';

ods listing close;
ods printer;

title1 'ods and up default';

proc print data=saslib.houses;
 format price dollar10.0;
run;

ods printer close;

The following output shows the results of this code:

204 Chapter 9 / Universal Printing

Example 2: ODS and the PRINTERPATH System
Option

Output:
Universal Printer 'Postscript'

Format:
ODS

options linesize=80 nodate;
libname saslib '.saslib.data';

options printerpath = PostScript;
ods listing close;
ods printer;

title1 'ods and printerpath (no fileref)';

proc print data=saslib.houses;
 format price dollar10.0;
run;

ods printer close;

The following output shows the results of this code:

Example Programs and Summary 205

Example 3: ODS and the PRINTERPATH System
Option (with FILEREF)

Output:
File '.sasprt.out' with the characteristics of the Universal
Printer 'Postscript'

Format:
ODS

options linesize=80 nodate;
libname saslib '.saslib.data';

filename outlist '.sasprt.out';
options printerpath = ('Postscript' outlist);
ods listing close;
ods printer;

title1 'ods and up file';
title2 'printerpath with fileref';

proc print data=saslib.houses;
 format price dollar10.0;

206 Chapter 9 / Universal Printing

run;

ods printer close;

The following output shows the results of this code:

Example 4: PRINTERPATH and FILENAME
UPRINTER Statement

The following example code uses a line printer to format output to a PostScript
printer. Because no font is specified, the font that is used is the default 12-point
Courier font.

Output:
Universal Printer 'Postscript'

Format:
LINE PRINTER

options linesize=80 nodate;
libname saslib '.saslib.data';

title1 'proc printto';

Example Programs and Summary 207

title2 'filename upr and printerpath';

options printerpath = Postscript;
filename upr uprinter;

proc printto print=upr; run;

proc print data=saslib.houses;
 format price dollar10.0;
run;

The following output shows the results of this code:

1 proc
printto
 1
 filename upr and printerpath

 style sqfeet brs baths price

 CONDO 1400 2 1.5 $80,050
 CONDO 1390 3 2.5 $79,350
 CONDO 2105 4 2.5 $127,150
 CONDO 1860 2 2.0 $109,250
 CONDO 2000 4 2.5 $125,000
 RANCH 1250 2 1.0 $64,000
 RANCH 1535 3 3.0 $89,100
 RANCH 720 1 1.0 $35,000
 RANCH 1300 2 1.0 $70,000
 RANCH 1500 3 3.0 $86,000
 SPLIT 1190 1 1.0 $65,850
 SPLIT 1615 4 3.0 $94,450
 SPLIT 1305 3 1.5 $73,650
 SPLIT 1590 3 2.0 $92,000
 SPLIT 1400 3 2.5 $78,800
 TWOSTORY 1810 4 3.0 $107,250
 TWOSTORY 1040 2 1.0 $55,850
 TWOSTORY 1240 2 1.0 $69,250
 TWOSTORY 1745 4 2.5 $102,950
 TWOSTORY 1200 4 1.0 $70,000

Example 5: SAS/GRAPH: ODS and PRINTERPATH
System Option

Output:
File '.graphip.ps' with the characteristics of the Universal
Printer 'Postscript'

Format:
ODS

options nodate;

208 Chapter 9 / Universal Printing

goptions reset=all;
libname saslib '.saslib.data';

filename out '.graphip.ps';
options printerpath=(Postscript out);
ods listing close;
goptions device=sasprtc cback=white gsfmode=append;
ods printer style=default;

footnote "ODS and Universal Printer";
title1 "Linear Regression";
title2 "Results";

proc reg data=saslib.houses;
 /* Regression model */
 Linear_Regression_Model: MODEL price = sqfeet / ;

 /* output dataset to use as input for plots */
 output out = WORK._PLOTOUT
 predicted = _predicted1
 residual = _residual1
 student = _student1
 rstudent = _rstudent1;
 run;
quit;

goptions hsize=5in vsize=5in;
goptions border;

title1 "Regression Analysis";
title2 "Plots";
axis1 major=(number=5) width=1;
axis3 major=(number=5) offset=(5 pct) width=1;

proc gplot data=WORK._PLOTOUT;
 where price is not missing and
 sqfeet is not missing;

 /* ********* PREDICTED plots ********* */

 title4 "Observed price by Predicted price";
 symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
 label _predicted1 = "Predicted price";
 where price is not missing and _predicted1 is not missing;
 plot price * _predicted1 /
 vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0
 description = "Observed price by Predicted price";
 run;

 /* ********* RESIDUAL plots ********* */

 title9 "Studentized Residuals of price by Predicted price";
 symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
 label _rstudent1 = "Residuals";
 label _predicted1 = "Predicted price";
 where _rstudent1 is not missing and _predicted1 is not missing;

Example Programs and Summary 209

 plot _rstudent1 * _predicted1 /
 vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0 vref=0
 description = "Studentized Residuals of price by Predicted price";
 run;
 symbol;
quit;

proc delete data=WORK._PLOTOUT; run;
title; footnote; run;

ods printer close;

The following output shows the results of PROC REG:

The following output shows the “Observed price by Predicted price” plot for this
example:

210 Chapter 9 / Universal Printing

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this example:

Example Programs and Summary 211

Example 6: SAS/GRAPH: No ODS or
PRINTERPATH System Option

Output:
File '.graphip.ps'

Format:
As specified by the SAS/GRAPH device driver

options linesize=80 nodate;
goptions reset=all;
filename out '.graphip.ps';
goptions device=ps gsfname=out;
goptions cback=white gsfmode=append;
libname saslib '.saslib.data';

footnote "Regular SAS/GRAPH PS Output; no ODS, no Universal Printer";
title1 "Linear Regression";
title2 "Results";

proc reg data=saslib.houses;
 /* Regression model */
 Linear_Regression_Model: MODEL price = sqfeet / ;

 /* output dataset to use as input for plots */
 output out = WORK._PLOTOUT
 predicted = _predicted1
 residual = _residual1
 student = _student1
 rstudent = _rstudent1;
 run;
quit;

goptions hsize=5in vsize=5in;
goptions border;

title1 "Regression Analysis";
title2 "Plots";
axis1 major=(number=5) width=1;
axis3 major=(number=5) offset=(5 pct) width=1;

proc gplot data=WORK._PLOTOUT;
 where price is not missing and
 sqfeet is not missing;

 /* ********* PREDICTED plots ********* */

 title4 "Observed price by Predicted price";
 symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
 label _predicted1 = "Predicted price";
 where price is not missing and _predicted1 is not missing;
 plot price * _predicted1 /

212 Chapter 9 / Universal Printing

 vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0
 description = "Observed price by Predicted price";
 run;

 /* ********* RESIDUAL plots ********* */

 title9 "Studentized Residuals of price by Predicted price";
 symbol1 C=GREEN V=DOT height=2PCT interpol=NONE L=1 W=1;
 label _rstudent1 = "Residuals";
 label _predicted1 = "Predicted price";
 where _rstudent1 is not missing and _predicted1 is not missing;
 plot _rstudent1 * _predicted1 /
 vaxis=AXIS1 vminor=0 haxis=AXIS3 hminor=0 vref=0
 description = "Studentized Residuals of price by Predicted price";
 run;
 symbol;
quit;

proc delete data=WORK._PLOTOUT; run;
title; footnote; run;

The following output shows the results of PROC REG. This output appears in the
SAS Output window.

1 Linear Regression
 1

 Results

 The REG Procedure

 Model: Linear_Regression_Model

 Dependent Variable: price

 Analysis of Variance

 Sum of Mean
 Source DF Squares Square F Value Pr > F

 Model 1 12798244470 12798244470 3791.82 <.0001

 Error 26 87755798 3375223

 Corrected Total 27 12886000268

 Root MSE 1837.17800 R-Square 0.9932
 Dependent Mean 83716 Adj R-Sq 0.9929
 Coeff Var 2.19453

 Parameter Estimates
 Parameter Standard

 Variable DF Estimate Error t Value Pr > |t|
 Intercept 1 -16246 1660.05685 -9.79 <.0001
 sqfeet 1 68.52572 1.11283 61.58 <.0001

Example Programs and Summary 213

 Regular SAS/GRAPH PS Output; no ODS, no Universal Printer

The following output shows the “Observed price by Predicted price” plot for this
example. The two graphs are written to .GRAPHIP.PS.

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this example:

214 Chapter 9 / Universal Printing

The following output shows the “Observed price by Predicted price” plot for this
example. The two graphs are written to a PostScript file.

Example Programs and Summary 215

The following output shows the “Studentized Residuals of price by Predicted price”
plot for this example:

The SASLIB.HOUSES Data Set

Contents of the SASLIB.HOUSES Data Set
The SASLIB.HOUSES data set contains the data used by the example programs in
this section.

libname saslib '.saslib.data';
data saslib.houses;
 input style $ 1-8 sqfeet 15-19 brs 22 baths 25-27 price 30-38;
 datalines;
CONDO 1400 2 1.5 80050
CONDO 1390 3 2.5 79350
CONDO 2105 4 2.5 127150
CONDO 1860 2 2 110700
CONDO 2000 4 2.5 125000
RANCH 1250 2 1 64000
RANCH 1535 3 3 89100

216 Chapter 9 / Universal Printing

RANCH 720 1 1 35000
RANCH 1300 2 1 70000
RANCH 1500 3 3 86000
SPLIT 1190 1 1 65850
SPLIT 1615 4 3 94450
SPLIT 1305 3 1.5 73650
SPLIT 1590 3 2 92000
SPLIT 1400 3 2.5 78800
TWOSTORY 1810 4 3 107250
TWOSTORY 1040 2 1 55850
TWOSTORY 1240 2 1 69250
TWOSTORY 1745 4 2.5 102950
TWOSTORY 1300 2 1 70000
run;

Summary of Printing Examples

Example Where Printed
Output
Format

ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

Default Universal
Printer

ODS

options printerpath=MYPRINT;
ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

Universal Printer
MYPRINT

ODS

filename MYFILE ".myfile.out";
options printerpath= (Postscript MYFILE);
ods listing close;
ods printer;
proc print data=saslib.houses; run;
ods printer close;

File .MYFILE.OUT with
the characteristics of
the Universal Printer
“PostScript”

ODS

options printerpath=MYPRINT;
filename upr uprinter;
proc printto print=upr; run;
proc print data=saslib.houses; run;

Universal Printer
MYPRINT

Line Printer
1

filename upr uprinter;
proc printto print=upr; run;
proc print data=saslib.houses; run;

Default Universal
Printer

Line Printer
1

options printerpath=MYPRINT;
ods listing close;
ods printer;
goptions device=sasprtc; *
proc reg data=saslib.houses; run;
proc gplot; run;

Universal Printer
MYPRINT

ODS

The SASLIB.HOUSES Data Set 217

Example Where Printed
Output
Format

ods printer close;

filename OUT ".graphip.ps";
goptions device=ps gsfname=OUT;
proc reg data=saslib.houses; run;
proc gplot; run;

File .GRAPHIP.SAS As
specified
by the
SAS/GRAPH
device
driver

options printerpath=postscript
device=sasprtc;
proc gplot; run;

Universal Printer
PostScript
file .SASPRT.PS

SAS/GRAPH

1 The default font is 12-point Courier unless otherwise specified.

* goptions device= is needed only in batch mode.

218 Chapter 9 / Universal Printing

10
SAS Processing Restrictions for
Servers in a Locked-Down State

Overview of SAS Processing Restrictions for Servers in a Locked-down State 219

Restricted Features . 219

Disabled Features . 220

Specifying Functions in the Lockdown Path List . 220

Overview of SAS Processing Restrictions
for Servers in a Locked-down State

When you access a SAS Foundation server that is running on z/OS in the locked-
down state, some SAS features are restricted and some features are disabled. For
more information, see “Sign On to Locked-Down SAS Sessions” in SAS/CONNECT
User’s Guide and “SAS Processing Restrictions for Servers in a Locked-Down State”
in SAS Programmer’s Guide: Essentials. In addition, certain SAS features specific to
the z/OS environment are also restricted or disabled as described in the following
sections.

Restricted Features
Access to permanent z/OS data sets and UFS files and directories is not permitted
unless enabled in the lockdown list. This restriction applies to all SAS features,
most notably FILENAME and LIBNAME statements in SAS programs that are
submitted for execution on the server. It also applies to the ability to list files on
the server through SAS clients such as SAS Enterprise Guide. When SAS is in the

219

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0cxcsc85ocjutn10m3k68k73cpd.htm&docsetTargetAnchor=n1ricc38ufb01ln106fjuttclfe7&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0cxcsc85ocjutn10m3k68k73cpd.htm&docsetTargetAnchor=n1ricc38ufb01ln106fjuttclfe7&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en

locked-down state, SAS does not permit access to uncataloged z/OS data sets
except through externally allocated ddnames that are established by the server
administrator. However, there are no restrictions on creating temporary z/OS data
sets and UFS files, and processing them within the context of a single client
session. The z/OS data sets are considered temporary if they are allocated
DISP=(NEW,DELETE). External files are considered temporary if they are assigned
using the FILENAME device of TEMP. All members of the client WORK library are
considered temporary.

The SAS server administrator at your installation is responsible for the content of
the lockdown list. Therefore, if you need to access a z/OS data set or UFS file that
is unavailable in the locked-down state, contact your server administrator.

Disabled Features
The following SAS procedures, which are specific to z/OS, cannot be executed
when SAS is in the locked-down state:

PDS SOURCE
PDSCOPY TAPECOPY
RELEASE TAPELABEL

The following DATA step functions, which are specific to z/OS, cannot be executed
when SAS is in the locked-down state:

ZVOLLIST ZDSATTR
ZDSLIST ZDSRATT
ZDSNUM ZDSXATT
ZDSIDNM ZDSYATT

The following access method, which is specific to z/OS, cannot be executed when
SAS is in the locked-down state:

VTOC

Specifying Functions in the Lockdown
Path List

If the SAS session in which you are specifying a function is in a locked-down state,
and the pathname specified in the function has not been added to the lockdown
path list, then the function will fail and a file access error related to the locked-

220 Chapter 10 / SAS Processing Restrictions for Servers in a Locked-Down State

down data will not be generated in the SAS log unless you specify the SYSMSG
function.

The SYSMSG function can be placed after the function call in a DATA step to
display lockdown-related file access errors.

This condition is true for the following functions as well as any other functions that
take physical pathname locations as input:

n DCREATE

n FILEEXIST

n FILENAME

n RENAME

n DSNCATLGD (specific to z/OS)

Specifying Functions in the Lockdown Path List 221

222 Chapter 10 / SAS Processing Restrictions for Servers in a Locked-Down State

11
Using the SAS Remote Browser

What Is the Remote Browsing System? . 223

Starting the Remote Browser Server . 223

Setting Up the Remote Browser . 224
Overview of Setting Up the Remote Browser . 224
Example 1: Setting Up the Remote Browser at SAS Invocation . 224
Example 2: Setting Up the Remote Browser during a SAS Session 225

Remote Browsing and Firewalls . 225
For General Users . 225
For System Administrators . 225

Using Remote Browsing with ODS Output . 226

What Is the Remote Browsing System?
The remote browsing system enables users who access SAS through a 3270
emulator (or a real 3270) to view SAS documentation from a web browser on the
user's PC. Prior to SAS 9.2, all documentation was displayed by the item store help
in the SAS Help Browser window in the 3270 display. By displaying this
documentation in your web browser, you have better browsing capability and more
complete documentation content.

Starting the Remote Browser Server
Remote browsing is invoked when SAS displays HTML output, usually from ODS,
the Help system, or from the WBROWSE command. SAS attempts to detect your
desktop computer's network address and send remote browser requests to it. If you
have not installed the remote browser server on your desktop computer, SAS
displays a dialog box that contains the address that is necessary to download the

223

installer. The Help server provides the remote browser installer, so you do not have
to end your SAS session to install the remote browser server. Copy the address in
the dialog box to your browser, download the installer, and run it. The installer
places the remote browser server in the Startup Items folder, so that it starts each
time you start your desktop computer.

Setting Up the Remote Browser

Overview of Setting Up the Remote Browser
After the remote browser server is running on your computer, you can run the Help
by using the defaults for the HELPBROWSER, HELPHOST, and HELPPORT system
options. If the HELPHOST option is not coded, SAS attempts to connect to the
remote browser at the network address to which your computer's 3270 emulator
(or your 3270 terminal) points. If the address is not the correct address for the
remote browser, then you have to set the appropriate value for the HELPHOST
option.

n The HELPBROWSER system option specifies whether you want to use the new
help (REMOTE, the default) or the traditional item store-based help (SAS) that
uses the SAS Help browser. See the SAS System Options: Reference for more
information.

n The HELPHOST system option specifies the network name of your computer,
which runs the remote browser server. If the HELPHOST option value is not
specified, it defaults to the network address of the computer that is running
your 3270 display emulator. This computer is usually the same computer that is
running the remote browser server. For more information, see “HELPHOST
System Option: z/OS” on page 774.

n The HELPPORT system option specifies the port number that the remote
browser server is listening on. The default port is 3755, the port that is
registered for the Remote Browser Server. For more information, see the SAS
System Options: Reference.

You can set these options at SAS invocation, in your configuration file, or during
your SAS session in the OPTIONS statement or in the OPTIONS window.

Example 1: Setting Up the Remote Browser at SAS
Invocation

The following code shows you how to set up the remote browser at SAS invocation:

sas o('helphost=mycomputer')

224 Chapter 11 / Using the SAS Remote Browser

Example 2: Setting Up the Remote Browser during a
SAS Session

The following code shows you how to set up the remote browser during your SAS
session:

options helphost=mycomputer;

Remote Browsing and Firewalls

For General Users
If your network has a firewall between desktop computers and the computer that
hosts SAS, browsers cannot display web pages from your SAS session. Usually, this
is indicated by a time-out or connection error from the web browser. If you receive
a time-out or connection error, contact your system administrator.

For System Administrators
To enable the display of web pages when a firewall exists between desktop
computers and SAS, a firewall rule that enables a browser to connect to SAS must
be added. The firewall rule specifies a range of network ports for which SAS remote
browsing connections are allowed. Contact the appropriate administrator who can
select and configure a range of firewall ports for remote browsing. The range size
depends on the number of simultaneous SAS users. A value of approximately three
times the number of simultaneous users should reserve a sufficient amount of
network ports.

Once the firewall rule has been added, SAS must be configured to listen for
network connections in the port range. Normally, SAS selects any free network
port, but the HTTPSERVERPORTMIN and HTTPSERVERPORTMAX system
options limit the ports that SAS selects. Add these options to your SAS
configuration file. Set the HTTPSERVERPORTMIN option to the lowest port in the
range. Set the HTTPSERVERPORTMAX option to the highest port in the range. For
example, if the network administrator defines a port range of 8000–8200, the
system options are set as follows:

httpserverportmin=8000
httpserverportmax=8200

Remote Browsing and Firewalls 225

After the firewall rule is added and these system options are set, desktop
computers can view web pages through the firewall. If there are insufficient ports or
the system options are specified incorrectly, a message is displayed in the SAS log.

For more information about these options, see “HTTPSERVERPORTMIN= System
Option” and “HTTPSERVERPORTMAX= System Option” in the SAS System Options:
Reference.

Using Remote Browsing with ODS
Output

The SAS Output Delivery System can be used to generate graphical reports of your
SAS data. Remote browsing enables you to view your output directly from the SAS
session, either in real time as the output is generated, or on demand from the
Results window.

Remote browsing displays ODS output that is generated to z/OS native data sets
(sequential, PDS, or PDSE) or a UFS directory. HTML, PDF, RTF, and XLS file types
are displayed with the remote browsing system. If your browser does not have the
appropriate plug-in for non-HTML data types, it is displayed a download dialog box
rather than the actual data. This dialog box enables you to download the report to
your PC and view it using a local program, such as Excel for an XLS file.

Note: When images or graphics are written to a z/OS native data set and remote
browsing is being used to view the output, the URL=NONE option should not be
used with the ODS statement. Using this option causes the HTML to be written
with incomplete filenames, and the remote browsing system is not able to
determine the location of the image or graphics. When this situation occurs, the
browser displays broken image icons in the HTML output.

The automatic display of ODS output is turned off by default. You can turn on the
automatic display of ODS output by issuing the AUTONAVIGATE command in the
Results window.

For more information about viewing ODS output with a browser, see “Viewing ODS
Output on an External Browser” on page 162.

226 Chapter 11 / Using the SAS Remote Browser

12
Using Item Store Help Files

Accessing SAS Item Store Help Files . 227

Using User-Defined Item Store Help Files . 228

Creating User-Defined Item Store Help Files . 229

Converting Item Store Help to HTML Help . 230
Overview of Converting Item Store Help . 230
Creating a Common Directory . 230
Converting Your Files to HTML . 231
Adding HELPLOC Path Values . 231
Accessing Your HTML Help Files . 232
See Also . 232

Creating User-Defined Help Files in HTML . 233

Accessing SAS Item Store Help Files

Note: SAS supports item store help files. However, SAS help files are available
only in HTML. If you are using item store help files, then we strongly recommend
that you convert them to HTML. You can then use your HTML help files with the
SAS help files that are in HTML. For information about converting your item store
files to HTML, see “Converting Item Store Help to HTML Help” on page 230 and
“%ISHCONV Macro Macro Statement: z/OS” on page 520.

Help is available through the SAS online Help facility. To obtain host-specific help,
execute the PMENU command as necessary to display SAS menus. Then select
Help ð SAS System Help ð Main TOC ð Using SAS Software in z/OS. Then select
topics of interest at increasing levels of detail.

Issue the KEYS command to determine the function keys used to page up, down,
left, and right through help pages, and to move backward and forward between
Help topics.

227

Using User-Defined Item Store Help
Files

Your site might provide user-defined help that provides site-specific information
via the standard SAS help browser. To access user-defined help via the SAS help
browser, you need to allocate a user-defined help library at SAS invocation.

The user-defined help library contains help information in the form of one or more
item store files, which use a file format that enables SAS to treat the item store as a
file system within a file. Each item store can contain directories, subdirectories, and
individual Help topics. For information about loading user-defined help into item
store files, see “ITEMS Procedure Statement: z/OS” on page 548.

Help for SAS software is contained in item store files. SAS automatically allocates
libraries for SAS software help at SAS invocation. To invoke SAS so that it
recognizes user-defined help, follow these steps:

1 In an autoexec file, allocate the SAS library that contains the user-defined item
store files using the LIBNAME statement. For example, if the libref is to be
MYHELP and the item store is named APPL.HELP.DATA, the LIBNAME
statement in the SAS invocation would be

libname myhelp 'appl.help.data' disp=shr;

For more information, see “Autoexec Files” on page 14 and “LIBNAME
Statement: z/OS” on page 656.

2 Concatenate your item store files to the SAS help item store named by the
HELPLOC= system option at SAS invocation. For example, if the libref for your
user-defined help was MYHELP, and if the item store in the libref was named
PRGAHELP, then the HELPLOC= specification in the SAS invocation would be
as follows:

helploc='myhelp.prgahelp'

For more information about the HELPLOC= system option, see “HELPLOC=
System Option: z/OS” on page 775.

User-defined help cannot be added to the SAS help item store because most users
have Read-Only access to the SAS help library.

After SAS has been invoked so that it can recognize user-defined help, you can
access that help with the standard SAS help browser by issuing the HELP command
and specifying the appropriate universal resource locator (URL). For example, if the
Help topic that you want to display is named DIRAHLP1.HTM, and if that Help topic
is contained in an item store directory named PRGADIRA, the HELP command
would be as follows:

help helploc://prgadira/dirahlp1.htm

228 Chapter 12 / Using Item Store Help Files

See the next section for information about developing user-defined help for the
SAS help browser.

Creating User-Defined Item Store Help
Files

You can create help for your site or for your SAS programs that can be displayed in
the standard SAS help browser. To ensure that your user-defined help is displayed
as it is written, use only the subset of tags from HTML that are supported on the
SAS help browser. Help information in tags that are not supported by the SAS help
browser might be ignored by the SAS help browser.

The following table describes the HTML tags supported by the SAS help browser.
The TABLE tag is the only frequently used tag that is not supported at this time. To
add tables to your help, use the PRE tag and format the text manually using blank
spaces, vertical bars, hyphens, and underscores as needed.

Table 12.1 HTML Tags Supported by the SAS Help Browser

Tag Type Tag Names Description

heading H1, H2, H3, H4, H5, H6 for hierarchical section headings

paragraph P for text in the body of a help file

list UL, OL, DIR, MENU for unordered (bullet) lists, ordered
(numbered) lists, directory (unordered,
no bullets) lists, and menu (unordered)
lists

definition list DL, DT, DD for definition lists, titles of items, and
definitions of items

preformatted
text

PRE, XMP, LISTING for tables, which must be manually
formatted with blank spaces

font
specification

I, B, U for italic, bold, and underlined text

phrase EM, STRONG, DFN,
CODE, SAMP, KBD,
VAR, CITE

for emphasis, strong emphasis,
definitions, code examples, code
samples, keyboard key names, variables,
citations

Creating User-Defined Item Store Help Files 229

link A, LINK for anchors and the links that reference
those anchors

document TITLE, BASE, HEAD,
HTML

for titles in the browser, base URLs,
heading sections at the top of a page

For information about the options available for these tags, see any reference for the
version of HTML supported by your browser.

For information about loading your help into item store files, see “ITEMS Procedure
Statement: z/OS” on page 548.

Converting Item Store Help to HTML
Help

Overview of Converting Item Store Help
The SAS 9.4 remote browser does not read item store help files. The SAS
%ISHCONV macro enables you to convert your item store help files into HTML files
that you can use with the remote browser.

Note: If your location uses item store help files with SAS, then your SAS system
programmer is the person who usually converts the item store files to HTML files.
Contact your system programmer if you cannot access the HTML help files.

Creating a Common Directory
In order for SAS users at your location to access your HTML help files with the
remote browser, you need to create a common directory in UFS. The common
directory contains the HTML files that are created by the %ISHCONV macro. It can
also contain subdirectories that contain more HTML files. The %ISHCONV macro
uses the htmdir parameter to specify the common directory if you do not create it
before running the macro. However, you have to specify a directory pathname for
the htmdir parameter, so it is best to create the directory before you convert the
item store files.

The common directory should allow all SAS users at your location to access the
files, so you should place it in a directory path that is accessible to them. As always,
it is a good idea to determine the best location for the directory before you create it

230 Chapter 12 / Using Item Store Help Files

and put your files in it. Such planning can prevent you from having to move the
directory and its files at a later date.

Converting Your Files to HTML
The SAS macro, %ISHCONV, converts your item store files into HTML files.
%ISHCONV uses the ishelp and ishref parameters to specify the data set name
of the catalog that contains the item store help and the member of the item store
help. It uses the exphlp and htmdir parameters to specify the filename of a work
file for conversion processing and the pathname for the HTML files.

Note: The converted HTML files have a file extension of .htm.

For more information about using %ISHCONV to convert your item store files to
HTML, see “%ISHCONV Macro Macro Statement: z/OS” on page 520.

Adding HELPLOC Path Values
The INSERT system option enables you to add new path values to the HELPLOC
option. Path values that are added with the INSERT option are read before paths
that are already assigned to the HELPLOC option in your configuration file. You can
insert multiple paths for the HELPLOC option.

The following commands insert a new path value for the HELPLOC option before
other paths that are specified in your configuration file. The following example
inserts a path in a directory that contains files in ASCII:

-insert (helploc='/u/userid/ishconv_dir_ascii')

The following example inserts a path in a directory that contains files in EBCDIC:

-insert (helploc='/u/userid/ishconv_dir_ed–1047;ebcdic')

After you use the INSERT command to assign additional path values, you can issue
the following command:

proc options option=helploc; run;

To display the new value for HELPLOC that combines the two paths:

HELPLOC=('/u/userid/ishconv_dir_ascii'
 '/u/userid/ishconv_dir_ed-1047;ebcdic'
 '/usr/local/SASdoc')

The path value '/usr/local/SASdoc' is the value that was set for HELPLOC in
your configuration file.

Converting Item Store Help to HTML Help 231

Accessing Your HTML Help Files
After your item store help files are converted to HTML, you can access the HTML
help files by the same methods that you used to access the item store help:

n Select Help from the SAS menu bar.

n Enter the HELP command from the SAS command line.

The SAS HELP command:

help helploc://user.hlp/index.htm

accesses the index.htm file in the UFS directory that has the fully qualified name:

/u/userid/ishconv_dir_ascii/user.hlp/index.htm

Note: You are not limited to using the HELP command to access only the
index.htm file of your help. You can issue the HELP command to access Help with
the remote browser for Windows, SAS language elements, and so on. This behavior
is the same as you have seen with previous SAS Help systems.

If a help file with the same relative path and filename exists in multiple HELPLOC
path values, SAS displays the file from the first path that is encountered. This
feature enables you to amend an existing file that is available to SAS.

If you get an error message that the Help is not available, use the HELPLOC system
option to specify the location of the Help files. You can include the HELPLOC
option in your configuration file, or you can issue it at SAS invocation. Contact your
system programmer for the location of the Help files that you need to use with the
HELPLOC option.

See Also
n “HELPBROWSER= System Option” in SAS System Options: Reference

n “HELPLOC= System Option: z/OS” on page 775

n “HELPTOC System Option: z/OS” on page 776

n “INSERT= System Option: z/OS” on page 783

n “%ISHCONV Macro Macro Statement: z/OS” on page 520

n “Macros in the z/OS Environment” on page 511

n SAS Macro Language: Reference

232 Chapter 12 / Using Item Store Help Files

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n04utbe2faik63n14cmamwsu80r6.htm&locale=en

Creating User-Defined Help Files in
HTML

You can write your own HTML help files to use with SAS. Use the same tools or file
editors to write these HTML files that you would use to write any other HTML files.
After you have written these files, place them in a location where SAS can access
them. If your HTML help files are encoded in EBCDIC, you need to include
the ;ebcdic attribute in the declaration for the HELPLOC system option. For
information about working with ASCII-encoded files in the z/OS USS environment,
see the IBM z/OS UNIX System Services User's Guide.

For information about using the HELPLOC system option, see “HELPLOC= System
Option: z/OS” on page 775.

Note: SAS provides the ITEMS procedure to enable you to produce item store files,
but we encourage you to create and use HTML help files. Any item store file that
you create is used with SAS item store files that have not been updated for this
release of SAS.

Creating User-Defined Help Files in HTML 233

234 Chapter 12 / Using Item Store Help Files

13
Exiting or Terminating Your SAS
Session in the z/OS Environment

Preferred Methods for Exiting SAS . 235

Additional Methods for Terminating SAS . 235

Preferred Methods for Exiting SAS
These are the preferred methods for exiting a SAS session:

n select File ð Exit from the menu bar in interactive SAS

n use endsas; in SAS code

n enter BYE or ENDSAS on the command line.

n enter the SIGNOFF command if you are using SAS/CONNECT.

Additional Methods for Terminating SAS
If SAS is running as a server task that started in MVS, a system operator can
terminate it in the following ways:

STOP
This method is the equivalent of an application requesting a normal shutdown.
You should have no problems with your files.

CANCEL
The operating system initiates the termination of SAS, but application error
handlers can still run and cleanup is possible. Your files are closed, and the

235

buffers are flushed to disk. However, there is no way to ensure that the
shutdown is always orderly. Your files might be corrupted.

FORCE
The operating system terminates all application processes with no recovery.
This is the equivalent to what would happen if the system were rebooted.

Some databases, such as DB2, are able to recover from both the CANCEL and
FORCE types of failures. These applications accomplish this task by logging every
change so that, regardless of when a failure occurs, the log can be replayed to
enable recovery to a valid state. However, some transactions could still be lost.

Although you can terminate SAS using these techniques, you should try one of the
three preferred techniques listed first. For more information, see “What If SAS Does
Not Start?” on page 6.

236 Chapter 13 / Exiting or Terminating Your SAS Session in the z/OS Environment

PART 3

Troubleshooting SAS under z/OS

Chapter 14
Solving Problems under z/OS . 239

Chapter 15
Support for SAS Software . 247

237

238

14
Solving Problems under z/OS

Overview of Solving Problems under z/OS . 239

Problems Associated with the z/OS Operating Environment . 240

Solving Problems with Scroll Bars, Borders, Buttons, and Text . 241

Solving Problems within SAS Software . 242
Overview of Solving Problems within SAS Software . 242
Examining the SAS Log . 242
Checking the Condition Code . 243
DATA Step Debugger . 243
Using SAS Statements, Procedures, and System Options to Identify Problems . . 244
Host-System Subgroup Error Messages . 244
z/OS System Log . 245

Overview of Solving Problems under
z/OS

As you use SAS software under z/OS, you might encounter problems within your
SAS program. Or, problems might occur with some component of the operating
environment or with computer resources rather than with SAS software. For
example, problems might be related to job control language or to a TSO command.

239

Problems Associated with the z/OS
Operating Environment

If a problem is detected by the operating environment, it sends messages to the job
log or to the terminal screen (not the SAS log). In this case, you might need to
consult an appropriate IBM manual or your on-site systems staff to determine the
problem and the solution.

Most error messages indicate which part of the operating environment is detecting
the problem. Here are some of the most common message groups, along with the
operating environment component or utility that issues them:

ARC
IBM Hierarchical Storage Manager

BPX
IBM UNIX System Services

CEE
IBM Language Environment (LE)

CSV
z/OS load module management routines

FSUM
IBM UNIX System Services Shell and Utilities

ICE
IBM sort utility

ICH
RACF system-security component of z/OS

IDC
catalog-management component of z/OS

IEC
z/OS data-management routines

IEF
IBM JCL Interpreter

IKJ
TSO terminal monitor program (TMP) and other TSO components

LSC
SAS/C Run-Time Library

WER
SYNCSORT program

Consult the appropriate system manual to determine the source of the problem.

240 Chapter 14 / Solving Problems under z/OS

Solving Problems with Scroll Bars,
Borders, Buttons, and Text

Some 3270 emulators can use nonstandard sizes for character cells that are not
compatible with the SAS Programmed Symbol display. If you are having problems
with the text display or with using the SAS window components such as scroll bars,
borders, buttons, and text, then your 3270 emulator might be using a nonstandard
size for character cells. If any of these problems occur, check your log for the
following message:

NOTE: Non-standard character cell size detected.
 Use TERMSTAT command for more information.

If the message appears in your SAS log, then close SAS and select an appropriate
size for character cells in your 3270 emulator’s configuration settings. You might
need to contact your site’s system programmer for information about how to
change your emulator’s configuration settings.

The following table contains the appropriate sizes for the character cell:

Character Cell Width Character Cell Height

6 12

8 14

9 13

9 14

9 16

To verify that you have specified an appropriate size for character cells, restart SAS
and issue the TERMSTAT command from any SAS command line. You should
receive a series of log messages that contains the terminal characteristics for your
emulator.

The following log excerpt shows an example of the information for terminal
characteristics that is returned by the TERMSTAT command. Note the values that
are specified for the Character Cell Width and the Character Cell Height in the
example. They match the values in the last row of the preceding table. The values
that you receive should match one set of the values in the table.

Terminal Characteristics
 Terminal Type = PCGX
 FSDEVICE Option =

Solving Problems with Scroll Bars, Borders, Buttons, and Text 241

 Primary Rows = 24
 Primary Columns = 80
 Alternate Rows = 32
 Alternate Columns = 80
 Number of Colors = 7
 Number of Highlight = 3
 Character Cell Width = 9
 Character Cell Height = 16
 Pixels/in. - X = 96
 Pixels/in. - Y = 96
 Loadable Symbols Sets = 6

Solving Problems within SAS Software

Overview of Solving Problems within SAS Software
Several resources are available to help you if you determine that your problem is
within SAS software. These resources are discussed in the following sections.

Examining the SAS Log
The primary source of information for solving problems that occur within SAS
software is the SAS log. The log lists the SAS source statements along with notes
about each step, warning messages, and error messages. Errors are flagged in the
code, and a numbered error message is printed in the log. It is often easy to find the
incorrect step or statement just by glancing at the SAS log.

Note: Some errors require that diagnostic messages are written before the SAS log
is opened or after it is closed. Such messages are written to the SASCLOG data set.
Under TSO, SASCLOG is normally allocated to the terminal. Occasionally,
operating system error messages might be issued during execution of a SAS
program. These messages appear in the job log or, under TSO, on the terminal.

Note: Some system messages are written to your TSO terminal only if you have set
the TSO PROFILE option to WTPMSG. This setting is sometimes useful in
diagnosing issues related to z/OS.

242 Chapter 14 / Solving Problems under z/OS

Checking the Condition Code
Upon exit, SAS returns a condition code to the operating environment that
indicates its completion status. The condition code is translated to a return code
that is meaningful to the operating environment.

SAS issues the condition codes in the following table:

Table 14.1 z/OS Condition Codes

Return Code Meaning

0 Successful completion

4 WARNING messages issued

8 Nonfatal ERROR messages issued

12 Fatal ERROR messages issued

16 ABORT; executed

20 ABORT RETURN; executed

ABND ABORT ABEND; executed

DATA Step Debugger
The DATA step debugger is an interactive tool that helps you find logic errors, and
sometimes data errors, in SAS DATA steps. By issuing commands, you can execute
DATA step statements one by one or in groups, pausing at any point to display the
resulting variable values in a window. You can also bypass the execution of one or
more statements. For further information about the DATA step debugger, see the
Base SAS Utilities: Reference.

Solving Problems within SAS Software 243

Using SAS Statements, Procedures, and System
Options to Identify Problems

If you are having a problem with the logic of your program, there might be no error
messages or warning messages to help you. You might not get the results or output
that you expect. Using PUT statements to write messages to the SAS log or to
dump the values of all or some of your variables might help. Using PUT statements
enables you to follow the flow of the problem and to see what is going on at
strategic places in your program.

Some problems might be related to the data. However; these problems can be
difficult to trace. Notes that appear in the SAS log following the step that reads and
manipulates the data might be very helpful. These notes provide information such
as the number of variables and observations that were created. You can also use
the CONTENTS and PRINT procedures to look at the data definitions as SAS
recorded them or to look at all or parts of the data in question.

SAS system options can also assist with problem resolution. See the SAS System
Options: Reference for more information about the following system options and
others that affect problem resolution:

MLOGIC
controls whether SAS traces execution of the macro language processor.

MPRINT
displays SAS statements that are generated by macro execution.

SOURCE
controls whether SAS writes source statements to the SAS log.

SOURCE2
writes secondary source statements from included files to the SAS log.

SYMBOLGEN
controls whether the results of resolving macro variable references are written
to the SAS log.

Host-System Subgroup Error Messages
For brief explanations of many of the host-system subgroup error messages that
you might encounter during a SAS session, see “Messages from the SASCP
Command Processor” on page 980.

244 Chapter 14 / Solving Problems under z/OS

z/OS System Log
The z/OS system log can also contain useful information that might assist you with
diagnosing a problem with SAS. Consult your system administrator for assistance
with viewing the system log.

Solving Problems within SAS Software 245

246 Chapter 14 / Solving Problems under z/OS

15
Support for SAS Software

Overview of Support for SAS Software . 247

Working with Your On-Site SAS Support Personnel . 248

SAS Technical Support . 248

Generating a System Dump for SAS Technical Support . 248

Overview of Support for SAS Software
Support for SAS software is shared by SAS and your installation or site. SAS
provides maintenance for the software; the SAS Installation Representative, the
on-site SAS support personnel, and the SAS Training Coordinator for your site are
responsible for giving you direct user support.

n The SAS Installation Representative receives all shipments and correspondence
and distributes them to the appropriate personnel at your site.

n The on-site SAS support personnel are knowledgeable SAS users who support
the other SAS users at your site. The SAS Technical Support Division is
available to assist your on-site SAS support personnel with problems that you
encounter.

n The SAS Training Coordinator works with the SAS Education Division to arrange
training classes for SAS users.

247

Working with Your On-Site SAS Support
Personnel

At your site, one or more on-site SAS support personnel have been designated as
the first point of contact for SAS users who need help with resolving problems.

If the on-site SAS support personnel are unable to resolve your problem, then the
on-site SAS support personnel contact the SAS Technical Support Division for you.
In order to provide the most efficient service possible, the company asks that you
do not contact SAS Technical Support directly.

SAS Technical Support
The SAS Technical Support Division can assist with suspected internal errors in
SAS software and with possible system incompatibilities. It can also help answer
questions about SAS statement syntax, general logic problems, and procedures and
their output. However, the SAS Technical Support Division cannot assist with
special-interest applications, with writing user programs, or with teaching new
users. It is also unable to provide support for general statistical methodology or for
the design of experiments.

Generating a System Dump for SAS
Technical Support

Follow these steps to generate a system dump that can be interpreted by SAS
Technical Support:

1 Disable ABEND-AID or any other dump formatting system software before
generating the dump.

2 Create a sequential data set with the DCB attributes DSORG=PS RECFM=FB
LRECL=560 and the following contents:

set tkopt_dumpprol=
set tkopt_nostae=
set tkopt_nostaex=

248 Chapter 15 / Support for SAS Software

3 In the batch job or TSO session in which SAS is started, allocate the following
ddnames:

n Specify the ddname of the sequential data set that is described with the
TKMVSENV option of the procedure, the REXX exec, or the CLIST.

n If an unformatted dump is desired, which is normally the case unless
otherwise advised by SAS Technical Support, allocate the ddname
SYSMDUMP to a disk data set. Specifying SPACE=(CYL,(50,50)) is usually
sufficient. In batch, it is usually convenient to allocate the dump data set
DISP=(,DELETE,CATLG) so that it is created only if the job abends.

n If a formatted dump is desired or requested, instead of an unformatted
dump, allocate the ddname SYSUDUMP to a disk data set or an appropriate
SYSOUT class. In most cases, this would be a SYSOUT class that is not
automatically printed.

n Specify the following options at SAS invocation: NOSTAE, DUMPPROL,
SOURCE, SOURCE2, NOTES, MPRINT, and SYMBOLGEN.

To deliver the dump to SAS, use one of the following methods:

FTP
Send unformatted dumps in BINARY mode and inform SAS Technical Support of
the DCB attributes of the original dump data set. Send formatted dumps in
ASCII mode.

Tape
Use IEBGENER to copy the dump data set to a magnetic tape cartridge using
IBM standard labels.

Generating a System Dump for SAS Technical Support 249

250 Chapter 15 / Support for SAS Software

PART 4

SAS Windows and Commands in z/OS
Environments

Chapter 16
Windows in z/OS Environments . 253

Chapter 17
Host-Specific Windows of the FORM Subsystem . 273

Chapter 18
SAS Window Commands under z/OS . 277

251

252

16
Windows in z/OS Environments

Overview of Windows in the z/OS Environment . 254

Using the Graphical Interface . 254
Overview of Using the Graphical Interface . 254
Window Controls and General Navigation . 254
Selection-Field Commands . 254

Terminal Support in the z/OS Environment . 257
Overview of Terminal Support in the z/OS Environment . 257
Text Device Drivers . 257
Graphics Device Drivers . 257
Using a Mouse in the SAS Windowing Environment under z/OS 257
Appearance of Window Borders, Scroll Bars, and Widgets . 257
Improving Screen Resolution on an IBM 3290 Terminal . 257

SAS System Options That Affect the z/OS Windowing Environment 261

Host-Specific Windows in the z/OS Environment . 261

Dictionary . 262
DSINFO Window Command . 262
Explorer Window . 263
DSLIST Window Command . 264
My Favorite Folders Window Command . 265
FILENAME Window Command . 266
FNAME Window Command . 266
LIBASSIGN Window Command . 269
LIBNAME Window Command . 269
MEMLIST Window Command . 270

253

Overview of Windows in the z/OS
Environment

Portable features of the SAS windowing environment are documented in the Help
for Base SAS. Only features that are specific to z/OS or that have aspects that are
specific to z/OS are documented in this section.

This section also includes information about terminals and special devices that you
can use with SAS software in the z/OS environment.

n “Using the Graphical Interface” on page 254

n “Terminal Support in the z/OS Environment” on page 257

n “SAS System Options That Affect the z/OS Windowing Environment” on page
261

n “Host-Specific Windows in the z/OS Environment” on page 261

n “Overview of Window Commands in the z/OS Environment” on page 277

n Chapter 17, “Host-Specific Windows of the FORM Subsystem,” on page 273

Using the Graphical Interface

Overview of Using the Graphical Interface
The graphical user interface provides windows, commands, and menus that are
compatible with 3270 terminals, with 3270 terminal emulation, and with other
graphics terminals used in the z/OS environment. This section describes the ways
that SAS windows and window controls function on these terminals.

For information about hardware support for terminals and mouse input devices, see
“Terminal Support in the z/OS Environment” on page 257.

Window Controls and General Navigation
This section explains some of the basic capabilities of the SAS windowing
environment under z/OS. The word select indicates positioning the cursor with a

254 Chapter 16 / Windows in z/OS Environments

single click of the mouse button or with the Tab or Shift+Tab keys if you do not
have a mouse. Press the Enter key to confirm your selection. The word choose
refers to the selection and confirmation of a menu option.

Function keys
Issue the KEYS command to display and edit function key settings.

Displaying SAS menus
Issue the PMENU command to display the SAS menu bar at the top of each
window. Then use a function key or chooseTools ð Options ð Command... to
display a command line window without removing the menus. You can also use
the default function keys F9 for pmenus and F10 for a command line.

Moving between windows
Issue the PREVWIND command (F7 by default) or the NEXT command (F8 by
default) to move the cursor and bring different windows to the foreground. If a
mouse is available, clicking in a particular window brings that window to the
foreground. The LOG, PGM, and OUT commands move the Log, Program, or
Output window to the foreground, respectively.

Resizing a window
n Select the window border that you want to resize.

n Select the new position of that window border.

n Select a top, bottom, or side border to resize horizontally or vertically.

n Choose a corner to resize horizontally and vertically at the same time.

You can also issue the ZOOM, ICON RESIZE, WGROW, and WSHRINK
commands to change window dimensions.

Arranging windows
Choose View ð Change Display to see a list of window arrangement options.
For example, the Cascade option moves and resizes windows to display the top
row of all active windows. You can also issue the RESIZE, CASCADE, and TILE
commands to arrange windows.

Moving a window
Select the title of the window in the upper left corner of the window border. The
word MOVE appears in the bottom of the display area. A second click
determines the new position of the top left corner of the window, which does
not change size. You can also issue the WMOVE command to move a window.

Navigating in a window
Scrolling

Scroll down through a file with the FORWARD command (F20 by default).
Scroll up with the BACKWARD command (F19 by default). Scroll right with
the RIGHT command (F23 by default), and scroll left with the LEFT
command (F22 by default).

You can also use scroll bars to scroll through a file. Issuing the SCROLLBAR
command displays vertical and horizontal scroll bars in all of the open SAS
windows. The SCROLLBAR command has two short forms, SCROLL and
SBAR. SCROLLBAR, SCROLL, and SBAR operate like toggle commands.
Issuing any of the commands either turns on the scroll bars or turns them off.

The SCROLLBAR command has two optional parameters, on and off. You
can issue any of the forms of the SCROLLBAR command with the on or off

Using the Graphical Interface 255

parameters. For example, issuing scrollbar on displays the scroll bars in
the same way that issuing scrollbar or sbar displays them.

Selecting a view
In windows that contain a tree view on the left and a list view on the right,
such as the SAS Explorer window, select a view, press the Enter key, and
then move the cursor from field to field within that view.

Selecting a control or widget
A widget or a control is a screen character that implements a control
function for the window or the application. An example is the X character
that indicates the current position in a scroll bar. With the cursor positioned
on a control or widget, issue the WDGNEXT or WDGPREV commands to
move to the next, or the previous, control or widget.

Scrolling a view or column
Select a position in the scroll bar to change the displayed portion of a view
or column. Selecting in various places causes the display to move up or
down one screen width or move to the beginning or end of the view or
column.

Resizing a view or column
Select the diamond symbol in the upper right corner of the tree view or
column heading. The view title changes to the resize symbol. Select again to
fix the new horizontal position of the corner.

Sorting a column
Select the heading of the column that you want to sort. Not all columns can
be sorted.

Selection-Field Commands
Selection fields enable you to accomplish tasks in windows using keystrokes or
mouse clicks. This section introduces the selection-field commands that are
generally available in the z/OS windowing environment.

Certain SAS windows display a tree view on the left and a list view on the right.
Each view has its own set of selection-field commands. (You might want to display
one of these windows to test the following commands.)

The tree view shows hierarchical structures such as SAS libraries and members. To
display or hide a level of detail, position the cursor on the plus sign (+) or the
hyphen (–) to the far left of the library or member name and press the Enter key. A
single mouse click does the same job.

In the tree view and list view, you can perform tasks using the selection field
represented by an underscore character (_) just to the left of an item. To issue
selection-field commands, position the cursor and type in a single character, or
issue the WPOPUP command (right mouse button by default) or a question mark
(?) to see a menu of available selection field commands.

The following table lists some of the selection-field commands:

256 Chapter 16 / Windows in z/OS Environments

S or X Select or emulate a double-click

D Deassign or delete

P Properties

N New

R Rename

Terminal Support in the z/OS
Environment

Overview of Terminal Support in the z/OS
Environment

The information in the following sections might be useful to you if you use graphics
or special device drivers in the SAS windowing environment.

Note: SAS best supports those terminal emulators that closely conform to the
original IBM specifications for the 3270 terminal. If you are having difficulties with
the SAS vector graphics in your emulator session, make sure that the settings for
your emulator match the specifications for the 3270 terminal as closely as possible.

Text Device Drivers
SAS uses two interactive windowing text (nongraphics) device drivers: a non-
Extended-Data-Stream (non-EDS) driver and an Extended-Data-Stream (EDS)
driver. An EDS device supports IBM 3270 extended attributes such as colors and
highlighting, whereas a non-EDS device does not. Note that EDS devices also
support the non-EDS data stream. The ability to do graphics on a 3270 terminal
implies that it is an EDS device.

The following table lists some examples of EDS and non-EDS IBM terminals:

Terminal Support in the z/OS Environment 257

Table 16.1 EDS and non-EDS IBM Terminals

EDS Non-EDS

3179, 3290 (LT-1) 3277

3279, 3270-PC 3278 (most)

3278 with graphics RPQ 3290 (LT-2, 3, or 4)

On non-EDS terminals, vertical window borders occupy three display positions on
the screen: the first position for the field attribute byte, the second position for the
border character itself, and the third position for the attribute byte for the following
field. Because a window has both left and right vertical borders, six display
positions are used by the vertical borders. Therefore, on an 80-column non-EDS
device, the maximum display and editing area in a window is 74 columns.

Vertical window borders on EDS devices occupy two display positions: the border
character and the attribute for the next field (left vertical border) or the attribute
and the border character (right vertical border). Therefore, on an 80-column EDS
device, the maximum display or editing area in a window is 76 columns.

Graphics Device Drivers
There are two 3270 graphics device drivers in the SAS windowing environment: the
Programmed Symbol driver and the Vector-to-Raster driver. On terminals that
support graphics, these two drivers are used to produce graphics as well as mixed
text and graphics. Both graphics drivers communicate with the text driver, which
controls the terminal display.

n The Programmed Symbol graphics driver uses user-definable characters to
display graphics. A programmed symbol is a character on the device in which
certain pixels are illuminated to produce a desired shape in a position (cell) on
the display. A loadable programmed symbol set is a terminal character set that
contains these application-defined programmed symbols. (The default symbol
set on a device is the standard character set--that is, those symbols that are
normally displayed and that can be entered from the keyboard.) Examples of
terminals that use programmed symbols to display graphics are the 3279G,
3290, and 3270-PC.

n The Vector-to-Raster graphics driver is used to produce graphics on terminals
that support graphics drawing instructions such as MOVE and DRAW. Examples
of these devices are the 3179G/3192G and the IBM5550. The 3179G/3192G
terminals also have limited support for programmed symbol graphics.

258 Chapter 16 / Windows in z/OS Environments

Using a Mouse in the SAS Windowing Environment
under z/OS

Overview of z/OS Terminals

The IBM 3179G, 3192G, 3472G, and 5550 terminals are all graphics terminals that
support the use of a mouse. The IBM 3179G, 3192G, and 5550 terminals use the
three-button IBM 5277 Model 1 optical mouse, whereas the IBM 3472G terminal
uses the two-button PS/2 mouse.

SAS recognizes when the mouse is attached and automatically places the graphics
cursor under the control of the mouse.

Using a Three-Button Mouse

The IBM 5277 Model 1 optical mouse has three buttons:

leftmost button
SAS uses the leftmost button as an Enter key. The Enter key is used to select
menu items; to grow, shrink, or move windows; to scroll using scroll bars; and so
on. Therefore, having the Enter key on the mouse is useful. The text cursor
moves to the location of the mouse pointer whenever you press this mouse
button.

center button
By default, SAS assigns a function key to the center button. You can use the
KEYS window or the KEYDEF command to change the definition of this button.
The button is designated as MB2. See the Help for Base SAS for more
information about the KEYS window and the KEYDEF command.

rightmost button
The rightmost button is a reset button that unlocks the keyboard.

For additional information about using a mouse, see the appropriate documentation
at your site.

Using a Two-Button Mouse

The 3472G terminal is a multiple-session graphics terminal. This device uses the
two-button PS/2 mouse. With the graphics cursor attached, these buttons have the
same functions as the leftmost and center buttons on the three-button mouse.

Terminal Support in the z/OS Environment 259

Appearance of Window Borders, Scroll Bars, and
Widgets

Depending on the type of terminal, SAS uses either programmed symbols or APL
symbols to create window borders, scroll bars, and widgets (radio buttons, push
buttons, and check boxes). This feature can cause SAS windows to look somewhat
nicer on some terminals than on others.

n On devices that support programmed symbols, the SAS windowing environment
uses a predefined set of programmed symbols for its window components.
Programmed symbols give window components a nicer appearance than APL
symbols. These programmed symbols are available for the four most common
character cell sizes: 9 x 12, 9 x 14, 9 x 16, and 6 x 12. Programmed symbols are
not used for any device that has a different character cell size (for example, 10 x
14 on a Tektronix 4205), even though the device supports programmed symbols.

n On 3270 terminals that do not support programmed symbols, but that support
the APL character set, the SAS windowing environment uses APL symbols. APL
is supported only on EDS devices, including all nongraphic 3279 and 3179
terminals, and on many PC 3270 emulators.

Note: The APL language relies heavily on mathematical-type notation, using
single-character operators in a special character set.

Improving Screen Resolution on an IBM 3290
Terminal

The IBM 3290 terminal gives you the ability to change character cell size (and,
therefore, to change screen resolution). This capability is useful if you are working
with graphics, for example.

You use the CHARTYPE= system option to modify the character cell size. For
example, on a 3290 terminal that is configured as having 43 rows by 80 columns,
CHARTYPE=1 (the default) produces a 62 x 80 display size.

If you specify CHARTYPE=2, then the display size is 46 x 53. Note that if you
configure the 3290 as 62 x 160 (the maximum display size available on the 3290),
CHARTYPE=2 results in a display size of 46 x 106. This results in a very legible and
attractive windowing environment. For more information about this option, see
“CHARTYPE= System Option: z/OS” on page 718.

Note: If you are running in interactive graphics mode and you receive a message,
your display might become corrupted. To correct this problem and return the screen
to its original display, press Enter in response to the SCREEN ERASURE message.

260 Chapter 16 / Windows in z/OS Environments

Alternatively, you can configure the 3290 as one logical terminal with a 62 x 160-
character cell size.

SAS System Options That Affect the
z/OS Windowing Environment

You can use the following SAS system options to customize the windowing
environment under z/OS:

CHARTYPE=
specifies which character set or screen size to use for a device.

FSBORDER=
specifies what type of symbols to use in window borders and other widgets.

FSMODE=
specifies which type of IBM 3270 data stream to use for a terminal.

PFKEY=
specifies which set of function keys to designate as the primary set.

For detailed information about these system options, see “System Options in the
z/OS Environment” on page 689.

Host-Specific Windows in the z/OS
Environment

Portable windows are documented primarily in the Help for Base SAS. In the Help
for SAS in the z/OS environment, coverage is limited to the following windows:

n windows that are specific to the z/OS environment

n portable windows with contents or behavior that are specific to the z/OS
environment.

n “DSINFO Window Command” on page 262

n “Explorer Window” on page 263

n “DSLIST Window Command” on page 264

n “My Favorite Folders Window Command” on page 265

n “FILENAME Window Command” on page 266

Host-Specific Windows in the z/OS Environment 261

n “FNAME Window Command” on page 266

n “LIBASSIGN Window Command” on page 269

n “LIBNAME Window Command” on page 269

n “MEMLIST Window Command” on page 270

Dictionary

DSINFO Window Command
Provides information about a cataloged physical file.

z/OS specifics: All

Syntax

DSINFO

DSINFO ddname

DSINFO 'physical-filename'

DSINFO 'UFS filename'

Details

You can invoke the DSINFO window from any window in the windowing
environment, including the windows in SAS/FSP and SAS/AF. To invoke the
DSINFO window, type DSINFO followed by either a ddname, a fully qualified
physical filename, a partially qualified name such as '.misc.text', or a full or relative
UFS path. For information about using partially qualified data set names, see
Chapter 5, “Specifying Physical Files,” on page 89.

If you are referencing a concatenated file with a ddname, then the DSINFO window
displays information for the first data set in the concatenation.

262 Chapter 16 / Windows in z/OS Environments

Figure 16.1 DSINFO Window

Explorer Window
Provides a central access point to data such as catalogs, tables (data sets), libraries, and host files.

z/OS specifics: ALL

Syntax

EXPLORER

Details

Overview of the Explorer Window
You can invoke the Explorer window from any window in the windowing
environment. The Explorer window provides a central access point to data such as
catalogs, tables (data sets), libraries, and host files. When you issue the EXPLORER
command at a SAS command prompt, an Explorer window appears with the tree
and list views turned on. The Explorer window enables you to do basic SAS tasks
such as the following:

n create new libraries and file shortcuts

n create new library members and catalog entries

n open and edit SAS files

For more information about the Explorer Window, see the SAS Help and
Documentation.

Explorer Window 263

Additional Nodes in the Explorer Tree View
In SAS 9.3, the USS Home Directory and the z/OS Data Sets nodes were added to
the tree view, as shown in the following example. These nodes enable you to
transition between your native data sets and your UFS files.

The Explorer window showing the USS Home Directory and the z/OS Data Sets
nodes in the tree view:

Figure 16.2 The Explorer Window

DSLIST Window Command
Displays a list of your z/OS native data sets.

z/OS specifics: Display of externally allocated ddnames

Syntax

DSLIST

Details

The DSLIST command can be issued from the command line of any SAS window.

The FORWARD and BACKWARD commands are not recognized if focus is on the
DSLIST window command line instead of on a data set list. When you open the
DSLIST window, make it the active window. Then make sure you have the focus on
a data set list and not on the command line.

264 Chapter 16 / Windows in z/OS Environments

The following example shows a list of native z/OS data sets in a DSLIST window
that has been opened with the DSLIST command:

Figure 16.3 The DSLIST Window

My Favorite Folders Window Command
Displays a list of your UFS files.

z/OS specifics: Displays a list of UFS files

Syntax

UDLIST

Details

The UDLIST command can be issued from the command line of any SAS window.

The following example shows a list of UFS files in a Favorites Folder that has been
opened with the UDLIST command:

My Favorite Folders Window Command 265

Figure 16.4 A Favorites Folder Opened with a UDLIST Command

FILENAME Window Command
Displays assigned filerefs and their associated filenames.

z/OS specifics: Display of externally allocated ddnames

Syntax

FILENAME

Details

A ddname that was allocated externally (using the JCL DD statement or the TSO
ALLOCATE command) is not listed by the FILENAME window or by the Active File
Shortcuts window until after you have used it as a fileref in your SAS session.

FNAME Window Command
Displays allocated ddnames, their associated data set names, and data set information.

z/OS specifics: All

266 Chapter 16 / Windows in z/OS Environments

Syntax

FNAME

FNAME <ddname>

FNAME <partial-ddname*>

FNAME <partial-ddname:>

Details

You can invoke the FNAME window from any window in the windowing
environment, including the windows in SAS/FSP and SAS/AF. To invoke it, type
FNAME.

The FNAME window displays ddnames that are currently allocated to the operating
system and the data sets or UFS files that are associated with each ddname. These
ddnames might include some files that are necessary for TSO or for initializing the
SAS system. Typically, UFS files or SAS libraries are not allocated to the operating
system by SAS. These files are not displayed in the FNAME window, unless an
external allocation is provided with the TSO ALLOC command that specifies the
PATH operand.

If you do not supply the optional ddname, then the FNAME window displays all
ddnames that are associated with your TSO login session and your SAS session. It
also displays the names of the physical files that are associated with them. If you
supply a ddname, it can be either a specific name or a prefix. For example, to see
only ddnames that begin with the letter A, you can use either of the following
prefixes as the specifications:

n FNAME A*

n FNAME A:

Some libraries and external files that are currently assigned by SAS might not be
allocated to a ddname. To see a list of all external files currently assigned by SAS,
use the syntax shown in “FILENAME Window Command” on page 266. To see a list
of all libraries that are currently assigned by SAS, use the syntax shown in
“LIBNAME Window Command” on page 269.

If you attempt to browse or edit a file that is not a text file, then the SAS editor
detects any non-printable bytes that might be present. It then asks whether you
want them to be treated as text attribute bytes. You can treat these bytes as text
attributes or stop opening the file. If you choose to treat them as text attributes,
SAS opens the file and attempts to display the contents of the file as normal text
characters whose appearance is modified by the presumed text attribute bytes.
Although SAS is able to open the file, if the file is not a text file with embedded text
attribute bytes, then the data appears as random normal text characters with
random colors and highlighting. If you choose to stop opening the file, SAS returns
to the FNAME window.

In the FNAME window that you can perform various tasks by entering one of the
following selection-field commands:

FNAME Window Command 267

B
selects a sequential data set, a partitioned data set (PDS) member, or a UFS file
for browsing.

E
selects a sequential data set, PDS member, or a UFS file for editing.

I
includes a sequential data set, PDS member, or UFS file in the Program Editor
window.

F
frees (deallocates) an allocated ddname.

M
opens the MEMLIST window, which lists the members in a single PDS.

C
lists the members in a concatenation of PDSs. C must be specified on the first
line of a concatenation. That is, the ddname cannot be blank. C does not work if
the concatenation contains a USS file.

S
selects or emulates a double-click. The action taken varies according to file
type. Selecting a PDS brings up the MEMLIST window, for example.

X
displays file properties.

%
submits a %INCLUDE statement to SAS to include a sequential data set or PDS
member.

?
displays a pop-up menu of available selection-field commands.

Figure 16.5 FNAME Window with TSO Ddnames

268 Chapter 16 / Windows in z/OS Environments

Figure 16.6 FNAME Window with USS Pathnames

LIBASSIGN Window Command
Assigns a SAS libref and engine to a SAS library.

z/OS specifics: Options field

Syntax

DMLIBASSIGN

Details

The Options field of the New Library window allows only 53 characters. To allow
more characters, assign the “EXPLODE Command: z/OS” on page 279 command to
a function key. Then use the function key to open a dialog box with a longer (but
not unlimited) text entry field.

LIBNAME Window Command
Lists all the libraries that are currently assigned in your SAS session.

z/OS specifics: Display of externally allocated libraries

LIBNAME Window Command 269

Syntax

LIBNAME

LIBNAME <libref>

Details

If you specify libref, the Active Libraries window appears with a list of members of
the specified library. Otherwise, the Active Libraries window lists the currently
assigned libraries. You can select a library to list its members.

A library that was allocated externally (using the JCL DD statement or the TSO
ALLOCATE command) is not listed by the LIBNAME window until after you have
used it in your SAS session.

The following example displays the list of libraries currently assigned to the Maps
library:

Figure 16.7 Active Libraries Window

MEMLIST Window Command
Displays a member list for a partitioned data set (PDS) or for a series of partitioned data sets in a
concatenation.

z/OS specifics: All

270 Chapter 16 / Windows in z/OS Environments

Syntax

MEMLIST

MEMLIST ddname

MEMLIST ddname (member)

MEMLIST ddname (generic-name*)

MEMLIST ddname (generic-name:)

MEMLIST fileref

MEMLIST 'physical-filename '

MEMLIST 'physical-filename (member)'

MEMLIST 'physical-filename (partial-ddname*)'

MEMLIST 'physical-filename (partial-ddname:)'

Details

You can invoke the MEMLIST window from any window in the windowing
environment, including the windows in SAS/FSP and SAS/AF. You can specify
either a specific member name or a partial member name. For example, the
following specification lists all of the members in a PDS to which you have assigned
the fileref MYPDS: MEMLIST MYPDS. To list only members whose names begin
with TEST in this PDS, you would use the following specification: MEMLIST
MYPDS(TEST*) .

You can also invoke the MEMLIST window by using the M selection-field command
in the FNAME window.

By entering one of the following selection-field commands in the MEMLIST
window, you can perform various functions on the displayed list of PDS members:

B or S
selects a member for browsing.

E
selects a member for editing.

I
includes a member into the Program Editor window and makes Program Editor
the active window.

%
submits a %INCLUDE statement for a member.

R
renames a member.

D
deletes a member.

MEMLIST Window Command 271

?
displays a pop-up menu.

The LIB column uses numbers to indicate the library in which each member is
found. The numbers represent the order in which the PDSs were specified at
concatenation. For example, a “1” in the LIB column indicates the member exists in
the first PDS that was specified. The number “2” indicates it exists in the second
PDS that was specified, and so on. A plus (+) sign next to a number indicates that
multiple members in the concatenation have the same name.

The MEMLIST window supports concatenated PDSs in SAS 9.2. However,
selection-field commands issued on concatenated PDSs operate only on the first
library in the concatenation. For example, you cannot save the result of editing a
member that exists in a library other than the first library in the concatenation.

You can use the DELETE and RENAME commands for members of the first library
that have the same name as members in lower libraries. If you delete a file in the
first library, the member of the first library is deleted and the next lower member
with that name is displayed. If you rename a file in the first library, the member of
the first library is renamed and the next lower member with that name is displayed.

If you have more than one MEMLIST window displaying the same PDS, and you
create, rename, or delete a member of the PDS, then only the active window is
updated on screen when the change is completed. The other MEMLIST windows
are updated at the same time as the active window. However, you do not see the
change to the member list until you select one of these windows as your active
window.

The following example displays the members of a PDS:

Figure 16.8 MEMLIST Window

272 Chapter 16 / Windows in z/OS Environments

17
Host-Specific Windows of the
FORM Subsystem

Host-Specific Windows of the FORM Subsystem . 273
Overview of Host-Specific Windows of the FORM Subsystem . 273
TSO Print-File Parameter Frame . 274
IBM 3800 Print-File Parameter Frame . 275

Host-Specific Windows of the FORM
Subsystem

Overview of Host-Specific Windows of the FORM
Subsystem

The FORM subsystem consists of six windows that are described in detail in the
Help for Base SAS. You use these frames to define a form for each printer that is
available to you at your site.

Two of the windows in the FORM subsystem contain host-specific information.
Both are print-file parameter windows that you use to specify the printer, text
format, and destination for your output. Figure 17.1 on page 274 and Figure 17.2 on
page 275 show these two frames. Figure 17.2 on page 275 appears only if you select
IBM 3800 print-file parameters.

This section contains brief discussions of the fields in the z/OS FORM windows. For
additional information, select the field that you are interested in and press the
function key that you use to issue the HELP command. For more information about
using the FORM subsystem, see “Using the PRINT Command and the FORM
Subsystem” on page 154.

273

TSO Print-File Parameter Frame
The TSO print-file parameters in the first window are the same parameters that you
would use in a TSO ALLOCATE statement.

Figure 17.1 TSO Print-File Parameter Frame

Many of the values that are entered for these parameters are site specific. The data
center personnel at your site can give you information about the Destination,
Forms, and Class codes that are used at your site.

Destination
routes the output to a particular device. Destination is a one to eight
alphanumeric or national character name that is defined for a device by your
site.

Class
refers to the SYSOUT class of the file. The SYSOUT parameter is used to route
output to printers and other devices. Class can be any alphanumeric character.
Ask your data center personnel which specifications are appropriate for this
field.

Forms
are specified by using one to four alphanumeric or national characters. Form
numbers are used to request special paper. Ask your data center personnel
which values are appropriate for this field.

UCS
requests that a print chain or print train that contains the Universal Character
Set be mounted for a device. Ask your data center personnel which values are
appropriate for this field.

274 Chapter 17 / Host-Specific Windows of the FORM Subsystem

Copies
specifies how many copies to print. The range is from 1 to 255, with a default
value of 1.

FCB
is the forms control-buffer value, which specifies the movement of forms on a
device. Ask your data center personnel which values are appropriate for this
field.

Writer
specifies the name of a program in the SYS1.LINKLIB library that is to be used to
write the output instead of JES2 or JES3. Ask your data center personnel for
information about using this parameter.

ID
specifies the maximum number of output lines that can be printed. The range is
from 1 to 16,777,215. If ID is exceeded, the job is automatically terminated.

Hold
requests that output be held in the output queue instead of going directly to the
device.

IBM 3800 Print-File Parameter Frame
Figure 17.2 IBM 3800 Print-File Parameter Frame

This frame requests the following print-file parameters. For more information,
consult the Help facility. Also see the IBM JCL reference manual for your system
for additional information about these parameters.

Character tables
specifies which character table to use for printing output. Ask your data center
personnel which values are appropriate for this field.

Flash name and Flash count
controls the use of overlay forms. Ask your data center personnel for details.

Host-Specific Windows of the FORM Subsystem 275

Modify name and Modify TRC
controls the use of copy modification modules in SYS1.IMAGELIB for printing
output. Ask your data center personnel for details.

Burst
requests that your output be torn apart into separate sheets of paper. When
Burst is not specified, the default is normal fanfold (continuous) printing.

Optcode
works in conjunction with the character tables option. Ask your data center
personnel for details.

276 Chapter 17 / Host-Specific Windows of the FORM Subsystem

18
SAS Window Commands under
z/OS

Overview of Window Commands in the z/OS Environment . 277

Dictionary . 278
CLOCK Command: z/OS . 278
DFLTACTION Command: z/OS . 278
DLGENDR Command: z/OS . 279
EXPLODE Command: z/OS . 279
FILE Command: z/OS . 280
GCURSOR Command: z/OS . 281
HOSTEDIT Command: z/OS . 281
INCLUDE Command: z/OS . 283
NULLS Command: z/OS . 285
TSO Command: z/OS . 285
WBROWSE Command: z/OS . 286
WIDGNEXT Command: z/OS . 287
WIDGPREV Command: z/OS . 288
X Command: z/OS . 288

Overview of Window Commands in the
z/OS Environment

Command-line commands are documented in the SAS Language Elements by Name,
Product, and Category and in the Help for Base SAS. This section includes detailed
information about commands that are specific to the z/OS windowing environment.

277

http://documentation.sas.com/?docsetId=allprodsle&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=allprodsle&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Dictionary

CLOCK Command: z/OS
Displays the current time according to a 24-hour clock.

z/OS specifics: All

Syntax

CLOCK

Details

The time is shown as hh.mm in the lower right corner of the display. Repeat the
command to toggle the clock on and off. Issuing the command CLOCK OFF removes
the clock.

DFLTACTION Command: z/OS
Simulates a mouse double-click.

z/OS specifics: All

Syntax

DFLTACTION

Details

To enter a double-click without using a mouse, position the cursor (set the
keyboard focus) on the control and issue the command. The DFLTACTION

278 Chapter 18 / SAS Window Commands under z/OS

command applies to the following controls: text pad, combo box, list view, spin box,
tree view, push button, desk top icon, and list box.

The DFLTACTION command is best used by assigning the command to a function
key. Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the DFLTACTION command, position the cursor in a
text entry field and press the function key.

DLGENDR Command: z/OS
Ends the SAS session.

z/OS specifics: All

Syntax

DLGENDR

Details

This command causes SAS to display a window that asks you to confirm that you
want to end your SAS session. An affirmative response ends the session.

EXPLODE Command: z/OS
Displays the full length of text entry fields that are truncated.

z/OS specifics: All

Syntax

EXPLODE

Details

This command opens the EXPLODE window to display text that could not be fully
displayed in the narrow width of a text entry field. If a window displays a maximum
of 10 characters in a text entry field, and the value displayed in that field contains

EXPLODE Command: z/OS 279

20 characters, only the first 10 are displayed. To see the entire 20 characters, enter
EXPLODE on the command line, place the cursor on the text entry field, and press
the Enter key. The resulting EXPLODE window displays up to the first 255
characters of the text entry field. Any blank spaces are retained.

In the EXPLODE window, you can edit all the text in the field, but only if the field is
accessible for read and write. You cannot edit read-only fields, nor can you edit any
part of a field that is longer than 255 characters. However, the EXPLODE command
displays the first 255 characters of any text entry field from SAS 7 or later.

The EXPLODE window displays text on five lines of 51 characters. Each line is
edited individually. Text does not scroll from one line to the next as you add and
delete characters. Selecting the OK button concatenates the text on any of the five
lines into the single text entry field, preserving any blank spaces in between.

EXPLODE is best used by assigning the command to one of your function keys.
Enter the KEYS command to display and edit your function key assignments.

To use a function key to issue the EXPLODE command, position the cursor in a text
entry field and press the function key.

The EXPLODE command cannot expand normal text fields.

FILE Command: z/OS
Writes the contents of that current window to an external file.

z/OS specifics: file-specification, ENCODING= option

Syntax

FILE file-specification <ENCODING=encoding-value> <options>

Required Argument
file-specification

specifies a valid z/OS external file specification, such as one of the following
specifications:

n a fileref

n the physical filename of a sequential data set

n a member of a partitioned data set (PDS)

n a member of an extended partitioned data set (PDSE)

n a file in UNIX System Services (USS)

For information about encodings for z/OS resources such as data set names and
UFS paths, see Appendix 3, “Encoding for z/OS Resource Names,” on page 939.

280 Chapter 18 / SAS Window Commands under z/OS

Optional Argument
ENCODING=encoding-value

specifies the encoding to use when writing to the output file. Typically, you
would specify a value for ENCODING= that indicates that the output file has a
different encoding from the current session encoding. However, you can also
specify the same encoding for the output file as for the current session
encoding. You must enclose the value in quotation marks if it contains a hyphen.

If you specify an encoding value that is different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when
you write data to the output file. The default encoding is the session encoding,
which is the value of the ENCODING= SAS system option.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

GCURSOR Command: z/OS
When applicable, turns the graphics cursor on or off.

z/OS specifics: All

Syntax

GCURSOR <ON> | <OFF>

Details

This command is used only with 3179G, 3192G, IBM5550, and IBM3472G graphics
terminals. When a mouse is attached, the default setting for GCURSOR is ON.
Without a mouse, the cursor movement keys are used to position the graphics
cursor. The GCURSOR command acts like a toggle switch. Alternatively, you can
use the ON and OFF operands.

HOSTEDIT Command: z/OS
Starts the ISPF editor.

z/OS specifics: host editor invoked

HOSTEDIT Command: z/OS 281

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

Syntax

HOSTEDIT | HED

Details

Under z/OS, this command temporarily suspends the current SAS session and
starts a session of the ISPF editor or browser. Under other operating environments,
it invokes other host-specific editors.

Note: The HOSTEDIT command works only if you have invoked SAS from the ISPF
environment.

You can execute the HOSTEDIT command from the command line of any SAS
window that involves the SAS Text Editor, such as the Program Editor, Log, Output,
and Notepad windows, among others.

When the ISPF EDIT session begins, the screen displays the contents of the
window from which it was invoked. Depending on how the window was defined
when it was created, one of the following actions occurs:

n If the window can be edited, you are placed in an ISPF EDIT session editing the
contents of the window. You can then use the standard ISPF EDIT commands to
edit the text or to call up any of the ISPF EDIT models, and you can save
changes back to the window from which the HOSTEDIT command was issued.

n If the window is read only, you are placed in an ISPF BROWSE session that
displays the contents of the window.

n If the window cannot be edited by the host editor, a message to that effect
appears in the window, and no other action occurs.

Special text attributes such as color or highlighting are lost during a host editing
session. When the HOSTEDIT command is issued from a window that contains text
with these attributes, a dialog box appears. The dialog box gives you the option of
either continuing or ending the HOSTEDIT command.

When you have finished editing in the ISPF EDIT session, do one of the following:

n To save the contents back to the window, issue the END command.

n To discard the changes that you made, issue the CANCEL command.

n To save the contents of the window to an external file, use the standard ISPF
EDIT commands such as CREATE or REPLACE. Then issue the END or CANCEL
command, depending on whether you also want to save the changes back to the
window.

In each case, you are returned to the window in the SAS session that was
suspended.

282 Chapter 18 / SAS Window Commands under z/OS

See Also

“Using the ISPF Editor from Your SAS Session” on page 299

INCLUDE Command: z/OS
Copies the entire contents of an external file into the current window.

z/OS specifics: file-specification

Syntax

INCLUDE fileref

INCLUDE fileref(member)

INCLUDE 'physical-filename' <ENCODING=encoding-value>

INCLUDE 'physical-filename(member)' <ENCODING=encoding-value>

Optional Argument
ENCODING=encoding-value

specifies the encoding to use when reading to the input file. Typically, you
would specify a value for ENCODING= that indicates that the input file has a
different encoding from the current session encoding. However, you can also
specify the same encoding for the input file as for the current session encoding.
You must enclose the value in quotation marks if it contains a hyphen.

If you specify an encoding value that is different from the session encoding, SAS
transcodes the data from the specified encoding to the session encoding when
you read data from the input file. The default encoding is the session encoding,
which is the value of the ENCODING= SAS system option.

For valid encoding values and more information about encoding, see “Encoding
Values in SAS Language Elements” in SAS National Language Support (NLS):
Reference Guide. For information about encodings for z/OS resources such as
data set names and UFS paths, see Appendix 3, “Encoding for z/OS Resource
Names,” on page 939.

Details

This command is available in the Program Editor window as well as in any other
window that uses the SAS Text Editor such as the Notepad window. You can also
include an external file from the MEMLIST or FNAME windows by using selection-
field commands. You can identify the external file by specifying either a fileref or

INCLUDE Command: z/OS 283

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1gpwo8zzgnxopn1fj4j20sk80u0.htm&locale=en

the physical filename. If you specify the physical filename, you must enclose it in
quotation marks.

Here are examples of the INCLUDE command that illustrate the various ways that
you can specify physical files:

INCLUDE MYPGM
MYPGM is a fileref that was previously associated with the external file.

INCLUDE MYPGM(PGM1)
PGM1 is a member of the partitioned data set that is associated with the fileref
MYPGM.

INCLUDE 'USERID.TEST.PGMS'
sequential data set name.

INCLUDE 'USERID.TEST.PGMS(AAA)'
data set name with member specified.

INCLUDE '.TEST.MYPGM'
Assuming that the FILESYSTEM= system option is set to MVS, SAS prepends
this data set name with the value of the SAS system option SYSPREF=, which
defaults to the system prefix. If FILESYSTEM=HFS, SAS looks into your default
UNIX file system directory for the “hidden” file .TEST.MYPGM.

INCLUDE 'UFS:/u/userid/mypgms/mypgm1.c'
name of a UNIX System Services file in the hierarchical file system, represented
by a partially qualified path. SAS searches for the file in the default UFS
directory for that user. If the FILESYSTEM= system option was set to HFS and if
MYPGM was a standard z/OS data set, the alternate syntax of MVS: would be
required in the previous example. For more information, see “FILESYSTEM=
System Option: z/OS” on page 761.

INCLUDE 'pgms/mypgms/mypgm1.c'
This is another example of a relative path to a UNIX System Services file. Any
filename containing a slash (/) is assumed to be in UNIX System Services,
regardless of the value of the FILESYSTEM= system option.

INCLUDE 'pgms/mypgms/*'
The * wildcard character specifies a concatenation of UNIX System Services
files, which in this case, includes all of the files in the directory MYPGM. For
more information about the use of the wildcard character, see “Concatenating
UNIX System Services Pathnames” on page 132.

Use the ENCODING= option to dynamically change the character-set encoding for
processing external data. When data is read into SAS, it is changed from the
specified encoding to the session encoding. For a list of valid encoding values, see
“ENCODING System Option” in the SAS System Options: Reference.

See Also

n “%INCLUDE Statement: z/OS” on page 644

n Chapter 5, “Specifying Physical Files,” on page 89

284 Chapter 18 / SAS Window Commands under z/OS

NULLS Command: z/OS
Specifies whether NULLS is on or off for all input fields of all windows.

z/OS specifics: All

Syntax

NULLS <ON> | <OFF>

Details

When NULLS is ON, all input fields are padded with null characters instead of
blanks. The NULLS command acts like a toggle switch. Alternatively, you can use
the ON and OFF operands.

TSO Command: z/OS
Executes a TSO command, emulated USS command, or MVS program.

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: All

Syntax

TSO <command>

Details

Under z/OS, the TSO command is an alias of the X command, which provides the
same function and has the same syntax as the X statement. In other operating
environments, the TSO command has no effect, but the X command is always
processed.

TSO Command: z/OS 285

See Also

Commands

n “X Command: z/OS” on page 288

Statements

n “TSO Statement: z/OS” on page 679

n “X Statement: z/OS” on page 681

CALL Routines

n “CALL SYSTEM Routine: z/OS” on page 459

n “CALL TSO Routine: z/OS” on page 461

Functions

n “SYSTEM Function: z/OS” on page 494

n “TSO Function: z/OS” on page 497

Macro Statements

n “Macro Statements” on page 514

WBROWSE Command: z/OS
Opens a World Wide Web (WWW) browser.

z/OS specifics: All

Syntax

WBROWSE <URL | data set>

Optional Arguments
no argument

invokes the preferred web browser as defined in the Preferences dialog box web
page.

URL
specifies a URL (Uniform Resource Locator), which contains the server and path
information needed to find a document on the internet or on a local intranet.

286 Chapter 18 / SAS Window Commands under z/OS

data set
specifies the name of a z/OS data set that contains the Help files to be used
with the remote browser.

Details

WBROWSE invokes the web browser that is specified by the SAS Remote Browser.
If you specify a URL, the document that the URL identifies is automatically
displayed. If you do not specify a URL, the SAS home page is displayed.

See Also

Chapter 11, “Using the SAS Remote Browser,” on page 223

WIDGNEXT Command: z/OS
Moves the keyboard focus from one widget to the next widget.

z/OS specifics: All

Syntax

WIDGNEXT

Details

With the keyboard focus on a widget in a window, entering the WIDGNEXT
command moves the keyboard focus to the next widget in the window. This
behavior is similar to the one seen with the Tab key. For example, in the SAS
Explorer window, you can use this command to change the keyboard focus from the
list view to the tree view.

The WIDGNEXT command is best used by assigning the command to a function
key. Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the WIDGNEXT command, position the cursor in a
text entry field and press the function key.

WIDGNEXT Command: z/OS 287

See Also

“WIDGPREV Command: z/OS” on page 288

WIDGPREV Command: z/OS
Moves the keyboard focus from one widget to the previous widget.

z/OS specifics: All

Syntax

WIDGPREV

Details

With the keyboard focus on a widget in a window, entering the WIDGPREV
command moves the keyboard focus to the previous widget in the window. This
behavior is similar to the one seen with the Shift+Tab keys. For example, issuing
WIDGPREV in the SAS Explorer window moves the keyboard focus between the
list view and the tree view.

The WIDGPREV command is best used by assigning the command to a function
key. Enter the KEYS command to display and edit function key assignments.

To use a function key to issue the WIDGPREV command, position the cursor in a
text entry field and press the function key.

See Also

“WIDGNEXT Command: z/OS” on page 287

X Command: z/OS
Executes a TSO command, emulated USS command, or MVS program.

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: The command must be a TSO command, emulated USS command, or MVS program.

288 Chapter 18 / SAS Window Commands under z/OS

Syntax

X <command>

Details

The X command provides the same function and has the same syntax as the X
statement.

See Also

“X Statement: z/OS” on page 681

X Command: z/OS 289

290 Chapter 18 / SAS Window Commands under z/OS

PART 5

Application Considerations

Chapter 19
SAS Interfaces to ISPF and REXX . 293

Chapter 20
Using the INFILE/FILE User Exit Facility . 323

Chapter 21
SAS Data Location Assist for z/OS . 351

Chapter 22
Data Representation . 399

Chapter 23
The SASCBTBL Attribute Table and SAS MODULEx CALL Routines . . . 405

291

292

19
SAS Interfaces to ISPF and REXX

SAS Interface to ISPF . 293
Overview of SAS Interface to ISPF . 293
Software Requirements . 294
Enabling the Interface . 294
Invoking ISPF Services . 294
Using Special SAS System Options with the Interface . 297
Using the ISPF Editor from Your SAS Session . 299
Using Special Facilities for Passing Parameters to ISPF . 300
Accessing SAS Variables from ISPF . 303
Tips and Common Problems . 306
Testing ISPF Applications . 307
Sample Application . 307

SAS Interface to REXX . 313
Overview of the SAS Interface to REXX . 313
Enabling the Interface . 313
Invoking a REXX Exec . 314
Interacting with the SAS Session from a REXX Exec . 315
Changing the Host Command Environment . 317
Comparing the REXX Interface to the X Statement . 318
Comparing SAS REXX Execs to ISPF Edit Macros . 318
Examples of REXX Execs . 319

SAS Interface to ISPF

Overview of SAS Interface to ISPF
The SAS interface to ISPF consists of CALL routines, system options, and other
facilities that enable you to write interactive ISPF applications in the SAS language
or in a combination of the SAS language and other languages that are supported by
ISPF. It provides access to ISPF both from the windowing environment and from
SAS Component Language (SCL).

293

Using this interface, you can implement interactive applications that can be used
even by novice users. Users need only know how to log on to a real or emulated
3270 terminal. All other information can be supplied as part of the application
itself.

For SAS programmers, using this interface is often preferable to using other
languages to implement interactive ISPF applications because existing SAS data
files and applications can be exploited. The interface also reduces the need for the
SAS programmer to learn another language.

For detailed information about ISPF, see the IBM documents ISPF Dialog
Developer's Guide and ISPF Services Guide.

Software Requirements
The following table summarizes the software requirements for using the interface.

Table 19.1 Software Requirements for Using the SAS Interface to ISPF

Software Version Required

Base SAS Software SAS Release 6.08 or later

Operating Environment MVS/SP Version 2 or later, TSO/E Version 2 or
later

ISPF ISPF Version 2 or later

Enabling the Interface
The interface is available to you whenever you invoke SAS in the z/OS environment
under ISPF. There is no separate procedure for enabling the interface.

Invoking ISPF Services

Overview of ISPF Services

The interface provides CALL routines that enable you to use ISPF services from a
SAS DATA step. The ISPF services facilitate many other tasks. For example, they
provide an efficient way to convert SAS files to ISPF tables and ISPF tables to SAS

294 Chapter 19 / SAS Interfaces to ISPF and REXX

files. They also enable display input to be validated by the ISPF panel processing
section, by the SAS DATA step, or both, which gives cross-variable-checking
capability.

The IBM documents ISPF Dialog Developer's Guide and ISPF Services Guide describe
the ISPF services and their syntax conventions. To invoke these services, you can
use either the ISPLINK CALL routine or the ISPEXEC CALL routine. However,
ISPEXEC has the following limitations:

n The following ISPF services cannot be invoked from ISPEXEC:

GRERROR
GRINIT
GRTERM
VCOPY
VDEFINE
VDELETE
VREPLACE
VRESET

n The SAS services described in “Changing the Status of ISPF Interface Options
during Execution of a DATA Step” on page 298 cannot be invoked from
ISPEXEC.

n You cannot use abbreviated variable lists (described in “Variable-Naming
Conventions” on page 300) with ISPEXEC.

Note: Remember that ISPF restricts a name list to 254 names.

Using the ISPEXEC CALL Routine

To invoke ISPEXEC from a SAS DATA step, use a CALL statement with one of these
formats:

call ispexec(value1,value2);

call ispexec(,value2);

call ispexec(value2);

where value1 and value2 are variables, literals, or expressions to be passed as
parameters to ISPF. Use the same parameters that you would use with an ISPF
ISPEXEC. Value1, if specified, is the length of value2. If you use the second or third
form of the call, the ISPF interface provides this value. Value2 is a character
expression that contains the service name and parameters, specified as they would
be in a CLIST or SASRX exec. Parameters can be specified as symbolic ISPF
variables that are replaced with the ISPF variable values at run time. Only one scan
for symbolic variables is done, and the resulting service request must not exceed
512 bytes in length.

SAS Interface to ISPF 295

Note: If you use symbolic ISPF variables, remember that both SAS and ISPF use
ampersands to define symbolic variables. Enclose the ISPF symbolic variable
specifications in single quotation marks to prevent them from being replaced by
SAS.

Using the ISPLINK CALL Routine

To invoke ISPLINK from a SAS DATA step, use a CALL statement with this format:

call isplink(value1,...,value15);

where value1,...,value15 are variables, literals, or expressions to be passed as
parameters to ISPF. You use the same parameters that you would use with an ISPF
ISPLINK. For a description of special parameter considerations, see “Using Special
Facilities for Passing Parameters to ISPF” on page 300.

Trailing blanks are sometimes used by ISPF to determine the end of a parameter;
they are optional because the interface supplies them. If more than 15 positional
parameters are required (for example, TBSTATS can have up to 19 parameters),
parameters 15 through 20 can be specified in value15. The values must be separated
by commas. The interface parses value15 into parameters 15 through 20.

Testing ISPEXEC and ISPLINK Return Codes

Each ISPEXEC or ISPLINK CALL subroutine results in a return code that is
described in IBMs ISPF Dialog Services Guide. You can test the return code with the
SAS numeric variable ISP_RC. Because this variable is set by ISPEXEC or ISPLINK,
the SAS compiler produces a Note: Variable varname is uninitialized
message. To avoid receiving this message, specify the following SAS statement in
your program:

retain isp_rc 0;

Using ISPF Dialog Development Models

A standard ISPF function called Dialog Development Models uses the ISPF EDIT
facility to simplify the development of programs. For more information, see “Using
the ISPF Editor from Your SAS Session” on page 299, “Copying ISPF EDIT Models to
Your SAS Session” on page 300, and the information about using edit models in the
IBM manual ISPF Edit and Edit Macros.

If you specify PL/I as the model class, the statements that the model facility
produces are in the proper SAS form. To simplify the use of the Dialog
Development Models, the PL/I return code variable, PLIRETV, is recognized and
used by the interface in the same way as ISP_RC. The following examples could
have been created using the SELECT Edit model:

296 Chapter 19 / SAS Interfaces to ISPF and REXX

data _null_;
 call ispexec('SELECT PANEL(ISR@PRIM)');
 if pliretv ¬ = 0 then put pliretv=;
run;

data _null_;
 call isplink('SELECT',' ','PANEL(ISR@PRIM)');
 if pliretv ¬ = 0 then put pliretv=;
run;

Note: Current versions of the ISPF PL/1 models use the function pliretv() to
access the return code. The SAS interface to ISPF does not currently provide this
function. You have to convert the function to a variable reference by removing the
parentheses.

Using Special SAS System Options with the
Interface

Overview of Special SAS System Options

The SAS interface to ISPF includes the following SAS system options. These
options are useful in developing and debugging ISPF applications. Most of them are
used in conjunction with the ISPF VDEFINE service, which is described in
“VDEFINE, VDELETE, and VRESET Services” on page 303.

n ISPCAPS

n ISPCHARF

n ISPCSR=

n ISPEXECV=

n ISPMISS=

n ISPMSG=

n ISPNOTES

n ISPNZTRC

n ISPPT

n ISPTRACE

n ISPVDEFA

n ISPVDLT

n ISPVDTRC

n ISPVIMSG=

n ISPVRMSG=

SAS Interface to ISPF 297

n ISPVTMSG=

n ISPVTNAM=

n ISPVTPNL=

n ISPVTRAP

n ISPVTVARS=

To determine which of these options are in effect for your SAS session, submit the
following statements from the Program Editor window and view the output in the
Log window.

proc options group=ispf;
run;

You specify these options as you would specify any other SAS system option. For
more information, see “Specifying or Changing System Option Settings” on page 19
and “System Options in the z/OS Environment” on page 689.

Changing the Status of ISPF Interface Options
during Execution of a DATA Step

You can use the interface's SAS service in conjunction with the ISPLINK CALL
routine to change the status of some of the SAS system options that relate to the
ISPF interface. For example, the following ISPLINK CALL specifies the ISPNZTRC
system option:

call isplink ('SAS','ISPNZTRC');

The system options whose status can be changed in this manner are listed in the
following table. For more information about these options, see “System Options
under z/OS” on page 685.

Table 19.2 SAS Services and Their SAS/DMI Equivalents

SAS Service Equivalent DMI Service

('SAS','ISPCAPS') ('DMI','CAPS')

('SAS','NOISPCAPS') ('DMI','NOCAPS')

('SAS','ISPCHARF') ('DMI','CHARFORMATTED')

('SAS','NOISPCHARF') ('DMI','NOCHARFORMATTED')

('SAS','ISPNOTES') ('DMI','NOTES')

('SAS','NOISPNOTES') ('DMI','NONOTES')

('SAS','ISPNZTRC') ('DMI','NZRCTRACE')

298 Chapter 19 / SAS Interfaces to ISPF and REXX

SAS Service Equivalent DMI Service

('SAS','NOISPNZTRC') ('DMI','NONZRCTRACE')

('SAS','ISPPT') ('DMI','PT')

('SAS','NOISPPT') ('DMI','NOPT')

('SAS','ISPTRACE') ('DMI','TRACE')

('SAS','NOISPTRACE') ('DMI','NOTRACE')

('SAS','ISPVDTRC') ('DMI','VDEFTRACE')

('SAS','NOISPVDTRC') ('DMI','NOVDEFTRACE')

('SAS','ISPVDLT') ('DMI','VDELVDEF')

('SAS','NOISPVDLT') ('DMI','NOVDELVDEF')

('SAS','ISPVTRAP') ('DMI','VTRAP')

('SAS','NOISPVTRAP') ('DMI','NOVTRAP')

Note: For compatibility with SAS/DMI, you can use the DMI service to change the
status of the corresponding system option.

Using the ISPF Editor from Your SAS Session

Selecting the Editor to Use

If you prefer to use the ISPF editor rather than the SAS editor, or if you need to use
the ISPF editor in order to use edit models, then you can use the SAS HOSTEDIT
command. For more information, see the next section, “Copying ISPF EDIT Models
to Your SAS Session” on page 300. Under z/OS, the HOSTEDIT command
temporarily suspends the current SAS session and initiates a session of the ISPF
editor or browser. For more information, see “HOSTEDIT Command: z/OS” on page
281.

SAS Interface to ISPF 299

Copying ISPF EDIT Models to Your SAS Session

A major advantage of being able to access the ISPF editor with the HOSTEDIT
command is that it enables you to access and modify ISPF EDIT models. You can
then copy them to your SAS Program Editor window.

To access an ISPF EDIT model, do the following:

1 Invoke SAS from ISPF and enter HOSTEDIT on the command line of the
Program Editor window.

2 Enter MODEL CLASS PLI on the ISPF editor command line.

3 Enter MODEL plus the model name to include a particular model (for example,
MODEL TBDISPL), or enter MODEL alone and specify a model from the list of EDIT
models that appears.

You can then modify the model as necessary and use the END command to save it
back to your Program Editor window.

For more information about the ISPF EDIT facility and EDIT models, see the IBM
manual ISPF Edit and Edit Macros.

Using Special Facilities for Passing Parameters to
ISPF

Overview of the Special Facilities

The interface provides special facilities and services that simplify the coding and
processing of parameters for ISPF services. These facilities include

n variable-naming conventions that simplify the specification of variables to ISPF

n methods for specifying fixed binary parameters

n a way to pass parameters that are longer than the usual 200-byte limit

n a way to bypass SAS parameter processing.

Variable-Naming Conventions

To simplify the specification of variables to ISPF, the interface recognizes _ALL_ or
an asterisk (*) to reference all variable names. Variable names can also be selected
by their prefixes. When a name ends in a colon, all variables that begin with the
specified name are referenced.

300 Chapter 19 / SAS Interfaces to ISPF and REXX

You can also use other types of SAS variable lists, including numbered range lists
(for example, x1-xn) and name range lists (x-numeric-a), as described in the section
about rules of the SAS language in “Words and Names” in SAS Programmer’s Guide:
Essentials.

When a variable list is passed to the VDEFINE service, the special naming
conventions refer to all variables in the current DATA step that are legal ISPF
variable names. For more information, see “VDEFINE, VDELETE, and VRESET
Services” on page 303.

Note: A name that contains an underscore is not a legal ISPF variable name.

SAS arrays, temporary DATA step variables such as FIRST.variable and
LAST.variable, and the variable PLIRETV are not considered candidates for
VDEFINE. The special naming conventions for services other than VDEFINE refer
only to the list of currently defined variables and not to all of the variables in the
DATA step.

Specifically, the special variable-naming conventions can be used in the following
places:

n in the second parameter for the VCOPY, VDEFINE, VDELETE, VERASE, VGET,
VMASK, VPUT, and VREPLACE services

n in the third parameter for the TBADD, TBCREATE, TBMOD, TBPUT, TBSARG,
and TBSCAN services

n in the fourth parameter for the TBCREATE service.

Specifying Fixed Binary Parameters

The interface supports the use of simple numeric constants or variables in ISPF
service parameters for services that require numeric parameters. However, for
compatibility with SAS/DMI, the following two ways of creating full-word fixed
binary parameters in SAS DATA steps are also supported:

length fixed10 $4;
retain fixed10;
if _n_=1 then fixed10=put(10,pib4.);

or

retain fixed10 '0000000a'x;

You can specify a hexadecimal value as a literal parameter by enclosing the value in
single or double quotation marks and entering the letter X after the closing
quotation mark.

Some of the services that have numeric parameters are CONTROL, TBDISPL,
TBCREATE, TBQUERY, TBSKIP, VDEFINE, and VCOPY.

Note: Never use a blank or null value for a numeric parameter.

SAS Interface to ISPF 301

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0691yyhwyeg0in19g0nmfd4cgtd.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0691yyhwyeg0in19g0nmfd4cgtd.htm&locale=en

The ISPF SELECT service has a special parameter list because it requires a full-
word fixed binary parameter that specifies the length of the buffer. The SAS
interface to ISPF provides this length parameter. If you use the ISPLINK CALL
routine to invoke the SELECT service, then you must reserve the parameter's place
in the parameter list. Use either a comma or two single quotation marks with a
blank between them (' ')to represent the parameter, as in the following example:

isplink('SELECT', ,'CMD(%MYDIALOG)');

If you use the ISPEXEC CALL routine to invoke the SELECT service, then you do
not need to reserve the parameter's place:

ispexec('SELECT CMD(%MYDIALOG)');

Passing Parameters That Are Longer Than 200
Bytes

Previous releases of SAS limit the length of a CALL routine parameter to 200 bytes,
but it is sometimes necessary to pass more than 200 bytes as an ISPF service
request parameter. For this reason, the interface has a special parameter form that
allows parameters up to 65,535 bytes long for both ISPLINK and ISPEXEC calls.

When a parameter longer than 200 bytes is required, use the following form in
place of the parameter:

=varname=length

where varname is the name of a SAS character variable in the current DATA step,
and length is the length of varname, expressed as a two-byte binary value. Blanks
are not permitted before or after the equal signs.

Using this parameter form does not change ISPF parameter restrictions. For
example, ISPEXEC allows a maximum of 512 bytes in its second parameter
regardless of how you specify the parameter.

Bypassing SAS Parameter Processing

There might be times when parameters must be passed to ISPF without
modification. If the interface encounters a parameter whose first position contains
a PL/I "not" symbol (¬), then the parameter that follows the "not" symbol is passed
to ISPF unchanged. This facility prevents the parameter from being translated to
uppercase and prevents names from being replaced within the parameter.

302 Chapter 19 / SAS Interfaces to ISPF and REXX

Accessing SAS Variables from ISPF

Introduction to Accessing SAS Variables from ISPF

This section describes how the SAS interface to ISPF processes three ISPF
services–VDEFINE, VDELETE, and VRESET. These services are used to grant and
revoke ISPF access to variables in the SAS DATA step. This section also provides an
explanation of how SAS numeric and character variables are handled by VDEFINE,
and it includes examples of how VDEFINE and VDELETE are used.

VDEFINE, VDELETE, and VRESET Services

The ISPF VDEFINE service is used to give ISPF access to variables in the SAS DATA
step. When you call the VDEFINE service, the interface adds the SAS variables that
you specify to its list of defined variables.

The ISPF VDEFINE service enables you to specify seven parameters. The form is

'VDEFINE', namelist, variable,
format,
 length, optionlist, userdata

The interface provides the values for variable, format, length, and userdata. You
need only specify namelist.

The optionlist parameter is optional and can be used when you are defining either
SAS character variables or SAS numeric variables. The two VDEFINE options that
you can specify are COPY and NOBSCAN. The LIST option is not supported. COPY
allows the value of the variable that is being defined to be initialized to the value of
a dialog variable that has the same name in the function pool, shared pool, or
profile pool. The NOBSCAN option prevents ISPF from stripping trailing blanks
from variables.

To define all SAS variables in the current DATA step, use the following statement:

call isplink('VDEFINE','_ALL_');

For more information about specifying variables, see “Variable-Naming
Conventions” on page 300.

The VDELETE service ends ISPF access to specified variables in the SAS DATA
step, and the interface drops the variables from the list of defined variables that it
maintains. The interface recognizes the end of a SAS DATA step and deletes any
variables that remain on its list of defined variables.

The VRESET service ends ISPF access to all variables that have been passed to the
VDEFINE service. However, in addition to removing all variables that the user has
passed to VDEFINE, VRESET also removes variables that the interface has passed

SAS Interface to ISPF 303

to VDEFINE. To prevent variables that it is using from being removed, the interface
changes VRESET to ('VDELETE','_ALL_').

Handling Numeric Variables

Numeric SAS variables are in double-word floating-point format. You can pass
them to the VDEFINE service with either the FLOAT format or the USER format. If
you use the FLOAT format, you should specify (or let the interface provide) a
length of 8, because all SAS numeric variables have a length of 8 during the
execution of the SAS DATA step.

Note:

n For numeric variables, the LENGTH statement applies to the length of the
variables when they are stored in a SAS data set. The statement does not apply
to the length of the variables in memory while the DATA step is executing.

n When the FLOAT format is used, certain features of the SAS interface to ISPF
are unavailable: SAS formats and informats that are associated with the
variable are not used, null values are not changed to the special missing value
"._" (period underscore), and accessing of variables cannot be traced with the
ISPVTRAP option.

Because earlier releases of ISPF did not support the FLOAT format, SAS (and
previously SAS/DMI) supports the use of the USER format. If you specify the USER
format, or if you let SAS default to it, then SAS provides a user exit that uses any
format, informat, or both that is associated with the variable. If no format or
informat is associated with the variable, then the default SAS format or informat is
used.

Handling Character Variables

In addition to containing strings of printable characters, SAS character variables
can actually contain any data value. Therefore, you can use any valid ISPF
VDEFINE format with a SAS character variable. ISPF treats the variable
accordingly. Within the SAS DATA step, the SAS functions INPUT or PUT can be
used to perform data conversion as required. The SAS system option ISPCHARF |
NOISPCHARF determines whether SAS informats and formats are used to convert
SAS character variable values when they are used as ISPF variables. The following
list explains how this option determines whether the SAS variable formats are to be
used when a variable is passed to the VDEFINE service:

n If the system option NOISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, the SAS character variable is defined to ISPF
with a format of CHAR, and both ISPF and SAS reference and modify the values
of these variables directly in main storage.

n If the system option ISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, and if the SAS variable has a SAS informat or

304 Chapter 19 / SAS Interfaces to ISPF and REXX

format, then the SAS character variable is defined to ISPF with a format of
USER, and the interface uses the SAS informat or format in its conversion
routine whenever ISPF references the variable. The interface also applies the
following rules:

o If the variable contains an invalid value for the SAS informat, the variable is
set to the value of the system option MISSING=.

o If the variable contains an invalid value for the SAS format, ISPF receives the
value of the system option MISSING= for the variable.

o If no value is specified for an ISPF character variable, the variable is set to
the value of the ISPMISS= option.

If an application requires an ISPF dialog variable that is longer than the maximum
SAS character variable length of 32,767, then the length parameter of VDEFINE can
be specified and associated with the variables that are being defined to ISPF. In
order to prevent the data from being overwritten, you must do the following:

n Create multiple variables whose total length equals or exceeds the length
required.

n Ensure that the SAS compiler assigns storage for the variables contiguously by
using SAS ARRAY statements to arrange the variables as needed. Either all or
none of the variables must be specified in the RETAIN statement.

It is good practice to code the SAS ARRAY and RETAIN statements for these extra-
long variables immediately following the SAS DATA statement.

The following example shows how ISPF dialog variables named LONG1 and LONG2,
each 32,000 bytes long, would be defined.

data _null_;
 array anyname1 $32000 long1 long1_c;
 array anyname2 $32000 long2 long2_c;
 retain long1 long1_c long2 long2_c ' ';
 call isplink('VDEFINE','(LONG1 LONG2)',,,64000);

Examples of Defining Variables

The following statement defines to ISPF all variables in the current DATA step that
begin with the letters PPR:

call isplink('VDEFINE','PPR:');

The next statement defines the variables SASAPPLN, ZCMD, and ZPREFIX to ISPF.
The variables are to be initialized with the values from variables of the same name
that already exist in the variable pools.

call isplink('VDEFINE',
 '(SASAPPLN ZCMD ZPREFIX)',,,,'COPY');

This next statement removes all previously defined variables from the variable
pool, making them inaccessible to ISPF:

call isplink('VDELETE','_ALL_');

SAS Interface to ISPF 305

Tips and Common Problems

Checking for Invalid Values in SAS Variables

If a SAS variable in an ISPF table or display has a specified informat, invalid values
are replaced with missing values. When you create ISPF panels through which a
user can enter or modify SAS values, the values can be checked for validity either
with the action section of the panel or with the SAS DATA step. If missing values
are not appropriate, you can redisplay the panel (along with an appropriate error
message) and prompt the user to enter the correct values.

Checking for Null Values in ISPF Variables

The special missing value of underscore indicates an ISPF variable with a length of
0. (Null values are valid for ISPF values.) The special missing value of underscore
distinguishes between an invalid value from an informat (which has a missing
value) and a value that was not provided.

Truncated Values for Numeric Variables

To avoid truncating the values of numeric variables, you must either provide a
format whose length does not exceed the size of the display field, or you must
increase the length of the display field itself. If no format is associated with a
numeric variable, the default format width is 12 characters.

Uninitialized Variables

When a variable is neither specified with an initial value in a RETAIN statement nor
appears on the left side of the equal sign in an assignment statement, the SAS log
shows the Note: Variable varname is uninitialized message. For example, the
following statements would result in the message NOTE: Variable ZCMD is
uninitialized.

data _null_;
length zcmd $200;
call isplink('VDEFINE','ZCMD');
call isplink('DISPLAY','ISRTSO');
put zcmd=;
run;

306 Chapter 19 / SAS Interfaces to ISPF and REXX

However, in this example the message is misleading because the call to ISPF
actually assigns a value to ZCMD. To prevent the message from being generated,
put the variable in a RETAIN statement with an initial value, or use the variable in
an assignment statement. For example, the following RETAIN statement assigns an
initial value (a blank) to the variable ZCMD:

retain zcmd ' ';

Character Values Passed for Numeric Variables

Under SAS/DMI (the Version 5 predecessor to the SAS interface to ISPF), it was
not possible to pass numeric values directly to ISPF services for which numeric
values are required. Instead, an alternate method was provided. For more
information, see “Specifying Fixed Binary Parameters” on page 301. The alternate
method is still supported but is not required. Therefore, if you used SAS/DMI to
develop ISPF applications, you might prefer to modify those applications so that
numeric values are passed directly to these ISPF services instead.

Testing ISPF Applications
When you are testing code that uses ISPF services, there are techniques and
facilities that can greatly simplify the testing process. The IBM manual ISPF Dialog
Developer's Guide describes the ISPF dialog test modes. This facility provides aids
for testing functions, panels, variables, messages, tables, and skeletons.

In addition, SAS provides the MPRINT system option to help you find coding errors.
If you want to see the SAS statements that are generated by SAS macros, specify
MPRINT in a SAS OPTIONS statement. (The MPRINT system option is documented
in SAS System Options: Reference.)

The ISPF parameters are written to the SAS log when the ISPTRACE option is
specified. The tracing can also be turned on and off with the ISPLINK CALL
subroutine, as in the following example, which stops the tracing of ISPF parameters.

call isplink('SAS','NOISPTRACE');

Sample Application

Introduction to the Sample Application

The IBM manual ISPF Examples provides examples of ISPF applications written in
APL2, COBOL, Fortran, PASCAL, PL/I, and as CLISTs.

SAS Interface to ISPF 307

This section shows how one of those applications would be written in the SAS
language.

Note: You must have ISPF running for these applications to work. Start ISPF before
you start SAS if you want to test an ISPF application.

Employee Records Application

DATA _NULL_;
 LENGTH EMPSER $6 FNAME LNAME $16 ADDR1 ADDR2 ADDR3 ADDR4 $40 PHA $3
 PHNUM MSG TYPECHG CHKTYPE $8 I STATE $1;
 RETAIN EMPSER FNAME LNAME I ADDR1 ADDR2 ADDR3 ADDR4 PHA PHNUM MSG
 TYPECHG CHKTYPE ' ' STATE '1' PLIRETV 0;
 CALL ISPLINK('VDEFINE', /* DEFINE VARIABLES */
 '(EMPSER FNAME LNAME I ADDR: PHA PHNUM TYPECHG CHKTYPE)');
 MSG=' '; /* INITIALIZE MESSAGE */
CALL ISPLINK('TBCREATE', /* IF TABLE DOESN'T EXIST*/
 'SASEMPTB','(EMPSER)', /* CREATE IT */
 '(LNAME FNAME I ADDR: PHA PHNUM)',
 'NOWRITE'); /* DON'T SAVE THE TABLE */
DO WHILE (STATE NE '4'); /* LOOP UNTIL TERM SET */
 CALL ISPLINK('DISPLAY','SASEMPLA',MSG); /* SELECT EMPLOYEE */
 IF PLIRETV=8 THEN STATE='4'; /* END KEY THEN TERMINATE*/
 ELSE DO; /* ENTER KEY PRESSED */
 MSG=' '; /* RESET MESSAGE */
 STATE='2'; /* PROCESS EMPLOYEE PANEL*/
 CALL ISPLINK('TBGET','SASEMPTB'); /* OBTAIN EMPLOYEE DATA */
 IF PLIRETV=0 THEN /* IF RECORD EXISTS THEN */
 TYPECHG='U'; /* SET UPDATE FLAG */
 ELSE DO; /* RECORD DOES NOT EXIST */
 TYPECHG='N'; /* SET TYPE=NEW */
 LNAME=' ';FNAME=' ';I=' '; /* INITIALIZE PANEL VARS */
 ADDR1=' ';ADDR2=' ';ADDR3=' ';
 ADDR4=' ';PHA=' ';PHNUM=' ';
 END;
 CHKTYPE=TYPECHG; /* SAVE TYPE OF CHANGE */
 CALL ISPLINK('DISPLAY','SASEMPLB',MSG); /* DISPLAY EMPLOYEE DATA */
 IF PLIRETV NE 8 THEN DO; /* END KEY NOT PRESSED */
 IF TYPECHG='N' THEN DO; /* IF NEW EMPLOYEE */
 CALL ISPLINK('TBADD','SASEMPTB'); /* ADD TO TABLE */
 MSG='SASX217'; /* */
 END; /* */
 ELSE DO; /* */
 IF TYPECHG='U' THEN DO; /* IF UPDATE REQUESTED */
 CALL ISPLINK('TBPUT','SASEMPTB'); /* UPDATE TABLE */
 MSG='SASX218'; /* */
 END; /* */
 ELSE DO; /* */
 CALL ISPLINK('TBDELETE','SASEMPTB'); /* DELETED MESSAGE */
 MSG='SASX219'; /* */
 END; /* */
 END; /* END TABLE MODS */

308 Chapter 19 / SAS Interfaces to ISPF and REXX

 END; /* END 2ND PANEL PROCESS */
 END; /* END 1ST PANEL PROCESS */
 IF MSG NE ' ' THEN CALL ISPLINK('LOG',MSG); /* LOG MESSAGE */
END; /* END DO LOOP */
CALL ISPLINK('TBCLOSE','SASEMPTB'); /* CLOSE TABLE */
CALL ISPLINK('VDELETE','_ALL_'); /* DELETE ALL VARIABLES */
RUN;

Contents of Member SASEMPLA in ISPPLIB

Contents of Member SASEMPLA in ISPPLIB:

%------------------------ EMPLOYEE SERIAL ------------------------------
%COMMAND ====>_ZCMD %
+
%ENTER EMPLOYEE SERIAL BELOW:
+
+
+
+ EMPLOYEE SERIAL%===>_EMPSER+ (MUST BE 6 NUMERIC DIGITS)
+
+
+
+PRESS%ENTER+TO DISPLAY EMPLOYEE RECORD.
+ENTER%END COMMAND+TO RETURN TO PREVIOUS MENU.
)PROC
 VER (&EMPSER,NONBLANK)
 VER (&EMPSER,PICT,NNNNNN)
)END

SAS Interface to ISPF 309

First Employee Record Application Panel

Figure 19.1 First Employee Record Application Panel

Contents of Member SASEMPLB in ISPPLIB

%------------------------ EMPLOYEE RECORDS -----------------------------
%COMMAND ====>_ZCMD %
+
+ EMPLOYEE SERIAL: &EMPSER
+
+ EMPLOYEE NAME:%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
+ INITIAL%===>_I+
+
+ HOME ADDRESS:

310 Chapter 19 / SAS Interfaces to ISPF and REXX

+ LINE 1%===>_ADDR1 +
+ LINE 2%===>_ADDR2 +
+ LINE 3%===>_ADDR3 +
+ LINE 4%===>_ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+
)INIT
 .CURSOR = TYPECHG
 IF (&PHA = ' ')
 &PHA = 914
 &TYPECHG = TRANS(&TYPECHG N,NEW U,UPDATE D,DELETE)
)PROC
 &TYPECHG = TRUNC (&TYPECHG,1)
 IF (&TYPECHG = N)
 IF (&CHKTYPE NE N)
 .MSG = SASX211
 IF (&TYPECHG NE N)
 IF (&CHKTYPE = N)
 .MSG = SASX212
 VER (&LNAME,ALPHA)
 VER (&FNAME,ALPHA)
 VER (&I,ALPHA)
 VER (&PHA,NUM)
 VER (&PHNUM,PICT,'NNN-NNNN')
 IF (&TYPECHG = N,U)
 VER (&LNAME,NONBLANK,MSG=SASX214)
 VER (&FNAME,NONBLANK,MSG=SASX213)
 VER (&ADDR1,NONBLANK,MSG=SASX215)
 VER (&ADDR2,NONBLANK,MSG=SASX215)
 VER (&ADDR3,NONBLANK,MSG=SASX215)
)END

SAS Interface to ISPF 311

Second Employee Record Application Panel

Figure 19.2 Second Employee Record Application Panel

Contents of Member SASX21 in ISPMLIB

SASX210 'INVALID TYPE OF CHANGE' .ALARM=YES
'TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.'
SASX211 'TYPE ''NEW'' INVALID' .ALARM=YES
'EMPLOYEE SERIAL &EMPSER ALREADY EXISTS. CANNOT BE SPECIFIED AS NEW.'

SASX212 'UPDATE OR DELETE INVALID' .ALARM=YES
'EMPLOYEE SERIAL &EMPSER IS NEW. CANNOT SPECIFY UPDATE OR DELETE.'

SASX213 'ENTER FIRST NAME' .ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

312 Chapter 19 / SAS Interfaces to ISPF and REXX

SASX214 'ENTER LAST NAME' .ALARM=YES
'EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

SASX215 'ENTER HOME ADDRESS' .ALARM=YES
'HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.'

SASX217 '&EMPSER ADDED'
'EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.'

SASX218 '&EMPSER UPDATED'
'EMPLOYEE &LNAME, &FNAME &I UPDATED.'

SASX219 '&EMPSER DELETED'
'EMPLOYEE &LNAME, &FNAME &I DELETED.'

SAS Interface to REXX

Overview of the SAS Interface to REXX
The SAS interface to REXX enables users to supplement the SAS language with
REXX and thus provides new programming possibilities in the z/OS environment.

Enabling the Interface
The SAS system options REXXMAC and REXXLOC control the REXX interface.

n The REXXMAC option enables or disables the REXX interface. If REXXMAC is in
effect, then the REXX interface is enabled. When SAS encounters an
unrecognized statement, it searches for a REXX exec whose name matches the
first word of the unrecognized statement. If the default, NOREXXMAC, is in
effect, then the REXX interface is disabled. When SAS encounters an
unrecognized statement, a "statement is not valid" error occurs. You can specify
this option in the configuration file, when you invoke SAS, or in the OPTIONS
statement.

n When the REXXMAC option is in effect, the REXXLOC= option specifies the
ddname of the REXX exec library to be searched for any SAS REXX execs. The
default is REXXLOC=SASREXX. You can specify this option either in the
configuration file or when you invoke SAS, or in the OPTIONS statement.

SAS Interface to REXX 313

Invoking a REXX Exec
SAS REXX execs are REXX programs. They are stored in a library that is allocated
to the SASREXX ddname (or to another ddname, as specified by the SAS system
option REXXLOC=). A REXX exec is submitted as part of a SAS program in the
same way as any other global SAS statement.

To run a REXX exec from within SAS, do the following:

1 Put the REXX exec in a partitioned data set and allocate that PDS to the
ddname SASREXX.

2 Either invoke SAS with the REXXMAC option or specify the REXXMAC option
later in an OPTIONS statement.

3 Code a statement that begins with the name of the REXX exec.

Note: You can invoke a REXX exec from an SCL program, but you should
enclose the statement in a SUBMIT block. Otherwise, the exec is executed at
compile time rather than at run time.

The following example invokes a REXX exec called YOUREXEC, which resides in
YOUR.REXX.LIBRARY. This example works in both batch and TSO environments.

options rexxmac;
filename sasrexx 'your.rexx.library' disp=shr;
yourexec;

In batch, you can also use a JCL DD statement to allocate the REXX library
externally:

//jobname JOB ...
// EXEC SAS
//SASREXX DD DSN=YOUR.REXX.LIBRARY,DISP=SHR
//SYSIN DD *
options rexxmac;
yourexec;
/*
//

A REXX exec can have zero, one, or multiple arguments. You call the exec by
specifying its name, followed by arguments (if any), followed by a semicolon. You
can place the exec anywhere that a global SAS statement, such as an OPTIONS or
TITLE statement, can be placed.

The exec can generate code that is then processed by the SAS supervisor. That
code can be a partial DATA step or PROC step, or one or more complete DATA
steps or PROC steps.

“A Simple REXX Exec” on page 319 provides an example of a REXX exec called
VERIFY that takes as its argument a single data set name. This REXX exec can be
invoked by submitting the following statement from a SAS program:

314 Chapter 19 / SAS Interfaces to ISPF and REXX

verify data.set.name;

A SAS REXX exec submits SAS statements through the SAS subcommand
environment by specifying or defaulting to 'SAS' as its address. When a REXX exec
receives control, the default subcommand environment for that program is 'SAS'.
As illustrated in “A Simple REXX Exec” on page 319, any SAS language statement
can then be passed to SAS for execution.

Interacting with the SAS Session from a REXX Exec

The REXX Interface

One of the main advantages of using the REXX interface is that it provides four
types of communication between the REXX exec and the SAS session:

n You can submit SAS statements and obtain their return code.

n You can print messages on the SAS log.

n You can retrieve and set the value of any variable in the submitting REXX exec
by using the GETEXEC DATA step function and the PUTEXEC DATA step
routine.

n You can retrieve the value of a string that is returned by a REXX exec by using
the global macro variable SYSRXRLT.

Routing Messages from REXX Execs to the SAS Log

A set of SAS directives enables a REXX exec to print to the SAS log. SAS directives
use a leading ++ sequence to differentiate them from normal SAS language
statements that are submitted to the SAS subcommand environment.

Three directives are available:

address SAS '++SASLOG'
causes all subsequent SAS statements to be printed to the SAS log.

address SAS '++NOLOG'
stops subsequent SAS language statements from being printed to the SAS log.

address SAS '++SASLOG' message
writes message into the SAS log and also causes subsequently submitted SAS
statements to be written to the SAS log. Message is interpreted as a REXX
expression before being passed to SAS.

SAS Interface to REXX 315

GETEXEC and PUTEXEC Require a Batch TMP

The GETEXEC DATA step routine and the PUTEXEC DATA step function have to
run in a TSO environment. If you are running in batch mode, set up your session to
run SAS under a batch TMP. The following example contains the basic JCL for
running SAS under a z/OS batch TMP.

// EXEC PGM=IKJEFT01,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*
//SYSPROC DD DISP=SHR,DSN=library.where.sas.clist.is
//SASREXX DD DISP=SHR,DSN=library.with.your.sasrexx.pgms
//SYSTSIN DD *
 SAS
/*
//SYSIN DD *
 OPTIONS REXXMAC;
 yourexec;
/*

//

The GETEXEC DATA Step Function

You can use the GETEXEC function in SAS statements that are submitted to the
SAS subcommand environment to retrieve the value of any variable in the
submitting REXX exec. The syntax of the GETEXEC function is as follows:

value=GETEXEC(REXX-variable)

where REXX-variable is a SAS expression that represents the name of a REXX
variable in uppercase and value receives the value of the specified REXX variable.

Note: When GETEXEC is called from a DATA step in a REXX macro, it accesses a
variable in the REXX macro. When it is called from a DATA step that is not in a
REXX macro, it accesses a variable in the REXX exec or CLIST that invoked SAS, if
there is one, or else returns an error (for example, in batch). If the referenced REXX
variable does not exist, it is created with a value equal to its name, as in the REXX
language.

For an example of the GETEXEC function, see “Using the GETEXEC DATA Step
Function” on page 319.

316 Chapter 19 / SAS Interfaces to ISPF and REXX

The PUTEXEC DATA Step Routine

You can call the PUTEXEC routine in SAS statements that are submitted to the SAS
subcommand environment to assign the value of any variable in the submitting
REXX EXEC. The syntax of the PUTEXEC routine is as follows:

CALL PUTEXEC(REXX-variable, value)

where REXX-variable is a SAS expression that represents the name of a REXX
variable in uppercase and value is a SAS expression representing the value to be
assigned to the specified REXX variable.

Note: When PUTEXEC is called from a DATA step in a REXX macro, it sets a
variable in the REXX macro. When it is called from a DATA step that is not in a
REXX macro, it sets a variable in the REXX exec or CLIST that invoked SAS, if there
is one, or else returns an error (for example, in batch).

For an example of the PUTEXEC routine, see “Using the PUTEXEC DATA Step
Routine” on page 320.

Checking Return Codes in REXX Execs

The REXX special variable RC is always set when any command string is submitted
to an external environment.

SAS REXX execs are slightly different from ordinary execs in how RC is set. When
an ordinary exec submits z/OS commands, the RC variable is set to the command
return code when control returns to REXX. The strings that are submitted to SAS,
however, are not necessarily complete execution units. SAS collects SAS language
elements until a RUN statement is encountered, at which point the SAS step is
executed. While partial program fragments are being submitted, the RC is set to 0.
The SAS return code is not assigned to the REXX variable RC until the string that
contains the RUN statement is submitted.

The RC value is set to the value of the &SYSERR macro variable. For an example of
how the REXX variable RC can be tested after a SAS step has been executed, see
“Checking the SAS Return Code in a REXX Exec” on page 321.

Changing the Host Command Environment
When a REXX EXEC that is invoked under SAS receives control, the default host
command environment for that program is 'SAS'. You can use the ADDRESS
instruction followed by the name of an environment to change to a different host
command environment:

address tso

SAS Interface to REXX 317

address sas
address mvs

For an example of using the ADDRESS instruction to execute a TSO statement, see
“Using the GETEXEC DATA Step Function” on page 319.

You can also use the ADDRESS built-in function to determine which host command
environment is currently active:

hcmdenv = address()

Use the SUBCOM command to determine whether a host command environment is
available before trying to issue commands to that environment. The following
example checks to see whether SAS is available:

/* REXX */
address mvs "subcom sas"
say "subcom sas rc:" rc
if rc = 1
 then sas="not "
 else sas=""
say "sas environment is "sas"available"

Comparing the REXX Interface to the X Statement
The X statement can be used to invoke a REXX exec. For more information, see “X
Statement: z/OS” on page 681. However, compared to the REXX interface, the X
statement has the following limitations:

n With the X statement, the command that you invoke has no way to
communicate information back to the SAS session.

n With the X statement, you have to press Enter to return to SAS.

n The X statement is available only when SAS is running in the TSO environment.
A REXX exec can be invoked from a SAS program running in the batch
environment, though it cannot issue TSO commands in the batch environment.

Comparing SAS REXX Execs to ISPF Edit Macros
In their structure and invocation, SAS REXX execs are analogous to ISPF EDIT
macros.

n SAS REXX execs are REXX programs in a library that is allocated to the
SASREXX ddname (or to another ddname, as specified by the SAS system
option REXXLOC=). They are submitted as part of a SAS program in the same
way as any other global SAS statement. A SAS REXX exec submits SAS
statements through the SAS subcommand environment by specifying or
defaulting to 'SAS' as its "address".

318 Chapter 19 / SAS Interfaces to ISPF and REXX

n ISPF edit macros can be REXX programs in the standard command procedure
library (SYSPROC, SYSEXEC, or other). They are started from an ISPF EDIT
command line in the same way as any other ISPF EDIT subcommand. An ISPF
EDIT macro submits editor subcommands through the ISREDIT subcommand
environment by specifying or defaulting to 'ISREDIT' as its "address" (the
destination environment for a command string).

Examples of REXX Execs

A Simple REXX Exec

This REXX exec, called VERIFY, takes as its argument a single data set name. The
REXX exec checks to see whether the data set exists. If so, the REXX exec routes a
message to the SAS log to that effect. If the data set does not exist, the REXX exec
creates the data set and then sends an appropriate message to the SAS log.

/*-------------- REXX exec VERIFY --------------*/
Parse Upper Arg fname .
retcode = Listdsi("'"fname"'")
If retcode = 0 Then Do
 Address SAS "++SASLOG" fname "already exists"
 End
Else Do
 Address TSO "ALLOC FI(#TEMP#) DA('"fname"')
 RECFM(F B) LRECL(80) BLKSIZE(6160)
 DSORG(PS) SPACE(10 5) TRACK NEW"
 Address SAS "++SASLOG" fname "created"
 Address TSO "FREE FI(#TEMP#)"
 End
Exit

Using the GETEXEC DATA Step Function

This REXX exec executes a TSO command that generates a list of all filenames
beginning with a specified prefix, and then deletes the files named in the list and
places the names of the deleted files in a SAS data set.

/*------------- REXX exec DELDIR --------------*/
Parse Upper Arg file_prefx .
/*------ Execute the TSO LISTC Command --------*/
x = Outtrap('list.')
Address TSO "LISTC LVL('"FILE_PREFX"') "

/*--- Process Output from the LISTC Command ---*/
idx = 0
file_del.= ''

SAS Interface to REXX 319

Do line = 1 To list.0 By 1
 Parse Var list.line word1 word2 word3
 If word1 = 'NONVSAM' Then Do
 fname = word3
 Address TSO "DELETE '"fname"'"
 idx = idx + 1
 file_del.idx = fname
 file_stat.idx = 'DELETED'
 End
 End

/*--- Pass a DATA step into the SAS System ----*/
Address SAS '++SASLOG'

"data results (keep = dsname status); "
" total = getexec('IDX'); "
" put 'Total z/OS files deleted: ' total; "
" do i = 1 to total; "
" dsnm = getexec('FILE_DEL.' || trim(left(i)));"
" stat = getexec('FILE_STAT.' || trim(left(i)));"
" output; "
" end; "
" run; "

/*---------- Execute a SAS Procedure ----------*/
" proc print; "
" run; "

/*---------- Return to the SAS System ---------*/
Exit

Using the PUTEXEC DATA Step Routine

This REXX exec reads a set of high-level qualifiers from a SAS data set and writes
them to REXX stem variables so that they can be processed by the REXX exec.
Then the REXX exec loops through the high-level qualifiers, calling the DELDIR
routine for each one in turn.

/*------------ REXX exec DELMANY -------------*/
/* Accepts as arguments up to 5 high-level */
/* qualifiers
Parse Upper Arg arg1 arg2 arg3 arg4 arg5 .
hlq.=''
/*-=- Pass a DATA step into the SAS System ---*/
Address SAS '++SASLOG'
" data prefixes; "
" input prefix $ 1-20; "
" cards; "
""arg1
""arg2
""arg3
""arg4
""arg5
"; "

320 Chapter 19 / SAS Interfaces to ISPF and REXX

" data _null_; "
" set prefixes; "
" rexxvar = 'HLQ.' || trim(left(_N_)); "
" call putexec(trim(rexxvar),prefix); "
" call putexec('HLQ.0', trim(left(_N_))); "
" run; "
/*---------- Call the DELDIR REXX exec -------*/
Do idx = 1 To hlq.0
 pre = hlq.idx
 Call deldir pre
 End
/*------------ Return to SAS -–---------------*/
Exit rc

Checking the SAS Return Code in a REXX Exec

This REXX exec, called SHOWRC, demonstrates how the REXX variable RC can be
tested after a SAS step has run:

/*-------------- REXX exec SHOWRC ------------*/
/* Accepts as argument a SAS data set */
Parse Upper Arg ds_name .
Address SAS '++SASLOG'
"data newdata; "
" set "ds_name"; "
" run; "
If rc = 0 Then
 Say 'SAS DATA step completed successfully'
Else
 Say 'SAS DATA step terminated with rc=' rc
Exit

SAS Interface to REXX 321

322 Chapter 19 / SAS Interfaces to ISPF and REXX

20
Using the INFILE/FILE User Exit
Facility

Introduction . 323

Writing a User Exit Module . 324
Overview of Writing a User Exit Module . 324
Function Request Control Block . 325
User Exit BAG Control Block . 326

Function Descriptions . 328
Introduction to Function Descriptions . 328
Initialization Function . 328
Parse Options Function . 329
Open Function . 330
Read Function . 332
Concatenation Function . 333
Write Function . 333
Close Function . 334

SAS Service Routines . 335

Building Your User Exit Module . 338

Activating an INFILE/FILE User Exit . 338

Sample Program . 339

Introduction
The INFILE/FILE User Exit Facility provides an interface for accessing user exit
modules during the processing of external files in a SAS DATA step. A user exit
module (or user exit) consists of several functions that you write in order to
perform special processing on external files. For example, you can write user exits
that inspect, modify, delete, or insert records. Here are some more specific
examples of how user exits can be used:

n encrypting and decrypting data

323

n compressing and decompressing data

n translating data from one character encoding to another

If a user exit is active, SAS invokes it at various points during the processing of an
external file.

Note: The INFILE/FILE User Exit Facility is provided for host access methods only.
These methods include BSAM, BPAM, VSAM, and VTOC. Portable access methods,
such as FTP, HTTP, email, socket, and so on, do not use this facility.

Writing a User Exit Module

Overview of Writing a User Exit Module
You can write a user exit module in any language that meets the following criteria:

n The language runs in 31-bit addressing mode.

n The language supports standard OS linkage.

Examples of such languages are IBM assembly language and C. For an example of
an exit that is written in assembly language, see “Sample Program” on page 339.

Note: In all the figures in this appendix, the field names that are shown in
parentheses (for example, EXITIDB in Figure 20.2 on page 326) are the ones that
were used in the sample program.

In your user exit module, you should include code for all seven of the functions that
are described in “Function Descriptions” on page 328. At the beginning of your user
exit module, examine the function code that was passed to you in the Function
Request Control Block (described in the next section), and branch to the routine or
function that is being requested.

When you write the user exit module, you must follow IBM conventions for
assembler linkage. You must also set R15 to a return code value that indicates
whether the user exit was successful. Any nonzero return code causes execution to
stop. If you want to write an error message to the SAS log, use the SAS LOG service
routine. For more information, see “LOG” in “SAS Service Routines” on page 335.

If the user exit terminates with a nonzero return code value, then you must put the
address of a user-defined message string that ends in a null ('00'x) character in the
Pointer to User Error Message (ERRMSG) field of the User Exit BAG Control Block.
For more information, see “User Exit BAG Control Block” on page 326. This
message is printed in the SAS log.

324 Chapter 20 / Using the INFILE/FILE User Exit Facility

Return code values that apply to particular function requests are listed with the
descriptions of those functions in later sections of this appendix.

Be sure to take advantage of the SAS service routines when you write your user
exit functions. For more information, see “SAS Service Routines” on page 335.

Function Request Control Block
The Function Request Control Block (FRCB) provides a means of communication
between SAS and your user exit functions. Each time SAS invokes the user exit
module, R1 points to a Function Request Control Block (FRCB) that contains, at a
minimum, the fields shown in the following figure:

Figure 20.1 Function Request Control Block Fields

The 4-byte Function Code communicates the current user exit phase to the user
exit. It contains one of the following values:

0
indicates the Initialization function.

4
indicates the Parse Options function.

8
indicates the Open function.

12
indicates the Read function.

16
indicates the Concatenation function.

20
indicates the Write function.

24
indicates the Close function.

These functions are described in “Function Descriptions” on page 328. Each time
SAS calls the user exit, the user exit should branch to the appropriate exit routine,
as determined by the Function code.

Writing a User Exit Module 325

User Exit BAG Control Block
In Figure 20.1 on page 325, the UEBCB (User Exit BAG Control Block) serves as a
common anchor point for work areas that SAS has obtained on behalf of the user
exit. SAS reserves a user word in the UEBCB for the user exit to use. You can use
this word to store a pointer to memory that you allocate for use by all your exit
routines. SAS does not modify this word during the lifespan of the user exit. The
lifespan is defined as the time period between the Initialization function request
and the end of the DATA step.

The following two figures illustrate the structure of the UEBCB and its relationship
to other data areas:

Figure 20.2 UEBCB Structure, Part 1 of 2

326 Chapter 20 / Using the INFILE/FILE User Exit Facility

Figure 20.3 UEBCB Structure, Part 2 of 2

The Flag Byte 1 field can have one of several values. The following list gives the
values and their meanings:

'80'x EX_NEXT
Prompt the exit for the next record.

'40'x EX_DEL
Ignore the current record.

Writing a User Exit Module 327

'20'x EX_EOF
End-of-file has been reached.

'10'x EX_EOFC
This exit supports read and write calls after end-of-file has been reached.

'08'x EX_ALC
This exit uses the ALLOC and FREE routines.

'04'x EX_STOR
This exit supports stored programs and views.

Function Descriptions

Introduction to Function Descriptions
The following sections provide the information that you need in order to write the
functions that are part of the user exit module.

Initialization Function
SAS calls the Initialization function before it calls any of the other functions. In the
Initialization function, you specify the amount of virtual memory that your routine
needs above and below the 16-megabyte address line. You store the length of the
work area that you need above the line in the fullword that is pointed to by the
INITMALN field of the Initialization FRCB. You store the length of the work area
that you need below the line in the fullword that is pointed to by the INITMBLN
field of the Initialization FRCB. All pointers in the Initialization FRCB point to valid
data areas.

In the amount of storage that you request, you should include space for a Local
Register Save Area (LRSA) of 72 bytes. You must also include any other work areas
that your Parse Options function and Open function needs.

SAS allocates the memory that you request when it returns from this function, and
it stores pointers to the allocated memory in the UEBCB. The pointer to the
memory that was allocated above the line is stored in the MEMABV field of the
UEBCB. The pointer to the memory that was allocated below the line is stored in
the MEMBEL field.

The following figure illustrates the Initialization FRCB structure and its relationship
with other control blocks:

328 Chapter 20 / Using the INFILE/FILE User Exit Facility

Figure 20.4 Initialization FRCB

Parse Options Function
In the Parse Options function, you validate both the name of the user exit and any
INFILE or FILE statement options that SAS does not recognize. SAS calls this
function once to process the user exit module name. SAS then calls the function for
each statement option that it does not recognize so that the function can process
each option and value string.

You can use two types of statement options in your user exit:

n options that take a value, such as name=value. For example:

myopt=ABC

Note that quotation marks are considered part of the value. If you want them to
be stripped off, then you must provide the code to do so.

n options that do not take a value.

The first time the Parse Options function is invoked, it should do the following:

n verify that the virtual storage that was requested during the Initialization
function has been allocated

n initialize both the allocated virtual storage and the two data areas in the UEBCB
(User Word and Pointer to User Error Message).

The following figure illustrates the Parse Options FRCB structure and its
relationship to other control blocks:

Function Descriptions 329

Figure 20.5 Parse Options FRCB

When the Parse Options function receives control, PARSOPTL is set to the length
of the option name, and the address of the option name is stored in PARSOPTN. For
options that take a value, PARSVALL is set to the length of the value, and the
address of the option value is stored in PARSVAL. For options that do not take a
value, both PARSVALL and PARSVAL are set to 0.

If an invalid option name or option value is detected, R15 should be set to a return
code value of 8.

Open Function
SAS invokes the Open function after INFILE or FILE statement processing opens
the associated data set. The following figure illustrates the Open FRCB and its
relationship to other control blocks:

330 Chapter 20 / Using the INFILE/FILE User Exit Facility

Figure 20.6 Open FRCB

The OPENMODE field can be one of the following values:

1
The data set is opened for input mode.

2
The data set is opened for output mode.

4
The data set is opened for Append mode.

8
The data set is opened for Update mode (read and write).

When this function receives control, the Pointer to User Maximum Data Size field
(OPENZLEN) points to a fullword that contains the Data Set Record Size. In this
function, set the pointer so that it points to a fullword that you initialize. The
fullword should contain the size of the largest record that you expect to process
with the Read function. If it contains a lesser value, then truncated records might
be passed to the Read function.

The Data Set Record Format field (OPENRECF) can be any combination of the
following values:

'C0'x
indicates Undefined format.

'80'x
indicates Fixed format.

'40'x
indicates Variable format.

Function Descriptions 331

'10'x
indicates Blocked format.

'08'x
indicates Spanned format.

'04'x
indicates ASA Control Characters format.

The Open function should activate any subprocesses or exits and should solicit
from them any virtual storage requirements.

In this function, if you turn on the EX_NEXT flag in the UEBCB, then SAS calls the
Read function for the first record before it reads any records from the file itself.

If you use any SAS service routines (such as the ALLOC and FREE routines) in this
function, then you must set the EX_ALC flag in the UEBCB.

Read Function
SAS invokes the Read function during execution of the INPUT statement to obtain
the next input record. The following figure illustrates the Read FRCB structure and
its relationship to other control blocks:

Figure 20.7 Read FRCB

When the Read function receives control, the READRECA field (or Pointer to User
Record Area Address) points to the address of the current record from the file. The
READRECL field points to a fullword that contains the length of the record that is
in the Record Area.

In this function, you can change the Record Address so that it points to a record
that was defined by your user exit. If you make this change, then SAS passes your
record to the INPUT statement, rather than passing the record that was read from
the file. However, in this case you must also update the fullword that the Pointer to
Record Size points to. It must equal the actual size of the record that the Record
Address points to.

332 Chapter 20 / Using the INFILE/FILE User Exit Facility

As long as the EX_NEXT flag is on, SAS invokes the Read function to obtain the
next record. SAS reads no records from the file itself until you turn off the
EX_NEXT flag.

If you set the EX_DEL flag, then SAS ignores the current record, and processing
continues to the next record.

Concatenation Function
SAS invokes the Concatenation function whenever a data set in a concatenation of
data sets has reached an end-of-file condition and the next data set has been
opened. The following figure illustrates the Concatenation FRCB structure and its
relationship to other control blocks:

Figure 20.8 Concatenation FRCB

In this function, you can modify the maximum data size for the next data set by
changing the Pointer to User Maximum Data Size so that it points to a fullword that
you initialize.

Write Function
SAS invokes the Write function during the execution of the PUT statement
whenever a new record must be written to the file. The following figure illustrates
the Write FRCB and its relationship to other control blocks:

Function Descriptions 333

Figure 20.9 Write FRCB

When the Write function receives control, the WRITRECA field (or Pointer to User
Record Area Address) points to a Record Address. The Record buffer is allocated by
SAS and contains the record that was created by the PUT statement.

In this function, you can change the Record Address so that it points to a record
that is defined by your user exit. If you make this change, then SAS writes your
record to the file, instead of writing the record that was created by the PUT
statement. However, in this case you must also update the fullword that the Pointer
to Record Size points to. It must equal the actual size of the record that the Pointer
to Record Area points to.

In the Write function, you can also change the setting of flags in the UEBCB. As
long as the EX_NEXT bit in the UEBCB is on, SAS calls the Write function to write
the next output record. The DATA step is not prompted for any new records to
write until the EX_NEXT flag has been set. At any time, if the EX_DEL bit in the
UEBCB is on, SAS ignores the current record, and processing continues to the next
record.

Close Function
SAS invokes the Close function after it closes the associated data set. In this
function, you should close any files that you opened, free any resources that you
obtained, and terminate all subprocesses or exits that your user exit initiated.

The following figure illustrates the Close FRCB structure and its relationship to
other control blocks:

Figure 20.10 Close FRCB

334 Chapter 20 / Using the INFILE/FILE User Exit Facility

SAS Service Routines
SAS provides four service routines that you can use when writing INFILE/FILE user
exits. These service routines allocate memory, free memory, access DATA step
variables, or write a message to the SAS log. Whenever possible, use the SAS
service routines instead of the routines that are supplied with z/OS. For example,
use the ALLOC SAS service routine instead of GETMAIN. When you use the ALLOC
routine, SAS frees memory when you are finished with it. By contrast, if you use the
GETMAIN routine, cleaning up memory is your responsibility, so you also have to
use the FREEMAIN routine.

The following list describes the four SAS service routines. You invoke one of these
routines by loading its address from the appropriate field in the UEBCB and then
branching to it. All of these routines are used in the “Sample Program” on page 339.

ALLOC routine
allocates an area of memory from within the SAS memory pool. This memory is
automatically freed when the Close function is processed. The ALLOC routine
takes the following parameters:

ALCEXIT
a pointer to the UEBCB.

ALCPTR
a pointer to a fullword in which the allocated area address is stored.

ALCLEN
the amount of memory required.

ALCFLG
a flag byte that controls whether the memory is allocated above or below
the 16M line. It has the following values:

Table 20.1 Values of the Flag Byte

Value Description

1 allocates the memory below the 16M line.

0 allocates the memory above the 16M line.

FREE routine
frees an area of memory that was previously allocated by a call to the ALLOC
routine. The FREE routine takes the following parameters:

FREEXIT
a pointer to the UEBCB.

SAS Service Routines 335

FREPTR
a pointer to the area to be freed.

FREFLG
a flag byte that indicates whether the memory that is to be freed is above or
below the 16M line. It has the following values:

Table 20.2 Values of the Flag Byte

Value Description

1 the memory below the 16M line.

0 the memory above the 16M line.

LOG routine
prints a message to the SAS log. The LOG routine takes the following
parameter:

LOGSTR
a pointer to a character expression that ends with a null (x'00').

VARRTN routine
defines or gets access to a SAS DATA step variable. The VARRTN routine takes
the following parameters:

VARNAME
a pointer to the name of the variable.

VARNAMEL
the length of the variable name.

VARTYPE
the type of variable that is being defined. It takes the following values:

Table 20.3 Values of the Flag Byte

Value Description

1 the variable is numeric (double precision).

2 the variable is character.

VARSIZE
the size of the variable, if the variable type is character.

VARFLAG
a flag byte that controls whether the variable is considered internal or
external. It takes the following values:

336 Chapter 20 / Using the INFILE/FILE User Exit Facility

Table 20.4 Values of the Flag Byte

Value Description

X’01 the variable is an internal variable; it does not
appear in any output data set.

X’02 >the variable is an external variable; it does
appear in the output data set.

VARADDR
a pointer to a fullword into which SAS places the address at which the
current value of the variable is stored. For numeric variables, the value is
stored as a double precision value. For character variables, the stored value
consists of three components:

Table 20.5 Pointer Descriptions

Pointer Description

MAXLEN is 2 bytes and represents the maximum length
of the character variable.

CURLEN is 2 bytes and represents the current length of
the character variable.

ADDR is 4 bytes and is a pointer to the character
variable string data.

Here are the return codes for the VARRTN routine:

Table 20.6 Return Code Descriptions

Return Code Description

0 the routine was successful (the variable was
created or accessed).

1 the variable already exists as a different type.

2 the variable already exists as a character variable,
but with a shorter length.

3 the variable already exists.

SAS provides two versions of the four service routines that are described in this
section. The versions of the routines can be used from a SAS/C environment. Here
are the service routines:

SAS Service Routines 337

n Assembler language programs that conform to the SAS/C standard, such as the
example in “Sample Program” on page 339

n ALLOC1, FREE1, LOG1, and VARRTN1

These routines contain extra logic to reestablish the SAS/C environment when the
exit does not conform to this standard. If R12 is modified by the user exit, or by the
run-time library for the language that the user exit is written in, then you must use
this set of functions.

Building Your User Exit Module
After you have coded your user exit module, you must assemble or compile it and
then link it into a load library. The name that you choose for your load module must
consist of a four-character prefix, followed by the letters IFUE. Do not use a prefix
that is the same as the name of a FILE or INFILE statement option.

After your load module is built, use the LOAD parameter of the SAS CLIST, SASRX
exec, or cataloged procedure when you invoke SAS. It specifies to SAS the name of
the load library that contains your user exit module.

Activating an INFILE/FILE User Exit
To activate an INFILE/FILE user exit, you generally specify the first four characters
of the name of the user exit module following the ddname or data set name in an
INFILE or FILE statement. For example:

infile inputdd abcd;

Only the first four characters of the user exit module name in the INFILE or FILE
statement are significant; SAS forms the load module name by adding the constant
IFUE to these characters. Therefore, in the previous example, SAS loads a module
named ABCDIFUE.

You can also specify the name of the user exit module by using the ENGINE= option
in the FILENAME statement or FILENAME function.

Note: If you use an INFILE/FILE user exit with a DATA step view, then specify the
name of the exit in the FILENAME statement or FILENAME function that you use
to allocate the file, instead of in the INFILE or FILE statement. (If you specify the
exit name in an INFILE or FILE statement, the exit is ignored when the view is
executed.) For example:

filename inputdd 'my.user.exit' abcd;

338 Chapter 20 / Using the INFILE/FILE User Exit Facility

Sample Program
The following sample program illustrates the process of writing an INFILE/FILE
user exit. Notice that this program is not trivial. Writing user exits requires a firm
understanding of register manipulation and other fairly advanced programming
techniques.

The example uses z/OS services to compress data. The data is compressed on
output and decompressed on input.

Note: This code is actually implemented in SAS, to support the CSRC option in the
INFILE and FILE statements. The CSRC option is described in “Standard Host
Options for the FILE Statement under z/OS” on page 608 and in “Standard Options
for the INFILE Statement under z/OS” on page 650.

The example consists of several assembly macros, followed by the assembly
language program itself. The macros define how the parameter lists are to be
interpreted. Each macro begins with a MACRO statement and ends with a MEND
statement. The actual program begins on the line that reads SASCSRC START. Here
is the example:

TITLE 'INFILE/FILE USER EXIT TO COMPRESS DATA USING ESA SERVICES'
*--
* COPYRIGHT (C) 2002 - 2012 BY SAS INSTITUTE INC., CARY, NC 27513 USA
*
* NAME: ==> SASCSRC
* TYPE: ==> EXTERNAL FILE USER EXIT
* LANGUAGE: ==> ASM
* PURPOSE: ==> TO COMPRESS/DECOMPRESS DATA USING CSRCESRV SERVICES
* USAGE: ==> DATA;INFILE MYFILE CSRC;INPUT;RUN;
*--
* - - - - - - - - - -
 MACRO
*---
* COPYRIGHT (C) 2002 - 2012 BY SAS INSTITUTE INC., CARY, NC 27513 USA
*
* NAME ==> VXEXIT
* PURPOSE ==> DSECT MAPPING OF INFILE EXIT TABLE
*---
 VXEXIT
*--
* MAP OF USER EXIT HOST BAG
*--
VXEXIT DSECT
 SPACE 1
*--
* THE FOLLOWING FIELDS MUST NOT BE CHANGED BY THE EXIT ROUTINE
* EXCEPT USERWORD
*--

Sample Program 339

EXITIDB DS A
EXITEP DS A
MEMALEN DS F LENGTH OF WORK AREA ABOVE 16M LINE
MEMABV DS A POINTER TO WORK AREA ABOVE 16M LINE
MEMBLEN DS F LENGTH OF WORK AREA BELOW 16M LINE
MEMBEL DS A POINTER TO WORK AREA BELOW 16M LINE
USERWORD DS A (USER UPD) WORD AVAILABLE TO EXIT
EDDNAME DS CL8 LOGICAL NAME OF THE FILE
VARRTN DS A SAS VARIABLE CREATING ROUTINE ADDRESS
ERRMSG DS A (USER UPD) NULL TERMINATED ERROR MESSAGE POINTER
EFLAG1 DS XL1 (USER UPD) FLAG BYTE-1
EX_NEXT EQU X'80' GET NEXT RECORD FROM EXIT
EX_DEL EQU X'40' DELETE THIS RECORD
EX_EOF EQU X'20' EOF OF DATASET REACHED
EX_EOFC EQU X'10' CALL USER EXIT AFTER EOF
EX_ALC EQU X'08' WILL USE ALLOC/FREE ROUTINES
EX_STOR EQU X'04' WILL SUPPORT STORED PROGRAMS
EX_TERM EQU X'02' WILL NEED A TERMINAL CALL
EFLAG2 DS XL1 FLAG BYTE-2
EFLAG3 DS XL1 FLAG BYTE-3
EFLAG4 DS XL1 FLAG BYTE-4
ALLOC DS A ALLOC ROUTINE
FREE DS A FREE ROUTINE
PIDA DS F PID ABOVE
PIDB DS F PID BELOW
ALLOC1 DS A ALLOCATE ROUTINE WITH SWITCH
FREE1 DS A FREE ROUTINE WITH SWITCH
VARRTN1 DS A SAS VARIABLE CREATING ROUTINE WITH SWITCH
VXCRAB DS A CRAB ADDRESS
LOG DS A LOG ROUTINE WITHOUT SWITCH
LOG1 DS A LOG ROUTINE WITH SWITCH
 SPACE 1
 DS 0D
 SPACE 1
VXEXITL EQU *-VXEXIT
*--
* MAP OF VARRTN FUNCTION CALL
*--
PARMVAR DSECT
*
VARNAME DS A POINTER TO VARIABLE NAME
VARNAMEL DS F VARIABLE NAME LENGTH
VARTYPE DS F VARIABLE TYPE 1=NUM, 2=CHAR
VARSIZE DS F SIZE OF VARIABLE IF CHAR
VARFLAG DS F FLAGS , X'01' - INTERNAL
* X'02' - EXTERNAL
VARADDR DS A POINTER TO VAR LOC ADDRESS (RETURNED)
*
* FOR CHARACTER VARIABLE IT RETURNS A POINTER TO A STRING STRUCTURE
*
* MAXLEN DS H MAX LENGTH OF STRING
* CURLEN DS H CURRENT LENGTH OF STRING
* ADDR DS A ADDRESS OF STRING DATA
PARMVARL EQU *-PARMVAR
*--
* MAP OF ALLOC FUNCTION CALL

340 Chapter 20 / Using the INFILE/FILE User Exit Facility

*--
PARMALC DSECT
*
ALCEXIT DS A POINTER TO THE EXIT BAG
ALCPTR DS A PLACE TO RETURN ALLOCATED ADDRESS
ALCLEN DS F LENGTH OF MEMORY REQUIRED
ALCFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M
PARMALCL EQU *-PARMALC
*--
* MAP OF FREE FUNCTION CALL
*--
PARMFRE DSECT
*
FREEXIT DS A POINTER TO THE EXIT BAG
FREPTR DS A ADDRESS OF FREEMAIN
FREFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M
PARMFREL EQU *-PARMFRE
*--
* MAP OF INIT EXIT CALL
*--
PARMINIT DSECT
*
INITFUNC DS F FUNCTION CODE
INITEXIT DS A USER EXIT BAG ADDRESS
INITMBLN DS A PTR TO AMT OF MEMORY NEEDED BELOW LINE
INITMALN DS A PTR TO AMT OF MEMORY NEEDED ABOVE LINE
PARMINIL EQU *-PARMINIT
*--
* MAP OF PARSE EXIT CALL
*--
PARMPARS DSECT
*
PARSFUNC DS F FUNCTION CODE
PARSEXIT DS A USER EXIT BAG ADDRESS
PARSOPTL DS F OPTION NAME LENGTH
PARSOPTN DS A POINTER TO OPTION NAME
PARSVALL DS F OPTION VALUE LENGTH
PARSVAL DS A OPTION VALUE
PARMPARL EQU *-PARMPARS
*--
* MAP OF OPEN EXIT CALL
*--
PARMOPEN DSECT
*
OPENFUNC DS F FUNCTION CODE
OPENEXIT DS A USER EXIT BAG ADDRESS
OPENMODE DS F OPEN MODE
OPENZLEN DS A POINTER TO DATA LENGTH
OPENBLKL DS F DATA SET BLOCK SIZE
OPENRECL DS F DATA SET RECORD LENGTH
OPENRECF DS F DATA SET RECORD FORMAT
PARMOPEL EQU *-PARMOPEN
*--
* MAP OF READ EXIT CALL
*--
PARMREAD DSECT

Sample Program 341

*
READFUNC DS F FUNCTION CODE
READEXIT DS A USER EXIT BAG ADDRESS
READRECA DS A POINTER TO RECORD AREA ADDRESS
READRECL DS A POINTER TO RECORD LENGTH
PARMREAL EQU *-PARMREAD
*--
* MAP OF WRITE EXIT CALL
*--
PARMWRIT DSECT
*
WRITFUNC DS F FUNCTION CODE
WRITEXIT DS A USER EXIT BAG ADDRESS
WRITRECA DS A POINTER TO RECORD AREA ADDRESS
WRITRECL DS F RECORD LENGTH
PARMWRIL EQU *-PARMWRIT
*--
* MAP OF CLOSE EXIT CALL
*--
PARMCLOS DSECT
*
CLOSFUNC DS F FUNCTION CODE
CLOSEXIT DS A USER EXIT BAG ADDRESS
PARMCLOL EQU *-PARMCLOS
*--
* MAP OF CONCAT EXIT CALL
*--
PARMCONC DSECT
*
CONCFUNC DS F FUNCTION CODE
CONCEXIT DS A USER EXIT BAG ADDRESS
CONCBLKL DS F NEXT DATA SET IN CONCAT BLOCK SIZE
CONCRECL DS F NEXT DATA SET IN CONCAT RECORD LENGTH
CONCRECF DS F NEXT DATA SET IN CONCAT RECORD FORMAT
CONCZLEN DS A POINTER TO DATA LENGTH
PARMCONL EQU *-PARMCONC
*
*--
* MAP OF LOG ROUTINE PARMLIST
*--
PARMLOG DSECT
LOGSTR DS A ADDRESS OF THE NULL-TERMINATED STRING
PARMLOGL EQU *-PARMLOG
*
*--
* EQUATES AND CONSTANTS
*--
EXITPARS EQU 4
EXITOPEN EQU 8
EXITREAD EQU 12
EXITCONC EQU 16
EXITWRIT EQU 20
EXITCLOS EQU 24
EXITP2HB EQU 28 NOT SUPPORTED YET
EXITHB2P EQU 32 NOT SUPPORTED YET
*

342 Chapter 20 / Using the INFILE/FILE User Exit Facility

* EXITMODE VALUES
EXITINP EQU 1
EXITOUT EQU 2
EXITAPP EQU 4
EXITUPD EQU 8
* RECFM VALUES
EXITRECF EQU X'80'
EXITRECV EQU X'40'
EXITRECB EQU X'10'
EXITRECS EQU X'08'
EXITRECA EQU X'04'
EXITRECU EQU X'C0'
&SYSECT CSECT
 MEND
 DS OD
VXEXITL EQU *-VXEXIT
 SPACE 1
 MACRO
&LBL VXENTER &DSA=,&WORKAREA=MEMABV,&VXEXIT=R10
 DROP
&LBL CSECT
 USING &LBL,R11
 LR R11,R15 LOAD PROGRAM BASE
 USING VXEXIT,&VXEXIT
 L &VXEXIT,4(,R1) LOAD -> VXEXIT STRUCTURE
 AIF ('&DSA' EQ 'NO').NODSA
 AIF ('&DSA' EQ '').NODSA
 L R15,&WORKAREA LOAD -> DSA FROM VXEXIT
 ST R15,8(,R13) SET FORWARD CHAIN
 ST R13,4(,R15) SET BACKWARD CHAIN
 LR R13,R15 SET NEW DSA
 USING &DSA,R13
.NODSA ANOP
 MEND
* - - - - - - - - - -
 MACRO
&LBL VXRETURN &DSA=
 AIF ('&LBL' EQ '').NOLBL
&LBL DS 0H
.NOLBL AIF ('&DSA' EQ 'NO').NODSA
 L R13,4(,R13) LOAD PREVIOUS DSA
.NODSA ANOP
 ST R15,16(,R13) SAVE RETURN CODE
 LM R14,R12,12(R13) RELOAD REGS
 BR R14 RETURN
 LTORG
 MEND
* -
* -
SASCSRC START
*
* MAIN ENTRY POINT FOR ALL EXITS
*
 USING SASCSRC,R15
 STM R14,R12,12(R13)
 L R2,0(,R1) LOAD FUNCTION CODE

Sample Program 343

 L R15,CSRCFUNC(R2) LOAD FUNCTION ADDRESS
 BR R15
*
CSRCFUNC DS 0A CSRC FUNCTIONS
 DC A(CSRCINIT) INITIALIZATION
 DC A(CSRCPARS) PARSE CSRC OPTIONS
 DC A(CSRCOPEN) OPEN EXIT
 DC A(CSRCREAD) READ EXIT
 DC A(CSRCCNCT) CONCATENATION BOUNDARY EXIT
 DC A(CSRCWRIT) WRITE EXIT
 DC A(CSRCCLOS) CLOSE EXIT
*
* INITIALIZATION EXIT
*
CSRCINIT VXENTER DSA=NO
 SPACE 1
 USING PARMINIT,R1
*
* THIS EXIT RUNS ONLY IN ESA AND ABOVE RELEASES
* WHICH SUPPORT DECOMPRESSION.
* THE CODE CHECKS FOR IT FIRST. IF NOT ESA, THE INIT FAILS
*
 L R15,16 LOAD CVT POINTER
 USING CVT,R15 BASE FOR CVT MAPPING
 TM CVTDCB,CVTOSEXT EXTENSION PRESENT
 BNO NOTESA FAIL, NOT ESA
 TM CVTOSLV0,CVTXAX SUPPORTS ESA
 BNO NOTESA NOT AN ESA
 DROP R15
 L R3,=A(PWALENL) SET WORK AREA LENGTH...
 L R2,INITMALN
 ST R3,0(,R2) AS ABOVE THE 16M LINE LENGTH
 SLR R15,R15 GOOD RC
 XC EFLAG1,EFLAG1 CLEAR
 OI EFLAG1,EX_ALC WILL USE ALLOC/FREE ROUTINES
 B INITX RETURN
NOTESA DS 0H
 LA R15,BADOS
 ST R15,ERRMSG SAVE ERROR MESSAGE
INITX DS 0H
 SPACE 1
 VXRETURN DSA=NO
BADOS DC C'THIS SUPPORT IS NOT AVAILABLE IN THIS ENVIRONMENT'
 DC XL1'00'
*
* PARSE EXIT
*
CSRCPARS VXENTER DSA=PWA
 USING PARMPARS,R4
 LR R4,R1 R4 IS PARMLIST BASE
 SPACE 1
 L R6,PARSOPTL R6 = OPTION NAME LENGTH
 LTR R6,R6 IF 0
 BZ PARSR RETURN OK
 LA R15,4 SET BAD OPTION RC
 L R7,PARSOPTN R7 -> OPTION NAME

344 Chapter 20 / Using the INFILE/FILE User Exit Facility

 L R8,PARSVALL R8 = OPTION VALUE LENGTH
 L R9,PARSVAL R9 -> OPTION VALUE (VAR NAME)
 SPACE 1

* OPTION ACCEPTED IS: *
* CSRC RECL= *

 C R6,=F'4' IF LENGTH NOT 4
* BNE PARSX RETURN WITH ERROR
 LTR R8,R8 IS IT =
 BNZ PARSRECL THEN CHECK FOR RECL=
 CLC 0(4,R7),=CL4'CSRC' IF NOT 'CSRC'
 BNE PARSX RETURN WITH ERROR
 B PARSR ELSE RETURN OK

* PARSE RECL=NUM *

PARSRECL DS 0H
 CLC 0(4,R7),=CL4'RECL' IF NOT 'RECL'
 BNE PARSX RETURN WITH ERROR
 CH R8,=H'16' GREATER THAN 16
 BNL PARSX INVALID VALUE
 BCTR R8,0 MINUS 1 FOR EXECUTE
 XC TEMP,TEMP CLEAR
 EX R8,CONNUM CONVERT TO NUMBER
*CONNUM PACK TEMP(0),0(R9)
 CVB R0,TEMP CONVERT TO BINARY
 ST R0,RECL SAVE RECL
 SPACE 1
PARSR SLR R15,R15 RETURN OK
 SPACE 1
PARSX VXRETURN DSA=PWA
CONNUM PACK TEMP(8),0(0,R9) *** EXECUTE ****
*
* OPEN EXIT
*
CSRCOPEN VXENTER DSA=PWA
 USING PARMOPEN,R1
 SPACE 1
 LA R15,NOINPUT SET -> NO INPUT ERROR MESSAGE
 L R4,RECL LOAD USER RECLEN
 LTR R4,R4 HAS IT BEEN SET?
 BNZ *+8
 LH R4,=Y(32676) SET LRECL=32K BY DEFAULT
 SPACE 1
 LA R15,DLENBIG SET -> DATALENGTH TOO BIG MESSAGE
 L R2,OPENZLEN
 L R3,0(,R2) R3 = DATA LENGTH OF EACH RECORD
 CR R3,R4 IF GREATER THAN CSRC MAXIMUM
 BH OPENX RETURN ERROR
 SPACE 1
 ST R4,0(,R2) RETURN LENGTH TO THE SAS SYSTEM
 ST R4,RECL SAVE LENGTH
*
* ALLOCATION OF BUFFER FOR INPUT RECORDS
*

Sample Program 345

 LA R1,PARM POINT TO PARMAREA
 XC PARM,PARM CLEAR
 USING PARMALC,R1
 ST R10,ALCEXIT COPY HOST BAG POINTER
 LA R15,MEMADDR
 ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS
 ST R4,ALCLEN LENGTH OF MEMORY NEEDED
 L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE
 BALR R14,R15 ALLOCATION OF MEMORY
 LTR R15,R15 WAS MEMORY ALLOCATED?
 BNZ OPENMEM IF NOT, OPERATION FAILS
*
* QUERY THE COMPRESS SERVICE
*
 LA R0,1 USE RUN LENGTH ENCODING
 CSRCESRV SERVICE=QUERY QUERY IT
 LTR R15,R15 EVERYTHING OK
 BNZ OPENERR IF NOT, FAIL WITH MESSAGE
 LTR R1,R1 REQUIRE WORK AREA
 BZ OPENX IF NOT, END
 LR R0,R1 SAVE R1
 LA R1,PARM POINT TO PARMLIST
 LA R15,MEMWK ALLOCATE WORK AREA
 ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS
 ST R0,ALCLEN LENGTH OF MEMORY NEEDED
 L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE
 BALR R14,R15 ALLOCATION OF MEMORY
 LTR R15,R15 WAS MEMORY ALLOCATED?
 BNZ OPENMEM IF NOT, OPERATION FAILS
 B OPENX RETURN, OPERATION IS DONE
OPENERR DS 0H
 XC TEMP,TEMP CONVERT RC TO DECIMAL
 CVD R15,TEMP CONVERT TO DECIMAL
 MVC MSG(BADESRVL),BADESRV MOVE IN SKELETON
 UNPK MSG+BADESRVL-3(2),TEMP UNPACK
 OI MSG+BADESRVL-2,X'F0' MAKE IT PRINTABLE
 LA R15,MSG SET MESSAGE
 ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
 LA R15,8
 B OPENX
OPENMEM DS 0H
 LA R15,NOMEMORY
 SPACE 1
OPENX DS 0H
 ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
* R15 = EITHER 0 OR NONZERO
 VXRETURN DSA=PWA
*
NOINPUT DC C'CSRC: DECOMPRESS DOES NOT SUPPORT OUTPUT'
 DC XL1'00'
NOFIXED DC C'CSRC: DECOMPRESS DOES NOT SUPPORT FIXED LENGTH RECORDS'
 DC XL1'00'
DLENBIG DC C'DATASET DATALENGTH > CSRC MAXIMUM'
 DC XL1'00'
NOMEMORY DC C'CSRC: UNABLE TO OBTAIN MEMORY'
 DC XL1'00'

346 Chapter 20 / Using the INFILE/FILE User Exit Facility

BADESRV DC C'CSRC: NON ZERO RETURN CODE FROM QUERY, RC = '
BADESRVN DC H'0'
 DC XL1'00'
BADESRVL EQU *-BADESRV
*---
* READ EXIT
*
* THIS EXIT DECOMPRESSES EACH RECORD
*---
CSRCREAD VXENTER DSA=PWA
 USING PARMREAD,R1
 SPACE 1
 L R8,READRECL R8 -> RECORD LENGTH
 L R9,READRECA R9 -> RECORD ADDRESS
 L R3,0(,R8) R3 = RECORD LENGTH
 L R2,0(,R9) R2 = RECORD ADDRESS
 L R1,MEMWK LOAD WORK AREA ADDRESS
 L R4,MEMADDR R4 = OUTPUT BUFFER
 L R5,RECL R5 = OUTPUT BUFFER LENGTH
 CSRCESRV SERVICE=EXPAND
 LTR R15,R15 EVERYTHING OK
 BNZ READERR IF NOT, SET ERROR AND RETURN
 L R15,MEMADDR START OF BUFFER
 SR R4,R15 MINUS LAST BYTE USED
 ST R4,0(,R8) LENGTH OF UNCOMPRESSED RECORD
 ST R15,0(,R9) SAVE UNCOMPRESSED REC ADDRESS
 SLR R15,R15 SET GOOD RC
 B READX RETURN TO USER
READERR DS 0H
 XC TEMP,TEMP CONVERT RC TO DECIMAL
 CVD R15,TEMP CONVERT TO DECIMAL
 MVC MSG(EXPERRL),EXPERR MOVE IN SKELETON
 UNPK MSG+EXPERRL-3(2),TEMP UNPACK
 OI MSG+EXPERRL-2,X'F0' MAKE IT PRINTABLE
 LA R15,MSG SET MESSAGE
 ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
 LA R15,8
*
 SPACE 1
READX DS 0H
 VXRETURN DSA=PWA
 SPACE ,
EXPERR DC C'CSRC NON ZERO RETURN CODE FROM EXPAND, RC = '
EXPERRN DC H'0'
 DC XL1'00'
EXPERRL EQU *-EXPERR
*
*
* CONCATENATION EXIT
*
CSRCCNCT VXENTER DSA=PWA
 SPACE 1
 SLR R15,R15
 VXRETURN DSA=PWA
*---
* WRITE EXIT

Sample Program 347

*
* THIS EXIT COMPRESSES EACH RECORD
*---
CSRCWRIT VXENTER DSA=PWA
 USING PARMWRIT,R1
 L R8,WRITRECL R8 -> RECORD LENGTH
 L R9,WRITRECA R9 -> RECORD ADDRESS
 L R3,0(,R8) R3 = RECORD LENGTH
 L R2,0(,R9) R2 = RECORD ADDRESS
 L R1,MEMWK LOAD WORK AREA ADDRESS
 L R4,MEMADDR R4 = OUTPUT BUFFER
 L R5,RECL R5 = OUTPUT BUFFER LENGTH
 CSRCESRV SERVICE=COMPRESS
 LTR R15,R15 EVERYTHING OK
 BNZ WRITERR IF NOT, SET ERROR AND RETURN
 L R15,MEMADDR START OF BUFFER
 SR R4,R15 MINUS LAST BYTE USED
 ST R4,0(,R8) LENGTH OF RECORD
 ST R15,0(,R9) SAVE NEW RECORD ADDRESS
 SLR R15,R15 SET GOOD RC
 B WRITEX RETURN TO USER
WRITERR DS 0H
 XC TEMP,TEMP CONVERT RC TO DECIMAL
 CVD R15,TEMP CONVERT TO DECIMAL
 MVC MSG(WRTERRL),WRTERR MOVE IN SKELETON
 UNPK MSG+WRTERRL-3(2),TEMP UNPACK
 OI MSG+WRTERRL-2,X'F0' MAKE IT PRINTABLE
 LA R15,MSG SET MESSAGE
 ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY
 LA R15,8
 SPACE 1
 SPACE 1
WRITEX DS 0H
 VXRETURN DSA=PWA
WRTERR DC C'CSRC: NON ZERO RETURN CODE FROM COMPRESS, RC = '
WRTERRN DC H'0'
 DC XL1'00'
WRTERRL EQU *-WRTERR
 LTORG
*
* CLOSE EXIT
*
CSRCCLOS VXENTER DSA=PWA
 SLR R15,R15
 LA R1,PARM
 XC PARM,PARM
 USING PARMFRE,R1
 ST R10,FREEXIT
 L R15,MEMADDR
 ST R15,FREPTR
 L R15,FREE
 BALR R14,R15
 VXRETURN DSA=PWA
*
R0 EQU 0
R1 EQU 1

348 Chapter 20 / Using the INFILE/FILE User Exit Facility

R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
 VXEXIT ,
*
PWA DSECT PROGRAM WORK AREA
PWASAVE DS 32F SAVE AREA
TEMP DS D
RECL DS F
SAVE DS 32F
PARM DS CL(PARMALCL)
MEMADDR DS F
MEMWK DS F
MSG DS CL200
PWALENL EQU *-PWA LENGTH OF CSRC WORK AREA
 CVT DSECT=YES
*
 END

Sample Program 349

350 Chapter 20 / Using the INFILE/FILE User Exit Facility

21
SAS Data Location Assist for
z/OS

Overview of SAS Data Location Assist for z/OS . 351

A Simple zDLA Application . 352

Sample Invocations of zDLA Functions . 354

Dictionary . 355
ZVOLLIST Function: z/OS . 355
ZDSLIST Function: z/OS . 356
ZDSNUM Function: z/OS . 367
ZDSIDNM Function: z/OS . 368
ZDSATTR Function: z/OS . 369
ZDSRATT Function: z/OS . 380
ZDSXATT Function: z/OS . 383
ZDSYATT Function: z/OS . 384

Overview of SAS Data Location Assist
for z/OS

SAS Data Location Assist for z/OS (zDLA) enables you to use the flexibility of the
SAS DATA step to gather information about attributes for data sets that reside
throughout your operating system. You can use zDLA to retrieve information about
all forms of z/OS data sets, including sequential, VSAM, partitioned, and UFS files.
The zDLA feature enables you to process the types of attribute information that
are obtained from other utility programs without writing lengthy SAS DATA steps.
It also eliminates the need for you to use multiple utilities to retrieve this
information, or the need to write additional utilities in the Assembler language.

351

When a SAS server is in a locked-down state, the SAS functions associated with
zDLA do not execute. For more information, see Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219.

The zDLA feature provides the following SAS functions that you can use to retrieve
information about data set attributes:

ZVOLLIST returns a list of volume serial numbers.

ZDSLIST returns a list of data set names.

ZDSNUM returns a count of the number of data set names previously
returned from the ZDSLIST function.

ZDSIDNM returns an individual data set name from the results returned by
the ZDSLIST function, based on an index.

ZDSATTR returns the attributes for the data set specified by its argument.
The attributes returned depend on the type of request and the
type of data set.

ZDSRATT returns RACF security attributes for a z/OS data set name, or
UNIX security attributes (including ACL definitions) for a UFS file
or directory.

ZDSXATT returns the number of attributes retrieved by a previous request
(ZDSATTR or ZDSRATT).

ZDSYATT returns one of the attributes retrieved by a previous request
(ZDSATTR or ZDSRATT).

A Simple zDLA Application
The following zDLA example shows how to combine the various zDLA functions to
display attributes of a collection of data sets. The example retrieves and prints
attributes of one or more data sets. It also shows how some of the routines are
used and how they are interrelated. Following the example is a listing of a portion
of the example output.

data _NULL_;
 file PRINT;

 length xvols $1024;
 length unitnm vfilter $64;
 unitnm = '3390';
 vfilter = 'SMS*';
 /* Obtain list of SMS* volumes */
 xvols = zvollist(unitnm, vfilter);
 put xvols=;
 put;

 length xdsn $32000;
 length catgry dfilter optparm $256;

352 Chapter 21 / SAS Data Location Assist for z/OS

 catgry = 'CATLG';
 dfilter = 'userID.*.LIST';
 optparm = '';
 /* Obtain list of data sets matching userID.*.list */
 xdsn = zdslist(catgry, dfilter, xvols, optparm);

 /* determine number of matching data sets */
 xnum = zdsnum(xdsn);
 put xnum=;
 put;

 length xidnm xattr $4096;
 length xattrc $72;
 do i=1 to xnum;
 /* extract the i-th name */
 xidnm = zdsidnm(xdsn, i);
 put xidnm=;
 put;

 /* obtain attributes for the i-th data set */
 xattr = zdsattr(xidnm, 'ALL');

 /* count the number of lines returned */
 xattrn = zdsxatt(xattr);
 put xattrn=;
 put;
 do j = 1 TO xattrn;
 /* extract the j-th line from xattr for this data set */
 /* comprising both attribute lines and heading/trailer lines */
 xattrc = zdsyatt(xattr, j);
 /* write this line of a data set attribute report */
 put @1 xattrc;
 end;
 put;
end;
run;

A Simple zDLA Application 353

Output 21.1 Listing Output from the Simple zDLA Application

XVOLS=SMS007,SMSOVR,SMS001,SMS004,SMS002

XNUM=1
XIDNM=userID.SUPERC.LIST

XATTRN=33
userID.SUPERC.LIST Data Set Name
1 Total Volume Count
** FILE ATTRIBUTES **
2014/05/17 Creation Date
SASLIB=NO Possible SAS Library
. Expiration Date
2015/06/12 Last Referenced Date
PS Data Set Organization
NO EATTR option
NO Compressible
. Data Class
STD2YEAR Management Class
STD Storage Class
NONE Data Set Type
FBA Record Format
133 Logical Record Size
3325 Blocksize
** END FILE ATTRIBUTES **
** VOLUME ATTRIBUTES **
SMS004 Volume Serial
3390 Device Type
Blocks Unit of Allocation
14 Primary Allocation
12 Secondary Allocation
2 Allocated Extents
28 Allocated Blocks
2 Used Extents
3 Used Blocks
1 Volume Sequence No.
NO EAV Volume
************ **********
** END VOLUME ATTRIBUTES **

Sample Invocations of zDLA Functions
Several samples of DATA step invocations of zDLA functions are available in the
SAS sample library. These samples illustrate methods of invoking zDLA functions,
and they can provide a base for users to derive their own programs. Note that the
samples do not handle all contingencies.

The following list contains the names and descriptions of the samples.

ZDLAPROC
contains an example of using PROC FCMP to invoke zDLA functions. This SAS
program must be saved to a SAS data set before running samples ZDLAGSEQ or
ZDLAGPDS.

354 Chapter 21 / SAS Data Location Assist for z/OS

ZDLAGSEQ
calls the ZDLAPROC subroutine, sets up an INFILE statement with the FILEVAR
option, and reads sequential data sets.

ZDLAGPDS
calls the ZDLAPROC subroutine, sets up INFILE statements using macro
variables, and reads selected members or all members of partitioned data sets.

ZDLARL01
calls ZDSLIST twice, with CATLG and HSM categories, and uses merge and
subsetting IF statements to extract cataloged data sets. Then ZDLARL01
displays PDS member names.

ZDLARL02
produces the same output as ZDLARL01. However, it dispenses with HSM
invocation, and MERGE and IF statements, by using the zDLA function
ZVOLLIST to qualify the ZDSLIST filter.

ZDLARDIR
reads UFS directories and displays entry names.

ZDALRFIL
reads UFS files and displays file options.

Dictionary

ZVOLLIST Function: z/OS
Returns a list of volume serial numbers according to the requested criteria.

Category: External Files

Syntax

ZVOLLIST(category, <volume filter>, <option>);

Required Argument
category

can be a device type such as 3390 or a device name such as SYSDA. If ALL or
DASD are specified, then all volume serial numbers for all direct access device
names are returned.

ZVOLLIST Function: z/OS 355

Optional Arguments
volume filter

returns all volume serial numbers for the specified category if a NULL volume
filter is specified. A volume serial number can be a six-character value such as
SDS001 or a wildcard such as SDS*. If a wildcard is specified as in the example,
then all volume serial numbers beginning with SDS for the specified category
are returned. The volume filter can be a list such as SDS001, SMS*, or APP0*.
The first character of the filter cannot be a blank space. If it is, then the filter is
assumed to be NULL.

option
this parameter is accepted, but no values are currently processed.

Details

Use the following method to invoke the ZVOLLIST function:

length xvols $1024;
xvols = zvollist(category, volume-filter, '');

Example

length xvols $32000;
length unitnm vfilter $24;
unitnm = '3390';
vfilter = ' ';
xvols=zvollist(unitnm, vfilter);
xvols=zvollist('SYSDA', vfilter);
xvols=zvollist('DASD');
vfilter = 'SDS011,SDS012';
xvols=zvollist(unitnm,vfilter);
unitnm = 'ALL';
vfilter = 'SMF*, SMS*';
xvols=zvollist(unitnm, vfilter);
vfilter = '&sysr1, &sysr2';
xvols=zvollist(unitnm,vfilter);

The output format of the ZVOLLIST function is a list of volume serial numbers that
are separated by commas and sorted into alphanumeric order.

ZDSLIST Function: z/OS
Returns a list of data set names according to the requested criteria.

Category: External Files

Restrictions: ZDSLIST processes only direct access and migrated direct access data sets.

356 Chapter 21 / SAS Data Location Assist for z/OS

The value of the FILEYSTEM= system option is ignored when interpreting data set
filters, regardless of the category.

Syntax

zdslist(category, data set filter, volume filter, <option>);

Required Arguments
The following arguments are usually required. They can also be omitted, depending on the
specified category.

category
The following values are supported:

CATLG
returns cataloged data set names.

HSM
returns migrated data set names.

VSAM
returns VSAM cluster and index names.

NVSAM
returns non-VSAM data set names.

ALL
returns aliases from the master catalog. Usually, these aliases are one-level
alias names of user catalogs.

VOLS
returns the names of data sets that are resident on the specified volumes.

USSDIR
returns UFS filenames and directories.

data set filter
A data set filter can be any of the following:

n a fully qualified data set name that can contain wildcards. Data set names
can include a member name or generation number that is enclosed in
parentheses. Member names and generation numbers cannot contain
wildcards. A prefix of MVS: is permitted but is never required. Data set
names, with or without wildcards, are converted to uppercase before
processing by ZDSLIST.

n a list of data set names separated by commas. Names with and without
wildcards can be mixed.

n a list of UFS pathnames separated by commas. Wildcards are permitted. A
prefix of HFS: is permitted but is never required. Note that UFS pathnames
are case-sensitive.

ZDSLIST Function: z/OS 357

volume filter
A volume filter is a set of volume serial numbers restricting the data sets whose
names are to be returned. A null (empty or blank) volume filter requests the
return of all of the appropriate names, regardless of the volume. If the volume
filter is not null, then the volume filter is a list of one or more volume serial
numbers or wildcard specifications. An asterisk represents a sequence of one or
more characters in the specification. For example, a volume filter of 'SDS*'
requests the return of data sets on volumes whose names begin with SDS, and
the filter 'SDS*,SCS001,SCS002' adds SCS001 and SCS002 to the list of
volume serials to be considered. A list of volumes returned from ZVOLLIST is an
acceptable volume filter argument. A volume filter can be specified using a
system symbol, as discussed in more detail in the following section. Note that
ZDSLIST converts volume serials to all uppercase characters before processing
them.

Optional Argument
option

The following values are supported for the OPTION argument. Multiple options
should not be specified because they apply to distinct types of data sets.

MEM |
NOMEM

indicates whether a member name list is included when the
name of a PDS or PDSE is returned. NOMEM is the default.

ENT | NOENT indicates whether the pathnames for directory entries,
files, and subdirectories, are returned for a directory name.
This value is only for USSDIR processing. NOENT is the
default.

Details

Invoking ZDSLIST
Use the following method to invoke the ZDSLIST function:

length xdsn $20480;
xdsn=zdslist(category, data set filter, volume filter, option);

Note: If the declared size of the user-defined output variable is too small to
contain the amount of generated data, then ZDSLIST allocates a larger buffer.
ZDSLIST continues allocating a larger buffer until enough storage has been
allocated or until no more memory is available. These additional buffers are
accessible only through the zDLA functions. Messages about the allocation of a
larger buffer are posted to the SAS log.

Sorting UFS Output Data
ZDSLIST sorts UFS output according to the type of request that you make. It also
recognizes UFS names that contain asterisks.

358 Chapter 21 / SAS Data Location Assist for z/OS

Using Wildcards with the CATLG Category and Similar
Categories
The zDLA feature supports two wildcards that can be used to build filters that
describe many similar data set names. These wildcards are * and **. A * wildcard can
be used as part or all of a qualifier, which is the part of a data set name that is
separated by periods. A ** wildcard can be used only as an entire qualifier. For
example, the following qualifiers are all valid * wildcard specifications:
userID.my*.data, usr*z.my.data, userID.index.htm*, and
userID.project.*.cntl. If the asterisks in these specifications are replaced with
, only the last specification is valid. Filters such as usrz.my.data are not
accepted.

If a wildcard is a complete qualifier, then the filter selects any data set where the
wildcard is replaced by any number of qualifiers, including zero.
userID.project.*.cntl matches userID.PROJECT.CNTL,
userID.PROJECT.STREETS.CNTL, and userID.PROJECT.CITY.STREETS.CNTL. Also
note that userID.project.* matches the data set userID.PROJECT, if it exists. It
also matches the names that are listed in the previous sentence. This behavior is
shared between the * and ** wildcards. For a * wildcard that is part of, but not all of a
qualifier, the wildcard selects any data set where the asterisk is replaced by zero or
more characters, not including periods. userID.my*.data selects
userID.MYSTREET.DATA and userID.MYROAD.DATA, but does not select
userID.MY.ROAD.DATA.

Note that all filter entries have an implicit .** at the end. A filter specification of
userID.my*.data also selects userID.MYROAD.DATA.BASE, if it exists.

Using Wildcards with the USSDIR Category
Only the * wildcard is supported for the USSDIR category. This wildcard is
interpreted like the shell interprets a * in commands. The * can be replaced by any
number of characters (including none), except for a slash, or a period as the initial
character of a filename. The filter specification /u/userID/a.*.sh matches /u/
userID/a.parser.sh and /u/userID/a.archive.2012.sh. The filter
specification /u/userID/a*.sh matches the same names as /u/userID/a.*.sh, as
well as /u/userID/a.sh and /u/userID/alternate.sh. Neither pattern
matches /u/userID/a.subdir/suburban.sh, which is different from how the *
wildcard works for the other categories.

A difference from the other categories is that a USSDIR wildcard specification
never has a .* wildcard appended automatically to the end. The filter /u/userID/
a*.sh does not select the name /u/userID/alternate.sh.output.

You can specify up to two wildcards in each path component specified in a USSDIR
filter.

Data Set Filter Interpretation

Filters for the CATLG Category
Specifying a null (empty or blank), *, or ** data set filter with CATLG causes retrieval
of the names of all of the data sets that start with your user ID. Specifying a filter of

ZDSLIST Function: z/OS 359

*ALL causes all names in the catalog to be returned. In the latter case, the MEM
option is not supported.

Filter entries can be given in the form .specification, such as .project or .*.asm.
These names are processed in the same way that they are processed by the
FILENAME statement, by appending the TSO prefix to the start of the name. A
filter of the form .*.asm is processed like one of the form SYSPREF.*.asm, where
SYSPREF is the value of the SAS SYSPREF option. SYSPREF defaults to the TSO
prefix under TSO and to the user ID in batch.

If a data set matching the filter is a partitioned data set, and the MEM option is
specified, then ZDSLIST returns the data set name with a list of members enclosed
in braces–for example: MYDSN{MEMBER1,MEMBER2,...}.

If a filter specification includes a member name such as
'userID.*.testsrc(absspec)', then the output includes the member name if the
matching data set is a PDS that contains that member. Otherwise, it does not
include the member name. Even if the MEM option is specified, only one member
name is present for a returned data set name.

A data set filter that contains a GDG group without a generation number causes
ZDSLIST to return all of the expanded GDG names for that group. A GDG name
with a qualification such as -1 returns the expanded name that is relevant to that
level.

ZDSLIST skips over spurious characters that are present at the beginning or end of
a data set filter. It attempts to bypass some errors such as a data set that is in use.
However, if the filter contains an error, such as a data set name that is longer than
44 characters, then the whole filter is regarded as being in error.

The location of wildcards in data set filters is crucial. The following table contains
examples of wildcards in data set filters. Note the location of the wildcards and the
differences in the information that is returned.

Table 21.1 Wildcards in Data Set Filters

Data Set Filter Returned Information

'userID.sas.*' userID.SAS.CNTL,userID.SAS.LOAD.userID.SAS.TESTSRC,...

'userID.*.cntl' userID.BACKUP.CNTL,userID.SAS.CNTL,
userID.SAS900.CNTL.BACKUP, userID.SAS900.FINAL.CNTL,...

'userID.s*.c*' userID.SAS.CLASS.SCHEDULE,userID.SAS.CNTL,userID.SAS900.CNTL.BACKUP,
userID.SUPERC.CLIST,userID.SYNTAX.CHECK.LOAD,...

'userID.sas.c*' userID.SAS.CLASS.SCHEDULE,userID.SAS.CNTL,...

'userID.**.c*l*' userID.BACKUP.CNTL,userID.COOL.STUFF,userID.SAS.CLASS.SCHEDULE,
userID.SAS.CNTL,
userID.SAS900.CNTL.BACKUP,userID.SAS900.FINAL.CNTL,userID.SUPERC.CLIST,...

360 Chapter 21 / SAS Data Location Assist for z/OS

Filters for the VSAM, NVSAM, and HSM Categories
These categories are similar to CATLG, but restrict the results of ZDSLIST to
specific types of data sets. Only VSAM data sets are placed in the return list for the
VSAM category, and only non-VSAM data sets are processed for the NVSAM
category. The HSM category indicates that only migrated data sets are processed,
based on a volume serial of MIGRAT. When the category is HSM, any volume filter
is ignored.

Filters for the ALL Category
A category of ALL is similar to CATLG. If the data set filter is null, or *, or **, then the
request returns all of the alias names from the master catalog. If the data set filter
is not null, then the request is treated as a normal CATLG request.

Filters for the VOLS Category
A non-null volume filter must always be specified for this category.

If a null (empty or blank) data set filter is specified with the VOLS category, then
the names of all of the data sets on the specified volumes are returned.

If a non-null data set filter is specified, then processing is the same as it is for
CATLG, and only matching cataloged data sets from the specified volumes are
returned.

If no data set filter exists, then the names of all data sets on the volume are read
from the Volume Table of Contents (VTOC). The names are returned in indexed
order if the VTOC is indexed, or in physical sequential order.

A specific volume filter must specify volume serial numbers or wildcards. If
volumes for a device name are required, then first call ZVOLLIST and pass the
output variable to ZDSLIST. The maximum number of volumes that can be
processed is 671. A warning message is issued if this number is exceeded, and
processing occurs for the volumes that are stored in the array, up to the limited
number of volumes. A volume filter can also include a system symbol.

Filters for the USSDIR Category
USSDIR retrieves UFS filenames according to the data set filter specification. If the
name of a directory is retrieved, that directory's entries, including files and
subdirectories, might also be retrieved depending on whether the ENT option is set.

Wildcards are supported within UFS filters. You can specify up to thirty path
components, and up to two wildcards in each of the path components. If you enter
the following filter: /u/userID/dir.*/*_cal/*a*e/**/test* it might return a UFS
path such as this:

/u/userID/dir.secure/Jan2014_cal/save/older.versions/testCal.

Note:

n An error message is issued if you specify more than the maximum number of
wildcards and components.

ZDSLIST Function: z/OS 361

n The USSDIR category works a little differently with wildcards than they work
with other categories. One difference is that an ending specification of .** is
never added with USSDIR. That is, the path /u/userID/somename.c is not
returned for a filter of /u/userID/*name.

n Typically, an * within a data set filter is interpreted as signifying a wildcard
symbol. This might not be accurate for UFS files and directories because the
UFS names might contain an embedded *. To prevent this problem, place such
file and directory names within quotation marks like this, ‘wtes*1’.

The format of output from a USSDIR request depends on whether wildcards are
present, and whether the ENT or NOENT option is set. Filenames are listed prior to
directory names (except for sub-entries contained within braces) and the output is
sorted alphabetically.

These example requests illustrate the expected outputs.

‘/u/userID/dir7’
The name of the path is returned in the ZDSLIST() output variable, if the name
exists.

‘/u/userID/dir7’, ’’, ’ent’
The name of the path is returned with entry names contained within braces in
alphabetical order. The names are not separated into file and directory names as
this example shows.

/u/userID/dir7{adirectory,afile,efile,ndirectory,xfile,zdirectory}

‘/u/userID/dir7/*’
This is a wildcard request without the ENT option. Path and entry (file or
directory) names are returned in the form pathname/entry-name. The output
delivers first filenames then directory names. Each of these categories is sorted
alphabetically as this example shows.

/u/userID/dir7/afile
/u/userID/dir7/efile
/u/userID/dir7/xfile
/u/userID/dir7/adirectory
/u/userID/dir7/ndirectory
/u/userID/dir7/zdirectory

/u/userID/dir7/*’, ‘’, ‘ent’
This is a wildcard request with the ENT option specified. The output is the same
as for the preceding request, except that sub-entries for directories are returned
within braces and sorted alphabetically, regardless of whether they are files or
directories as this example shows.

/u/userID/dir7/afile
/u/userID/dir7/efile
/u/userID/dir7/xfile
/u/userID/dir7/adirectory{directx,filename4, filenam1,zdir}
/u/userID/dir7/ndirectory{dirx,diry,filea.gif, fileb.tst, filec, ndir1}
/u/userID/dir7/zdirectory{directa,directd,filenam8,filenam9}

Note:

362 Chapter 21 / SAS Data Location Assist for z/OS

n The value of the FILESYSTEM= system option is ignored with USSDIR. An
explicit file prefix of HFS: can be specified within the filter, but is never required.

n Any volume filter specification is ignored by USSDIR processing.

n Directory entries of “.” and “..” are omitted from the returned information for
category USSDIR.

n If ZDSLIST can determine that two filter specifications refer to exactly the same
files (such as ~/mydir and /u/userID/mydir), then the duplicate specification is
ignored.

System Symbols in Volume Filters
A volume filter passed to ZDSLIST can contain a system symbol that is defined in
SYS1.PARMLIB member IEASYMxx. If the category is VOLS, the variable symbol is
replaced by its value before data sets are listed. If the category is not VOLS, then
no replacement occurs, and the data sets that are returned are limited to those data
sets whose catalog entries reference the symbol.

If the volume filter is &CPPM1, which references the volume MIASP1, and if the
category is VOLS, then only data sets on MIASP1 are returned. Otherwise, data sets
cataloged on &CPPM1 are returned, but not data sets that are cataloged
specifically on MIASP1.

A system symbol specification cannot include a wildcard. Any specification must
reference only one volume serial.

Returned Information
The ZDSLIST function returns a string that can be used by the ZDSNUM and
ZDSIDNM functions to obtain the number and names of the data sets that were
returned by ZDSLIST. This string should not be accessed directly, because its
format is subject to change in later revisions. The return variable should have a
length sufficient to contain the expected number of names, and possibly member
names, that are returned. Even though ZDSLIST attempts to obtain additional
storage for an unexpectedly large number of data sets, additional overhead might
be incurred if the variable length is significantly less than the length required.

The following table contains specific examples of ZDSLIST function requests and
names of MVS data sets that might be stored as a result of a call to ZDSLIST.

Table 21.2 MVS Data Sets

Filter Specification Returned Names

Simple file list such as
userID.bmp.list,userID.bkm

userID.BMPLIB.LIST,userID.BKM.PRINT

Sequential data set and PDS with MEM such as
userID.bkm,userID.sas.cntl

userID.BKM.PRINT,userID.SAS.CNTL{MEM1,MEM2,MEM3}

ZDSLIST Function: z/OS 363

Filter Specification Returned Names

PDS with specific member (MEM or NOMEM)
such as userID.sas.cntl(absspec)

userID.SAS.CNTL(ABSSPEC)

GDG index such as userID.vxcopy.gdge* userID.VXCOPY.GDGEXAMP,

userID.VXCOPY.GDGEXAMP.G0001V00,

userID.VXCOPY.GDGEXAMP.G0002V00

Wildcard PDS with specific member such as
userID.*.testsrc(dbfwhere)

userID.DBI.TESTSRC,userID.EQAUTO.TESTSRC,

userID.SAS.V8.TESTSRC,

userID.SAS.TESTSRC(DBFWHERE),

userID.VSAM.TESTSRC

GDG index such as userID.vxcopy.gdgtst1 userID.VXCOPY.GDGTST1,userID.VXCOPY.GDGTST1.g0001V00,

userID.VXCOPY.GDGTST1.G0002V00,...

userID.VXCOPY.GDGTST1.G0005V00

GDG index and data sets such as
userID.vxcopy.gdgtst1.*

userID.VXCOPY.GDGTST1,userID.VXCOPY.GDGTST1.G0001V00,

userID.VXCOPY.GDGTST1.G0002V00,...

userID.VXCOPY.GDGTST1.G0005V00

GDG data sets such as
userID.vxcopy.gdgtst1(+0),
userID.vxcopy.gdgtst1(-1)

userID.VXCOPY.GDGTST1.G0005V00,

userID.VXCOPY.GDGTST1,G0004V00

PDS with NOMEM option (or default) such as

userID.sas.cntl

userID.SAS.CNTL

Multiple PDS data sets with MEM such as
userid.sas.*

userID.SAS.CNTL{MEM1,MEM2,MEM3},

userID.SAS.LOAD{MEM1,MEM2,MEM3},

userID.SAS.SRC{MEM1.MEM2,MEM3}

The following table contains specific examples of UFS filter specifications and
names that might be returned by ZDSLIST. In some of the examples, the
path /home/someID is used to indicate the home directory of a particular user, and
parent/current is used to indicate the current directory and its parent directory.

Table 21.3 UFS Data Sets

Filter Specification Names Returned

Special characters / /

. parent/current

.. parent

./ parent/current

../ parent

364 Chapter 21 / SAS Data Location Assist for z/OS

Filter Specification Names Returned

~ /home/userID

~/ /home/userID

~someID /home/someID

/u/userID with NOENT option Returns only the directory.

/u/userID

/u/userID with ENT option Returns the directory and entry names within
braces.

/u/userID{entry1,entry2,entry3}

/u/userID/* with NOENT Returns matching files and then directories. It does
not return entries of the directories.

/u/userID/a.sh, /u/userID/c.sas,

/u/userID/bdir

/u/userID/* with ENT Returns files and directories with their entries
appended.

/u/userID/a.sh,/u/userID/c.sas,

/u/userID/bdir{bsubdir,my.html,my.sas}

~/wxcat1* (NOENT defaulted) Returns files and then directories. It does not
return entries.

/home/userID/wxcat1.a.b,/home/userID/wxcat1.c,

/home/userID/wxcat1_dir1

~/w*.* /home/userID//wxcat1.a.b,/home/userID/wxcat1.c,

/home/userID/wxfiles.d

~/w* /u/userID/wxcat1.a.b, /u/userID/wxcat1.c,

/u/userID/wxfiles.d, /u/userID/wxcat1_dir1

/u/userID/fileext,~/fileext,./fileext /u/userID/fileext

duplicates omitted

/u/userID/wxcat1_dir,~/wxcat_dir2,~userID/
wxcat1_dir3 with NOENT

/u/userID/wxcat1_dir,/u/userID/wxcat1_dir2,

/u/userID/wxcat1_dir3

/u/userID/wxcat1_dir,~/wxcat_dir2,~userID/
wxcat1_dir3 with ENT

/u/userID/wxcat1_dir{file1},

/u/userID/wxcat1_dir2{file1},

/u/userID/wxcat1_dir3{file1,file2}

/u/userID/dirtst8 (directory with NOENT) /u/userID/dirtst8

/u/userID/dirtst8 (directory with ENT) /u/userID/dirtst8{ent1,ent2}

ZDSLIST Function: z/OS 365

Filter Specification Names Returned

/u/userID/dirtst* (directory with NOENT) /u/userID/dirtst1,/u/userID/dirtst4,

/u/userID/dirtst8

/u/userID/dirtst* (directory and ENT) /u/userID/dirtst1{ent1,ent2,ent3},/u/userID/dirtst4,

/u/userID/dirtst8{ent1,ent2}

Error Messages
A syntax error in a filter specification generates an error-level diagnostic and
terminates the DATA step. A less serious filter problem, such as specifying a file
that does not exist, causes the specification to be skipped. Then any remaining
items in the filter are processed. If no filenames are stored by ZDSLIST, then
(depending on the circumstances), a warning message might be generated by
ZDSLIST. In any case, a warning is generated by ZDSNUM when it is invoked to
process the ZDSLIST output.

Example

The following code contains a macro that writes the results of a call to ZDSLIST:

%macro put_dslist(title, dslistv, lindexv, lcountv, dsnv);
 Put @1 "*** " &title;
 &lcounty = zdsnum(&dslistv);
 do &lindexv = 1 to &lcounty;
 &dsnv = zdsidnm(&dslistv, &lindexv);
 put @1 "Data set name = " &dsnv;
 end;
%mend put_dslist;

data_null_;
file print;
length xdsn $32000;
length catgry dfilter vfilter optparm $256;
length dsn $4096; /* for put_dslist macro */
length ufs $4000; /* for put_dslist macro */
catgry = 'CATLG';
dfilter = 'userID.sas.cntl';
vfilter = '';
optparm = '';

/* one data set name, no wildcards, no volume filter */
xdsn = zdslist(catgry, dfilter, vfilter, optparm);
%put_dslist("userID.sas.cntl, CATLG category", xdsn, i,
 dscount, dsn);
dfilter = '.sas.cntl,.sas.load';

/* two data set names, no wildcards, no volume filter */
xdsn = zdslist(catgry, dfilter, vfilter, optparm);
%put_dslist(".sas.cntl,.sas.load, CATLG category", xdsn, i,

366 Chapter 21 / SAS Data Location Assist for z/OS

 dscount, dsn);
vfilter = 'sds*, sms*';

/* two data set names, no wildcards, volume filter */
xdsn = zdslist(catgry, dfilter, vfilter, optparm);
%put_dslist(".sas.cntl,.sas.load, volume filter sds*,sms*",
 xdsn, i, dscount, dsn);

/* 'MEM' option */
vfilter = '';
xdsn = zdslist(catgry, dfilter, vfilter, 'mem');
%put_dslist(".sas.cntl,.sas.load, MEM option", xdsn, i, dscount,
 dsn);

/* PDS member specified, optparm omitted */
xdsn = zdslist(catgry, 'userID.sas.cntl(absspec)', vfilter);
%put_dslist("userID.sas.cntl(absspec), no option parm", xdsn, i,
 dscount, dsn);

/* wildcard and PDS member specified, optparm omitted */
/* identifies which data sets contains the member */
xdsn = zdslist(catgry, 'userID.*.cntl(absspec)', vfilter);
%put_dslist("userID.*.cntl(absspec), no option parm", xdsn, i,
 dscount, dsn);

/* GDG generation specified, volume filter omitted */
dfilter = 'userID.copy.gdgtst1(+0)'; /* GDG */
xdsn = zdslist(catgry, dfilter);
%put_dslist("userID.copy.gdgtst1(+0), vol filter omitted",
 xdsn, i, dscount, dsn);

/* USSDIR category, path with wildcards */
catgry = 'USSDIR';
dfilter = '/u/sa*dr*/wx*d2a/test*fil*';
xdsn = zdslist(catgry,dfilter,'','');
%put_dslist("UFS path, NOENT defaulted", xdsn, i,
 dscount, ufs);

/* USSDIR category, path with wildcards, ENT option */
xdsn = zdslist(catgry, '/u/userID/ftptst*', '', 'ent');
%put_dslist("UFS path, ENT option", xdsn, i, dscount, ufs);
run;

ZDSNUM Function: z/OS
Returns a count of the number of data set names that are returned from the ZDSLIST function.

Category: External Files

ZDSNUM Function: z/OS 367

Syntax

zdsnum(variable name);

Required Argument
variable name

specifies the result of a call to ZDSLIST.

Details

Use the following method to invoke the ZDSNUM function:

xnum = zdsnum(variable name);

Example

length xdsn $4096;
xdsn=zdslist('catlg', 'userID.sas.*', '', '');
xnum=zdsnum(xdsn);

The output for ZDSNUM is the number of names stored by ZDSLIST. If the MEM or
ENT option was in effect, members or directory entries appended to PDS or
directory names are not included in the count.

ZDSIDNM Function: z/OS
Returns individual data set names from the result of the ZDSLIST function, based on an index.

Category: External Files

Syntax

zdsidnm(variable name, index);

Required Arguments
variable name

specifies the result of a call to ZDSLIST.

index
specifies an index into the list of data set names stored by ZDSLIST. The index
ranges from one to the number of names that were stored. It is obtained by the
ZDSNUM function.

368 Chapter 21 / SAS Data Location Assist for z/OS

Details

Invoking ZDSIDNM
Use the following method to invoke the ZDSIDNM function:

length xidnm $256;
xidnm=zdsidnm(variable name, index);

Example

length xdsn $4096;
xdsn = zdslist('catlg', 'userID.*.sas', '', '');
xnum = zdsnum(xdsn);
length xidnm $256;
do i = 1 to xnum;
 xidnm = zdsidnm(xdsn, i);
end;

The result of the ZDSIDNM function is a character string that contains a data set
name and a member or entry list, if the list is generated by ZDSLIST.

ZDSATTR Function: z/OS
Returns the attributes of a data set name or UFS filename.

Category: External Files

Syntax

zdsattr(variable name, <option>);

Required Argument
variable name

specifies a data set name or UFS filename that might have been obtained from
ZDSLIST and ZDSIDNM.

Optional Argument
option

specifies which of the File and Volume attributes are requested for sequential
data sets or partitioned data sets. The specification can be entered as File, Vol,
Vols, F, V, FV, VF, ALL, or null. ALL, or its equivalent FV, is the default. Invalid
options are ignored.

ZDSATTR Function: z/OS 369

Notes The option is ignored for migrated data sets, VSAM data sets, and UFS
files.

ZDSATTR returns attributes for sequential data sets, partitioned data
sets, VSAM data sets, and UFS files. It returns attributes for up to 20
volumes. The actual volume count is one of the attributes.

Details

Invoking ZDSATTR
Use the following method to invoke the ZDATTR function:

length xattr $4096;
xattr = zdsattr(variable name, option);

Processing Invalid Data Sets
ZDSATTR issues a warning message, but does not generate an error, if it encounters
an invalid data set name. This condition enables execution of the DATA step to
proceed.

Returned Information
The result of the ZDSATTR function is a character string that contains attributes,
along with header and trailer information to improve output appearance if the
results of ZDSYATT are displayed. The format of the data within the variable is
subject to change, and should not be used other than to pass it to the ZDSXATT
and ZDSYATT functions. The data returned is organized as a set of lines, most of
which contain an attribute name and an attribute value. For more information about
how to navigate the results of ZDSXATT and ZDSYATT, see “ZDSYATT Function:
z/OS” on page 384.

z/OS Data Set Basic Attributes
The following attributes are always stored for a z/OS data set, regardless of the
option setting. The first column contains the attribute name, and the second
column contains the format of the value stored by ZDSATTR.

Table 21.4 z/OS Data Set Basic Attributes

Attribute Name Value Format

Data Set Name 44-character name

Total Volume Count numeric

370 Chapter 21 / SAS Data Location Assist for z/OS

z/OS File Attributes
The following attributes are stored for a z/OS data set. The first column contains
the attribute name, and the second column contains the format of the value stored
by ZDSATTR.

Table 21.5 z/OS File Attributes

Attribute Name Value Format

Possible SAS Library SASLIB=YES or SASLIB=NO

Creation Date yyyy/mm/dd

Expiration date yyyy/mm/dd or . (missing value)

Last Referenced Date yyyy/mm/dd

Data Set Organization PS, PO, DA, and so on, or ? if the organization is unknown

EATTR Option YES or NO

Compressible YES or NO

Data Class name or . (missing value)

Management Class name or . (missing value)

Storage Class name or . (missing value)

Data Set Type NONE, PDS, LIBRARY, and so on

Record Format F, FB, FBA, V, and so on, or ? if the format is unknown

Logical Record Size numeric or 0 if the logical record size is unknown

Blocksize numeric or 0 if the blocksize is unknown

In addition to the preceding attributes, the following attributes are stored by
ZDSATTR if a partitioned data set is specified, whether the data set is a PDS or
PDSE.

Table 21.6 Additional File Attributes for PDS and PDSE

Attribute Name Value Format

Maximum Directory Blocks numeric or UNLIMITED for PDSE

Used Directory Blocks numeric

ZDSATTR Function: z/OS 371

Attribute Name Value Format

Number of Members numeric

SAS Libraries
ZDSATTR tests for the following conditions to determine whether a data set might
be a SAS library.

DSORG = DA
DSORG = PS and RECFM = U
DSORG = PS and RECFM = FS, except in the case of certain file extensions

If these conditions exist, then ZDSATTR marks the Possible SAS Library attribute
as SASLIB=YES and produces standard z/OS file and volume attributes. The SAS
user can choose to interrogate the setting of this attribute and obtain SAS Library
attributes with the invocation of other functions. For more information, see:

n “ATTRC Function” in SAS Functions and CALL Routines: Reference

n “ATTRN Function” in SAS Functions and CALL Routines: Reference

n The information about SASHELP views such as VLIBNAM and VMEMBER in
“Accessing SAS Information By Using DICTIONARY Tables” in SAS SQL
Procedure User’s Guide

z/OS Volume Attributes
When more than one volume is assigned to a z/OS data set, a Volume Summary
with the following attributes is stored after the individual volume attributes. The
first column contains the attribute name, and the second column contains the
format of the value stored by ZDSATTR. When Unit appears in an attribute name, it
is replaced by the value of the Unit of Allocation attribute.

Table 21.7 z/OS Volume Attributes

Attribute Name Value Format

Volume Serial 6-character name

Device Type IBM device code

Unit of Allocation blocks, tracks, cylinders, bytes, kilobytes, or megabytes

Primary Allocation numeric, measured in Units of Allocation

Secondary Allocation numeric, measured in Units of Allocation

Allocated Extents numeric

Allocated Unit numeric, total space allocated (in Allocation Units)

372 Chapter 21 / SAS Data Location Assist for z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p048h4pczkr351n1pk558jo8hcc0.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p12uchp7hm5h2zn1om2ut816af7h.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&locale=en

Attribute Name Value Format

Used Extents numeric or not applicable for PDSE

Used Unit numeric or not applicable for PDSE, total space used (in
Allocation Units)

Volume Sequence No. numeric

EAV Volume YES or NO

When more than one volume is assigned to a z/OS data set, a Volume Summary
with the following attributes is stored after the individual volume attributes. The
first column contains the attribute name, and the second column contains the
format of the value stored by ZDSATTR. When Unit appears in an attribute name, it
is replaced by the value of the Unit of Allocation attribute.

Table 21.8 Volume Summary Attributes

Attribute Name Value Format

Allocated Extents numeric

Allocated Unit numeric

Used Extents numeric or not applicable for PDSE

Used Unit numeric or not applicable for PDSE

VSAM Attributes
A VSAM cluster can have at least one associated data set, and possibly more. The
associated data sets can include an INDEX data set, AIX data sets, and a PATH
data set. These data set names are written as a group before the CLUSTER
attributes are written.

Note: Attributes for associated data sets are not stored when ZDSATTR is called
for a cluster. If you need to store these attributes, then you should include a
separate call to ZDSATTR for each associated data set. If a naming convention is
used for VSAM component names, it should be possible to call ZDSLIST with a
filter that generates a list that contains both a cluster and all of its components. For
example, the filter "userID.example.vsam" returns a list containing
userID.EXAMPLE.VSAM.DATA and userID.EXAMPLE.VSAM.INDEX, as well as
userID.EXAMPLE.VSAM.

ZDSATTR Function: z/OS 373

VSAM Data Set Basic Attributes
The following basic attributes are stored for a VSAM cluster or component. The
first column contains the attribute name, and the second column contains the
format of the value stored by ZDSATTR. The Associated Data Sets attributes
appear only for a cluster, and the Total Volume Count attribute appears only for a
component.

Table 21.9 VSAM Data Set Basic Attributes

Attribute Name Value Format

Data Set Name 44-character name

User Catalog Name 44-character name

Total Volume Count numeric

Associated Data Sets one or more 44-character names. The attribute name is null
for associated data sets after the first one.

For information about special considerations for processing the Associated Data
Sets attribute of a VSAM data set, see “Navigating ZDSATTR Output for z/OS Data
Sets” on page 385.

VSAM Cluster Attributes
The following attributes are stored for a VSAM cluster. The first column contains
the attribute name, and the second column contains the format of the value that is
stored by ZDSATTR.

Table 21.10 VSAM Cluster Attributes

Attribute Name Value Format

Creation Date yyyy/mm/dd

Expiration Date yyyy/mm/dd or . (missing value)

Data Class name or . (missing value)

Management Class name or . (missing value)

Storage Class name or . (missing value)

LOG value NULL (non-RLS), or NONE, UNDO, or ALL (RLS)

Log Stream ID Specified YES or NO

374 Chapter 21 / SAS Data Location Assist for z/OS

Attribute Name Value Format

BWO value NULL, TYPECICS, or TYPEIMS

VSAM Component Attributes
The following attributes are returned for a VSAM data or index component. The
first column contains the attribute name, and the second column contains the
format of the value stored by ZDSATTR.

Table 21.11 VSAM Component Attributes

Attribute Name Value Format

VSAM Data Set Type KSDS, ESDS, RRDS, LDS, or VRRDS

Compressible YES or NO, or . for INDEX components

EATTR option YES or NO

Average LRECL numeric

Maximum LRECL numeric

Buffer Space numeric

Free Space numeric

CI Size numeric

CI/CA numeric

Extended Addressability YES or NO

Extended Format YES or NO

Key Length numeric

Key Relative Position numeric or . if not applicable

AIX Key Relative Pos. numeric or . if not applicable

SHROPTNS (numeric,numeric)

Stripe Count numeric or . (missing value)

Unit of Allocation blocks, tracks, cylinders, bytes, kilobytes, or megabytes

ZDSATTR Function: z/OS 375

Attribute Name Value Format

Primary Allocation numeric, expressed in Allocation Units

Secondary Allocation numeric, expressed in Allocation Units

Logical Records numeric

Records Deleted numeric

Records Inserted numeric

Records Updated numeric

Records Retrieved numeric

VSAM Options See the following information about Recovery and
Writechk

Volume Serial 6-character name

Device Type IBM device code

Allocated Extents numeric

Allocated Unit numeric, total space allocated in Allocation Units

% Used numeric

Physical Record Size numeric

Volume Type PRIME, CANDIDATE, or OVERFLOW

EAV Volume YES or NO

Note: To obtain all the VSAM options, such as Recovery, Writechk, and so on, for a
VSAM component, Recovery, Writechk,it is necessary to call ZDSYATT once for
each option. The first option has an attribute name of VSAM Options. The
remaining options have a period in the attribute name part of the value returned,
except for the last attribute. The last attribute has an attribute name of End VSAM
Options. A list of nine VSAM options is displayed.

Note: Where Unit appears in an attribute name, it is replaced by the value of the
Unit of Allocation attribute.

376 Chapter 21 / SAS Data Location Assist for z/OS

Migrated Attributes
If ZDSATTR detects that a data set is migrated, then it stores attributes that are
obtained from the HSM Migrated Control Data Set. For a migrated VSAM data set,
the returned attributes are those that are relevant to the base cluster. Descriptive
data for associated data sets is also displayed.

ZDSATTR stores the following attributes. The first column contains the attribute
name, and the second column contains the format of the value stored by ZDSATTR.

Table 21.12 Migrated Attributes

Attribute Name Value Format

Data Set Name 44-character name

Creation Date yyyy/mm/dd

Migration Date yyyy/mm/dd

Last Referenced Date yyyy/mm/dd

Recalled Date yyyy/mm/dd or . (missing value)

Migration Level DISK or TAPE

Valid Migrated Data Set YES or No

Number of Times Migrated numeric

Reside in SDSP Data Set YES or NO

Data Set Organization PS, PO, DA, and so on, or ? if undefined

EATTR Option YES or NO

Compressible YES or NO

SMS Data Set YES or NO

Data Class name or . (missing value)

Management Class name or . (missing value)

Storage Class name or . (missing value)

Extended Format Data Set YES or NO

Large Data Set YES or NO

ZDSATTR Function: z/OS 377

Attribute Name Value Format

PDSE Data Set YES or NO

Resource Owner name or . (missing value)

Record Format F, FB, FBA, V, and son, or ? if unknown

Logical Record Size numeric or ? if unknown

Maximum Blocksize numeric or ? if unknown

Migrated Volume Serial 6-character name

Primary Volume Serial 6-character name

User-Tracks Allocated numeric

User-Data Set Size numeric, in Data Set Size Units

User-D/Set Size Units cylinders, tracks, blocks, bytes, kilobytes, or megabytes

Secondary Allocation numeric

Secondary Request Type cylinders, tracks, blocks, bytes, kilobytes, or megabytes

Migration Size in 2K Blocks numeric, or ******** if Migration Level is not DISK

Migration Size in 16K Blocks numeric, or ******** if Migration Level is not TAPE

For associated VSAM data sets such as index and data components, ZDSATTR
stores only the following attributes.

Table 21.13 Stored Attributes for Associated VSAM Data Sets

Attribute Name Value Format

Associated User Data Set 44-character name of base cluster or AIX

Type of Object Data, Index, Path, AIX, or Gen. Name

Associated Data Set Type Cluster or AIX

UFS Attributes
The following attributes are stored for a UFS file or directory. The name of the file
is stored before the attributes are stored. It is padded with blanks to a multiple of

378 Chapter 21 / SAS Data Location Assist for z/OS

72 bytes. The first column in the table contains the attribute name, and the second
column contains the format of the value stored by ZDSATTR.

Table 21.14 UFS Attributes

Attribute Name Value Format

File Type File, Directory, Named Pipe, and so on

Access Permissions user, group, and other permissions, in the format used
by the LS command

Number of Links numeric

Owner Name name

Group name name

File Size Numeric, in bytes for regular files. If the size is very
large, it can be stored as a string of asterisks.

Status Change Date Mmm dd yyyy

Last Access Date Mmm dd yyyy

Last Modified Date Mmm dd yyyy

If the file that is being processed is a directory, and its entry names were stored
because the ENT option was used, then the names of those entries can be retrieved
with ZDSYATT. For information about navigating the results of ZDSATTR, see
“Navigating ZDSATTR Output for UFS Files and Directories” on page 389.

Example

length xdsn $4096;
xdsn = zdslist('catlg', 'userID.*.sas', '', '');
xnum = zdsnum(xdsn);
length xidnm $256;
length xattr $4096;
do I = 1 to xnum;
 xidnm = zdsidnm(xdsn, i);
 xattr = zdsattr(xidnm, 'ALL');
end;

ZDSATTR Function: z/OS 379

ZDSRATT Function: z/OS
Returns security attributes for a z/OS data set or UFS file or directory.

Category: External Files

Syntax

zdsratt(variable name,<option>);

Required Argument
variable name

specifies a data set name or UFS filename that might have been obtained from
ZDSLIST and ZDSIDNM.

Optional Argument
option

null or ‘ALL’.

Details

Invoking ZDSRATT
Use the following method to invoke the ZDSRATT function:

length xratt $4096;
xratt = zdsratt(variable name, option);

Processing Invalid Data Sets
ZDSRATT issues a warning message, but does not generate an error, if it encounters
an invalid data set. This allows execution of the DATA step to proceed.

Returned Information
The result of the ZDSRATT function is a character string that contains attributes,
along with header and trailer information to improve output appearance if the
results of ZDSYATT are displayed. The format of the data within the variable is
subject to change, and should not be used except to pass it to the ZDSXATT and
ZDSYATT functions. The returned data is organized as a set of lines, most of which
contain an attribute name and an attribute value. For information about navigating
the results of ZDSRATT and ZDSYATT, see “ZDSYATT Function: z/OS” on page
384.

380 Chapter 21 / SAS Data Location Assist for z/OS

z/OS Security Attributes
For z/OS data sets, ZDSRATT stores the following attributes. The first column
contains the attribute name, and the second column contains the format of the
value stored by ZDSATTR.

Table 21.15 z/OS Security Attributes

Attribute Name Value Format

Data Set Name 44-character name

Primary Volume Serial 6-character name, non-VSAM only

Catalog Volume Serial 6-character name, VSAM only

Data Set Type VSAM or non-VSAM

Profile discrete or generic

Owner name

Create Date yyyy/mm/dd or not applicable if generic

Last Referenced Date yyyy/mm/dd or not applicable if generic

Last Changed Date yyyy/mm/dd or not applicable if generic

Alter Count numeric or not applicable if generic

Control Count numeric or not applicable if generic

Update Count numeric or not applicable if generic

Read Count numeric or not applicable if generic

Universal Access NONE, EXECUTE, READ, UPDATE, CONTROL, or ALTER

Auditing of Accesses NONE, FAILING, SUCCESSFUL, or ALL

Audit Qualifier NONE, READ, UPDATE, CONTROL, or ALTER

Level numeric or NONE

Installation Data string or NONE

Warning YES or NO

Erase YES or NO

ZDSRATT Function: z/OS 381

Attribute Name Value Format

Notify user ID or NO USER

Creation Group name

Security Level numeric or NONE or not applicable for a requestor that is
not the owner

Security Label string or NONE or not applicable for a requestor that is not
the owner

Your Access NONE, READ, UPDATE, CONTROL, or ALTER

ZDSRATT stores information about specific users with specific access rights to the
data set. For information about the special considerations for processing this user
ID and Access information, see “Navigating ZDSRATT Output for z/OS Data Sets”
on page 390.

UFS Security Attributes
For UNIX files and directories, ZDSRATT stores the following attributes. The first
column contains the attribute name, and the second column contains the format of
the value stored by ZDSATTR.

Table 21.16 UFS Security Attributes

Attribute Name Value Format

ACL Access Type ACCESS or NONE

Owner user ID

Group owning group ID

User base user permission string, such as, r-x

Group base group permission string, such as r-x

Other base other permission string, such as r-x

If any ACL entries exist, ZDSRATT stores two attributes for each ACL entry, as
indicated in the following table.

382 Chapter 21 / SAS Data Location Assist for z/OS

Table 21.17 ZDSRATT Attributes for ACL Entries

Attribute Name Value Format

User Name user ID, present only for a user ACL entry

Group Name group ID, present only for a group ACL entry

Permissions permissions string, such as r-x

For information about special considerations for accessing these ACL entry
definitions, see “Navigating ZDSRATT Output for UFS Files” on page 391.

ZDSXATT Function: z/OS
Returns the number of attributes retrieved by a previous ZDSATTR or ZDSRATT request.

Category: External Files

Syntax

zdsxatt(variable name);

Required Argument
variable name

specifies the result of a previous call to ZDSATTR or ZDSRATT.

Details

Invoking ZDSXATT
Use the following method to invoke the ZDSXATT function:

xattrn = zdsxatt(variable name);

Processing Specifics
ZDSXATT validates that the argument is a character string that conforms to the
format that was returned by ZDSATTR and ZDSRATT. ZDSXATT returns the
number of lines of attribute and other information stored by ZDSATTR or
ZDSRATT. These lines can be retrieved using the ZDSYATT function.

ZDSXATT Function: z/OS 383

Example

length xdsn $4096;
xdsn=zdslist('catlg', 'userID.sas.*', '', '');
xnum=zdsnum(xdsn);
length xidnm $256;
length xattr $4096;
do i = 1 to xnum;
 xidnm=zdsidnm(xdsn, i);
 xattr=zdsattr(xidnm);
 xattrn=zdsxatt(xattr);
 put @1 xattrn "lines of attribute information stored for data set " xidnm ".";
end;

The output format of the ZDSXATT function is a numeric variable that contains an
attribute count.

ZDSYATT Function: z/OS
Displays attribute information that is stored by ZDSATTR or ZDSRATT.

Category: External Files

Syntax

zdsyatt(variable name, index);

Required Arguments
variable name

specifies the result of a previous call to ZDSATTR or ZDSRATT.

index
represents an index into the ZDSATTR or ZDSRATT output. The upper bound
for the index can be obtained using the ZDSXATT function.

Details

Invoking ZDSYATT
Use the following method to invoke the ZDSYATT function:

length xattrc $72;
xattrc=zdsyatt(variable name, indexj);

384 Chapter 21 / SAS Data Location Assist for z/OS

The Structure of the ZDSATTR or ZDSRATT Return Value
The information returned by ZDSATTR and ZDSRATT is organized as a set of
72-character lines. A call to ZDSYATT returns the line from its first argument, and it
is indexed by its second argument. Three distinct types of lines exist:

n a single attribute specification

n a portion of a multi-line attribute, which usually contains one or more possibly
long UFS filenames

n a heading or footing line that might improve the readability of the output if each
line were printed directly

An attribute line contains the attribute value in characters 1 through 44, and the
attribute name in characters 45 through 69. A heading or footing line has blank
spaces in the attribute name area, and the value area typically begins with two
asterisks. For exceptions to these rules, see the following sections about navigating
ZDSATTR and ZDSRATT output.

Navigating ZDSATTR Output for z/OS Data Sets
For z/OS data sets that are not in a UFS directory, the first line of the ZDSATTR
output is the data set name with the attribute name Data Set Name. For non-VSAM
data sets, the output contains few unexpected results. For a multi-volume data set,
the volume attributes are repeated for each volume. The attributes for the volumes
are separated by a line with asterisks in both the attribute value and the attribute
name. If more than one volume exists, then a Volume Summary section is written
after the last volume. Note that the number of volumes can be obtained from the
Total Volume Count attribute. Here is an example of the output created by using
ZDSYATT to dump the ZDSATTR output for a three-volume, non-VSAM data set.

ZDSYATT Function: z/OS 385

Output 21.2 ZDSATTR Output for a Three-Volume, non-VSAM Data Set Using
ZDSYATT

userID.WXMVOL2.TEST2 Data Set Name
3 Total Volume Count
** FILE ATTRIBUTES **
SASLIB=NO Possible SAS Library
2013/10/22 Creation Date
. Expiration Date
2013/10/22 Last Referenced Date
PS Data Set Organization
NO EATTR option
NO Compressible
. Data Class
. Management Class
. Storage Class
NONE Data Set Type
FB Record Format
80 Logical Record Size
27920 Blocksize
** END FILE ATTRIBUTES **
** VOLUME ATTRIBUTES **
USRD05 Volume Serial
3390 Device Type
Cylinders Unit of Allocation
300 Primary Allocation
10 Secondary Allocation
16 Allocated Extents
450 Allocated Cylinders
16 Used Extents
450 Used Cylinders
1 Volume Sequence No.
NO EAV Volume
************ **********
USRD01 Volume Serial
3390 Device Type
Cylinders Unit of Allocation
0 Primary Allocation
10 Secondary Allocation
16 Allocated Extents
160 Allocated Cylinders
16 Used Extents
160 Used Cylinders
2 Volume Sequence No.
NO EAV Volume
************ **********
USRD04 Volume Serial
3390 Device Type
Cylinders Unit of Allocation
0 Primary Allocation
10 Secondary Allocation
6 Allocated Extents
60 Allocated Cylinders
6 Used Extents
59 Used Cylinders
3 Volume Sequence No.
NO EAV Volume
************ **********
** END VOLUME ATTRIBUTES **
*** VOLUME SUMMARY ***
38 Allocated Extents
670 Allocated Cylinders
38 Used Extents
669 Used Cylinders
*** END VOLUME SUMMARY ***

386 Chapter 21 / SAS Data Location Assist for z/OS

The allocated and used space amount are expressed in Units of Allocation, which
might differ for each data set. If an application needs to compare allocation
amounts or find the total for the allocation amounts, it should first convert all
values to a common unit such as Tracks.

For a VSAM cluster, the Associated Data Sets attribute requires special processing.
One or more associated data set names might be present, with one per line, but
only the first one has an attribute name. The first line following the last data set
association can be recognized because it is a standard header line beginning with
two asterisks. Here is an example of the output created by using ZDSYATT to dump
the ZDSATTR output for a VSAM cluster.

Output 21.3 ZDSATTR Output for a VSAM Cluster Using ZDSYATT

userID.BUG2822.VSAM Data Set Name
SYS1.DEV.CATALOG User Catalog Name
userID.BUG2822.VSAM.DATA Associated Data Sets
userID.BUG2822.VSAM.INDEX
** VSAM CLUSTER ATTRIBUTES **
2014/02/26 Creation Date
. Expiration Date
. Data Class
. Management Class
. Storage Class
NULL LOG Value
NO Log Stream ID Specified
NULL BWO Value
** END VSAM CLUSTER ATTRIBUTES **

For a VSAM index or data component, the VSAM Options attribute requires special
processing. Multiple options are typically present, with one per line. The first of
these lines contains an attribute name, VSAM Options, and the last contains an
attribute name, End VSAM Options. Intermediate attribute names consist of a
period. The attribute name End VSAM Options indicates the end of the list of
options. Here is an example of the output created by using ZDSYATT to dump the
ZDSATTR output for a VSAM index component.

ZDSYATT Function: z/OS 387

Output 21.4 ZDSATTR Output for a VSAM Index Component Using ZDSYATT

userID.BUG2822.VSAM.INDEX Data Set Name
1 Total Volume Count
SYS1.DEV.CATALOG User Catalog Name
** VSAM ATTRIBUTES **
KSDS VSAM Data Set Type
. Compressible
YES EATTR option
0 Average LRECL
505 Maximum LRECL
0 Buffer Space
24576 Free Space
512 CI Size
49 CI/CA
NO Extended Addressability
NO Extended Format
9 Key Length
0 Key Relative Position
. AIX Key Relative Pos.
(1,3) SHROPTNS
. Stripe Count
Tracks Unit of Allocation
1 Primary Allocation
1 Secondary Allocation
1 Logical Records
0 Records Deleted
0 Records Inserted
0 Records Updated
0 Records Retrieved
Recovery VSAM Options
Unique .
Reusable .
Noerase .
Nowritechk .
Noimbed .
Noreplicat .
Nonspanned .
. End VSAM Options
USRD02 Volume Serial
3390 Device Type
1 Allocated Extents
1 Allocated Tracks
2 % Used
512 Physical Record Size
PRIME Volume Type
NO EAV Volume
************ **********

The ZDSATTR output for a migrated data set does not present any navigation
difficulties. Here is an example of the output created by using ZDSYATT to dump
the ZDSATTR output for a migrated data set.

388 Chapter 21 / SAS Data Location Assist for z/OS

Output 21.5 ZDSATTR Output for a Migrated Data Set Using ZDSYATT

userID.APROBE.IOFLIST Data Set Name
** MIGRATED DATA SET ATTRIBUTES **
2013/11/02 Creation Date
2013/11/22 Migration Date
2013/11/02 Last Referenced Date
. Recalled Date
TAPE Migration Level
YES Valid Migrated Data Set
1 Number of Times Migrated
NO Reside in SDSP Data Set
PS Data Set Organization
NO EATTR Option
NO Compressible
NO SMS Data Set
. Data Class
. Management Class
. Storage Class
NO Extended Format Data Set
NO Large Data Set
NO PDSE Data Set
. Resource owner
VBA Record Format
0 Logical Record Size
3600 Maximum Blocksize
MV0038 Migrated Volume Serial
USRD04 Primary Volume Serial
2 User - Tracks Allocated
33278 User - Data Set Size
Bytes User - D/Set Size Units
20 Secondary Allocation
Tracks Secondary Request Type
******** Mig. Size in 2K Blocks
2 Mig. Size in 16K Blocks
** END MIGRATED DATA SET ATTRIBUTES **

Here is an example of the output created by dumping the ZDSATTR output for a
component of a migrated VSAM data set.

Output 21.6 ZDSATTR Output for a Component of a Migrated VSAM Data Set

userID.SOURCE.VSAM.DATA Data Set Name
** MIGRATED DATA SET ATTRIBUTES **
userID.SOURCE.VSAM Associated User Data Set
Data Type of Object
Cluster Associated Data Set Type
** END MIGRATED DATA SET ATTRIBUTES **

Navigating ZDSATTR Output for UFS Files and Directories
The output of ZDSYATT for UFS files has two features that complicate navigation
of the lines extracted by ZDSYATT. The first feature is that the first output lines
contain the full pathname for the file. As the name can significantly exceed 72
characters, it is split into 72-character chunks, producing as many lines as
necessary. No attribute name appears for this information. If the file is a directory,
and if the source of the name is the output of ZDSLIST with the ENT option, then
the names of its entries are listed in a single string. As with the input filename, this
string is split into 72-byte chunks. Each chunk is retrievable by a single call to

ZDSYATT Function: z/OS 389

ZDSYATT. These lines do not have an attribute name. However, they immediately
follow a header line with the value portion of the header containing ** UNIX
DIRECTORY ENTRY LIST **.

Here is an example of the output created by using ZDSYATT to dump the ZDSATTR
output for a UFS directory with a long name and a long list of associated entries.

Output 21.7 ZDSATTR Output for a UFS Directory

/u/userID/a123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789
** UNIX FILE ATTRIBUTES **
Directory File Type
drwxr-xr-x Access Permissions
4 Number of Links
userID Owner Name
CCD Group Name
8192 File Size
Oct 23 2013 Status Change Date
Oct 25 2013 Last Access Date
Oct 23 2013 Last Modified Date
** END UNIX FILE ATTRIBUTES **
** UNIX DIRECTORY ENTRY LIST **
{subsub1,subsub2,subsub3,subsub4,subsub5,subsub6,subsub7,subsub8,subsub9
,subsuba}
** END DIRECTORY ENTRY LIST **

Navigating ZDSRATT Output for z/OS Data Sets
The output of ZDSRATT for z/OS data sets has one feature that complicates
navigation of the lines extracted by ZDSYATT. Information about permitted access
for specific user IDs appears in lines that have no attribute name. These lines are
preceded by a header line that does not begin, as all other header lines do, with "**".
They instead contain the text :User ID and Access:. If the owner of the file is not
the user running SAS, then the header is followed by a single line containing “N/A,”
for not applicable. If the owner of the file is the user ID that is running SAS, then the
header line is followed by a number of lines. Each line contains a user ID and an
access level in its attribute value part.

Here is an example of the output created by using ZDSYATT to dump the ZDSRATT
output for a z/OS data set that is owned by the user.

390 Chapter 21 / SAS Data Location Assist for z/OS

Output 21.8 ZDSRATT Output for a z/OS Data Set That Is Owned by the User, Using
ZDSYATT

ownerID.PROGRESS.TEXT Data Set Name
USRD02 Primary Volume Serial
Non-VSAM Data Set Type
** RACF ATTRIBUTES **
Generic Profile
ownerID Owner
2013/12/09 Create Date
N/A Last Referenced Date
N/A Last Changed Date
N/A Alter Count
N/A Control Count
N/A Update Count
N/A Read Count
NONE Universal Access
NONE Auditing of Accesses
N/A Audit Qualifier
0 Level
NONE Installation Data
NO Warning
NO Erase
ownerID Notify
SAS Creation Group
NONE Security Level
NONE Security Label
ALTER Your Access
:User ID and Access:
ownerID ALTER
userID1 READ
userID2 READ
userID3 READ
** END RACF ATTRIBUTES **

Navigating ZDSRATT Output for UFS Files
The output of ZDSRATT for a UFS file resembles the output of ZDSATTR in
structure. The lines retrieved by ZDSYATT begin with one or more lines containing
72-byte chunks of the pathname, and the number depends on the length of the
pathname. If an ACL is defined for the filename, then the last lines retrieved by
ZDSYATT are two lines for each user or group referenced in an ACL entry. One line
contains the user ID or group ID, and one line contains the permitted access. These
lines have names in the attribute name part of the lines. The list is terminated by
the trailer line that begins with "**", and ends the ZDSRATT output. Also note that
the attribute name Group appears twice in the output. The first occurrence refers to
the group ID of the owner, and the second occurrence refers to the level of
permitted access by members of that group.

Here is an example of the output created by using ZDSYATT to dump the ZDSRATT
output for a UFS file with several defined ACL entries.

ZDSYATT Function: z/OS 391

Output 21.9 ZDSRATT Output for a UFS File with Several ACL Entries

/u/ownerID/gotacl
** UNIX SYSTEM SERVICES ATTRIBUTES **
ACCESS ACL Access Type
ownerID Owner
CCD Group
rwx User
--- Group
--- Other
userID1 User Name
rw- Permissions
userID2 User Name
r-x Permissions
R@D Group Name
--x Permissions
** END USS ATTRIBUTES **

Example
length xattr $4096;
length xdsn $4096;
length xidnm $256;
length xattrc $72;

xdsn = zdslist('catlg', 'userID.*.sas', '', '');
xnum = zdsnum(xdsn);
do i = 1 to xnum;
 xidnm = zdsidnm(xdsn, i);
 xattr = zdsattr(xidnm, 'ALL');
 xattrn = zdsxatt(xattr);
 do j = 1 to xattrn;
 xattrc=zdsyatt(xattr, j);
 put @1 xattrc;
 end;
end;

The result of ZDSYATT is a 72-byte character string. Each line of the output
examples earlier in this section is an example of the result of a call to ZDSYATT.

Examples of SAS Programs Interrogating the SASLIB Attribute

Example 1: Retrieving Specific SAS Library Attributes
The following program retrieves z/OS attributes and checks for an attribute value
of SASLIB=YES. If the check finds a value of YES, then the program assigns a libref,
opens a specific member, and retrieves specific SAS library attributes.

Example Code 21.1 Retrieving Specific SAS Library Attributes

/*--
 Test zDLA marker for possible SAS data library.
 Produce z/OS attribute list then specific data library attributes.
---*/
%macro zdslint(dfilt,vfilt,optp);
 DATA _NULL_;
 file print;

392 Chapter 21 / SAS Data Location Assist for z/OS

 length xdsn $32000;
 length catgry dfilter optparm $256;
 catgry = 'CATLG';
 dfilter = &dfilt;
 vfilter = &vfilt;
 optparm = &optp;
 opentst = 'OPENTST';
 null = "";
 xdsn = zdslist(catgry, dfilter, vfilter, optparm);
 xnum = zdsnum(xdsn);
 length xidnm $4096;
 length xattr $4096;
 length xattrc $72;
 length xattrc_lib $8;
 length xsaslib $3;
 xsaslib = null;
 do i=1 to xnum;
 xidnm = zdsidnm(xdsn, i);
 xattr = zdsattr(xidnm, 'ALL');
 xattrn = zdsxatt(xattr);
 do j=1 to xattrn;
 xattrc = zdsyatt(xattr, j);
 put @1 xattrc;
/*--
Check the marker – SASLIB=YES.
--*/
 if xsaslib = null then do;
 xattrc_lib = substr(xattrc, 1, 8);
 if xattrc_lib = 'SASLIB=Y' then xsaslib = 'YES';
 else if xattrc_lib = 'SASLIB=N' then xsaslib = 'NO ';
 end;
 end;
/*---
If we found a possible data library, attempt to assign a libref,
open a specific member, and obtain character and numeric attributes.
---*/
 if xsaslib = 'YES' then do;
 rc = libname(opentst, xidnm ,, 'DISP=SHR');
 if rc ^= 0 then do;
 msg = SYSMSG();
 put "LIBNAME message: " msg;
 Goto EXIT;
 end;

 length libc memc mtypec typec $32;
 dsid=open('opentst.citiday','in');
 if dsid = 0 ihen do;
 put "OPEN message: open for member failed" ;
 Goto EXIT;
 end;

 libc=attrc(dsid,'lib');
 memc=attrc(dsid,'mem');
 mtypec=attrc(dsid,'mtype');
 typec=attrc(dsid,'type');
 crdt=attrn(dsid,'crdte');

ZDSYATT Function: z/OS 393

 modt=attrn(dsid,'modte');
 nvars=attrn(dsid,'nvars');
 nobs=attrn(dsid,'nobs');
 nlobs=attrn(dsid,'nlobs');
 anyn=attrn(dsid,'any');
 lrecl=attrn(dsid,'lrecl');
 lrid=attrn(dsid,'lrid');

 if libc ^= "" then
 put "libref is " libc;
 if memc ^= "" then
 put "member name is " memc;
 if mtypec ^= "" then
 put "SAS data library member type is " mtypec;
 if typec ^= "" then
 put "SAS data set type is " typec;
 if crdt > 0 then
 put "data set creation date is " crdt datetime7.;
 if modt > 0 then
 put "data set modification date is " modt datetime7.;
 if nvars > 0 then
 put "number of variables in data set is " nvars;
 if nobs > 0 then
 put "number of physical observations is " nobs;
 if nlobs > 0 then
 put "number of logical observations is " nlobs;
 if anyn < 0 then
 put "data set has no observations or variables";
 else if anyn = 0 then
 put "data set has no observations";
 else if anyn = 1 then
 put "data set has observations and variables";
 if lrecl > 0 then
 put "logical record length is " lrecl;
 if lrid > 0 then
 put "record ID length is " lrid;
 end;
 end;

EXIT:
 run;

%mend zdslint;

%zdslint('site.v940.sa*', '', '')
quit;

Example 2: Creating and Assigning a Libref
In the following program, the first DATA step retrieves z/OS attributes for data
sets, and identifies which data sets are possible SAS libraries. The program then
determines which of those data set names contain the string SASHELP. After
making this determination, the program creates and assigns a libref for the data
sets that contain the target string.

394 Chapter 21 / SAS Data Location Assist for z/OS

The second DATA step retrieves a value for the variable NUMX from the SAS data
set that is written by the first DATA step. Then it uses this value to set the
appropriate libref and view. This DATA step invokes the VLIBNAM view and
retrieves the selected information from this view for each referenced libref.

The third DATA step performs similar processing for the VMEMBER view.

Example Code 21.2 Creating and Assigning a Libref

/* INVOKE ZDLA FUNCTIONS FROM ZDSLIST TO ZDSYATT – DISPLAY OF DATA
 SET ATTRIBUTES.
 THE PROGRAM CHECKS THE SASLIB ATTRIBUTE. IF THIS IS SET TO YES,
 AND THE DATA SET NAME CONTAINS THE STRING 'SASHELP', THEN A LIBREF
 IS ASSIGNED.
 IN SUBSEQUENT DATA STEPS, FOR EACH LIBREF ASSIGNED, THE PROGRAM
 DISPLAYS SELECTED ITEMS FROM SASHELP VIEWS VLIBNAM AND VMEMBER.
*/

%macro zdslint(dfilt,vfilt,optp);
 DATA DNAME;
 file print;
 length xdsn $32000;
 length catgry dfilter optparm $256;
 catgry = 'CATLG';
 dfilter = &dfilt;
 vfilter = &vfilt;
 optparm = &optp;
 numx = 1;
/* COMMENCE ZDLA INVOCATIONS */
 xdsn = zdslist(catgry, dfilter, vfilter, optparm);
 xnum = zdsnum(xdsn);
 length xidnm $44;
 length xattr $4096;
 length xattrc $72;
 length xattrc_lib $8;
 length xattrc_hlp $7;
 length xsaslib $3;
 length xnamesuf $1;
 retain numx;
 xsaslib = ' ';
 xattrsz = 38; /* SIZE OF ATTRIBUTE VALUE(45) LESS SASHELP(7) */
 do i=1 to xnum;
 xidnm = zdsidnm(xdsn, i);
 xattr = zdsattr(xidnm, 'ALL');
 xattrn = zdsxatt(xattr);
 do j=1 to xattrn;
 xattrc = zdsyatt(xattr, j);
 put @1 xattrc;
/* CHECK FOR SASLIB SPECIFICATION, AND SET XSASLIB VARIABLE */
 if xsaslib eq ' ' then do;
 xattrc_lib = substr(xattrc, 1, 8);
 if xattrc_lib eq 'SASLIB=Y' then do;
 xsaslib = 'NO ';
 do k = 1 to xattrsz while (xsaslib eq 'NO ');
 xattr_hlp = substr(xidnm, k, 7);
 if xattrc_hlp eq 'SASHELP' then
 xsaslib = 'YES';

ZDSYATT Function: z/OS 395

 end;
 end;
 if xattrc_lib eq 'SASLIB=N' then xsaslib = 'NO ';
 end;
 end;
/* IF XSASLIB HAS BEEN SET TO YES:
 SET NUMERIC VARIABLE NUMX TO CHARACTER XNAMESUF.
 APPEND THE CHARACTER VALUE TO THE LIBREF NAME.
 INVOKE LIBNAME FUNCTION.
 RESET XSASLIB TO I VALUE.
*/
 if xsaslib eq 'YES' then do;
 output;
 xnamesuf = numx; numx = numx + 1;
 opentst = 'OPENTST'||xnamesuf;
 rc = LIBNAME(opentst, xidnm ,, 'DISP=SHR');
 if rc ne 0 then do;
 msg = SYSMSG();
 put "LIBNAME message: " msg;
 end;
 end;
 xsaslib = ' ';
 end;
run;

/*
 END OF ZDLA ATTRIBUTE DISPLAYS AND LIBNAME ASSIGNMENTS
 NEXT DATA STEP:
 SET DATA SET CREATED IN PREVIOUS DATA STEP AND OBTAIN VALUE OF NUMX.
 WITHIN DO LOOP – SET VLIBNAM VIEW ACCORDING TO LIBREF.
 DISPLAY SELECTED VALUES.
*/
data _null_;
 file print;
 length oldlib $8;
 retain oldlib;
 set dname;
 do obsnum = 1 to last;
 if numx eq 1 then
 set opentst1.vlibnam nobs=last;
 else
 set opentst2.vlibnam nobs=last;
 if oldlib ne substr(libname,1,8) then do;
 put;
 put "libname = " libname;
 put "path = " path;
 oldlib = substr(libname,1,8);
 end;
 put "sysname = " sysname;
 put "sysvalue = " sysvalue;
 end;
run;

/*
 NEXT DATA STEP:
 SET DATA SET CREATED IN EARLIER DATA STEP AND OBTAIN VALUE OF NUMX.

396 Chapter 21 / SAS Data Location Assist for z/OS

 WITHIN DO LOOP – SET VMEMBER VIEW
 CREATE LIBREF VALUE ACCORDING TO NUMX VALUE.
 DISPLAY SELECTED VALUES.
*/
data _null_;
 file print;
 length xnamesuf $1;
 set dname;
 put;
 do obsnum = 1 to 100;
 if numx eq 1 then
 set opentst1.vmember;
 else
 set opentst2.vmember;
 xnamesuf = numx;
 opentst = 'OPENTST'||xnamesuf;
 openmem = opentst||'.'||memname;
 put openmem;
 end;
run;

%mend zdslint;

%zdslint('site.v940.sa*', '', '')
quit;

ZDSYATT Function: z/OS 397

398 Chapter 21 / SAS Data Location Assist for z/OS

22
Data Representation

Representation of Numeric Variables . 399
Floating-Point Representation . 399
Representation of Integers . 399

Using the LENGTH Statement to Save Storage Space . 400

How Character Values Are Stored . 402

Representation of Numeric Variables

Floating-Point Representation
SAS stores all numeric values in 8-byte floating-point representation. Using this
representation enables SAS to store numbers of large magnitude and to perform
computations that require many digits of precision to the right of the decimal point.
Details about how floating-point numbers are represented and the factors that can
affect your numeric calculations are provided in “Numeric Precision” in SAS
Programmer’s Guide: Essentials .

Representation of Integers
When processing in a z/OS environment, you should also be aware of how SAS
stores integers. Like other numeric values, SAS maintains integer variables in 8-
byte hexadecimal floating-point representation. But under z/OS, outside of SAS,
integer values are typically represented as 4-byte (fixed point) binary values using
two's complement notation. SAS can read and write these values using informats
and formats, but it does not process them internally in this form. SAS uses floating-
point representation internally.

399

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0dv87zb3bnse6n1mqo360be70qr.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0dv87zb3bnse6n1mqo360be70qr.htm&locale=en

You can use the IBw.d informat and format to read and write the binary integer
values used under z/OS. Each integer uses 4 bytes (32 bits) of storage space. Thus,
the range of values that can be represented is from −2,147,483,648 to 2,147,483,647.

Using the LENGTH Statement to Save
Storage Space

When SAS writes a numeric variable to a SAS data set, it writes the number in IBM
double-precision hexadecimal floating-point format (as described in “Numeric
Precision” in SAS Programmer’s Guide: Essentials). In this format, 8 bytes are
required for storing a number in a SAS data set with full precision. However, you
can use the LENGTH statement in the DATA step to specify that you want to store
a particular numeric variable in fewer bytes.

Using the LENGTH statement can greatly reduce the amount of space that is
required for storing your data. For example, if you were storing a series of test
scores whose values could range from 0 to 100, you could use numeric variables
with a length of 2 bytes. This value would save 6 bytes of storage per variable for
each observation in your data set.

However, you must use the LENGTH statement cautiously in order to avoid losing
significant data. One byte is always used to store the exponent and the sign. The
remaining bytes are used for the mantissa. When you store a numeric variable in
fewer than 8 bytes, the least significant digits of the mantissa are truncated. If the
part of the mantissa that is truncated contains any nonzero digits, then precision is
lost.

Use the LENGTH statement only for variables whose values are always integers.
Fractional numbers lose precision if they are truncated. In addition, you must
ensure that the values of your variable are always represented exactly in the
number of bytes that you specify.

Use the following table to determine the upper bound of the range of contiguous
integers that can be represented exactly in variables of various lengths in IBM
Hexadecimal-Floating-Point (IBM HFP):

Table 22.1 Variable Length and Largest Exact Integer Values in IBM HFP

Length in
Bytes Significant Digits Retained Largest Integer Represented Exactly

2 2 256

3 4 65,536

4 7 16,777,216

400 Chapter 22 / Data Representation

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0dv87zb3bnse6n1mqo360be70qr.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0dv87zb3bnse6n1mqo360be70qr.htm&locale=en

Length in
Bytes Significant Digits Retained Largest Integer Represented Exactly

5 9 4,294,967,296

6 12 1,099,511,627,776

7 14 281,474,946,710,656

8 16 72,057,594,037,927,936

Use the following table to determine the upper bound of the range of contiguous
integers that can be represented exactly in variables of various lengths for IEEE
(also called binary floating-point), as used on most non-mainframe systems:

Table 22.2 Variable Length and Largest Exact Integer Values for IEEE

Length in
Bytes Significant Digits Retained Largest Integer Represented Exactly

3 3 8,192

4 6 2,097,152

5 8 536,870,912

6 11 137,438,953,472

7 13 35,184,372,088,832

8 15 9,007,199,254,740,992

Note: Length 2 is supported for IBM HFP but not for IEEE. Therefore, the IEEE
table does not contain an entry for length 2.

When you use the OUTREP option of the LIBNAME statement to create a SAS data
set that is written in a data representation other than one that is native to SAS on
z/OS, the information in the preceding table does not apply. The largest integer
that can be represented exactly is generally smaller.

Note: No warning is issued when the length that you specify in the LENGTH
statement results in truncated data.

For more information, see “LENGTH Statement: z/OS” on page 655.

Using the LENGTH Statement to Save Storage Space 401

How Character Values Are Stored
Characters are stored in a computer using a “character encoding scheme” that maps
the individual characters to binary integers. The two most commonly used single-
byte character encoding schemes are ASCII and EBCDIC. IBM mainframe
computers use the EBCDIC encoding, which contains representations for 256
characters. Each character has a unique representation, a binary integer from 0 to
256 (x'FF').

The previous paragraph contains a simplified overview of character encoding,
ASCII, and EBCDIC. There are multiple forms of ASCII and multiple forms of
EBCDIC. Often, these encodings are referred to as “code pages.” The different
EBCDIC code pages generally represent common characters, like letters and
numbers, with the same code. However, the code pages use different codes for less
common characters.

402 Chapter 22 / Data Representation

The following table shows the EBCDIC code for commonly used characters. These
representations are correct for all EBCDIC code pages.

Table 22.3 EBCDIC Code: Commonly Used Characters

Hexadecim
al

Characte
r

Hexadecim
al

Character Hexadecim
al

Characte
r

Hexadeci
mal

Character

'40'x space '93' l 'C4' D 'E5' V

'4B' . '94' m 'C5' E 'E6' W

'4E' + '95' n 'C6' F 'E7' X

'5C' * '96' o 'C7' G 'E8' Y

'60' - '97' p 'C8' H 'E9' Z

'61' / '98' q 'C9' I 'F0' 0

'6D' _ '99' r 'D1' J 'F1' 1

'81' a 'A2' s 'D2' K 'F2' 2

'82' b 'A3' t 'D3' L 'F3' 3

'83' c 'A4' u 'D4' M 'F4' 4

'84' d 'A5' v 'D5' N 'F5' 5

'85' e 'A6' w 'D6' O 'F6' 6

'86' f 'A7' x 'D7' P 'F7' 7

'87' g 'A8' y 'D8' Q 'F8' 8

'88' h 'A9' z 'D9' R 'F9' 9

'89' i 'C1' A 'E2' S

'91' j 'C2' B 'E3' T

'92' k 'C3' C 'E4' U

How Character Values Are Stored 403

404 Chapter 22 / Data Representation

23
The SASCBTBL Attribute Table
and SAS MODULEx CALL
Routines

Overview of Load Libraries in SAS . 406
What Is a Load Library? . 406
Invoking Load Libraries from within SAS . 406
Accessing an External Load Library . 406

SASCBTBL Attribute Table . 407
Introduction to the SASCBTBL Attribute Table . 407
What Is the SASCBTBL Attribute Table? . 407
Syntax of the Attribute Table . 408
Importance of the Attribute Table . 412

Grouping SAS Variables as Structure Arguments . 413
Passing an Argument to a Structure . 413

Invoking the CALL MODULE Routine . 413
Calling Conventions for the CALL MODULE Routine . 413
The Control String . 414

Using Constants and Expressions as Arguments to the CALL MODULE Function 414

Specifying Formats and Informats to Use with MODULE Arguments 415
Using the FORMAT Attribute in the ARG Statement . 415
C Language Formats . 416
Fortran Language Formats . 416
PL/I Language Formats . 417
COBOL Language Formats . 417
$CSTRw. Format . 419
$BYVALw. Format and Informat . 420

Understanding MODULE Log Messages . 421

Examples of Accessing Load Executable Libraries . 423
COBOL Example . 423
Assembler Example . 424
SAS Example . 424
Output . 425

405

Overview of Load Libraries in SAS

What Is a Load Library?
Load libraries contain executable programs that are written in any of several
programming languages. Load libraries are a mechanism for storing useful routines
that might be needed by multiple applications. When an application needs a routine
that resides in a load module of an external load library, it loads the module,
invokes the routine, and unloads the load module upon completion.

Invoking Load Libraries from within SAS
SAS provides routines and functions that let you invoke these external routines
from within SAS. You can access the load library routines from the DATA step, the
IML procedure, and SCL code. You use the MODULE family of SAS CALL routines
and functions (including MODULE, MODULEN, and MODULEC), as well as the
SAS/IML functions and CALL routines (including MODULEI, MODULEIN, and
MODULEIC), to invoke a routine that resides in a load library. This documentation
refers to the MODULE family of CALL routines and functions generically as the
CALL MODULE function.

For information about MODULE, MODULEN, and MODULEC, see the SAS Functions
and CALL Routines: Reference. For information about the IML procedure, MODULEI,
MODULEIN, and MODULEIC, see the SAS/IML Studio: User's Guide .

Accessing an External Load Library
You can use the LOAD= parameter on the EXEC card in the JOB statement in batch
mode to pass in the external load library for SAS to use.

Follow these steps to access an external load library routine:

1 Create a text file that describes the load library routine that you want to access,
including the arguments that it expects and the values that it returns (if any).
This attribute file must be in a special format, as described in “SASCBTBL
Attribute Table” on page 407.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute
file that you created.

406 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

3 In a DATA step or SCL code, use a CALL routine or function (MODULE,
MODULEN, or MODULEC) to invoke the load library routine. The specific
function that you use depends on the type of expected return value (none,
numeric, or character). (You can also use MODULEI, MODULEIN, or MODULEIC
within a PROC IML step.) The CALL MODULE functions are described in “CALL
MODULE Routine: z/OS” on page 456.

CAUTION
Only experienced programmers should access external routines in load
libraries. By accessing a function in a load library, you transfer processing control to the
external function. If done improperly, or if the external function is not reliable, you might
lose data, get unreliable results, or receive severe errors.

SASCBTBL Attribute Table

Introduction to the SASCBTBL Attribute Table
Because the CALL MODULE function invokes an external routine that SAS knows
nothing about, you must supply information about the routine's arguments so that
the CALL MODULE function can validate them and convert them, if necessary. For
example, suppose you want to invoke a routine that requires an integer as an
argument. Because SAS uses floating-point values for all of its numeric arguments,
the floating-point value must be converted to an integer before you invoke the
external routine. The CALL MODULE function looks for this attribute information in
an attribute table that is referred to by the SASCBTBL fileref.

What Is the SASCBTBL Attribute Table?
The attribute table is a sequential text file that contains descriptions of the
routines that you can invoke with the CALL MODULE function. The table defines
how the CALL MODULE function should interpret supplied arguments when it
builds a parameter list to pass to the called routine.

The CALL MODULE function locates the table by opening the file that is referenced
by the SASCBTBL fileref. If you do not define this fileref, the CALL MODULE
function simply calls the requested load library routine without altering the
arguments.

CAUTION

SASCBTBL Attribute Table 407

Using the CALL MODULE function without defining an attribute table can
cause SAS to crash, produce unexpected results, or result in severe errors.
You need to use an attribute table for all external functions that you want to invoke.

Syntax of the Attribute Table

Overview of the Attribute Table

The attribute table should contain the following items:

n a description in a ROUTINE statement for each load library routine that you
intend to call

n descriptions in ARG statements for each argument that is associated with the
routine that you intend to call

At any point in the attribute table file, you can create a comment using an asterisk
(*) as the first non-blank character of a line or after the end of a statement
(following the semicolon). You must end the comment with a semicolon.

ROUTINE Statement

Here is the syntax of the ROUTINE statement:

ROUTINE name MINARG=minarg MAXARG=maxarg <RUNTIME=LE>

<CALLSEQ=BYVALUE|BYADDR>

<TRANSPOSE=YES|NO> <MODULE=load-library-name>

<RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT | [U]INT32 |
[U]INT64 | ULONG | USHORT>;

Here are descriptions of the ROUTINE statement attributes:

ROUTINE name
starts the ROUTINE statement. You need a ROUTINE statement for every load
library function that you intend to call. The value for name must match the
routine name that you specified in the module argument in the CALL MODULE
function.

The name argument is case sensitive, and is required for the ROUTINE
statement.

RUNTIME=LE
indicates that you are running LE COBOL routines.

408 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

MINARG=minarg
specifies the minimum number of arguments to expect for the load library
routine. In most cases, this value is the same as the MAXARG value, but some
routines do allow a varying number of arguments. This attribute is required.

MAXARG=maxarg
specifies the maximum number of arguments to expect for the load library
routine. This attribute is required.

CALLSEQ=BYVALUE | BYADDR
indicates the calling sequence method used by the load library routine. Specify
BYVALUE for call-by-value sequences and BYADDR for call-by-address
sequences. The default value is BYADDR.

Fortran and COBOL use call-by-address sequences. The C language usually
uses call-by-value sequences, although a specific routine might be implemented
as call by address.

The CALL MODULE function does not require that all arguments use the same
calling method. You can identify any exceptions by using the BYVALUE and
BYADDR options in the ARG statement.

TRANSPOSE=YES | NO
specifies whether SAS transposes matrices that have both more than one row
and more than one column before it calls the load library routine. This attribute
applies only to routines called from within PROC IML with MODULEI,
MODULEIN, and MODULEIC.

Use TRANSPOSE=YES when you use a CALL routine that is written in a
language that does not use row-major order to store matrices. (For example,
Fortran uses column-major order.)

For example, consider this matrix with three columns and two rows:

 columns
 1 2 3

 rows 1 | 10 11 12
 2 | 13 14 15

PROC IML stores this matrix in memory sequentially as 10, 11, 12, 13, 14, 15.
However, Fortran routines expect this matrix as 10, 13, 11, 14, 12, 15.

The default value is NO.

RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT | [U]INT32 |
[U]INT64 | ULONG | USHORT

specifies the type of value that the load library routine returns. This value is
converted as appropriate, depending on whether you use MODULEN (which
returns a number) or MODULEC (which returns a character). Here are the
possible return value types:

DBLPTR
is a pointer to a double-precision floating point number (instead of using a
floating-point register). See the documentation for your load library routine
to determine how it handles double-precision floating-point values.

SASCBTBL Attribute Table 409

CHAR<n>
is a pointer to a character string up to n bytes long. The string is expected to
be null-terminated and is blank-padded or truncated as appropriate. If you
do not specify n, the CALL MODULE function uses the maximum length of
the receiving SAS character variable.

DOUBLE
is a double-precision floating-point number.

LONG
is a long integer.

PTR
is a character string being returned.

SHORT
is a short integer.

[U]INT32
is a 32-bit unsigned integer. (If INT32 is returned, it is a 32-bit signed
integer.)

[U]INT64
is a 64-bit unsigned integer. (If INT64 is returned, it is a 64-bit signed
integer.)

ULONG
is an unsigned long integer.

USHORT
is an unsigned short integer.

If you do not specify the RETURNS attribute, you should invoke the routine with
only the MODULE and MODULEI CALL routines. Omitting the RETURNS
attribute and invoking the routine with the MODULEN and MODULEIN
functions or the MODULEC and MODULEIC functions produces unpredictable
results.

ARG Statement

The ROUTINE statement must be followed by as many ARG statements as you
specified in the MAXARG= option. The ARG statements must appear in the order in
which the arguments are specified within the CALL MODULE function.

Here is the syntax for each ARG statement:

ARG argnum NUM | CHAR <INPUT | OUTPUT | UPDATE> <NOTREQD |
REQUIRED>
<BYADDR | BYVALUE> <FDSTART> <FORMAT=format>;

Here are the descriptions of the ARG statement attributes:

ARG argnum
defines the argument number. The argnum attribute is required. Define the
arguments in ascending order, starting with the first routine argument (ARG 1).

410 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

NUM | CHAR
defines the argument as numeric or character. This attribute is required.

If you specify NUM here but pass the routine a character argument, the
argument is converted using the standard numeric informat. If you specify
CHAR here but pass the routine a numeric argument, the argument is converted
using the BEST12. informat.

INPUT | OUTPUT | UPDATE
indicates the argument is either input to the routine, an output argument, or
both. If you specify INPUT, the argument is converted and passed to the load
library routine. If you specify OUTPUT, the argument is not converted, but is
updated with an outgoing value from the load library routine. If you specify
UPDATE, the argument is converted, passed to the load library routine, and
updated with an outgoing value from the routine.

You can specify OUTPUT and UPDATE only with variable arguments (that is, no
constants or expressions are allowed).

NOTREQD | REQUIRED
indicates whether the argument is required. If you specify NOTREQD, then the
CALL MODULE function can omit the argument. If other arguments follow the
omitted argument, identify the omitted argument by including an extra comma
as a placeholder. For example, to omit the second argument to routine xyz, you
specify:

call module('xyz',1,,3);

CAUTION
Be careful when using NOTREQD; the load library routine must not attempt
to access the argument if it is not supplied in the call to MODULE. If the
routine does attempt to access it, you might receive unexpected results or
severe errors.

The REQUIRED attribute indicates that the argument is required and cannot be
omitted. REQUIRED is the default value.

BYADDR | BYVALUE
indicates whether the argument is passed by reference or by value.

BYADDR is the default value unless CALLSEQ=BYVALUE was specified in the
ROUTINE statement. In that case, BYVALUE is the default. Specify BYADDR
when you are using a call-by-value routine that also has arguments to be passed
by address.

FDSTART
indicates that the argument begins a block of values that are grouped into a
structure whose pointer is passed as a single argument. Note that all
subsequent arguments are treated as part of that structure until the CALL
MODULE function encounters another FDSTART argument.

FORMAT=format
names the format that presents the argument to the load library routine. Any
formats supplied by SAS, PROC FORMAT style formats, or SAS/TOOLKIT
formats are valid. Note that this format must have a corresponding valid
informat if you specified the UPDATE or OUTPUT attribute for the argument.

SASCBTBL Attribute Table 411

The FORMAT= attribute is not required, but is recommended because format
specification is the primary purpose of the ARG statements in the attribute
table.

CAUTION
Using an incorrect format can produce invalid results, cause SAS to crash,
or result in serious errors.

Importance of the Attribute Table
The CALL MODULE function relies heavily on the accuracy of the information in
the attribute table. If this information is incorrect, unpredictable results can occur
(including an abnormal termination).

Consider an example routine xyz that expects two arguments: an integer and a
pointer. The integer is a code indicating what action takes place. For example,
action 1 means that a 20-byte character string is written into the area that is
pointed to by the second argument, the pointer.

Suppose you call xyz using the CALL MODULE function, but you indicate in the
attribute table that the receiving character argument is only 10 characters long:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

Regardless of the value given by the LENGTH statement for the second argument
to MODULE, MODULE passes a pointer to a 10-byte area to the xyz routine. If xyz
writes 20 bytes at that location, the 10 bytes of memory following the string
provided by MODULE are overwritten, causing unpredictable results:

data _null_;
 length x $20;
 call module('xyz',1,x);
run;

The call might work fine, depending on which 10 bytes were overwritten. However,
overwriting can cause you to lose data or cause SAS to crash.

412 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

Grouping SAS Variables as Structure
Arguments

Passing an Argument to a Structure
When calling external routines, a common need is to pass a pointer to a structure.
Some parts of the structure might be used as input to the routine, and other parts
might be replaced or filled in by the routine. Even though SAS does not have
structures in its language, you can indicate to the CALL MODULE function that you
want a particular set of arguments grouped into a single structure. You indicate this
grouping by using the FDSTART option of the ARG statement to flag the argument
that begins the structure in the attribute table. SAS gathers that argument and all
the arguments that follow (until encountering another FDSTART option) into a
single contiguous block. SAS then passes a pointer to the block as an argument to
the load library routine.

Invoking the CALL MODULE Routine

Calling Conventions for the CALL MODULE
Routine

Use the following syntax to invoke the CALL MODULE routine:

CALL MODULE(<cntl> ,module,arg1,arg2, …;

cntl
specifies an optional control string. For more information, see “The Control
String” on page 414.

module
specifies a character string that contains the name of the COBOL routine that is
to be dynamically loaded. The string does not have to be in all uppercase. For
information about where the module should be located so that it can be loaded,
see the “Details” section of “CALL MODULE Routine: z/OS” on page 456.

Invoking the CALL MODULE Routine 413

arg(n)
specifies the arguments to be passed to the COBOL routine. For more
information about supported attributes and their matching variable types, see
“Using Constants and Expressions as Arguments to the CALL MODULE
Function” on page 414.

For more information about the calling conventions, see “CALL MODULE Routine:
z/OS” on page 456.

The Control String
The control string begins with an asterisk (*). It can contain any number of options,
each consisting of a single character, followed by an optional second character,
depending on the options. The options are not case-sensitive. The allowed options
are as follows:

E print error messages in the log.

I print parameter lists in the log.

A do not use table attributes, even if SASCBTBL is available.

Z do not invoke IGZERRE. For more information, see the IBM documentation
for the z/OS operating system.

B copy arguments below the line. For more information, see the IBM
documentation for the z/OS operating system.

T print attribute information in the log.

Sx use the separator character ‘x’ to delimit field definitions.

H print a brief help listing in the log.

For more information about the control string, see “CALL MODULE Routine: z/OS”
on page 456.

Using Constants and Expressions as
Arguments to the CALL MODULE
Function

You can pass any type of expression as an argument to the CALL MODULE
function. The attribute table indicates whether the argument is for input, output, or
update.

You can specify input arguments as constants and arithmetic expressions. However,
because output and update arguments must be able to be modified and returned,

414 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

you can pass only a variable for them. If you specify a constant or expression where
a value that can be updated is expected, SAS issues a warning message pointing
out the error. Processing continues, but the CALL MODULE function cannot
perform the update. That is, the value of the argument that you wanted to update is
lost.

Consider these examples. Here is the attribute table:

* attribute table entry for ABC;
routine abc minarg=2 maxarg=2;
arg 1 input format=ib4.;
arg 2 output format=ib4.;

Here is the DATA step with the MODULE calls:

data _null_;
 x=5;
 /* passing a variable as the */
 /* second argument - OK */
 call module('abc',1,x);

 /* passing a constant as the */
 /* second argument - INVALID */
 call module('abc',1,2);

 /* passing an expression as the */
 /* second argument - INVALID */
 call module('abc',1,x+1);
run;

In the preceding example, the first call to MODULE is valid because x is updated by
the value that the abc routine returns for the second argument. The second call to
MODULE is invalid because a constant is passed. MODULE issues a warning
indicating you have passed a constant, and passes a temporary area instead. The
third call to MODULE is invalid because an arithmetic expression is passed. This
action causes a temporary location from the DATA step to be used, and the
returned value to be lost.

Specifying Formats and Informats to Use
with MODULE Arguments

Using the FORMAT Attribute in the ARG Statement
You specify the SAS format and informat for each load library routine argument by
specifying the FORMAT attribute in the ARG statement. The format indicates how
numeric and character values should be passed to the load library routine and how
they should be read back upon completion of the routine.

Specifying Formats and Informats to Use with MODULE Arguments 415

Usually, the format that you use corresponds to a variable type for a given
programming language. The following sections describe the proper formats that
correspond to different variable types in various programming languages.

C Language Formats

Table 23.1 C Language Formats

C Type
SAS Format and Informat for 32-Bit
z/OS

double RB8.

float FLOAT4.

signed int IB4.

signed short IB2.

signed long IB4.

char * IB4.

unsigned int PIB4.

unsigned short PIB2.

unsigned long PIB4.

char[w] $CHARw. or $CSTRw.

Note: For more information, see “$CHARw. Format” in SAS Formats and Informats:
Reference and “$CSTRw. Format” on page 419.

Note: For information about passing character data other than as pointers to
character strings, see “$BYVALw. Format and Informat” on page 420.

Fortran Language Formats

416 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1oily9h2mwp5cn1dtb5qu8tcj7u.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1oily9h2mwp5cn1dtb5qu8tcj7u.htm&locale=en

Table 23.2 Fortran Language Formats

Fortran Type SAS Format and Informat

integer*2 IB2.

integer*4 IB4.

real*4 RB4.

real*8 RB8.

character*w $CHARw.

The CALL MODULE function can support Fortran character arguments only if they
are not expected to be passed by a descriptor.

PL/I Language Formats

Table 23.3 PL/I Language Formats

PL/I Type SAS Format and Informat

FIXED BIN(15) IB2.

FIXED BIN(31) IB4.

FLOAT BIN(21) RB4.

FLOAT BIN(31) RB8.

CHARACTER(w) $CHARw.

The PL/I descriptions are added here for completeness. These descriptions do not
guarantee that you are able to invoke PL/I routines.

COBOL Language Formats

Specifying Formats and Informats to Use with MODULE Arguments 417

Table 23.4 COBOL Language Formats

COBOL Format SAS Format and Informat Description

PIC Sxxxx BINARY IBw. integer binary

COMP-2 RB8. double-precision
floating point

COMP-1 RB4. single-precision
floating point

PIC xxxx or Sxxxx Fw. printable numeric

PIC yyyy $CHARw. character

Table 23.5 COBOL Specifications and SAS Formats and Informats

COBOL Format SAS Format and Informat Description

PIC Sxxxx DISPLAY ZDw. zoned decimal

PIC Sxxxx PACKED-DECIMAL PDw. packed decimal

The following COBOL specifications do not have true native equivalents and are
usable only in conjunction with the corresponding S370Fxxx format and informat,
which enables z/OS representations to be read and written in the UNIX
environment. The specifications are provided here to assist with portability across
platforms.

Table 23.6 COBOL Specifications Used with the S370Fxxx Group of Formats and
Informats

COBOL Format
SAS Format and
Informat Description

PIC xxxx DISPLAY S370FZDUw. zoned decimal
unsigned

PIC Sxxxx DISPLAY SIGN
LEADING

S370FZDLw. zoned decimal
leading sign

PIC Sxxxx DISPLAY SIGN
LEADING SEPARATE

S370FZDSw. zoned decimal
leading sign separate

PIC Sxxxx DISPLAY SIGN
TRAILING SEPARATE

S370FZDTw. zoned decimal
trailing sign separate

418 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

COBOL Format
SAS Format and
Informat Description

PIC xxxx BINARY S370FIBUw. integer binary
unsigned

PIC xxxx PACKED-DECIMAL S370FPDUw. packed decimal
unsigned

$CSTRw. Format
If you pass a character argument as a null-terminated string, use the $CSTRw.
format. This format looks for the last non-blank character of your character
argument and passes a copy of the string with a null terminator after the last non-
blank character. For example, consider the following attribute table entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$cstr10.;

With this entry, you can use the following DATA step:

data _null_;
 rc = module('abc','my string');
 run;

The $CSTR format adds a null terminator to the character string my string before
passing it to the abc routine. Adding a null terminator to the character string and
then passing the string to the abc routine is equivalent to the following attribute
entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$char10.;

The entry has the following DATA step:

data _null_;
 rc = module('abc','my string'||'00'x);
run;

The first example is easier to understand and easier to use when using variable or
expression arguments.

The $CSTR informat converts a null-terminated string into a blank-padded string of
the specified length. If the load library routine is supposed to update a character
argument, use the $CSTR informat in the argument attribute.

Specifying Formats and Informats to Use with MODULE Arguments 419

$BYVALw. Format and Informat
When you use a CALL MODULE function to pass a single character by value, the
argument is automatically promoted to an integer. If you want to use a character
expression in the MODULE call, you must use the special format or informat called
$BYVALw. The $BYVALw. format or informat expects a single character and
produces a numeric value, the size of which depends on w. For example, the
$BYVAL2. format produces a short argument. The $BYVAL4. format produces a
long argument. The $BYVAL8. format produces a double argument. Consider this
example using the C language:

long xyz(a,b)
 long a; double b;
 {
 static char c = 'Y';
 if (a == 'X')
 return(1);
 else if (b == c)
 return(2);
 else return(3);
 }

In this example, the xyz routine expects two arguments, a long and a double. If the
value of the long argument is X, the actual value of the long argument is 231 in
decimal. This result happens because an EBCDIC X is stored as hexadecimal E7, and
this value is promoted to a long argument, represented as 0x000000E7 (or 231
decimal). If the value of a is X, or 231, then a 1 is returned. If the second argument, a
double, is Y (which is interpreted as 232), then 2 is returned.

If you want to pass characters as the arguments to xyz, then in the C language, you
invoke them as follows:

x = xyz('X',(double)'Z');
y = xyz('Q',(double)'Y');

The characters are invoked in this way because the x and Q values are automatically
promoted to integers (which are the same as long arguments for the sake of this
example), and the integer values corresponding to Z and Y are cast to double
arguments.

To call xyz using the MODULEN function, your attribute table must reflect the fact
that you want to pass characters:

routine xyz minarg=2 maxarg=2 returns=long;
arg 1 input char byvalue format=$byval4.;
arg 2 input char byvalue format=$byval8.;

Note that the BYVALUE option must appear in the ARG statement as well.
Otherwise, MODULEN assumes that you want to pass a pointer to the routine,
instead of a value.

Here is the DATA step that invokes MODULEN and passes characters to it:

data _null_;

420 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

 x = modulen('xyz','X','Z');
 put x= ' (should be 1)';
 y = modulen('xyz','Q','Y');
 put y= ' (should be 2)';
run;

Understanding MODULE Log Messages
If you specify i in the control string parameter to MODULE, SAS prints several
informational messages to the log. You can use these messages to determine
whether you have passed incorrect arguments or coded the attribute table
incorrectly.

Consider this example that uses MODULEIN from within the IML procedure. It uses
the MODULEIN function to invoke the changi routine (which is stored in
theoretical TRYMOD). In the example, MODULEIN passes the constant 6 and the
matrix x2, which is a 4x5 matrix to be converted to an integer matrix.

Here is the Assembly source code for changi:

NROWS EQU 1
NCOLS EQU 2
VALUE EQU 3
MATRIX EQU 4
I EQU 5
CHANGI CSECT
 USING *,15
 STM 14,12,12(13) save registers
 LM 1,4,0(1) get our arguments
ROWLP DS 0H while(nrows > 0)
 LR I,NCOLS for (i=ncols; i>0; i--)
COLLP DS 0H
 L 0,0(MATRIX) get element
 AR 0,VALUE increment by constant
 ST 0,0(MATRIX) store it back
 AH MATRIX,=H'4' go to next element
 BCT I,COLLP
 BCT NROWS,ROWLP
 LM 14,12,12(13) restore args
 BR 14 and return
 LTORG

Here is the attribute table for changi:

routine changi minarg=4 maxarg=4;
arg 1 num input format=ib4. byvalue;
arg 2 num input format=ib4. byvalue;
arg 3 num input format=ib4. byvalue;
arg 4 num update format=ib4. byaddr;

The following IML step invokes MODULEIN:

proc iml;

Understanding MODULE Log Messages 421

 use temp;
 read all var{x y z} into testm;
 print testm;
 testm1 = testm;
 value = modulein("*i",'changi',nrow(testm),ncol(testm),7,testm1);
 print value testm1;
 quit;

The '*i' control string causes the lines shown in the following output to be written
in the log.

Output 23.1 MODULEIN Output

---PARM LIST FOR MODULEIN ROUTINE---
CHR PARM 1 21BF20B0 5C89 (*i)
CHR PARM 2 21BF20D0 838881958789 (changi)
NUM PARM 3 21BF2120 4120000000000000
NUM PARM 4 21BF2140 4130000000000000
NUM PARM 5 21BF2100 4170000000000000
NUM PARM 6 21BF2010 41100000000000004120000000000000413000
0000000000414000000000000041500000000000004160000000000000
---ROUTINE CHANGI LOADED AT ADDRESS 80019000 (AMODE 31 RMODE 24) (PARMLIST AT
000BB430)---
PARM 1 00000002 <CALL-BY-VALUE>
PARM 2 00000003 <CALL-BY-VALUE>
PARM 3 00000007 <CALL-BY-VALUE>
PARM 4 800BB040 000000010000000200000003000000040000000500000006
---VALUES UPON RETURN FROM CHANGI ROUTINE---
PARM 1 00000002 <CALL-BY-VALUE>
PARM 2 00000003 <CALL-BY-VALUE>
PARM 3 00000007 <CALL-BY-VALUE>
PARM 4 800BB040 00000008000000090000000A0000000B0000000C0000000D
---VALUES UPON RETURN FROM MODULEIN ROUTINE---
NUM PARM 3 21BF2120 4120000000000000
NUM PARM 4 21BF2140 4130000000000000
NUM PARM 5 21BF2100 4170000000000000
NUM PARM 6 21BF2010
4180000000000000419000000000000041A000000000000041B0000000000000
41C000000000000041D0000000000000

The output is divided into four sections:

n The first section describes the arguments passed to MODULEIN.

The CHR PARM n portion indicates that character parameter n was passed. In
the example, 21BF20B0 is the actual address of the first character parameter to
MODULEIN. The value at the address is hexadecimal 5C89, and the EBCDIC
representation of that value ('*i') is in parentheses after the hexadecimal value.
The second parameter is printed similarly. The hexadecimal equivalents are
printed for only these first two arguments because other arguments might
contain unreadable binary data.

The remaining parameters appear with only hexadecimal representations of
their values (NUM PARM 3 and NUM PARM 4 in the example).

The third parameter to MODULEIN is numeric, and it is at address 21BF2120.
The hexadecimal representation of the floating-point number 2 is shown. The
sixth parameter is at address 21BF2120, which points to an area containing all
the values for the 4x5 matrix. The *i option prints the entire argument. Be

422 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

careful if you use this option with large matrices, because the log might become
quite large.

n The second section of the log lists the arguments that are to be passed to the
requested routine and, in this case, changed. This section is important for
determining whether the arguments are being passed to the routine correctly.
The first line of this section contains the name of the routine and its address in
memory. It also contains the address of the location of the parameter block that
MODULEIN created.

The log contains the status of each argument as it is passed. For example, the
first parameter in the example is call-by-value (as indicated in the log). The
fourth parameter is the address of the matrix. The log shows the address, along
with the data to which it points.

Note that all the values in the numeric parameters and in the matrix are long
integers because the attribute table states that the format is IB4.

n In the third section, the log contains the argument values upon return from
changi. The call-by-value argument is unchanged, but the other argument (the
matrix) contains different values.

n The last section of the log output contains the values of the arguments as they
are returned to the MODULEIN CALL routine.

The PRINT statements in the PROC IML step cause the lines shown in the following
output to be written in the log.

 testm

 1 2 3
 4 5 6

 value testm1

 0 8 9 10
 11 12 13

Examples of Accessing Load Executable
Libraries

COBOL Example
The following COBOL example creates a load module named TEST1 that is used in
the following SAS example. The example program is passed two arguments, each of
which is an 11-byte character buffer. The output buffer is first set to a value of Z. If

Examples of Accessing Load Executable Libraries 423

each of bytes 1 through 11 has a value of 1), then the output buffer is set to a value
of A. The two arguments have been combined into one argument with fdstart in
the ARG statement that describes the parameters in the attribute table.

DATA DIVISION.

LINKAGE SECTION.
01 WS-PARM-AREA.
 05 KEY-1A PIC X(1).
 05 KEY-1B PIC X(10).
 05 KEY-2A PIC X(1).
 05 KEY-2B PIC X(10).
**
 PROCEDURE DIVISION USING WS-PARM-AREA.
 MOVE "Z" TO KEY-2A.
 MOVE "ZZZZZZZZZZ" TO KEY-2B.
 IF KEY-1B = "1111111111"
 THEN MOVE "AAAAAAAAAA" TO KEY-2B.
 IF KEY-1B = "1111111111"
 THEN MOVE "A" TO KEY-2A.
 GOBACK.

 END PROGRAM TEST1.

Assembler Example
The following Assembler example creates a load module named TEST2 that is used
in the following SAS example. The example has a single numeric argument that is
updated in place by adding the value 123.

TEST2 CSECT
 USING *,15
 STM 14,12,12(13)
 L 1,0(1)
 LD 0,0(1)
 AD 0,=D'123'
 STD 0,0(1)
 LM 14,12,12(13)
 BR 14
 LTORG
 END

SAS Example
The following SAS example creates a temporary data set named SASCBTBL, copies
the ROUTINE and ARG statements into the data set, and calls the TEST1 and
TEST2 load modules that the preceding COBOL and Assembler examples created.

filename sascbtbl temp;
data _null_; file sascbtbl;
 input; put _infile_; cards4;

424 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

routine test1 minarg=2 maxarg=2;
arg 1 char input format=$char11. fdstart;
arg 2 char output format=$char11.;
routine test2 minarg=1 maxarg=1;
arg 1 num update format=rb8. byaddr;
;;;;
data _null_;
 length fld_in fld_out $11;
 input fld_in @@;
 fld_out=' ';
 call module('test1', fld_in, fld_out);
 put fld_out= @;
 IF FLD_IN='11111111111' THEN PUT ' (SHOULD BE AAAAAAAAAAA)';
 ELSE PUT ' (SHOULD BE ZZZZZZZZZZZ)';
 cards;
11111111111 22222222222
 run;
data _null_;
 x = 12;
 call module('test2',x);
 put x= ' (should be 135 , which is 12 + 123)';
 run;

Output
The preceding SAS example writes the following messages and output to the SAS
log.

NOTE: Libref LIBRARY was successfully assigned as
follows:
 Engine:
V9
 Physical Name:
SDC.SAS9.E12W19.MXG.FMTLIB

1 filename sascbtbl
temp;
2 data _null_; file
sascbtbl;
3 input; put _infile_;
cards4;

NOTE: The file SASCBTBL
is:

Dsname=SYS12282.T134432.RA000.MODEXMPL.R0111551,

Unit=3390,Volume=SCRD01,Disp=NEW,Blksize=27920,

Lrecl=80,Recfm=FB,Creation=2012/10/08

Examples of Accessing Load Executable Libraries 425

NOTE: 5 records were written to the file
SASCBTBL.
NOTE: The DATA statement used 0.00 CPU seconds and
18342K.

NOTE: The address space has used a maximum of 920K below
 the line and 20276K above the line.

9 ;;;;

10 data
null;
11 length fld_in fld_out
$11;
12 input fld_in
@@;
13 fld_out='
';
14 call module('test1', fld_in,
fld_out);
15 put fld_out=
@;
16 IF FLD_IN='11111111111' THEN PUT ' (SHOULD BE
AAAAAAAAAAA)';
17 ELSE PUT ' (SHOULD BE
ZZZZZZZZZZZ)';
18
cards;

fld_out=AAAAAAAAAAA (SHOULD BE
AAAAAAAAAAA)
fld_out=ZZZZZZZZZZZ (SHOULD BE
ZZZZZZZZZZZ)
NOTE: SAS went to a new line when INPUT statement reached
past the end of a line.
NOTE: The DATA statement used 0.00 CPU seconds and
18391K.

NOTE: The address space has used a maximum of 1164K below
 the line and 20296K above the line.

20
run;
21 data
null;

426 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

22 x =
12;
23 call
module('test2',x);
24 put x= ' (should be 135 , which is 12 +
123)';
25
run;

x=135 (should be 135 , which is 12 +
123)
NOTE: The DATA statement used 0.00 CPU seconds and
18440K.

NOTE: The address space has used a maximum of 1164K below
 the line and 20344K above the line.

NOTE: The SAS session used 0.04 CPU seconds and
18440K.

Examples of Accessing Load Executable Libraries 427

428 Chapter 23 / The SASCBTBL Attribute Table and SAS MODULEx CALL Routines

PART 6

Host-Specific Features of the SAS
Language

Chapter 24
Data Set Options under z/OS . 431

Chapter 25
Formats under z/OS . 443

Chapter 26
Functions and CALL Routines under z/OS . 453

Chapter 27
Informats under z/OS . 499

Chapter 28
Macros under z/OS . 511

Chapter 29
Procedures under z/OS . 525

Chapter 30
Statements under z/OS . 599

Chapter 31
System Options under z/OS . 685

Chapter 32
TKMVSENV Options under z/OS . 895

429

430

24
Data Set Options under z/OS

Data Set Options in the z/OS Environment . 431

Summary of SAS Data Set Options in the z/OS Environment . 432

Dictionary . 436
ALTER= Data Set Option: z/OS . 436
BUFSIZE= Data Set Option: z/OS . 438
FILECLOSE= Data Set Option: z/OS . 439
FILEDISP= Data Set Option: z/OS . 440

Data Set Options in the z/OS
Environment

Portable data set options are documented in SAS Data Set Options: Reference. This
chapter provides detailed information about data set options that are specific to
z/OS or that have aspects that are specific to z/OS. For a list of all of the SAS data
set options that are available under z/OS, see “Summary of SAS Data Set Options
in the z/OS Environment” on page 432.

Data set options are specified in parentheses following a data set name. The data
set options apply only to that one data set.

431

Summary of SAS Data Set Options in the
z/OS Environment

The following table describes both the data set options specific to z/OS and the
portable data set options.

The See column tells you where to look for more detailed information about an
option, based on the following legend:

COMP
See the description of the data set option in this chapter.

LR
See SAS Data Set Options: Reference.

NLS
See SAS National Language Support (NLS): Reference Guide

The Engines column lists the engines with which the option is valid, based on the
following legend:

all V9, V8, V7, V6, DBI
Applies to all disk and tape engines, including database interface (DBI) engines.

all V9, V8, V7, V6, V5
Applies to all disk and tape engines except DBI engines.

V9TAPE, V8TAPE, V7TAPE, V6TAPE, V5TAPE
Applies to all tape engines for the specified SAS versions; does not apply to disk
or DBI engines.

V9, V8, V7, V6, V5
Applies to all disk engines for the specified versions; does not apply to tape or
DBI engines.

Note: For the purposes of the following table, V7, V8, and V9 are the same engine,
and V7TAPE, V8TAPE, and V9TAPE are the same engine.

Table 24.1 Summary Table of SAS Data Set Options

Data Set Option Description When Used See Engines

ALTER= Specifies a password for a SAS
file that prevents users from
replacing or deleting the file,
but permits Read and Write
access.

output, update COMP all V9, V8,
V7, V6

432 Chapter 24 / Data Set Options under z/OS

Data Set Option Description When Used See Engines

BUFNO= Specifies the number of buffers
to be allocated for processing a
SAS data set.

input, output, update LR all V9, V8,
V7, V6

input LR all V5

BUFSIZE= Specifies the size of a
permanent buffer page for an
output SAS data set.

output COMP,
LR

all V9, V8,
V7, V6

CNTLLEV= Specifies the level of shared
access to SAS data sets.

input, update LR V9, V8, V7,
V6

input LR V5

COMPRESS= Controls the compression of
observations in a new output
SAS data set.

output LR V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE

DLDMGACTION= Specifies the action to take
when a SAS data set in a SAS
library is detected as damaged.

input, output, update LR all V9, V8,
V7, V6

DROP= Excludes variables from
processing or from output SAS
data sets.

input, output, update LR all V9, V8,
V7, V6, DBI

input LR V5

ENCODING= Overrides the encoding for the
input or output SAS data set.

input NLS V9, V8, V7,
V9TAPE,
V8TAPE,
V7TAPE

ENCRYPT= Specifies whether to encrypt an
output SAS data set.

output LR all V8

FILECLOSE= Specifies how a tape is
positioned when a SAS file on
the tape is closed.

input, output Comp, LR V9TAPE,
V6TAPE,
V5TAPE

input LR V5TAPE

FILEDISP= Specifies the initial disposition
for a sequential-format SAS
library.

input, output COMP V9TAPE,
V8TAPE,
V7TAPE,
V6TAPE

input COMP V5TAPE

Summary of SAS Data Set Options in the z/OS Environment 433

Data Set Option Description When Used See Engines

FIRSTOBS= Specifies which observation
SAS processes first.

input, update LR all V9, V8,
V7, V6, DBI

GENMAX= Requests generations for a SAS
data set, and specifies the
maximum number of versions.

output, update LR V9, V8, V7

GENNUM= Specifies a particular
generation of a SAS data set.

input, output, update LR V9, V8, V7

IDXNAME= Specifies that SAS use a
specific index to satisfy the
conditions of a WHERE
expression.

input, update LR V9, V8, V7,
V6

IDXWHERE= Overrides the SAS decision
about whether to use an index
to satisfy the conditions of a
WHERE expression.

input, update LR V9, V8, V7,
V6

IN= Creates a variable that
indicates whether the data set
contributed data to the current
observation.

input (with SET,
MERGE, MODIFY,
UPDATE statements
only)

LR all V9, V8,
V7, V6, DBI

INDEX= Defines an index for a new
output SAS data set.

output LR V9, V8, V7,
V6,
V9TAPE,
V8TAPE,
V7TAPE

KEEP= Specifies variables for
processing or for writing to
output SAS data sets.

input, output, update LR all V9, V8,
V7, V6, DBI

input LR all V5

LABEL= Specifies a label for a SAS data
set.

input, output, update LR all V9, V8,
V7, V6, DBI

input LR all V5

OBS= Specifies the last observation
of the data set to process.

input, update LR all V9, V8,
V7, V6, DBI

OBSBUF= Determines the size of the view
buffer for processing a DATA
step view.

input LR V9, V8, V7

434 Chapter 24 / Data Set Options under z/OS

Data Set Option Description When Used See Engines

OUTREP= Specifies an output format for
an operating environment other
than z/OS.

output LR V9, V8, V7,
V9TAPE

POINTOBS= Controls whether a compressed
data set can be processed with
random access (by observation
number) rather than with
sequential access only.

input LR V9, V8, V7

PW= Assigns a READ, WRITE, or
ALTER password to a SAS file,
and enables access to a
password-protected file.

input, output, update LR all V9, V8,
V7, V6

input LR all V5

PWREQ= Specifies whether to display a
dialog box for a SAS data set
password.

input, output, update LR all V9, V8,
V7, V6

input LR all V5

READ= Assigns a password to a SAS
file, and enables access to a
read-protected SAS file.

input, output, update LR all V9, V8,
V7, V6

input LR V5

RENAME= Changes the name of a variable. input, output, update LR all V9, V8,
V7, V6, DBI

input LR V5

REPEMPTY= Specifies whether a new, empty
data set can overwrite an
existing SAS data set that has
the same name.

output LR V9, V8

REPLACE= Specifies whether a new SAS
data set that contains data can
overwrite an existing data set
that has the same name.

output LR all V9, V8,
V7, V6, DBI

REUSE= Specifies whether new
observations can be written to
freed space in compressed SAS
data sets.

output LR V9, V8, V7,
V6

SORTEDBY= Indicates how the SAS data set
is currently sorted.

input, output update LR all V9, V8,
V7, V6

Summary of SAS Data Set Options in the z/OS Environment 435

Data Set Option Description When Used See Engines

input LR all V5

SPILL= Specifies whether to create a
spill file for non-sequential
processing of a DATA step view.

output LR V9, V8, V7

TOBSNO= Specifies the number of
observations to send in a
client/server transfer.

input, output, update LR REMOTE

TYPE= Specifies the data set type for a
specially structured SAS data
set.

input, output, update LR all V9, V8,
V7, V6, DBI

input LR all V5

WHERE= Selects observations that meet
the specified condition.

input, output, update LR all V9, V8,
V7, V6, DBI

input LR all V5

WHEREUP= Specifies whether to evaluate
added observations and
modified observations against a
WHERE clause.

input, output, update LR V9, V8, V7,
V6

input LR all V5

WRITE= Assigns a Write password to a
SAS data set, and enables
access to a write-protected
SAS file.

output, update LR all V9, V8,
V7, V6

Dictionary

ALTER= Data Set Option: z/OS
Specifies a password for a SAS file that prevents users from replacing or deleting the file, but
permits Read and Write access.

Valid in: DATA step, PROC steps

Category: Data Set Control

436 Chapter 24 / Data Set Options under z/OS

z/OS specifics: All

See: “ALTER= Data Set Option” in SAS Data Set Options: Reference

Syntax

ALTER=alter-password

Required Argument
alter-password

must be a valid SAS name. For more information, see “Rules for Words and
Names in the SAS Language” in the SAS Language Reference: Concepts.

Details

About the Alter= Data Set Option
You can use this option to assign an alter-password to a SAS file or to access a
read-protected, write-protected, or alter-protected SAS file. When replacing a SAS
data set that is Alter protected, the new file inherits the Alter password. To change
the Alter password for the new file, use the MODIFY statement in the DATASETS
procedure.

The ALTER password is not honored for UFS libraries processed via the TAPE
engine. Moreover, the ALTER password cannot be used to prevent members of a
sequential access bound library from being deleted if those members follow a
member that is being replaced. For more information, see “General Usage Notes” on
page 58.

Note: A SAS password does not control access to a SAS file or a SAS library
outside of SAS. You should use the operating environment-supplied utilities and
file-system security controls in order to control access to SAS files outside of SAS.
For example, a user with RACF access to the physical bound library could delete
the entire library without using the ALTER password.

See Also

n “Protecting Files” in SAS Programmer’s Guide: Essentials

n “Manipulating Passwords” in Base SAS Procedures Guide

Data Set Options

n “ENCRYPT= Data Set Option” in SAS Data Set Options: Reference

n “PW= Data Set Option” in SAS Data Set Options: Reference

ALTER= Data Set Option: z/OS 437

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1ipgcz8vs3mhzn132e7nsmiqtip.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n12ubvpdn9mtf2n16vrp021aruxo.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ahh0eqtadmp3n1uwv55i2gyxiz.htm&docsetTargetAnchor=n1d0cq5eqidjg3n1diiqivbpzfxu&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1hwtxbozzzy4un11ldzgovfhcrf.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0tbic7ghccskln1xxjs8d9ni8o5.htm&locale=en

n “READ= Data Set Option” in SAS Data Set Options: Reference

n “WRITE= Data Set Option” in SAS Data Set Options: Reference

BUFSIZE= Data Set Option: z/OS
Specifies the size of a permanent buffer page for an output SAS data set.

Valid in: DATA step, PROC steps

Category: Data Set Control

Default: The value of the BUFSIZE= system option

Restriction: Use with output data sets only

z/OS specifics: Default value, valid values

See: “BUFSIZE= Data Set Option” in SAS Data Set Options: Reference

Syntax

BUFSIZE=0 | n | nK

Note: You can also use the KB syntax notation.

Required Arguments
0

specifies that SAS chooses the optimal page size of the data set based on the
characteristics of the library and the type of data set.

n | nK
specifies the permanent buffer size (page size) in bytes or kilobytes,
respectively. For libraries other than UFS, the specified value is rounded up to
the block size (BLKSIZE) of the library data set, because a block is the smallest
unit of a data set that can be transferred in a single I/O operation.

Details

The page size is the amount of data that can be transferred for a single I/O
operation to one buffer. A page is the number of bytes of data that SAS moves
between external storage and memory in one logical I/O operation.

On z/OS, when BUFSIZE=0, SAS usually sets the member page size for output SAS
data sets equal to the number of blocks that would fit on one track of the z/OS disk
device. This page size tends to favor sequential processing by assuming that the
entire track is needed, and that it is read in multiple, consecutive blocks.

438 Chapter 24 / Data Set Options under z/OS

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0x2b0pto7rbjsn158q7c2hfjo0n.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vlirm1hysoyxn1lsd4ukoczxx0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0pw7cnugsttken1voc6qo0ye3cg.htm&locale=en

However, to improve performance for random (direct) access, the smallest possible
buffer size is best. The minimum page size that you can specify depends on the
type of library, as shown in the following table:

Table 24.2 Minimum Page Sizes for SAS Libraries

Type of Library Minimum Page Size

direct access bound library BLKSIZE of library data set

UFS library 4K

hiperspace library 4K

FILECLOSE= Data Set Option: z/OS
Specifies how a tape is positioned when a SAS data set is closed.

Valid in: DATA step, PROC steps

Category: Miscellaneous

Default: Current setting of the TAPECLOSE system option

Engine: V5TAPE, V6TAPE, V9TAPE

See: “FILECLOSE= Data Set Option” in SAS Data Set Options: Reference

Syntax

FILECLOSE=DISP | LEAVE | REREAD | REWIND | FREE

Required Arguments
DISP

specifies that the operating system position the tape volume in accordance with
the termination disposition specified via the DISP parameter when the library
data set was allocated. If the disposition is PASS, the action described for
FILECLOSE=LEAVE is performed. For other dispositions, the action described
for FILECLOSE=REWIND is performed, and in some cases, the tape volume can
be unloaded if necessary.

LEAVE
specifies that the operating system leave the tape volume positioned
immediately following the end of the data set on the current volume when SAS
closes the library data set. Specifying FILECLOSE=LEAVE is recommended if
the subsequent data set on the tape volume is the next data set from that

FILECLOSE= Data Set Option: z/OS 439

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1dejypz1tjmzkn1y1ofl1ho7j9b.htm&locale=en

volume that SAS processes. For more information about the LEAVE parameter,
see the example in “Optimizing Performance” on page 60.

REREAD
specifies that the operating system rewind the tape volume to the start of the
SAS library when SAS closes the library data set. Specifying
FILECLOSE=REREAD is recommended if the library is to be processed by
multiple SAS procedures or DATA steps in the same SAS session.

REWIND
specifies that the operating system rewind the tape volume to the beginning of
the tape when SAS closes the library data set.

FREE
specifies that the operating system deallocate the tape volume when SAS
closes the library data set. Specifying this option makes the tape volume
available for use by other jobs in the system as soon as SAS has closed the
library, rather than at the end of the SAS session. Do not specify
FILECLOSE=FREE if the library data set is used in multiple SAS procedures or
DATA steps in the same SAS session.

Details

In general, SAS closes the library data set at the conclusion of the SAS procedure
or DATA step that is processing the library. The FILECLOSE option has no effect on
processing direct bound libraries or UFS libraries. Specifying FREE=CLOSE on the
JCL DD statement for a library is honored only if FILECLOSE has a value of
REWIND, DISP, or FREE. If FILECLOSE has a value of REREAD or LEAVE, then the
FREE=CLOSE specification is ignored. For more information about FREE=CLOSE,
see the IBM JCL Reference for the version of z/OS that your site is using.

Note: If the FILECLOSE data set option is specified, then it overrides the
TAPLECLOSE system option.

See Also

“TAPECLOSE= System Option: z/OS” on page 875

FILEDISP= Data Set Option: z/OS
Specifies the initial disposition for a sequential access bound SAS library.

Valid in: DATA step, PROC steps

Default: OLD

Engine: V9TAPE, V8TAPE, V7TAPE, V6TAPE, V5TAPE

440 Chapter 24 / Data Set Options under z/OS

z/OS specifics: All

Syntax

FILEDISP=NEW | OLD

Required Arguments
NEW

specifies that the sequential library is to be considered empty. SAS therefore
does not look for previously written members. The DATA step writes the new
member at the beginning of the new (empty) library. Any members that existed
in the library before the Write operation are lost. The FILEDISP=NEW option
can be valid only during the first write to a sequential library for a given libref.
For all subsequent writes to that libref, FILEDISP=NEW is ignored and
FILEDISP=OLD is assumed.

OLD
specifies that the sequential library is not initially empty. SAS therefore writes
members with names that do not already exist in the library at the end of the
library. If the member being written has a name that already exists in the library,
the existing member is overwritten, and any members that follow the
overwritten member are lost.

Details

A sequential library is a single SAS file that can contain one or more concatenated
members.

To avoid inadvertent data loss, make sure that you specify FILEDISP=NEW only
when writing to new (empty) sequential libraries. Also, when writing to an existing
sequential library, make sure that the name of the member being written does not
inadvertently correspond to the name of a member that already exists in the library.

FILEDISP= Data Set Option: z/OS 441

442 Chapter 24 / Data Set Options under z/OS

25
Formats under z/OS

Formats in the z/OS Environment . 443

Considerations for Using Formats in the z/OS Environment . 444
EBCDIC and Character Data . 444
Floating-Point Number Format and Portability . 444
Writing Binary Data . 444

Dictionary . 446
IBw.d Format: z/OS . 446
PDw.d Format: z/OS . 447
RBw.d Format: z/OS . 449
ZDw.d Format: z/OS . 450

Formats in the z/OS Environment
In general, formats are completely portable. Only the formats that have aspects
specific to z/OS are documented in this chapter. All portable formats are described
in SAS Formats and Informats: Reference; that information is not repeated here.
Instead, you are given details about how the format behaves in the z/OS
environment, then you are referred to SAS Formats and Informats: Reference for
additional information.

TIP User-defined format names cannot end in a number. For more
information, see “User-Defined Formats” in SAS Formats and Informats:
Reference and “SAS Names” in SAS Programmer’s Guide: Essentials.

443

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&locale=en

Considerations for Using Formats in the
z/OS Environment

EBCDIC and Character Data
The following character formats produce different results on different computing
platforms, depending on which character-encoding the platform uses. Because
z/OS uses EBCDIC character-encoding, all of the following formats convert data
from EBCDIC.

These formats are not discussed in detail in this documentation because EBCDIC
character-encoding is their only host-specific aspect.

$ASCIIw.
converts EBCDIC character data to ASCII character data.

$BINARYw.
converts EBCDIC character data to binary representation, where each character
is represented by eight binary characters.

$EBCDICw.
converts EBCDIC data to character data. Under z/OS, $EBCDICw. and $CHARw.
are equivalent.

$HEXw.
converts EBCDIC character data to hexadecimal representation.

$OCTALw.
converts EBCDIC character data to octal representation.

All the information that you need in order to use these formats under z/OS is in
SAS Formats and Informats: Reference.

Floating-Point Number Format and Portability
The manner in which z/OS stores floating-point numbers can affect your data. See
SAS Language Reference: Concepts for details.

444 Chapter 25 / Formats under z/OS

Writing Binary Data
If a SAS program that writes binary data is run in only one operating environment,
you can use the following native-mode formats.

Note: Native-mode formats use the byte-ordering system that is standard for the
operating environment.

IBw.d
writes integer binary (fixed-point) values, including negative values, that are
represented in two's complement notation.

IEEEw.d
writes real binary (floating-point) data in IEEE format.

PDw.d
writes data that is stored in IBM packed decimal format.

PIBw.d
writes positive integer binary (fixed-point) values.

RBw.d
writes real binary (floating-point) data in IBM hexadecimal floating-point
format.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, use the following IBM 370 formats:

S370FFw.d
writes standard numeric data in IBM mainframe format.

S370FIBw.d
writes integer binary data in IBM mainframe format.

S370FIBUw.d
writes unsigned integer binary data in IBM mainframe format.

S370FPDw.d
writes packed decimal data in IBM mainframe format.

S370FPDUw.d
writes unsigned packed decimal data in IBM mainframe format.

S370FPIBw.d
writes positive integer binary data in IBM mainframe format.

S370FRBw.d
writes real binary data in IBM mainframe format.

S370FZDw.d
writes zoned decimal data in IBM mainframe format.

S370FZDLw.d
writes zoned decimal leading sign data in IBM mainframe format.

Considerations for Using Formats in the z/OS Environment 445

S370FZDSw.d
writes zoned decimal separate leading sign data in IBM mainframe format.

S370FZDTw.d
writes zoned decimal separate trailing sign data in IBM mainframe format.

S370FZDUw.d
writes unsigned zoned decimal data in IBM mainframe format.

These IBM z/Architecture formats enable you to write SAS programs that can be
run in any SAS environment, regardless of the standard for storing numeric data.
They also enhance your ability to port raw data between host operating
environments.

For more information about the IBM z/Architecture formats, see SAS Formats and
Informats: Reference.

Dictionary

IBw.d Format: z/OS
Writes values in integer binary (fixed-point) format.

Category: Numeric

Alignment: Left

Default: 4

Ranges: 1-8 bytes, 0-10

z/OS specifics: Two's complement big-endian notation

See: “IBw.d Format” in SAS Formats and Informats: Reference

Details

On an IBM mainframe system, integer values are stored in two's complement
notation.

If an overflow occurs, the value written is the largest value that fits into the output
field; the value is positive, negative, or unsigned, as appropriate. If the format
includes a d value, the number is multiplied by 10d.

The following table contains examples that illustrate the use of the IBw.d format
under z/OS:

446 Chapter 25 / Formats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0w4extd05hkmen10hs914bqgve8.htm&locale=en

Value Format Results (Hexadecimal) Notes

-1234 ib4. 'FFFFFB2E'x

12.34 ib4. '0000000C'x

123456789 ib4. '075BCD15'x

1234 ib6.2 '00000001E208'x a d value of 2
causes the
number to be
multipled by 102

-1234 ib6.2 'FFFFFFFE1DF8'x a d value of 2
causes the
number to be
multipled by 102

1234 ib1. '7F'x overflow
occurred

-1234 ib1. '80'x overflow
occurred

Note: In these examples, the Value column represents the value of the numeric
variable. The Results column shows a hexadecimal representation of the bit pattern
written by the corresponding format. (You cannot view this data in a text editor,
unless you can view it in hexadecimal representation.)

See Also

Formats

n “S370FIBw.d Format” in SAS Formats and Informats: Reference

n “S370FPIBw.d Format” in SAS Formats and Informats: Reference

Informats

n “IBw.d Informat: z/OS” on page 504

PDw.d Format: z/OS
Writes values in IBM packed decimal format.

Category: Numeric

PDw.d Format: z/OS 447

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1ieal1t8dllgen119h6hmimtlu6.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0stoz6dq105ern1vvvpsz5z3jff.htm&locale=en

Alignment: Left

Default: 1

Ranges: 1-16 bytes, 0-31

z/OS specifics: IBM packed decimal format

See: “PDw.d Format” in SAS Formats and Informats: Reference

Details

In packed decimal format, each byte represents two decimal digits. An IBM packed
decimal number consists of a sign and up to 31 digits, thus giving a range of 1031 −1
to -1031 + 1. The sign is written in the rightmost nibble. (A nibble is four bits or half a
byte.) A hexadecimal C indicates a plus sign, and a hexadecimal D indicates a minus
sign. The rest of the nibbles to the left of the sign nibble represent decimal digits.
The hexadecimal values of these digit nibbles correspond to decimal values.
Therefore, only values between '0'x and '9'x can be used in the digit positions.

If an overflow occurs, the value that is written is the largest value that fits into the
output field. The value is positive.

If the format includes a d value, the number is multiplied by 10d.

The following table contains examples that illustrate packed decimal format:

Value Format Results (Hexadecimal) Notes

-1234 pd3. '01234D'x

1234 pd2. '999C'x overflow occurred

1234 pd4. '0001234C'x

1234 pd4.2 '0123400C'x a d value of 2 causes
the number to be
multiplied by 102

Note: In these examples, the Value column represents the value of the data, and
the Results column shows a hexadecimal representation of the bit pattern written
by the corresponding format. (You cannot view this data in a text editor, unless you
can view it in hexadecimal representation.)

The PDw.d format writes missing numerical data as -0. When the PDw.d informat
reads -0, the informat stores -0 as 0.

448 Chapter 25 / Formats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n17qnht5p8e7s9n13vm43awr9iqm.htm&locale=en

See Also

Formats

n “S370FPDw.d Format” in SAS Formats and Informats: Reference

Informats

n “PDw.d Format” in SAS Formats and Informats: Reference

n “PDw.d Informat: z/OS” on page 505

RBw.d Format: z/OS
Writes values in real binary (floating-point) format.

Category: Numeric

Alignment: Left

Default: 4

Ranges: 2-8 bytes, 0-10

z/OS specifics: IBM hexadecimal floating-point format

See: “RBw.d Format” in SAS Formats and Informats: Reference

Details

The format of floating-point numbers is host-specific. For a description of the
format that is used to store floating-point numbers under z/OS, see “Floating-Point
Representation” on page 399.

If the format includes a d value, the number is multiplied by 10d.

The following table contains examples that illustrate how decimal numbers are
written as floating-point numbers using the RBw.d format:

Value Format Results (Hexadecimal) Notes

123 rb8.1 '434CE00000000000'x a d value of 1
causes the
number to be
multiplied by 101

123 rb8.2 '44300C0000000000'x a d value of 2
causes the
number to be
multiplied by 102

RBw.d Format: z/OS 449

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1axbgkkwfpgljn1qghqseckmlrd.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n17qnht5p8e7s9n13vm43awr9iqm.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0wtjwwxjsi49gn1qyyesl008w97.htm&locale=en

Value Format Results (Hexadecimal) Notes

-123 rb8. 'C27B000000000000'x

1234 rb8. '434D200000000000'x

1234 rb2. '434D'x truncation
occurred

12.25 rb8. '41C4000000000000'x

Note: In these examples, the Value column represents the value of the data, and
the Results column shows a hexadecimal representation of the bit pattern written
by the corresponding format. (You cannot view this data in a text editor, unless you
can view it in hexadecimal representation.)

See Also

Formats

n “S370FRBw.d Format” in SAS Formats and Informats: Reference

Informats

n “RBw.d Informat: z/OS” on page 506

ZDw.d Format: z/OS
Writes zoned-decimal data.

Category: Numeric

Alignment: Left

Default: 1

Range: 1-32 bytes

z/OS specifics: IBM zoned decimal format

See: “ZDw.d Format” in SAS Formats and Informats: Reference

Details

Like standard format, zoned decimal digits are represented as EBCDIC characters.
Each digit requires one byte. The rightmost byte represents both the least

450 Chapter 25 / Formats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0hbd63k48ypgqn1gs5i6yv1msnd.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1ggc7rp9p44lan1oiaykja23g60.htm&locale=en

significant digit and the sign of the number. Digits to the left of the least significant
digit are written as the EBCDIC characters 0 through 9. The character that is
written for the least significant digit depends on the sign of the number. Negative
numbers are represented as the EBCDIC printable hexadecimal characters D0
through D9 in the least significant digit position, and positive numbers are
represented as hexadecimal C0 through C9. If the format includes a d value, the
number is multiplied by 10d.

If an overflow occurs, the value that is written is the largest value that fits into the
output field; the value is positive, negative, or unsigned, as appropriate.

The following table contains examples that illustrate the use of the zoned decimal
format:

Value Format Results (Hexadecimal) Notes

1234 zd8. 'F0F0F0F0F1F2F3C4'x

123 zd8.1 'F0F0F0F0F1F2F3C0'x a d value of 1
causes the
number to be
multiplied by 101

123 zd8.2 'F0F0F0F1F2F3F0C0'x a d value of 2
causes the
number to be
multiplied by 102

-123 zd8. 'F0F0F0F0F0F1F2D3'x

0.000123 zd8.6 F0F0F0F0F0F1F2C3 a d value of 6
causes the
number to be
multiplied by 106

0.00123 zd8.6 'F0F0F0F0F1F2F3C0'x a d value of 6
causes the
number to be
multiplied by 106

1E-6 zd8.6 'F0F0F0F0F0F0F0C1'x a d value of 6
causes the
number to be
multiplied by 106

Note: In these examples, the Value column represents the value of the data, and
the Results column shows a hexadecimal representation of the bit pattern that is
written by the corresponding format. (You cannot view this data in a text editor
unless you view it in hexadecimal representation.) For a table of commonly used
EBCDIC characters, see Table 22.3 on page 403.

ZDw.d Format: z/OS 451

See Also

Formats

n “S370FZDLw.d Format” in SAS Formats and Informats: Reference

n “S370FZDSw.d Format” in SAS Formats and Informats: Reference

n “S370FZDTw.d Format” in SAS Formats and Informats: Reference

n “S370FZDUw.d Format” in SAS Formats and Informats: Reference

Informats

n “ZDBw.d Informat: z/OS” on page 509

n “ZDw.d Informat: z/OS” on page 507

452 Chapter 25 / Formats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0mfy39s47ipdln1g9ap5nezmrky.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0pgrsh88zbs2gn117q61rqxegw0.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p16i57jfpeavpdn1y0ccktys42rr.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0en6rbkbch24tn1xjinuoqv8c50.htm&locale=en

26
Functions and CALL Routines
under z/OS

Functions and CALL Routines under z/OS . 454

Dictionary . 454
ANYPUNCT Function: z/OS . 454
CALL MODULE Routine: z/OS . 456
CALL SLEEP Routine: z/OS . 459
CALL SYSTEM Routine: z/OS . 459
CALL TSO Routine: z/OS . 461
CALL WTO Routine: z/OS . 462
DINFO Function: z/OS . 463
DOPEN Function: z/OS . 467
DOPTNAME Function: z/OS . 468
DOPTNUM Function: z/OS . 469
DSNCATLGD Function: z/OS . 470
FCLOSE Function: z/OS . 471
FDELETE Function: z/OS . 472
FEXIST Function: z/OS . 473
FILEEXIST Function: z/OS . 474
FILENAME Function: z/OS . 474
FILEREF Function: z/OS . 476
FINFO Function: z/OS . 477
FOPEN Function: z/OS . 481
FOPTNAME Function: z/OS . 483
FOPTNUM Function: z/OS . 484
KTRANSLATE Function: z/OS . 485
MODULE Function: z/OS . 486
MOPEN Function: z/OS . 488
PATHNAME Function: z/OS . 489
PEEKCLONG Function: z/OS . 490
PEEKLONG Function: z/OS . 492
SYSGET Function: z/OS . 493
SYSTEM Function: z/OS . 494
TRANSLATE Function: z/OS . 496
TSO Function: z/OS . 497

453

WTO Function: z/OS . 498

Functions and CALL Routines under
z/OS

Portable functions are documented in SAS Functions and CALL Routines: Reference.
This chapter includes detailed information about the SAS functions and CALL
routines that are specific to z/OS or that have aspects specific to z/OS.

Dictionary

ANYPUNCT Function: z/OS
Searches a string for a punctuation character and returns the first position at which that character is
found.

Category: Character

z/OS specifics: fileref

See: “ANYPUNCT Function” in SAS Functions and CALL Routines: Reference

Syntax

ANYPUNCT(string <,start>)

Required Argument
string

is the character constant, variable, or expression to search.

Optional Argument
start

is an optional integer that specifies the position at which the search should start
and the direction in which to search.

454 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0j4awi5afnxpan189v83p0qruq5.htm&locale=en

Details

The results of the ANYPUNCT function depend directly on the translation table
that is in effect (see “TRANTAB= System Option” in the SAS National Language
Support (NLS): Reference Guide) and indirectly on the ENCODING and LOCALE
system options.

The ANYPUNCT function searches a string for the first occurrence of a punctuation
character. If such a character is found, ANYPUNCT returns the position in the string
of that character. If no such character is found, ANYPUNCT returns a value of 0.

If you use only one argument, ANYPUNCT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search
is determined in the following way:

n If the value of start is positive, the search proceeds to the right.

n If the value of start is negative, the search proceeds to the left.

n If the value of start is less than the negative length of the string, the search
begins at the end of the string.

ANYPUNCT returns a value of zero when

n the character that you are searching for is not found

n the value of start is greater than the length of the string

n the value of start = 0. Or, if the value is missing, x=anypunct(x,.);

Note: To use a current definition of the punctuation characters, specify an
appropriate LOCALE option value (for example, LOCALE=ENGLISH).

Comparisons

The ANYPUNCT function searches a character expression for a punctuation
character. The NOTPUNCT function searches a character expression for a character
that is not a punctuation character.

Example

The following example uses the ANYPUNCT function to search a string for
punctuation characters.

data _null_;
 string='Next = _n_ + 12E3;';
 j=0;
 do until(j=0);
 j=anypunct(string,j+1);
 if j=0 then put +3 "That's all";
 else do;

ANYPUNCT Function: z/OS 455

 c=substr(string,j,1);
 put +3 j= c=;
 end;
 end;
run;

The following lines are written to the SAS log:

 j=6 c==
 j=8 c=_
 j=10 c=_
 j=12 c=+
 j=18 c=;
 That's all

See Also

“NOTPUNCT Function” in SAS Functions and CALL Routines: Reference

CALL MODULE Routine: z/OS
Calls an external routine without any return code.

Category: External Routines

Restriction: When a SAS server is in a locked-down state, the CALL Module routine does not
execute. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: ALL

See: “CALL MODULE Routine” in SAS Functions and CALL Routines: Reference

Syntax

CALL MODULE(<cntl> ,module,arg-1,arg-2...,arg-n);

CALL MODULEI (<cntl> ,modulearg-1,arg-2...,arg-n);

Required Arguments
module

specifies the name of the load module to load.

You can specify module as a SAS character expression instead of as a constant.
Usually, you pass it as a constant.

456 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1tck548yjidgln1cwe736i5dr1v.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en

arg-1, arg-2, ...arg-n
specifies the arguments to pass to the requested routine. Use the proper
attributes for the arguments (that is, numeric arguments for numeric attributes
and character arguments for character attributes).

CAUTION
Be sure to use the correct arguments and attributes. If you use incorrect
arguments or attributes for a function, you might cause SAS to crash or produce
unexpected results.

Optional Argument
cntl

is an optional control string whose first character must be an asterisk (*),
followed by any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULE function and to the requested library routine before and after
the library routine is called. You can use this option to help diagnose
problems that are caused by incorrect arguments or attribute tables. If
you specify the I option, the E option is implied.

E prints detailed error messages. Without the E option (or the I option,
which supersedes it), the only error message that the MODULE
function generates is “Invalid argument to function.” This message is
usually not enough information to determine the cause of the error.

A do not use table attributes, even if SASCBTBL is available.

Z do not invoke IGZERRE. For more information, see the IBM
documentation for the z/OS operating system.

B copy arguments below the line. For more information, see the IBM
documentation for the z/OS operating system.

T print attribute information in the log.

Sx uses x as a separator character to separate field definitions. You can
then specify x in the argument list as its own character argument to
serve as a delimiter for a list of arguments that you want to group
together as a single structure. Use this option only if you do not supply
an entry in the SASCBTBL attribute table. If you do supply an entry for
this module in the SASCBTBL attribute table, you should use the
FDSTART option in the ARG statement in the table to separate
structures.

H provides brief help information about the syntax of the MODULE
routines, the attribute file format, and the suggested SAS formats and
informats.

For example, the control string '*IS/' specifies that parameter lists be printed
and that the string '/' is to be treated as a separator character in the argument
list.

CALL MODULE Routine: z/OS 457

Details

The following functions permit vector and matrix arguments. You can use them
only within the IML procedure:

n CALL MODULEI

n MODULEIN

n MODULEIC

For more information, see the SAS/IML Studio: User's Guide.

The MODULE functions execute a routine module that resides in an external
(outside SAS) library with the specified arguments arg-1 through arg-n. In batch, the
external library should be concatenated in the STEPLIB. In TSO, it should be
specified on the LOAD option of the CLIST or REXX exec.

The MODULE call routine does not return a value, and the MODULEN and
MODULEC functions return a numeric value num or a character value char,
respectively. Which routine you use depends on the expected return value from the
function that you want to execute.

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULE
functions that permit vector and matrix arguments. Their return values are still
scalar. You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.

The MODULE function builds a parameter list by using the information in arg-1 to
arg-n and by using a routine description and argument attribute table that you
define in a separate file. Before you invoke the MODULE routine, you must define
the fileref of SASCBTBL to point to this external file. You can name the file
whatever you want when you create it.

In this way, you can use SAS variables and formats as arguments to the MODULE
function. This specification ensures that these arguments are properly converted
before being passed to the library routine.

See Also

Functions:

n “MODULEC Function” in SAS Functions and CALL Routines: Reference

n “MODULEN Function” in SAS Functions and CALL Routines: Reference

n “MODULE Function: z/OS” on page 486

n “PEEKLONG Function: z/OS” on page 492

458 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en

CALL SLEEP Routine: z/OS
Suspends the execution of a program that invokes this call routine for a specified period of time.

Category: Special

z/OS specifics: Host call

See: “CALL SLEEP Routine” in SAS Functions and CALL Routines: Reference

Syntax

CALL SLEEP(time);

Required Argument
time

specifies the amount of time, in milliseconds (1/1,000 of a second), that you
want to suspend execution of a DATA step and the SAS task that is running that
DATA step.

Details

CALL SLEEP puts the DATA step in which it is invoked into a nonactive wait state,
using no CPU time and performing no input or output. If you are running multiple
SAS tasks, each task can execute CALL SLEEP independently without affecting the
other tasks.

Note:

n In batch mode, extended sleep periods can trigger automatic host session
termination based on time-out values set at your site. Contact your host system
administrator as necessary to determine the time-out values used at your site.

n If you are running the asynchronous RSUBMIT statement in a SAS/CONNECT
session, specifying CALL SLEEP for a DATA step affects only that DATA step. It
does not affect any other SAS tasks that you are running on the remote system.

CALL SYSTEM Routine: z/OS
Executes a TSO command, emulated USS command, or MVS program.

CALL SYSTEM Routine: z/OS 459

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n12ppys43orawkn1q0oxep4cmdk6.htm&locale=en

Category: Special

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: The command must be a TSO command, emulated USS command, or MVS program.

See: “CALL SYSTEM Routine” in SAS Functions and CALL Routines: Reference

Syntax

CALL SYSTEM(command);

Required Argument
command

can be a system command enclosed in quotation marks, an expression whose
value is a system command, or the name of a character variable whose value is a
system command. Under z/OS, "system command" includes TSO commands,
CLISTs, and REXX execs.

Details

The CALL SYSTEM routine provides the same command interface and has the same
syntax as the X statement. The CALL SYSTEM routine can be executed during a
DATA step, but the X statement cannot. For information about the command
interface, see “X Statement: z/OS” on page 681.

Under z/OS, CALL TSO is an alias for the CALL SYSTEM routine.

Example

The following DATA step executes one of three CLISTs depending on the value of a
variable named ACTION that is stored in an external file that is named
USERID.TRANS.PROG:

data _null_;
infile 'userid.trans.prog';
/* action is assumed to have a value of */
/* 1, 2, or 3 */
/* create and initialize a 3-element array */
input action;
array programs{3} $ 11 c1-c3
("exec clist1" "exec clist2" "exec clist3");
call system(programs{action});
run;

In this example, the array elements are initialized with character expressions that
consist of TSO commands for executing the three CLISTs. In the CALL SYSTEM

460 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p089n536m1spv9n1cpuo8u34hw5m.htm&locale=en

statement, an expression is used to pass one of these character expressions to the
CALL SYSTEM routine. For example, if ACTION equals 2, then PROGRAMS{2}, which
contains the EXEC CLIST2 command, is passed to the CALL SYSTEM routine.

See Also

Statements

n “TSO Statement: z/OS” on page 679

n “X Statement: z/OS” on page 681

Functions

n “SYSTEM Function: z/OS” on page 494

n “TSO Function: z/OS” on page 497

Commands

n “TSO Command: z/OS” on page 285

n “X Command: z/OS” on page 288

Macro Statements

n “Macro Statements” on page 514

CALL TSO Routine: z/OS
Executes a TSO command, emulated USS command, or MVS program.

Category: Special

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: All

Syntax

CALL TSO(command);

Required Argument
command

can be a system command enclosed in quotation marks, an expression whose
value is a system command, or the name of a character variable whose value is a

CALL TSO Routine: z/OS 461

system command. Under z/OS, “system command” includes TSO commands,
CLISTs, and REXX execs.

Details

The TSO and SYSTEM CALL routines are identical, with one exception. Under an
operating environment other than z/OS, the TSO CALL routine has no effect,
whereas the SYSTEM CALL routine is always processed in any operating
environment. For information about the command interface, see “X Statement:
z/OS” on page 681.

See Also

CALL Routine

n “CALL SYSTEM Routine: z/OS” on page 459

CALL WTO Routine: z/OS
Sends a message to the system console.

z/OS specifics: All

Syntax

CALL WTO (“text-string”);

Required Argument
text-string

is the message that you want to send. It should be no longer than 125
characters.

Details

WTO is a DATA step call routine that takes a character-string argument and sends
it to a system console. The destination is controlled by the WTOUSERROUT=,
WTOUSERDESC=, and WTOUSERMCSF= SAS system options. If
WTOUSERROUT=0 (the default), then no message is sent.

462 Chapter 26 / Functions and CALL Routines under z/OS

See Also

Functions

n “WTO Function: z/OS” on page 498

System Options

n “WTOUSERDESC= System Option: z/OS” on page 888

n “WTOUSERMCSF= System Option: z/OS” on page 889

n “WTOUSERROUT= System Option: z/OS” on page 891

DINFO Function: z/OS
Returns information about a directory.

Category: External Files

z/OS specifics: info-item

See: “DINFO Function” in SAS Functions and CALL Routines: Reference

Syntax

DINFO(directory-id, info-item)

Required Arguments
directory-id

specifies the identifier that was assigned when the directory was opened,
generally by the DOPEN function.

info-item
specifies the information item to be retrieved. DINFO returns a blank if the
value of the info-item argument is invalid. The information available varies
according to the operating environment. The info-item argument is a character
value.

Details

Directories that are opened with the DOPEN function are identified by a directory-
id and have a number of associated information items. Use DOPTNAME to
determine the names of the available system-dependent directory information
items. Use DOPTNUM to determine the number of directory information items
available.

DINFO Function: z/OS 463

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bhwd0nlni4own1ia79mj0n29hv.htm&locale=en

The DINFO, DOPTNAME, and DOPTNUM functions support the following directory
information items for UNIX File System (UFS) Directories under z/OS:

Table 26.1 Directory Information Items for UFS Directories

Item Item Identifier Definition

1 Filename Directory name

2 Access Permission Read, Write, and Execute permissions for owner,
group, and other

3 Number of Links Number of links in the directory

4 Owner Name User ID of the owner

5 Group Name Name of the owner's access group

6 Filesize File size

7 Last Modified Date contents last modified

The DINFO, DOPTNAME, and DOPTNUM functions support the following directory
information items for PDSs under z/OS:

Table 26.2 Directory Information Items for PDSs

Item Item Identifier Definition

1 Dsname PDS name

2 Unit Disk type

3 Volume Volume on which data set resides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

7 Recfm Record format

The DINFO, DOPTNAME, and DOPTNUM functions support the following directory
information items for PDSEs under z/OS:

464 Chapter 26 / Functions and CALL Routines under z/OS

Table 26.3 Directory Information Items for PDSEs

Item Item Identifier Definition

1 Dsname PDSE name

2 Dsntype Directory type

3 Unit Disk type

4 Volume Volume on which data set resides

5 Disp Disposition

6 Blksize Block size

7 Lrecl Record length

8 Recfm Record format

Examples

Example 1: UNIX File System (UFS) Directory Information
This example generates output that includes information item names and values for
a UFS directory:

data _null_;
 length opt $100 optval $100;
 /* Allocate directory */
 rc=FILENAME('mydir', '/u/userid');
 /* Open directory */
 dirid=DOPEN('mydir');
 /* Get number of information items */
 infocnt=DOPTNUM(dirid);
 /* Retrieve information items and */
 /* print to log */
 put @1 'Information for a UNIX
 File System Directory:';
 do j=1 to infocnt;
 opt=DOPTNAME(dirid,j);
 optval=DINFO(dirid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the directory */
 rc=DCLOSE(dirid);
 /* Deallocate the directory */
 rc=FILENAME('mydir');
run;

DINFO Function: z/OS 465

Output 26.1 UFS Directory Information

Information for a UNIX System
 Services Directory:
Directory Name /u/userid
Access Permission drwxr-xr-x
Number of Links 17
Owner Name MYUSER
Group Name GRP
Last Modified Apr 26 07:18
Created Jan 9 2007
NOTE: The DATA statement used 0.09
 CPU seconds and 5203K.

Example 2: PDS Directory Information
This example generates information item names and values for a PDS:

data _null_;
 length opt $100 optval $100;
 /* Allocate directory */
 rc=FILENAME('mydir', 'userid.mail.text');
 /* Open directory */
 dirid=DOPEN('mydir');
 /* Get number of information items */
 infocnt=DOPTNUM(dirid);
 /* Retrieve information items and */
 /* print to log */
 put @1 'Information for a PDS:';
 do j=1 to infocnt;
 opt=DOPTNAME(dirid,j);
 optval=DINFO(dirid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the directory */
 rc=DCLOSE(dirid);
 /* Deallocate the directory */
 rc=FILENAME('mydir');
run;

Output 26.2 PDS Directory Information

Information for a PDS:
Dsname USERID.MAIL.TEXT
Unit 3380
Volume ABC005
Disp SHR
Blksize 6160
Lrecl 80
Recfm FB
Creation 2005/10/03
NOTE: The DATA statement used 0.07
 CPU seconds and 5211K.

Example 3: PDSE Directory Information
This example generates directory information for a PDSE:

466 Chapter 26 / Functions and CALL Routines under z/OS

data _null_;
 length opt $100 optval $100;
 /* Allocate directory */
 rc=FILENAME('mydir', 'userid.pdse.src');
 /* Open directory */
 dirid=DOPEN('mydir');
 /* Get number of information items */
 infocnt=DOPTNUM(dirid);
 /* Retrieve information items and */
 /* print to log */
 put @1 'Information for a PDSE:';
 do j=1 to infocnt;
 opt=DOPTNAME(dirid,j);
 optval=DINFO(dirid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the directory */
 rc=DCLOSE(dirid);
 /* Deallocate the directory */
 rc=FILENAME('mydir');
run;

Output 26.3 PDSE Directory Information

Information for a PDSE:
Dsname USERID.PDSE.SRC
Dsntype PDSE
Unit 3380
Volume ABC002
Disp SHR
Blksize 260
Lrecl 254
Recfm VB
Creation 2005/10/03
NOTE: The DATA statement used 0.08
 CPU seconds and 5203K.

See Also

n “DOPEN Function: z/OS” on page 467

n “DOPTNAME Function: z/OS” on page 468

n “DOPTNUM Function: z/OS” on page 469

DOPEN Function: z/OS
Opens a directory and returns a directory identifier value.

Category: External Files

z/OS specifics: File systems

DOPEN Function: z/OS 467

See: “DOPEN Function” in SAS Functions and CALL Routines: Reference

Syntax

DOPEN(fileref)

Required Argument
fileref

specifies the fileref assigned to the directory. In a DATA step, fileref can be a
character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the fileref. In a macro, fileref can be any
expression.

Details

DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions.

DOPEN applies to directory structures that are available in partitioned data sets
(PDS, PDSE) and in UNIX System Services. For code examples, see “DINFO
Function: z/OS” on page 463.

See Also

n “DOPTNAME Function: z/OS” on page 468

n “DOPTNUM Function: z/OS” on page 469

DOPTNAME Function: z/OS
Returns the name of a directory information item.

Category: External Files

z/OS specifics: nval

See: “DOPTNAME Function” in SAS Functions and CALL Routines: Reference

Syntax

DOPTNAME(directory-id,nval)

468 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0hpa8p9kacbran1ndqiw3krwohq.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0jdt2eo1d9pyxn1hxjrkwhi9cdp.htm&locale=en

Required Arguments
directory-id

specifies the identifier that was assigned when the directory was opened,
generally by the DOPEN function.

nval
specifies the number of a directory information item. For definitions of
information item numbers and code examples, see “DINFO Function: z/OS” on
page 463.

Details

The DOPTNAME function returns the name of the specified information item
number for a file that was previously opened with the DOPEN function.

For information about item numbers and definitions and code examples, see
“DINFO Function: z/OS” on page 463.

See Also

n “DOPEN Function: z/OS” on page 467

n “DOPTNUM Function: z/OS” on page 469

DOPTNUM Function: z/OS
Returns the number of information items that are available for a directory.

Category: External Files

z/OS specifics: Return value

See: “DOPTNUM Function” in SAS Functions and CALL Routines: Reference

Syntax

DOPTNUM(directory-id)

Required Argument
directory-id

specifies the identifier that was assigned when the directory was opened,
generally by the DOPEN function.

DOPTNUM Function: z/OS 469

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0rkasl7uka5orn1qoxxail1iehw.htm&locale=en

Details

Currently, the number of information items that are available for a PDS directory is
7, for a PDSE directory is 8, and for a UNIX System Services directory is 7.

For code examples, see “DINFO Function: z/OS” on page 463.

See Also

n “DOPEN Function: z/OS” on page 467

n “DOPTNAME Function: z/OS” on page 468

DSNCATLGD Function: z/OS
Verifies the existence of an external file in the z/OS system catalog by its physical name.

Category: External Files

Restriction: If the SAS session in which you are specifying the FILEEXIST function is in a
locked-down state, and the pathname specified in the function has not been added
to the lockdown path list, then the function will fail and a file access error related
to the locked-down data will not be generated in the SAS log unless you specify the
SYSMSG function.

z/OS specifics: All

Syntax

DSNCATLGD(filename)

Required Argument
filename

specifies a physical filename of an external file. In a DATA step, filename can be
a character expression, a character string in quotation marks, or a DATA step
variable. In a macro, filename can be any expression.

Only native z/OS data set names can be specified; filename cannot specify a
UFS path.

470 Chapter 26 / Functions and CALL Routines under z/OS

Details

DSNCATLGD returns a value of 1 if the filename is found in the z/OS system
catalog, and a value of 0 if the filename is not found in the catalog.

DSNCATLGD is similar to the FILEEXIST function, but there are some differences
that make DSNCATLGD the preferred function to use in some circumstances.
DSNCATLGD does not cause dynamic allocation to occur, which is useful for tape
data sets because it does not require that a tape be mounted.

When a batch job is creating a new z/OS data set, DSNCATLGD does not return a
value of 1 until the job step that creates the data set terminates. FILEEXIST uses
dynamic allocation to verify that the data set exists. It returns a value of 1 anytime
after the start of the batch job that is creating the data set.

Note: z/OS enters a dynamically allocated data set into the system catalog
immediately at the time of the dynamic allocation request. All allocations made by
TSO users are treated in this manner.

See Also

“FILEEXIST Function: z/OS” on page 474

FCLOSE Function: z/OS
Closes an external file, a directory, or a directory member.

Category: External Files

See: “FCLOSE Function” in SAS Functions and CALL Routines: Reference

Syntax

FCLOSE(file-id)

Required Argument
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

FCLOSE Function: z/OS 471

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0ihcrv5rt8mw4n16kqi1p9caq6i.htm&locale=en

Details

Files opened with the FOPEN function are not closed automatically after
processing. All files that are opened with FOPEN should be closed with FCLOSE.
For code examples, see “FINFO Function: z/OS” on page 477.

See Also

“FOPEN Function: z/OS” on page 481

FDELETE Function: z/OS
Deletes an external file or an empty directory.

Category: External Files

z/OS specifics: fileref

See: “FDELETE Function” in SAS Functions and CALL Routines: Reference

Syntax

FDELETE (fileref)

Required Argument
fileref

identifies an external file. If fileref is a literal fileref name, it must be in quotation
marks. If fileref is the name of a character variable whose value is a fileref name,
it must not be in quotation marks. If fileref is used in the syntax for a macro, it
must not be in quotation marks. The fileref must have been previously
associated with a sequential file, a PDS, a PDSE, or a UNIX System Services file
using a FILENAME statement or FILENAME function. The fileref cannot
represent a concatenation of multiple files.

Details

FDELETE returns 0 if the operation was successful, or a nonzero number if it was
not successful. If the fileref that is specified with FDELETE is associated with a
UNIX System Services directory, PDS, or PDSE, then that directory, PDS, or PDSE
must be empty. In order to delete the directory or file, the user that calls FDELETE
must also have the appropriate privileges.

472 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0h945u5r0cv6yn1u6qs35hiqt9t.htm&locale=en

Example: Specifying Filerefs to Delete

Example of a literal fileref:

filename delfile 'myfile.test';
 data _null_;
 rc=fdelete('delfile');
 run;

Example of a variable whose value is a fileref name:

data _null_;
delref = 'delfile';
rc = fdelete(delref);
run;

FEXIST Function: z/OS
Verifies the existence of an external file associated with a fileref.

Category: External Files

z/OS specifics: fileref

See: “FEXIST Function” in SAS Functions and CALL Routines: Reference

Syntax

FEXIST(fileref)

Required Argument
fileref

identifies an external file. If fileref is a literal fileref name, it must be in quotation
marks. If fileref is the name of a character variable whose value is a fileref name,
it must not be in quotation marks. Under z/OS, it can be a fileref or any valid
ddname that has been previously associated with an external file with either a
TSO ALLOCATE command or a JCL DD statement. In a DATA step, fileref can be
a character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the fileref. In a macro, fileref can be any
expression. If fileref is used in the syntax for a macro, it must not be in quotation
marks. For information about the values returned by this function, see “FEXIST
Function” in SAS Functions and CALL Routines: Reference in the SAS Functions
and CALL Routines: Reference.

FEXIST Function: z/OS 473

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0gh473azqo3han1edlhbyt04gxa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0gh473azqo3han1edlhbyt04gxa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0gh473azqo3han1edlhbyt04gxa.htm&locale=en

Details

FEXIST returns 1 if the external file that is associated with fileref exists, and 0 if the
file does not exist.

FILEEXIST Function: z/OS
Verifies the existence of an external file by its physical name.

Category: External Files

Restriction: If the SAS session in which you are specifying the FILEEXIST function is in a
locked-down state, and the pathname specified in the function has not been added
to the lockdown path list, then the function will fail and a file access error related
to the locked-down data will not be generated in the SAS log unless you specify the
SYSMSG function.

z/OS specifics: filename

See: “FILEEXIST Function” in SAS Functions and CALL Routines: Reference

Syntax

FILEEXIST(filename)

Required Argument
filename

specifies a physical filename of an external file. In a DATA step, filename can be
a character expression, a string in quotation marks, or a DATA step variable. In a
macro, filename can be any expression.

The filename can be a native z/OS data set, or it can be a UFS file or directory.

Details

FILEEXIST returns 1 if the external file exists, and 0 if the file does not exist.
FILEEXIST can also verify the existence of a directory in USS.

FILENAME Function: z/OS
Assigns or deassigns a fileref for an external file, a directory, or an output device.

Category: External Files

474 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n06xm8hwk0t0axn10gj16lfiri43.htm&locale=en

Restriction: If the SAS session in which you are specifying the FILEEXIST function is in a
locked-down state, and the pathname specified in the function has not been added
to the lockdown path list, then the function will fail and a file access error related
to the locked-down data will not be generated in the SAS log unless you specify the
SYSMSG function.

z/OS specifics: Host options, devices

See: “FILENAME Function” in SAS Functions and CALL Routines: Reference

Syntax

FILENAME(fileref,filename<,device <,host-options> >)

Required Arguments
fileref

in a DATA step, specifies the fileref to assign to an external file. In a DATA step,
fileref can be a character expression, a string enclosed in quotation marks, or a
DATA step variable whose value contains the fileref. If fileref is a literal fileref
name, it must be in quotation marks. If fileref is the name of a character variable
whose value is a fileref name, it must not be in quotation marks.

In a macro (for example, in the %SYSFUNC function), fileref is the name of a
macro variable (without an ampersand) whose value contains the fileref to
assign to the external file. In a macro, fileref can be any expression.

filename
specifies the external file. Specifying a blank filename (' ') deassigns the fileref
that was previously assigned.

Optional Arguments
device

specifies the type of device if the fileref points to an output device rather than
to a physical file:

DISK
specifies a disk.

DUMMY
specifies that output to the file is discarded.

PIPE
specifies an unnamed pipe.

PLOTTER
specifies an unbuffered graphics output device.

PRINTER
specifies a printer or printer spool file.

TERMINAL
specifies the user's terminal.

FILENAME Function: z/OS 475

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en

TAPE
specifies a tape drive.

TEMP
creates a temporary file that exists only as long as the filename is assigned.
The temporary file can be accessed only through the logical name and is
available only while the logical name exists. If a physical pathname is
specified, an error is returned. Files manipulated by the TEMP device can
have the same attributes and behave identically to DISK files.

host-options
are host-specific options that can be specified in the FILENAME statement.
These options can be categorized into several groups. For details, see the
following sections:

n “FILENAME Statement: z/OS” on page 616

n “DCB Attribute Options” on page 628

n “SYSOUT Data Set Options for the FILENAME Statement” on page 634

n “Subsystem Options for the FILENAME Statement” on page 636

n “Options That Specify SMS Keywords” on page 632

n “Host-Specific Options for UNIX System Services Files” on page 613

You can specify host options in any order following the file specification and the
optional device specification. When specifying more than one option, use a
blank space to separate each option. Values for options can be specified with or
without quotation marks. However, if a value contains one of the supported
national characters ($, #, or @), the quotation marks are required.

Details

FILENAME returns 0 if the operation was successful, and a nonzero number if it
was not successful.

See Also

“FILENAME Statement: z/OS” on page 616

FILEREF Function: z/OS
Verifies that a fileref has been assigned for the current SAS session.

Category: External Files

z/OS specifics: fileref

See: “FILEREF Function” in SAS Functions and CALL Routines: Reference

476 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0b6qacxrmnzc4n145t9jps0yzdc.htm&locale=en

Syntax

FILEREF(fileref)

Required Argument
fileref

specifies the fileref to be validated. Under z/OS, fileref can be a ddname that
was assigned using the TSO ALLOCATE command or JCL DD statement. In a
DATA step, fileref can be a character expression, a string enclosed in quotation
marks, or a DATA step variable whose value contains the fileref. In a macro,
fileref can be any expression. If fileref is a literal fileref name, it must be in
quotation marks. If fileref is the name of a character variable whose value is a
fileref name, it must not be in quotation marks. If fileref is used in the syntax for
a macro, it must not be in quotation marks.

Details

A negative return code indicates that the fileref exists, but the physical files
associated with the fileref does not exist. A positive value indicates that the fileref
is not assigned. A value of zero indicates that the fileref and the external file both
exist.

FINFO Function: z/OS
Returns the value of a file information item for an external file.

Category: External Files

z/OS specifics: info-item

See: “FINFO Function” in SAS Functions and CALL Routines: Reference

Syntax

FINFO(file-id,info-item)

Required Arguments
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

info-item
specifies the number of the information item that is to be retrieved. The info-
item argument is a character value.

FINFO Function: z/OS 477

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0cpuq4ew0dxipn1vtravlludjm7.htm&locale=en

Details

FINFO returns the value of a system-dependent information item for an external
file that was previously opened and assigned a file-id by the FOPEN function.
FINFO returns a blank if the value given for info-item is invalid.

The FINFO, FOPTNAME, and FOPTNUM functions support the following
information items for UNIX System Services (UFS):

Table 26.4 Information Items for UFS Files

Item Item Identifier Definition

1 Filename Filename

2 Access Permission Read, Write, and Execute permissions for
owner, group, and other

3 Number of Links Number of links in the file

4 Owner Name User ID of the owner

5 Group Name Name of the owner's access group

6 File Size File size

7 Last Modified Date file last modified

8 Created Date file created

The FINFO, FOPTNAME, and FOPTNUM functions support the following
information items for sequential files and members of PDSs and PDSEs

Table 26.5 Information Items for Sequential Files and Members of PDSs and PDSEs

Item Item Identifier Definition

1 Dsname Filename

2 Unit Device type

3 Volume Volume on which a data set resides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

478 Chapter 26 / Functions and CALL Routines under z/OS

Item Item Identifier Definition

7 Recfm Record format

8 Creation Date file created

Examples

Example 1: Sequential File Information
The following example generates output that shows the information items
available for a sequential data set:

data _null_;
 length opt $100 optval $100;
 /* Allocate file */
 rc=FILENAME('myfile',
 'userid.test.example');
 /* Open file */
 fid=FOPEN('myfile');
 /* Get number of information
 items */
 infocnt=FOPTNUM(fid);
 /* Retrieve information items
 and print to log */
 put @1 'Information for a Sequential File:';
 do j=1 to infocnt;
 opt=FOPTNAME(fid,j);
 optval=FINFO(fid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the file */
 rc=FCLOSE(fid);
 /* Deallocate the file */
 rc=FILENAME('myfile');
run;

Output 26.4 Sequential File Information

Information for a Sequential File:
Dsname USERID.TEST.EXAMPLE
Unit 3390
Volume ABC010
Disp SHR
Blksize 23392
Lrecl 136
Recfm FB
Creation 2007/11/20
NOTE: The DATA statement used 0.10
 CPU seconds and 5194K.

FINFO Function: z/OS 479

Example 2: PDS, PDSE Member Information
This example shows the information items available for PDS and PDSE members:

data _null_;
 length opt $100 optval $100;
 /* Allocate file */
 rc=FILENAME('myfile',
 'userid.test.data(oats)');
 /* Open file */
 fid=FOPEN('myfile');
 /* Get number of information
 items */
 infocnt=FOPTNUM(fid);
 /* Retrieve information items
 and print to log */
 put @1 'Information for a PDS Member:';
 do j=1 to infocnt;
 opt=FOPTNAME(fid,j);
 optval=FINFO(fid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the file */
 rc=FCLOSE(fid);
 /* Deallocate the file */
 rc=FILENAME('myfile');
run;

Output 26.5 PDS, PDSE Member Information

Information for a PDS Member:
Dsname USERID.TEST.DATA(OATS)
Unit 3380
Volume ABC006
Disp SHR
Blksize 1000
Lrecl 100
Recfm FB
Creation 2007/11/05
NOTE: The DATA statement used 0.05
 CPU seconds and 5194K.

Example 3: UNIX System Services File Information
This example shows the information items available for UNIX System Services
files:

data _null_;
 length opt $100 optval $100;
 /* Allocate file */
 rc=FILENAME('myfile',
 '/u/userid/one');
 /* Open file */
 fid=FOPEN('myfile');
 /* Get number of information
 items */
 infocnt=FOPTNUM(fid);

480 Chapter 26 / Functions and CALL Routines under z/OS

 /* Retrieve information items
 and print to log */
 put @1 'Information for a UNIX System Services File:';
 do j=1 to infocnt;
 opt=FOPTNAME(fid,j);
 optval=FINFO(fid,upcase(opt));
 put @1 opt @20 optval;
 end;
 /* Close the file */
 rc=FCLOSE(fid);
 /* Deallocate the file */
 rc=FILENAME('myfile');
run;

Output 26.6 UNIX System Services File Information

Information for a UNIX
 System Services File:
File Name /u/userid/one
Access Permission -rw-rw-rw-
Number of Links 1
Owner Name USERID
Group Name GRP
File Size 4
Last Modified Apr 13 13:57
Created Mar 16 09:55
NOTE: The DATA statement used
 0.07 CPU seconds and 5227K.

See Also

n “FCLOSE Function: z/OS” on page 471

n “FOPEN Function: z/OS” on page 481

n “FOPTNAME Function: z/OS” on page 483

n “FOPTNUM Function: z/OS” on page 484

FOPEN Function: z/OS
Opens an external file and returns a file identifier value.

Category: External Files

z/OS specifics: Files opened with FOPEN must be closed with FCLOSE

See: “FOPEN Function” in SAS Functions and CALL Routines: Reference

FOPEN Function: z/OS 481

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en

Syntax

FOPEN(fileref<,open-mode <,record-length <,record-format> > >)

Required Argument
fileref

specifies the fileref assigned to the external file.

Optional Arguments
open-mode

specifies the type of access to the file:

A
APPEND mode allows writing new records after the current end of the file.

I
INPUT mode allows reading only (default).

O
OUTPUT mode defaults to the OPEN mode that is specified in the host
option in the FILENAME statement or function. If no host option is specified,
it allows writing new records at the beginning of the file.

S
Sequential input mode is used for pipes and other sequential devices such as
hardware ports. Sequential input mode should be used for files that extend
to multiple volumes.

U
UPDATE mode allows both reading and writing.

record-length
specifies the logical record length of the file. To use the existing record length
for the file, specify a length of 0, or do not provide a value here.

record-format
specifies the record format of the file. To use the existing record format, do not
specify a value here. Valid values are as follows:

B
data should be interpreted as binary data.

D
use default record format.

E
use editable record format.

F
file contains fixed length records.

P
file contains printer carriage control in host-dependent record format. For
data sets with FBA or VBA record format, specify 'P' for the record-format
argument.

482 Chapter 26 / Functions and CALL Routines under z/OS

V
file contains variable-length records.

Details

FOPEN returns a 0 if the file could not be opened. Under z/OS, files that have been
opened with FOPEN must be closed with FCLOSE at the end of a DATA step; files
are not closed automatically after processing.

FOPEN can be used to open ddnames with instream data that are not already
opened if you specify 'S' for the open-mode attribute.

The default Open mode for the FOPEN function is I, which means input but also
implies random access. The I Open mode is acceptable for a single-volume file
because the NOTE and POINT operations can be performed internally. However,
the operating system does not support NOTE and POINT across multiple volumes
in a file. If you use the I open-mode attribute to open an external file that extends
to multiple volumes, SAS flags it as an error at OPEN time. The best way to get
around this problem is to specify S as the open-mode attribute to FOPEN. The S
open-mode attribute requests strictly sequential processing, and no conflict occurs.

For code examples, see “FINFO Function: z/OS” on page 477.

See Also

n “FCLOSE Function: z/OS” on page 471

n “FOPTNAME Function: z/OS” on page 483

n “FOPTNUM Function: z/OS” on page 484

FOPTNAME Function: z/OS
Returns the name of an information item for an external file.

Category: External Files

z/OS specifics: info-item

See: “FOPTNAME Function” in SAS Functions and CALL Routines: Reference

Syntax

FOPTNAME(file-id,nval)

FOPTNAME Function: z/OS 483

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1ocdzkn9uhsa7n1qv3wwp4d3dot.htm&locale=en

Required Arguments
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

nval
specifies the name of the file information item to be retrieved.

Details

FOPTNAME returns a missing or null value if you specify an invalid argument.

For definitions of information item numbers and code examples, see “FINFO
Function: z/OS” on page 477.

See Also

n “FCLOSE Function: z/OS” on page 471

n “FOPEN Function: z/OS” on page 481

n “FOPTNUM Function: z/OS” on page 484

FOPTNUM Function: z/OS
Returns the number of information items that are available for an external file.

Category: External Files

z/OS specifics: Return value

See: “FOPTNUM Function” in SAS Functions and CALL Routines: Reference

Syntax

FOPTNUM(file-id)

Required Argument
file-id

specifies the identifier that was assigned when the file was opened (generally
by the FOPEN function).

484 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0obx7o9ceaq31n1xwpddcub8d7f.htm&locale=en

Details

Currently, the number of information items available for a sequential file, a PDS
member, and a UNIX System Services file is 7.

For code examples, see “FINFO Function: z/OS” on page 477.

See Also

n “FCLOSE Function: z/OS” on page 471

n “FOPEN Function: z/OS” on page 481

n “FOPTNAME Function: z/OS” on page 483

KTRANSLATE Function: z/OS
Replaces specific characters in a character expression.

Category: DBCS

z/OS specifics: to or from pairs

See: “KTRANSLATE Function” in SAS National Language Support (NLS): Reference Guide

Syntax

KTRANSLATE(source, to-1, from-1<to-2, from-2 …>)

Details

In the z/OS environment, KTRANSLATE requires a from argument for each to
argument. Also, there is no practical limit to the number of to or from pairs that you
can specify.

KTRANSLATE differs from TRANSLATE in that it supports single-byte character
set replacement by double-byte characters, or double-byte character set
replacement for single-byte characters.

See Also

“TRANSLATE Function: z/OS” on page 496

KTRANSLATE Function: z/OS 485

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p10atr6djv8t88n16x5xgh2l30t5.htm&locale=en

MODULE Function: z/OS
Calls an external routine with a return code.

Category: External Routines

Restriction: When a SAS server is in a locked-down state, the CALL Module routine does not
execute. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: ALL

See: “CALL MODULE Routine” in SAS Functions and CALL Routines: Reference

Syntax

num=MODULEN(<cntl> ,module,arg-1,arg-2…,arg-n);

char=MODULEC(<cntl> ,module,arg-1…,arg-2,arg-n);

num=MODULEIN(<cntl> ,module,arg-1,arg-2...,arg-n)

char=MODULEIC(<cntl> ,module,arg-1,arg-2...,arg-n);

Required Arguments
module

specifies the name of the load module to load.

You can specify module as a SAS character expression instead of as a constant.
Usually, you pass it as a constant.

arg-1, arg-2, ...arg-n
specifies the arguments to pass to the requested routine. Use the proper
attributes for the arguments (that is, numeric arguments for numeric attributes
and character arguments for character attributes).

CAUTION
Be sure to use the correct arguments and attributes. If you use incorrect
arguments or attributes for a function, you might cause SAS to crash or produce
unexpected results.

Optional Argument
cntl

is an optional control string whose first character must be an asterisk (*),
followed by any combination of the following characters:

486 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en

I prints the hexadecimal representations of all arguments to the
MODULE function and to the requested library routine before and after
the library routine is called. You can use this option to help diagnose
problems that are caused by incorrect arguments or attribute tables. If
you specify the I option, the E option is implied.

E prints detailed error messages. Without the E option (or the I option,
which supersedes it), the only error message that the MODULE
function generates is “Invalid argument to function.” This message is
usually not enough information to determine the cause of the error.

Sx uses x as a separator character to separate field definitions. You can
then specify x in the argument list as its own character argument to
serve as a delimiter for a list of arguments that you want to group
together as a single structure. Use this option only if you do not supply
an entry in the SASCBTBL attribute table. If you do supply an entry for
this module in the SASCBTBL attribute table, you should use the
FDSTART option in the ARG statement in the table to separate
structures.

H provides brief help information about the syntax of the MODULE
routines, the attribute file format, and the suggested SAS formats and
informats.

For example, the control string '*IS/' specifies that parameter lists be printed
and that the string '/' is to be treated as a separator character in the argument
list.

Details

The following functions permit vector and matrix arguments. You can use them
only within the IML procedure:

n MODULEIN

n MODULEIC

For more information, see the SAS/IML Studio: User's Guide.

The MODULE functions execute a routine module that resides in an external
(outside SAS) library with the specified arguments arg-1 through arg-n. In batch, the
external library should be concatenated in the STEPLIB. In TSO, it should be
specified on the LOAD option of the CLIST or REXX exec.

The MODULEN and MODULEC functions return a numeric value num or a character
value char, respectively. Which routine you use depends on the expected return
value from the function that you want to execute.

MODULEIC and MODULEIN are special versions of the MODULE functions that
permit vector and matrix arguments. Their return values are still scalar. You can
invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.

MODULE Function: z/OS 487

The MODULE function builds a parameter list by using the information in arg-1 to
arg-n and by using a routine description and argument attribute table that you
define in a separate file. Before you invoke the CALL MODULE routine, you must
define the fileref of SASCBTBL to point to this external file. You can name the file
whatever you want when you create it.

In this way, you can use SAS variables and formats as arguments to the MODULE
function. This specification ensures that these arguments are properly converted
before being passed to the library routine.

CAUTION
Using the MODULE function without defining an attribute table can cause SAS
to crash, produce unexpected results, or generate severe errors. You need to
use an attribute table for all external functions that you want to invoke.

See Also

CALL Routine

n “CALL MODULE Routine: z/OS” on page 456

Functions:

n “MODULEC Function” in SAS Functions and CALL Routines: Reference

n “MODULEN Function” in SAS Functions and CALL Routines: Reference

n “PEEKLONG Function: z/OS” on page 492

MOPEN Function: z/OS
Opens a file by directory ID and by member name, and returns either the file identifier or a 0.

Category: External Files

z/OS specifics: File systems, open-mode

See: “MOPEN Function” in SAS Functions and CALL Routines: Reference

Syntax

MOPEN(directory-id,member-name<,open-mode<,record-length<,record-
format>>>)

488 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en

Optional Argument
open-mode

specifies the type of access to the file.

A
APPEND mode allows writing new records after the current end of the file.
The A option is valid only for UNIX System Services. An error is returned if
you specify A for a PDS or PDSE member.

O
OUTPUT mode defaults to the OPEN mode specified in the operating
environment option in the FILENAME statement or function. If no operating
environment option is specified, it allows writing new records at the
beginning of the file.

Details

MOPEN returns the identifier for the file, or 0 if the file could not be opened.

MOPEN applies to members in partitioned data sets (PDS and PDSE) and UNIX file
system (UFS) files. Under z/OS, MOPEN can open PDS and PDSE members for
output only. It can open UFS files for output or append.

See Also

“DOPEN Function: z/OS” on page 467

PATHNAME Function: z/OS
Returns the physical name of a SAS library or of an external file or returns a blank.

Categories: SAS File I/O
External Files

z/OS specifics: fileref, libref

See: “PATHNAME Function” in SAS Functions and CALL Routines: Reference

Syntax

PATHNAME((fileref | libref) <,search-level>)

PATHNAME Function: z/OS 489

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0sycvpqwxea06n1klcseze1mdak.htm&locale=en

Required Arguments
fileref

specifies the fileref assigned to an external file. In a DATA step, fileref can be a
character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the fileref. In a macro, fileref can be any
expression that resolves to a macro variable. If fileref is used in the syntax for a
macro, it must not be in quotation marks.

libref
specifies the libref assigned to a SAS library. In a DATA step, libref can be a
character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the libref. In a macro, libref can be any
expression.

Optional Argument
search-level

specifies whether to search for a fileref or a libref. If search-level is omitted,
PATHNAME searches for a fileref or libref with the specified name. You can use
single or double quotation marks around the fileref, libref, and search-level
elements of the PATHNAME statement.

F
specifies a search for a fileref.

L
specifies a search for a libref.

Details

PATHNAME returns the physical name of an external file or a SAS library, or
returns a blank if fileref or libref is invalid. When PATHNAME is applied to a
concatenation, it returns a list of data set names enclosed in parentheses.

Under z/OS, you can also use any valid ddname that was previously allocated using
a TSO ALLOCATE command or a JCL DD statement.

PEEKCLONG Function: z/OS
Stores the contents of a memory address in a character variable.

Category: Special

Restriction: When a SAS server is in a locked-down state, the PEEKCLONG function does not
execute. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

See: “PEEKCLONG Function” in SAS Functions and CALL Routines: Reference

490 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0f3dmjwzwbsaqn1wfxvxgfxbe4q.htm&locale=en

Syntax

PEEKCLONG(address<,length>)

Required Argument
address

specifies a character expression that is the memory address in binary.

Optional Argument
length

specifies the length of the character data.

Default If no length is specified, the length of the target variable is used. If the
function is used as part of an expression, the maximum length is
returned.

Range 1 to 32,767

Details

If you do not have access to the memory storage location that you are requesting,
the PEEKCLONG function returns an “Invalid argument” error.

Comparisons

The PEEKCLONG function stores the contents of a memory address in a character
variable.

The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

Example: Copying Character Variables

The following example copies the contents of the first two bytes of the character
variable X to the character variable Z:

data _null_;
 x='ABCDE';
 y=addrlong(x);
 z=peekclong(y,2);
 put z=;
run;

The output from the SAS log is: z=AB

PEEKCLONG Function: z/OS 491

See Also

Functions

n “PEEKLONG Function: z/OS” on page 492

PEEKLONG Function: z/OS
Stores the contents of a memory address in a numeric variable.

Category: Special

Restriction: When a SAS server is in a locked-down state, the PEEKLONG Function does not
execute. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

See: “PEEKLONG Function” in SAS Functions and CALL Routines: Reference

Syntax

PEEKLONG(address<,length>)

Required Argument
address

specifies a character expression that is the memory address in binary.

Optional Argument
length

specifies the length of the numeric data.

Default 4

Range 1-4

Details

If you do not have access to the memory storage location that you are requesting,
the PEEKLONG function returns an “Invalid argument” error.

492 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tsllz3xjk0u7n1v8lh6a5t2bee.htm&locale=en

Comparisons

The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

The PEEKCLONG function stores the contents of a memory address in a character
variable. It assumes that the input address refers to character data.

Example: Copying the Contents of Numeric
Variables

The following example copies the contents of the numeric variable Y to the numeric
variable Z:

data _null_;
 length y $4;
 y=put(1,IB4.);
 addry=addrlong(y);
 z=peeklong(addry,4);
 put z=;
run;

The output from the SAS log is: z=1

See Also

Functions

n “PEEKCLONG Function: z/OS” on page 490

SYSGET Function: z/OS
Returns the value of the specified operating-environment variable.

Category: Special

z/OS specifics: operating-environment-variable

See: “SYSGET Function” in SAS Functions and CALL Routines: Reference

Syntax

SYSGET(operating-environment-variable)

SYSGET Function: z/OS 493

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p14ppks96uz65an1l5uq3elm0m3y.htm&locale=en

Required Argument
operating-environment-variable

is the name of a simulated environment variable.

Details

z/OS does not have native environment variables, but SAS supports three types of
simulated environment variables that can be accessed by SYSGET.

n variables that have been created through the SET system option

n variables that have been defined in a TKMVSENV file

n under TSO, variables in the calling REXX exec or CLIST

SYSGET searches for the specified operating-environment-variable in each of these
three locations, in the order specified in the preceding list. If the specified variable
is not found in any of the locations, then the error message “NOTE: Invalid
argument to the function SYSGET” is generated and _ERROR_ is set to 1.

Names of TKMVSENV variables are case-sensitive, but names of SET variables, or
REXX or CLIST variables, are not case-sensitive.

Example: Returning Options from the SAS CLIST or
REXX Exec

Under TSO, the following example returns the system options that are specified in
the OPTIONS variable of the SAS CLIST or REXX exec and is printed to the
specified log:

data _null_;
 optstr=sysget('OPTIONS');
 if _ERROR_ then put 'no options supplied';
 else put 'options supplied are:' optstr;
run;

See Also

“SET= System Option: z/OS” on page 840

SYSTEM Function: z/OS
Executes an operating environment command and returns the command return code.

Category: Special

494 Chapter 26 / Functions and CALL Routines under z/OS

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: The command must be a TSO command, emulated USS command, or MVS program.

See: “SYSTEM Function” in SAS Functions and CALL Routines: Reference

Syntax

SYSTEM(command)

Required Argument
command

can be a system command enclosed in quotation marks, an expression whose
value is a system command, or the name of a character variable whose value is a
system command. Under z/OS, the term system command refers to TSO
commands, CLISTs, and REXX execs.

Details

The SYSTEM function provides the same function and has the same syntax as the X
statement, and it returns the command return code. For information about the
command interface, see “X Statement: z/OS” on page 681.

Example

In the following example, the SYSTEM function is used to allocate an external file:

data _null_;
 rc=system('alloc f(study) da(my.library)');
run;

For a fully qualified data set name, use the following statements:

data _null_;
 rc=system("alloc f(study) da('userid.my.library')");
run;

In the second example, notice that the command is enclosed in double quotation
marks. When the TSO command includes quotation marks, it is best to enclose the
command in double quotation marks. If you choose to use single quotation marks,
then double each single quotation mark within the TSO command:

data _null_;
 rc=system('alloc f(study)da(''userid.my.library'')');
run;

SYSTEM Function: z/OS 495

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p028ivnihf9y1hn1n05tp55587jz.htm&locale=en

See Also

Statements

n “TSO Statement: z/OS” on page 679

n “X Statement: z/OS” on page 681

CALL Routines

n “CALL SYSTEM Routine: z/OS” on page 459

n “CALL TSO Routine: z/OS” on page 461

Commands

n “TSO Command: z/OS” on page 285

n “X Command: z/OS” on page 288

Macro Statements

n “Macro Statements” on page 514

TRANSLATE Function: z/OS
Replaces specific characters in a character expression.

Category: Character

z/OS specifics: to or from pairs

See: “TRANSLATE Function” in SAS Functions and CALL Routines: Reference

Syntax

TRANSLATE(source, to-1, from-1, <to-n, from-2 …>)

Required Arguments
source

specifies the SAS expression that contains the original character value.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.

496 Chapter 26 / Functions and CALL Routines under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p05ww22zp7lcg3n1bjk7v93tscyo.htm&locale=en

Details

Under z/OS, you must specify pairs of to and from arguments. Also, there is no
practical limit to the number of to or from pairs that you can specify.

TRANSLATE handles character replacement for single-byte character sets only.
See KTRANSLATE to replace single-byte characters with double-byte characters,
or to replace double-byte characters with single-byte characters.

See Also

“KTRANSLATE Function: z/OS” on page 485

TSO Function: z/OS
Issues an operating environment command during a SAS session and returns the system return code.

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: All

Syntax

TSO(command)

Required Argument
command

can be a system command enclosed in quotation marks, an expression whose
value is a system command, or the name of a character variable whose value is a
system command. Under z/OS, "system command" includes TSO commands,
CLISTs, and REXX execs.

Details

The SYSTEM and TSO functions are identical, with one exception: under an
operating environment other than z/OS, the TSO function has no effect, whereas
the SYSTEM function is always processed. For more information, see “SYSTEM
Function: z/OS” on page 494. For information about the command interface, see “X
Statement: z/OS” on page 681.

TSO Function: z/OS 497

See Also

“CALL TSO Routine: z/OS” on page 461

WTO Function: z/OS
Sends a message to the system console.

z/OS specifics: All

Syntax

WTO(“text-string” | var)

Required Arguments
text-string

is the message that you want to send. It should be no longer than 125
characters.

var
specifies a DATA step variable.

Details

WTO is a DATA step function that takes a character-string argument and sends it
to a system console. The destination is controlled by the WTOUSERROUT=,
WTOUSERDESC=, and WTOUSERMCSF= SAS system options. If
WTOUSERROUT=0 (the default), then no message is sent.

See Also

n “WTOUSERDESC= System Option: z/OS” on page 888

n “WTOUSERMCSF= System Option: z/OS” on page 889

n “WTOUSERROUT= System Option: z/OS” on page 891

498 Chapter 26 / Functions and CALL Routines under z/OS

27
Informats under z/OS

Informats in the z/OS Environment . 499

Considerations for Using Informats under z/OS . 500
EBCDIC and Character Data . 500
Floating-Point Number Format and Portability . 500
Reading Binary Data . 500
Date and Time Informats . 500

Dictionary . 503
HEXw. Informat: z/OS . 503
IBw.d Informat: z/OS . 504
PDw.d Informat: z/OS . 505
RBw.d Informat: z/OS . 506
ZDw.d Informat: z/OS . 507
ZDBw.d Informat: z/OS . 509

Informats in the z/OS Environment
In general, informats are completely portable. Only the informats that have aspects
specific to z/OS are documented in this chapter.

All informats are described in SAS Formats and Informats: Reference; that
information is not repeated here. Instead, you are given details about how the
informat behaves under z/OS, and then you are referred to SAS Formats and
Informats: Reference for more information.

499

Considerations for Using Informats
under z/OS

EBCDIC and Character Data
The following character informats produce different results on different computing
platforms, depending on which character encoding the platform uses. Because
z/OS uses the EBCDIC character encoding, all of the following informats convert
data to EBCDIC.

These informats are not discussed in detail in this documentation because the
EBCDIC character encoding is their only host-specific aspect.

$ASCIIw.
converts ASCII-encoded character data to EBCDIC-encoded character data.

$BINARYw.
converts binary values to EBCDIC-encoded character data.

$CHARZBw.
reads character data and converts any byte that contains a binary zero to an
EBCDIC blank.

$EBCDICw.
reads EBCDIC-encoded character data. Under z/OS, $EBCDIC and $CHAR are
equivalent.

$HEXw.
converts hexadecimal data to EBCDIC-encoded character data.

$OCTALw.
converts octal data to EBCDIC-encoded character data.

$PHEXw.
converts packed hexadecimal data to EBCDIC-encoded character data.

All the information that you need in order to use these informats under z/OS is in
SAS Formats and Informats: Reference.

Floating-Point Number Format and Portability
The manner in which z/OS stores floating-point numbers can affect your data. For
more information, see “Numeric Precision” in SAS Programmer’s Guide: Essentials.

500 Chapter 27 / Informats under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0dv87zb3bnse6n1mqo360be70qr.htm&locale=en

Reading Binary Data
If a SAS program that reads and writes binary data is run on only one type of
machine, you can use the native-mode informats in the following list.

Note: Native-mode means that these informats use the byte-ordering system that
is standard for the machine.

IBw.d
reads integer binary (fixed-point) values, including negative values, that are
represented in two's complement notation.

IEEEw.d
reads floating-point data that is stored in IEEE format

PDw.d
reads data that is stored in IBM packed decimal format.

PIBw.d
reads positive integer binary (fixed-point) values.

RBw.d
reads real binary (floating-point) data.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, use the following IBM 370 informats:

S370FFw.d
is used on other computer systems to read EBCDIC data.

S370FIBw.d
reads integer binary data.

S370FIBUw.d
reads unsigned integer binary data.

S370FPDw.d
reads packed decimal data.

S370FPDUw.d
reads unsigned packed decimal data.

S370FPIBw.d
reads positive integer binary data that is stored in IBMhexadecimal floating-
point format.

S370FRBw.d
reads real binary data.

S370FZDw.d
reads zoned decimal data.

S370FZDLw.d
reads zoned decimal leading sign data.

Considerations for Using Informats under z/OS 501

S370FZDSw.d
reads zoned decimal separate leading sign data.

S370FZDTw.d
reads zoned decimal separate trailing sign data.

S370FZDUw.d
reads unsigned zoned decimal data.

These IBM 370 informats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 informats, see SAS Formats and Informats:
Reference.

Date and Time Informats
Several informats are designed to read time and date stamps that have been
written by the System Management Facility (SMF) or by the Resource
Measurement Facility (RMF). SMF and RMF are standard features of the z/OS
operating environment. They record information about each job that is processed.
The following informats are used to read time and date stamps that are generated
by SMF and RMF:

PDTIMEw.
reads the packed decimal time of SMF and RMF records.

RMFDUR.
reads the duration values of RMF records.

RMFSTAMPw.
reads the time and date fields of RMF records.

SMFSTAMPw.
reads the time and date of SMF records.

TODSTAMP.
reads the 8-byte time-of-day stamp.

TUw.
reads timer unit values that are produced by IBM mainframe operating
environments and converts the timer unit values to SAS time values.

In order to facilitate the portability of SAS programs, these informats can be used
with any operating environment that is supported by SAS software. Therefore, they
are documented in SAS Formats and Informats: Reference.

502 Chapter 27 / Informats under z/OS

Dictionary

HEXw. Informat: z/OS
Converts hexadecimal character values to integer binary (fixed-point) or real binary (floating-point)
values.

Category: Numeric

Default: 8

Range: 1-16 bytes

z/OS specifics: Interprets input as EBCDIC, IBM floating-point format

See: “HEXw. Informat” in SAS Formats and Informats: Reference

Details

The format of floating-point numbers is host-specific. For a description of the IBM
floating-point format that is used under z/OS, see Chapter 22, “Data
Representation,” on page 399.

The w value of the HEX informat specifies the field width of the input value. It also
specifies whether the final value is an integer binary (fixed-point) value or a real
binary (floating-point) value. When you specify a width value of 1 through 15, the
input hexadecimal number represents an integer binary number. When you specify
a width of 16, SAS interprets the input hexadecimal number as a representation of a
floating-point number.

The following examples illustrate the use of the HEXw.d format:

Data Line Informat Value Notes

433E800000000000 HEX16. 1000 input is interpreted
as floating point

000100 HEX6. 256 input is interpreted
as integer

C1A0000000000000 HEX16. -10 input is interpreted
as floating point

HEXw. Informat: z/OS 503

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0vmi0vnlacdocn1oxuu8dpsdztb.htm&locale=en

Note: In these examples, Data Line represents the bit pattern stored, which is the
value seen when viewed in a text editor. Value is the number that is used by SAS
after the data has been read using the corresponding informat.

See Also

“Representation of Numeric Variables” on page 399

IBw.d Informat: z/OS
Reads integer binary (fixed-point) values.

Category: Numeric

Default: 4

Ranges: 1-8 bytes, 0-10

z/OS specifics: Two's complement big-endian notation

See: “IBw.d Informat” in SAS Formats and Informats: Reference

Details

On an IBM mainframe system, integer values are represented in two's complement
notation. If the informat specification includes a d value, the result of the informat
is divided by 10d.

The following examples illustrate the use of the IBw.d format:

Data Line
(Hexadecimal) Informat Value Notes

FFFFFB2E ib4. -1234

000000003034 ib6.2 123.4 a d value of 2 causes the
number to be divided by
102

00000001E208 ib6.2 1234 a d value of 2 causes the
number to be divided by
102

Note: In these examples, Data Line (Hexadecimal) represents the bit pattern that
is stored. It is the value that you see when you view it in a text editor that displays

504 Chapter 27 / Informats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p01ngee1h9zdr7n1j99qiyigocab.htm&locale=en

values in hexadecimal representation. Value is the number that is used by SAS after
the data has been read using the corresponding informat.

See Also

Informats

n “S370FIBw.d Informat” in SAS Formats and Informats: Reference

n “S370FPIBw.d Informat” in SAS Formats and Informats: Reference

Formats

n “IBw.d Format: z/OS” on page 446

PDw.d Informat: z/OS
Reads IBM packed decimal data.

Category: Numeric

Default: 1

Ranges: 1-16 bytes, 0-31

z/OS specifics: IBM packed decimal format

See: “PDw.d Informat” in SAS Formats and Informats: Reference

Details

The w value specifies the number of bytes, not the number of digits. If the informat
specification includes a d value, the result of the informat is divided by 10d.

In packed decimal format, each byte except for the last byte represents two
decimal digits. (The last byte represents one digit and the sign.) An IBM packed
decimal number consists of a sign and up to 31 digits, thus giving a range from -1031

+ 1 to 1031 − 1. The sign is written in the rightmost nibble. (A nibble is 4 bits or half a
byte.) A hexadecimal C indicates a plus sign, and a hexadecimal D indicates a minus
sign. The rest of the nibbles to the left of the sign nibble represent decimal digits.
The hexadecimal values of these digit nibbles correspond to decimal values.
Therefore, only values between '0'x and '9'x can be used in the digit positions.

Here are several examples of how data is read using the PDw.d informat:

PDw.d Informat: z/OS 505

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0ev99dysh9ejqn1bgkg8g2hmyv5.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0c98iwaif80jpn1ahpag781hk0b.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0xnvrbp96w34un1j7fgbfqgz4x5.htm&locale=en

Data Line
(Hexadecimal) Informat Value Notes

01234D pd3. -1234

0123400C pd4.2 1234 the d value of 2 causes the
number to be divided by 102

Note: In these examples, Data Line (Hexadecimal) represents the bit pattern that
is stored. It is the value that you see when you view it in a text editor that displays
values in hexadecimal representation. Value is the number that is used by SAS after
the data has been read using the corresponding informat.

The PDw.d format writes missing numerical data as -0. When the PDw.d informat
reads -0, it stores it 0.

See Also

Informats

n “S370FPDw.d Informat” in SAS Formats and Informats: Reference

Formats

n “PDw.d Format: z/OS” on page 447

RBw.d Informat: z/OS
Reads real binary hexadecimal (floating-point) data.

Category: Numeric

Default: 4

Ranges: 2- 8 bytes, 0-10

z/OS specifics: IBM hexadecimal floating-point format

See: “RBw.d Informat” in SAS Formats and Informats: Reference

Details

The w value specifies the number of bytes, not the number of digits. If the informat
specification includes a d value, the conversion result is divided by 10d.

506 Chapter 27 / Informats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1f6ogvbxp663tn13icvl1197roj.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0fn7uh8wo2onkn1iwgj06p9326k.htm&locale=en

The format of floating-point numbers is host-specific. For a description of the IBM
floating-point format that is used under z/OS, see Chapter 22, “Data
Representation,” on page 399.

The following examples show how data that represent decimal numbers are read as
floating-point numbers using the RBw.d informat:

Data Line (Hexadecimal) Informat Value Notes

4214000000000000 rb8.1 32 a d value of 1 causes
the number to be
divided by 101

4364000000000000 rb8.2 16 a d value of 2 causes
the number to be
divided by 102

c020000000000000 rb8. -0.125

434b000000000000 rb8. 1200

41C4000000000000 rb8. 12.25

Note: In these examples, Data Line (Hexadecimal) represents the bit pattern that
is stored. It is the value that you see when you view it in a text editor that displays
values in hexadecimal representation. Value is the number that is used by SAS after
the data has been read using the corresponding informat.

See Also

Informats

n “S370FRBw.d Informat” in SAS Formats and Informats: Reference

Formats

n “RBw.d Format: z/OS” on page 449

n “Representation of Numeric Variables” on page 399

ZDw.d Informat: z/OS
Reads zoned-decimal data.

Category: Numeric

Range: 1-32 bytes

ZDw.d Informat: z/OS 507

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0if7bvwbes8xdn1tr0ryirlhhv2.htm&locale=en

z/OS specifics: IBM zoned decimal format

See: “ZDw.d Informat” in SAS Formats and Informats: Reference

Details

Like numbers that are stored in standard format, zoned decimal digits require one
byte of storage space. The low-order, or rightmost, byte represents both the least
significant digit and the sign of the number. Digits to the left of the least significant
digit are represented in EBCDIC code as 'F0'x through 'F9'x. The character that is
printed for the least significant digit depends on the sign of the number. In EBCDIC
code, negative numbers are represented as 'D0'x through 'D9'x in the least
significant digit position; positive numbers are represented as 'C0'x through 'C9'x. If
the informat specification includes a d value, the conversion result is divided by 10d.

The following examples illustrate the use of the ZDw.d informat:

Data Line (Hexadecimal) Informat Value Notes

F0F0F0F1F2F3F0C0 zd8.2 123 a d value of 2
causes the number
to be divided by 102

F0F0F0F0F0F1F2D3 zd8. -123

F0F0F0F0F1F2F3C0 zd8.6 0.00123 a d value of 6
causes the number
to be divided by 106

F0F0F0F0F0F0F0C1 zd8.6 1E-6 a d value of 6
causes the number
to be divided by 106

Note: In these examples, Data Line (Hexadecimal) represents the bit pattern that
is stored. It is the value that you see when you view it in a text editor that displays
values in hexadecimal representation. Value is the number that is used by SAS after
the data has been read using the corresponding informat.

Comparisons

On z/OS, the ZDw.d and the ZDVw.d informats do not perform validation, which
means that non-numeric data is accepted as numeric data. For example, the
character string ABC is interpreted as +123.

508 Chapter 27 / Informats under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p15zzcwdrbo708n1owjn1oscogx1.htm&locale=en

See Also

Informats

n “S370FZDw.d Informat” in SAS Formats and Informats: Reference

n “S370FZDLw.d Informat” in SAS Formats and Informats: Reference

n “S370FZDSw.d Informat” in SAS Formats and Informats: Reference

n “S370FZDTw.d Informat” in SAS Formats and Informats: Reference

n “S370FZDUw.d Informat” in SAS Formats and Informats: Reference

n “ZDBw.d Informat: z/OS” on page 509

n “ZDVw.d Informat” in SAS Formats and Informats: Reference

Formats

n “ZDw.d Format: z/OS” on page 450

ZDBw.d Informat: z/OS
Reads zoned decimal data in which zeros have been left blank.

Category: Numeric

Range: 1-32 bytes

z/OS specifics: Used on IBM 1410, 1401, and 1620

See: “S370FZDBw.d Informat” in SAS Formats and Informats: Reference

Details

As previously described for the ZDw.d informat, each digit is represented as a single
byte, and the low-order, or rightmost, byte represents both the sign and the least
significant digit. The only difference between the two informats is the way in which
zeros are represented. The ZDBw.d informat treats EBCDIC blanks ('40'x) as zeros.
(EBCDIC zeros are also read as zeros.)

The following examples show how the ZDBw.d informat reads data:

Data Line (Hexadecimal) Informat Value

40404040F14040C0 zdb8. 1000

4040404040F1F2D3 zdb8. -123

4040404040F1F2C3 zdb8. 123

ZDBw.d Informat: z/OS 509

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0rpil7q2fjyd0n12baih7umq6xj.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p11gymwmne4qlln1tiss43gpwojm.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n11sp0bgit7bnfn1vawq7zo3oayk.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0eh2rd17q8m9nn16a2ht42an5ju.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1uwj86iamk928n1jn55q2i1sjnm.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0udvbvymvnlann1el7cajl1lbjq.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1gli4y4vr9zfan19wtmwjry5fdm.htm&locale=en

Note: In these examples, Data Line (Hexadecimal) represents the bit pattern that
is stored. It is the value that you see when you view it in a text editor that displays
values in hexadecimal representation. Value is the number that is used by SAS after
the data has been read using the corresponding informat.

See Also

Informats

n “ZDw.d Informat: z/OS” on page 507

Formats

n “ZDw.d Format: z/OS” on page 450

510 Chapter 27 / Informats under z/OS

28
Macros under z/OS

Macros in the z/OS Environment . 511

Macro Variables . 512
Automatic Macro Variables That Have Host-Specific Values . 512
z/OS Global Macro Variables . 512
Names to Avoid When Defining Macro Variables . 512

Macro Statements . 514

Macro Functions . 515

Autocall Libraries . 515
Overview of Autocall Libraries . 515
Specifying a User Autocall Library . 515
Creating an Autocall Macro . 515

Stored Compiled Macro Facility . 518
Overview of the Stored Compiled Macro Facility . 518
Accessing Stored Compiled Macros . 518

Other Host-Specific Aspects of the Macro Facility . 519
Character Encoding for Evaluating Macro Characters . 519
SAS System Options Used by the Macro Facility . 519

Dictionary . 520
%ISHCONV Macro Macro Statement: z/OS . 520

Macros in the z/OS Environment
Most features of the SAS macro facility are portable. These features are
documented in the SAS Macro Language: Reference. This chapter discusses the
aspects of the macro facility that are specific to the z/OS environment.

511

Macro Variables

Automatic Macro Variables That Have Host-
Specific Values

The following macro variables that are automatically available have host-specific
values under z/OS:

SYSCC
contains the current SAS condition code that SAS translates into a meaningful
return code for z/OS at the conclusion of the SAS session.

Note: When the value of the ERRORCHECK= option is NORMAL, the return
code is 0 even if an error exists in a LIBNAME or FILENAME statement, or in a
SAS/SHARE LOCK statement. Also, the SAS job or session does not terminate
when the %INCLUDE statement fails because of a nonexistent file. For more
information, see “ERRORCHECK= System Option” in the SAS System Options:
Reference.

SYSDEVIC
contains the name of the current graphics device. The current graphics device is
determined by the SAS option DEVICE=. For more information, see “DEVICE=
System Option: z/OS” on page 723. Ask your on-site SAS support personnel
which graphics devices are available at your site.

SYSENV
is provided for compatibility with SAS software on other operating
environments. Under z/OS, its value is FORE if you are running SAS under TSO.
Otherwise, its value is BACK. You cannot change the value of this variable.

SYSJOBID
contains the job name of the batch job that is currently executing, or the user ID
that is associated with the current SAS session. SAS obtains this value from the
TIOCNJOB field of the TIOT control block, except in the case of SAS/SESSION.
With SAS/SESSION, SAS obtains the value from the User_id field that is
returned by the Get_TP_Properties service of APPC/MVS. You cannot change
the value of this variable.

Note: Starting with SAS 9.4M8, SAS/Session is not available from SAS. If you
have an existing installation of SAS/Session in your environment and plan to
upgrade or migrate to SAS 9.4M8 or later, SAS recommends that you first
uninstall SAS/Session.

512 Chapter 28 / Macros under z/OS

SYSMAXLONG
returns the maximum long integer value allowed by z/OS, which is
2,147,483,647.

SYSRC
contains the return code from the most recent operating environment command
that was issued from within a SAS session. The default value is 0.

SYSSCP
contains the operating environment abbreviation OS. You cannot change the
value of this variable.

SYSSCPL
contains the operating environment name, z/OS. You cannot change the value of
this macro variable.

z/OS Global Macro Variables
The following global macro variables are automatically available under z/OS:

SYSDEXST
contains the value that is returned by the DSNEXST statement. For more
information, see “DSNEXST Statement: z/OS” on page 602. SYSDEXST has a
value of 1 if the data set specified in the DSNEXST statement is currently
available. It has a value of 0 if the data set is not currently available.

SYSJCTID
contains the value of the JCTUSER field of the JCT control block as mapped by
the IEFAJCTB macro. It is a 7-byte character value.

SYSJMRID
contains the value of the JMRUSEID field of the JCT control block as mapped by
the IEFAJMR macro. The value is a 7-byte character. This field is blank unless an
installation exit or another program product populates it. This field is left blank
by IBM for the installation to use.

SYSUID
contains the value of the TSO user ID that is associated with the SAS session,
regardless of whether the session is a batch job, a remote connect session, a
SAS/SESSION connection, or a TSO session. SAS obtains this value from the
ACEEUSRI field of the ACEE control block.

Note: Starting with SAS 9.4M8, SAS/Session is not available from SAS. If you
have an existing installation of SAS/Session in your environment and plan to
upgrade or migrate to SAS 9.4M8 or later, SAS recommends that you first
uninstall SAS/Session.

The following four global macro variables can be used to help diagnose failures in
dynamic allocation. Their values are updated each time SAS does a dynamic
allocation as a result of a FILENAME or LIBNAME statement (or their equivalent
DATA step or SCL functions). They are undefined until the first dynamic allocation
is performed. These macro variables are as follows:

Macro Variables 513

SYS99ERR
contains the error reason code that was returned in the SVC 99 request block.

SYS99INF
contains the information reason code that was returned in the SVC 99 request
block.

SYS99MSG
contains the text of the message that is associated with the reason code.

SYS99R15
contains the return code that was returned in R15 from SVC 99.

Note: The %PUT statement can be used to display the contents of these variables
in the SAS log–for example,

%put _global_;

Names to Avoid When Defining Macro Variables
When you define macro variables, do not use names taken up by z/OS reserved
words (see “Reserved z/OS Ddnames” on page 40), names of SAS files, or names
beginning with &SYS. The prefix &SYS has been reserved for future use.

Macro Statements
The following macro statements have behavior specific to z/OS:

%TSO
executes commands. It is similar to the TSO or X statements, except that it
places the command return code in the automatic variable SYSRC. For more
information, see “X Statement: z/OS” on page 681. You can use the %TSO
statement either inside or outside a macro. The form of the statement is:

%TSO <command>;

You can use any TSO command or MVS program name, or any sequence of
macro operations that generate a TSO command or MVS program name. If you
omit the command, your SAS session is suspended and your z/OS session is
placed in TSO submode. To return to the SAS session, enter either RETURN or
END.

If you execute a %TSO statement on an operating environment other than z/OS,
the statement is treated as a comment. In batch, the %TSO statement supports
MVS programs but not TSO commands.

514 Chapter 28 / Macros under z/OS

%SYSEXEC
executes commands . The form of the statement is:

%SYSEXEC <command>;

Under z/OS, the %SYSEXEC statement works exactly like the %TSO statement.
The two statements are different only if you transport your SAS program to a
different operating environment. Because %SYSEXEC statements are
recognized on multiple operating environments, each operating environment
expects commands that are appropriate for that operating environment.

Macro Functions
The following macro functions have behavior specific to z/OS:

%SCAN
under z/OS and other systems that use an EBCDIC character encoding, if you
specify no delimiters, SAS treats all of the following characters as delimiters:

blank . < (+ | & ! $ *) ; ¬ − / , % ¦ ¢

%SYSGET
under TSO, %SYSGET returns values of variables from the REXX exec or CLIST
with which SAS was invoked.

Autocall Libraries

Overview of Autocall Libraries
An autocall library contains files that define SAS macros. Under z/OS, an autocall
library is a partitioned data set. Each autocall macro should be a separate member
in a partitioned data set. SAS supplies some autocall macros in the system autocall
library. You can also define autocall macros yourself in a user autocall library. In
order to use the autocall facility, the SAS option MAUTOSOURCE must be in effect.
(See SAS System Options: Reference for details about MAUTOSOURCE.)

Autocall Libraries 515

Specifying a User Autocall Library

Overview of Specifying a User Autocall Library

You can designate a physical file, or a concatenation of physical files, as your user-
written autocall library in any of the following ways:

n with the SASAUTOS= system option. You can designate one or more filerefs or
data set names as your autocall library. For more information, see “SASAUTOS=
System Option: z/OS” on page 833.

n with the SASAUTOS parameter of the SAS CLIST or SASRX exec (under TSO).
In this case, SAS concatenates the user autocall library in front of the system
autocall library, which is specified by the CLIST parameter MAUTS.

n with the SASAUTOS= parameter of the SAS cataloged procedure.

Note: SAS issues an error message if the specified autocall library does not exist.

Example: Specifying an Autocall Library in Batch
Mode

In batch mode, you can use the following JCL statements to specify an autocall
library.

For a single autocall library, use this example:

//MYJOB JOB account. ...
// EXEC SAS,OPTIONS='MAUTOSOURCE'
//SASAUTOS DD DSN=MY.MACROS,DISP=SHR

For concatenated autocall libraries, the following technique handles any
combination of libraries:

//MYJOB JOB account ...
// EXEC SAS,OPTIONS='MAUTOSOURCE SASAUTOS=(AUTOLIB1, AUTOLIB2,
// SASAUTOS)'
//AUTOLIB1 DD DSN=MY.MACROS1,DISP=SHR
//AUTOLIB2 DD DSN=MY.MACROS2,DISP=SHR
//SASAUTOS DD DSN=default.autocall.library,DISP=SHR

CAUTION
Defining a partitioned concatenation in your JCL is not recommended.
Documented rules of the z/OS operating system govern partitioned concatenations.

516 Chapter 28 / Macros under z/OS

These rules can cause the exclusion of numerous library combinations. For example, it
is a rule violation to include a PDSE that does not have the same record format as the
first library in the concatenation. This rule prevents a partitioned concatenation that
begins with a fixed (unblocked) format library from containing a variable (blocked or
unblocked) format PDSE, or a fixed block format PDSE. It also prevents a partitioned
concatenation with both fixed and variable format PDSEs.

Example: Specifying an Autocall Library under TSO

Under TSO, you can specify an autocall library either when you invoke SAS or
during a SAS session.

When you invoke SAS:
single autocall library:

sas options('mautosource sasautos= "myid.macros"')

concatenated autocall library:
sas options('mautosource sasautos= ("myid.macros1","myid.macros2",sasautos)')

During a SAS session:
single autocall library:

options mautosource sasautos= 'myid.macros';

concatenated autocall library:
options mautosource sasautos= ('myid.macros1','myid.macros2', sasautos);

Creating an Autocall Macro
To create an autocall macro:

1 Create a partitioned data set to function as an autocall library, or use an existing
autocall library.

2 In the autocall library, create a member that contains the source statements for
the macro. The member name must be the same as the name of the macro.

Note: The SAS macro facility enables you to include the underscore character in
macro names. However, z/OS does not allow the underscore character in
partitioned data set member names. To create an autocall member for a macro
name that contains an underscore, use a number sign (#) in place of the underscore
in the member name. For example, to create an autocall member for a macro named
SETUP, name the member #SETUP#. However, invoke the macro by the macro
name, as follows:

%_setup_

Autocall Libraries 517

Stored Compiled Macro Facility

Overview of the Stored Compiled Macro Facility
The stored compiled macro facility gives you access to permanent SAS catalogs
that contain compiled macros. In order for SAS to use stored compiled macros, the
SAS option MSTORED must be in effect. In addition, you use the SAS option
SASMSTORE= to specify the libref of a SAS library that contains a catalog of
stored compiled SAS macros. For more information about these options, see SAS
System Options: Reference.

Using stored compiled macros offers the following advantages over other methods
of making macros available to your session:

n SAS does not have to compile a macro definition when a macro call is made.

n Session-compiled macros and the autocall facility are also available in the same
session.

Because you cannot re-create the source statements from a compiled macro, you
must save the original macro source statements.

Note: Catalogs of stored compiled macros cannot be concatenated.

If you do not want to use the stored compiled macro facility, you can make macros
accessible to your SAS session or job by doing the following:

n placing all macro definitions in the program before calling them

n using a %INCLUDE statement to bring macro definitions into the program from
external files

Note: The %INCLUDE statement takes as arguments the same types of file
specifications as the INCLUDE command. For more information, see “INCLUDE
Command: z/OS” on page 283.

n using the autocall facility to search predefined source libraries for macro
definitions

For more information

Your most efficient choice might be to use the stored compiled macro facility.

518 Chapter 28 / Macros under z/OS

Accessing Stored Compiled Macros
The following example illustrates how to create a stored compiled macro in one
session and then use the macro in a later session.

/* Create a Stored Compiled Macro */
/* in One Session */
libname mylib 'u.macro.mysecret' disp=old;
options mstored sasmstore=mylib;
%macro myfiles / store;
 filename file1 'mylib.first';
 filename file2 'mylib.second';
%mend;

/* Use the Stored Compiled Macro */
/* in a Later Session */
libname mylib 'u.macro.mysecret' disp=shr;
options mstored sasmstore=mylib;

%myfiles
data _null_;
 infile file1;
 *statements that read input file FILE1;
 file file2;
 *statements that write to output file FILE2;
run;

Other Host-Specific Aspects of the
Macro Facility

Character Encoding for Evaluating Macro
Characters

Under z/OS, the macro facility uses an EBCDIC character encoding for %EVAL and
for the automatic evaluation of macro characters. For example,

%EVAL(“A”)

evaluates to the integer 193 (hexadecimal C1) because this value is the code point
for the character A in the EBCDIC character set.

Other Host-Specific Aspects of the Macro Facility 519

SAS System Options Used by the Macro Facility
The following table lists the SAS options that are used by the macro facility and
that have host-specific characteristics. It also tells you where to look for more
information about these system options.

Table 28.1 SAS Options Used by the Macro Facility That Have Host-Specific Aspects

System Option Description See ...

MSYMTABMAX= specifies the maximum amount of memory
available to all symbol tables (global and local
combined). Under z/OS, the default value for
this option is 1,048,576 bytes.

“MSYMTABMAX= System Option:
z/OS” on page 820 and the SAS
System Options: Reference

MVARSIZE= specifies the maximum number of bytes for
any macro variable stored in memory (0 <= n
<= 32768). Under z/OS, the default setting for
this option is 8,192.

“MVARSIZE= System Option:
z/OS” on page 821 and the SAS
System Options: Reference

SASAUTOS= specifies the autocall library. “Specifying a User Autocall
Library” on page 516 and
“SASAUTOS= System Option:
z/OS” on page 833

See Also
SAS Macro Language: Reference

Dictionary

%ISHCONV Macro Macro Statement: z/OS
Converts user-defined, item-store help to HTML help files.

Default: LATIN1

520 Chapter 28 / Macros under z/OS

Syntax

%ISHCONV(ishelp='libref ',

ishref=libref-member,

exphlp='filename',

htmdir='pathname',

<charenc='encoding'>);

Required Arguments
ishelp='libref '

specifies the libref of the catalog in which the user-defined item-store help is
located.

ishref=libref-member
specifies the member of the libref that contains the item store. Note that unlike
the other option values, the libref member name is not specified in single
quotation marks.

exphlp='filename'
specifies the name of the target file in which %ISHCONV export places the
exported data. This data is used as input in the DATA step to create the HTML
structure of the user-defined help. This file is created if it does not currently
exist.

htmdir='pathname'
specifies the pathname that contains the user-defined item store help that was
exported with %ISHCONV. This name needs to be a valid UFS directory path.
This path is created if it does not currently exist. Any parent directories that do
not exist in this specification are also created.

Optional Argument
charenc='encoding'

specifies the character encoding for HTML output files. If the CHARENC
argument is omitted from the %ISHCONV macro, the default value of CHARENC
is LATIN1. The encoding value must be valid for the SAS PUT statement.

Details

The SAS %ISHCONV macro enables users of SAS 9.2 for z/OS to convert the
contents of user-defined item store help to HTML format. After the item stores are
converted to HTML, they can be used with the remote browser, which is the default
Help system for SAS 9.2 for z/OS.

SAS accesses user-defined HTML help the same as it did item store files. SAS
checks for help files that were created at customer locations, and uses those files
before it uses files supplied by SAS. The HELPLOC system option indicates the
order in which the browser is to use the Help files. It specifies that help files
created by customers are to be used before the files that SAS provides. For more

%ISHCONV Macro Macro Statement: z/OS 521

information about how the HELPLOC option specifies the order in which to access
files, see “HELPLOC= System Option: z/OS” on page 775.

When the %ISHCONV macro is run on the specified item-store help, the libref for
the item-store help is opened. Then, the user-defined help is exported to the file
that is specified in the macro call.

The file containing the exported data is then read, and the appropriate files are
allocated and created with the base directory path that you specify for the htmdir
parameter of the macro invocation. The files are converted to HTML and
subdirectories are created as they are needed. The subdirectories are populated
with files according to the exported item-store data.

After you have converted your item-store files to HTML, use the HELPLOC option
when you start SAS to specify the location of your new user-defined help files:

HELP HELPLOC://dirname/filename

Replace //dirname/filename with your specific filepath information.

Example: Coding the %ISHCONV Macro

The following example contains sample specifications for the parameters of the
%ISHCONV macro. MYLIB is the user ID of the person who converts the item-store
help files to HTML. ASCII is the default encoding.

ASCII Encoding (LATIN1)
%ishconv(ishelp='MYLIB.MYHELP',
 ishref=HELPDOC,
 exphlp='/home/mylib/ishconv_export_ascii',
 htmdir='/home/mylib/ishconv_dir_ascii');

EBCDIC Encoding (OPEN_ED-1047)
%ishconv(ishelp=MYLIB.MYHELP,
 ishref=HELPDOC,
 exphelp=/u/saswxg/ishconv_export_e1047,
 htmdir=/u/saswxg/ishconv_dir_e1047,
 charenc=open_ed-1047);

The following list contains explanations of the parameter specifications:

MYLIB.USERHELP
the name of the catalog that contains the item store.

HELPDOC
the name of the member that contains the user-defined help.

exphlp
the filename reference in which the exported help contents are placed for
parsing into HTML format.

htmdir
the directory path in which the user-defined help resides in an HTML format.

522 Chapter 28 / Macros under z/OS

See Also

n “Converting Item Store Help to HTML Help” on page 230

n “HELPLOC= System Option: z/OS” on page 775

%ISHCONV Macro Macro Statement: z/OS 523

524 Chapter 28 / Macros under z/OS

29
Procedures under z/OS

Procedures in the z/OS Environment . 525

Dictionary . 526
CATALOG Procedure Statement: z/OS . 526
CIMPORT Procedure Statement: z/OS . 526
CONTENTS Procedure Statement: z/OS . 527
CONVERT Procedure Statement: z/OS . 537
CPORT Procedure Statement: z/OS . 542
DATASETS Procedure Statement: z/OS . 543
DBF Procedure Statement: z/OS . 544
FONTREG Procedure Statement: z/OS . 547
FORMAT Procedure Statement: z/OS . 548
ITEMS Procedure Statement: z/OS . 548
OPTIONS Procedure Statement: z/OS . 552
PDS Procedure Statement: z/OS . 553
PDSCOPY Procedure Statement: z/OS . 557
PMENU Procedure Statement: z/OS . 564
PRINT Procedure Statement: z/OS . 565
PRINTTO Procedure Statement: z/OS . 566
RELEASE Procedure Statement: z/OS . 567
SORT Procedure Statement: z/OS . 571
SOURCE Procedure Statement: z/OS . 575
TAPECOPY Procedure Statement: z/OS . 586
TAPELABEL Procedure Statement: z/OS . 595

Procedures in the z/OS Environment
Portable procedures are documented in the Base SAS Procedures Guide. Only the
procedures that are specific to z/OS or that have aspects specific to z/OS are
documented in this chapter.

525

Dictionary

CATALOG Procedure Statement: z/OS
Manages entries in SAS catalogs.

z/OS specifics: FILE= option

See: “CATALOG Procedure” in Base SAS Procedures Guide

Details

The FILE= option in the CONTENTS statement of the CATALOG procedure is the
only portion of this procedure that is host specific. Under z/OS, if the value that
you specify in the FILE= option has not been previously defined as a fileref (using a
FILENAME statement, FILENAME function, TSO ALLOCATE command, or JCL DD
statement), then SAS uses the value to construct the physical filename.

In the following example, if the SAS system option FILEPROMPT is in effect, a
dialog box asks whether you want to allocate the external file whose fileref is
SAMPLE. If you reply Yes, then SAS attempts to locate the external file. If the file
was not previously allocated, then SAS allocates it. To construct the data set name,
SAS inserts the value of the SYSPREF= system option in front of the FILE= value
(in this case, SAMPLE), and it appends the name LIST to it. In this example, if the
value of SYSPREF= is SASDEMO.V9, then SAS allocates a physical file that is
named SASDEMO.V9.SAMPLE.LIST.

proc catalog catalog=profile;
 contents file=sample;
run;

CIMPORT Procedure Statement: z/OS
Restores a transport file that was created by the CPORT procedure.

z/OS specifics: Options

See: “CIMPORT Procedure” in Base SAS Procedures Guide

526 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n11st7possem5en1vo07v2nlxg0c.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0sf0mvsb4f076n14i2u82w9z4st.htm&locale=en

Details

The DISK option is the default for the CIMPORT procedure. Therefore, PROC
CIMPORT defaults to reading from a file on disk instead of from a tape. If you want
to read a file from tape, then specify the TAPE option.

When writing and reading files to and from tapes, you are not required to specify
the DCB attributes in a SAS FILENAME statement or FILENAME function.
However, it is recommended that you specify BLKSIZE=8000.

Note: SAS 9.1 and later releases support using the MIGRATE procedure to migrate
a SAS library from a previous release. For more information, see the Migration focus
area at support.sas.com.

See Also

n Moving and Accessing SAS Files

Procedures

n “CPORT Procedure Statement: z/OS” on page 542

n “MIGRATE Procedure” in Base SAS Procedures Guide

CONTENTS Procedure Statement: z/OS
Prints the description of the contents of one or more files from a SAS library.

z/OS specifics: Engine/host-dependent information, directory information

See: “CONTENTS Procedure” in Base SAS Procedures Guide
“Library Implementation Types for Base and Sequential Engines” on page 51

Syntax

PROC CONTENTS <options>;

CONTENTS Procedure Statement: z/OS 527

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Details

Overview of PROC CONTENTS Output
Although most of the output that this procedure generates is the same on all
operating environments, the Engine/Host Dependent Information is system-
dependent and engine-dependent. The following SAS code creates two data sets,
GRADES and MAJORS in your WORK library, and executes PROC CONTENTS to
describe the MAJORS data set.

data grades (label='First Data Set');
 input student year state $ grade1 grade2;
 label year='Year of Birth';
 format grade1 4.1;
 datalines;
1000 2010 NC 85 87
1042 2011 MD 92 92
1095 2009 PA 78 72
1187 2010 MA 87 94
;
data majors(label='Second Data Set');
 input student $ year state $ grade1 grade2 major $;
 label state='Home State';
 format grade1 5.2;
 datalines;
1000 2010 NC 84 87 Math
1042 2011 MD 92 92 History
1095 2009 PA 79 73 Physics
1187 2010 MA 87 74 Dance
1204 2011 NC 82 96 French
;
proc contents data=majors;
run;

The following output shows sample PROC CONTENTS output, including the
information that is specific to z/OS for the BASE engine:

528 Chapter 29 / Procedures under z/OS

Output 29.1 CONTENTS Procedure Output, Including Engine/Host Dependent
Information

 The SAS System 1
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Data Set Name WORK.MAJORS Observations 5
 Member Type DATA Variables 6
 Engine V9 Indexes 0
 Created 10/10/2016 16:04:14 Observation Length 48
 Last Modified 10/10/2016 16:04:14 Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label Second Data Set
 Data Representation MVS_32
 Encoding open_ed-1047 Western
 (OpenEdition)

 Engine/Host Dependent Information

 Data Set Page Size 27648
 Number of Data Set Pages 1
 First Data Page 1
 Max Obs per Page 574
 Obs in First Data Page 5
 Number of Data Set Repairs 0
 ExtendObsCounter YES
 Physical Name SYS16284.T161005.RA000.USER01.R0134594
 Release Created 9.0401M4
 Release Last Modified 9.0401M4
 Created by USER01
 Last Modified by USER01
 Subextents 1
 Total Blocks Used 1
 Percent of Lib Allocation < 0.1%

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 4 grade1 Num 8 5.2
 5 grade2 Num 8
 6 major Char 8
 3 state Char 8 Home State
 1 student Char 8
 2 year Num 8

The procedure output provides values for the physical characteristics of the SAS
data set WORK.MAJORS. Here are the important values:

Observations
is the number of nondeleted records in the data set.

Observation Length
is the maximum record size in bytes.

Compressed
has the value NO if records are not compressed. It has the value CHAR or
BINARY if records are compressed.

CONTENTS Procedure Statement: z/OS 529

Data Set Page Size
is the number of bytes occupied by a single page of the member. For direct-
access bound libraries, the page size is always an integral multiple of the library
block size.

Number of Data Set Pages
is the total number of pages in the data set.

First Data Page
is the number of the page that contains the first data record. Header records are
stored in front of data records.

Max Obs per Page
is the maximum number of records that a page can hold.

Obs in First Data Page
is the number of data records in the first data page.

Physical name
is the physical name of the native MVS data set in which the library resides. No
unique physical name exists for each member because all members reside in the
SAS bound library, which in turn resides in a single MVS data set.

Created by
is the name of the MVS job or TSO session under which the member was
created.

Last Modified by
is the name of the MVS job or TSO session under which the member was last
modified.

Subextents
is the number of distinct ranges of contiguous blocks required to store the
member. It indicates the degree to which the member is fragmented within the
library space map.

Total Blocks Used
is the total number of blocks occupied by the member. It equals the number of
member pages multiplied by the number of library blocks required to store a
single page.

Percent of Lib Allocation
is the percentage of the total library space that is occupied by this member. It is
computed by dividing Total Blocks Used (see the preceding item) by Total
Library Blocks (found in the Directory statistics).

PROC CONTENTS lists several host-specific library attributes in the Directory
portion of its output. For example, to list the contents of the SASHELP library,
submit the following statement.

proc contents data=sashelp._all_ directory;
run;

The following output shows the directory information that is produced for a direct
access bound library. For more information, see “Direct Access Bound Libraries” on
page 51.

530 Chapter 29 / Procedures under z/OS

Output 29.2 Engine/Host Dependent Information

 The SAS System 3
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Directory

 Libref SASHELP
 Engine V9
 Access READONLY
 Physical Name <physical name>.SASHELP
 Unit DISK
 Volume SMSD01
 Disposition SHR
 Device 3390
 Blocksize 6144
 Blocks per Track 8
 Total Library Blocks 72824
 Total Used Blocks 68153
 Percent Used Blocks 93.5%
 Total Free Blocks 4671
 Highest Used Block 68153
 Highest Formatted Block 68153
 Members 329
 DSNTYPE BASIC
 Data Representation MVS_32
 Channel Program Type zHPF

To list the attributes of a different library, specify the appropriate libref in place of
sashelp in the preceding code example. SAS lists different library attributes for
different types of libraries. Many attributes correspond to information available via
the SAS DSINFO window or the ISPF 3.2 window. However, SAS lists additional
internal information for direct access bound libraries. These items are defined in
this list.

Total Library Blocks
is the total number of library blocks that can exist in the DASD space currently
allocated to the library data set. This number includes the number of library
blocks formatted on all volumes as well as the number of library blocks that
could be formatted in the unused DASD space beyond the last formatted block.
For more information, see the following list item for the Highest Formatted
Block.

This value does not take into account any DASD space that might exist on
volumes that follow the volume that contains the highest formatted block.

Except in the case of pre-allocated multi-volume libraries or multi-volume
libraries that are allocated using SMS guaranteed space, Total Library Blocks
corresponds to the amount of allocated space that is indicated by the DSINFO
window or by ISPF 3.2.

Total Used Blocks
is the total number of blocks that currently contain member data or information
that is used by SAS to manage the internal structure of the library.

Percent Used Blocks
is calculated as the Total Used Blocks divided by the Total Library Blocks, and
expressed as a percentage.

CONTENTS Procedure Statement: z/OS 531

Total Free Blocks
is calculated as the Total Library Blocks minus the Total Used Blocks.

This count includes formatted blocks that are not currently being used. It also
includes blocks that could potentially be formatted in the allocated but unused
space that is beyond the highest formatted block.

Highest Used Block
is the library relative block number of the last block in the library that is used to
contain member data or internal structures.

Highest Formatted Block
is the number of the last library block that has been formatted. Additional
DASD space beyond this block might be allocated to the library data set, but no
blocks have ever been written beyond this point. Consequently, this statistic
indicates the largest number of library blocks that were ever simultaneously in
use since the library was created.

This value corresponds to the amount of used space indicated by the DSINFO
window or by ISPF 3.2 after the library was closed.

DSNTYPE
is the type of MVS data set in which the library resides.

Only two values, BASIC and LARGE, are possible for a direct access bound
library. BASIC data sets are limited to 64K tracks on each volume. Data sets
specified with DSNTYPE=LARGE are not subject to that limit, but
DSNTYPE=LARGE must be specified when the library is originally created.

Channel Program Type
Specifies the type of channel programs that are generated, either Channel
Command Word (CCW) or High Performance FICON for IBM System z (zHPF).

Note: The same directory information that is generated by the DIRECTORY option
in the PROC CONTENTS statement is also generated by the LIST option in the
LIBNAME statement.

PROC CONTENTS Output for a Sequential Access Bound
Library
The following output shows the directory information that is produced for a
sequential-bound library. For more information, see “Sequential Access Bound
Libraries” on page 57.

532 Chapter 29 / Procedures under z/OS

Output 29.3 PROC CONTENTS Output for a Sequential Access Bound Library, Part
1

 The SAS System 1
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Directory

 Libref SEQ
 Engine V9
 Access READONLY
 Physical Name USER01.SAMPLE.SASLIB.V9SEQ
 Unit DISK
 Volume USRD05
 Disposition SHR
 Device 3390
 Blocksize 27648
 Blocks per Track 2
 Total Library Blocks 30
 Total Used Blocks 16
 Percent Used Blocks 53.3%
 Total Free Blocks 14
 Highest Used Block 16
 Highest Formatted Block 16
 Members 2
 DSNTYPE BASIC
 Data Representation MVS_32

 Number
 Member of
 # Name Type Pagesize Pages Created

 1 MEMBER01 DATA 27648 1 10/10/2016 16:04:14
 2 MEMBER02 DATA 27648 1 10/10/2016 16:04:14

 The SAS System 2
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Release Last
 Release Created Last Modified
 # Last Modified Created by Modified by

 1 10/10/2016 16:04:14 9.0401M4 USER01 9.0401M4 USER01
 2 10/10/2016 16:04:14 9.0401M4 USER01 9.0401M4 USER01

CONTENTS Procedure Statement: z/OS 533

Output 29.4 PROC CONTENTS Output for a Sequential Access Bound Library, Part
2

 The SAS System 3
 13:36 Thursday, May 7, 2015

 The CONTENTS Procedure

 Data Set Name SEQ.MEMBER01 Observations 1
 Member Type DATA Variables 1
 Engine V9 Indexes 0
 Created 10/10/2016 16:04:14 Observation Length 8
 Last Modified 10/10/2016 16:04:14 Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation MVS_32
 Encoding open_ed-1047 Western
 (OpenEdition)

 Engine/Host Dependent Information

 Data Set Page Size 27648
 Number of Data Set Pages 1
 First Data Page 1
 Max Obs per Page 3399
 Obs in First Data Page 1
 Number of Data Set Repairs 0
 ExtendObsCounter YES
 Physical Name USER01.SAMPLE.SASLIB.V9SEQ
 Release Created 9.0401M4
 Release Last Modified 9.0401M4
 Created by USER01
 Last Modified by USER01
 Subextents 1
 Total Blocks Used 1
 Percent of Lib Allocation 3.3%

 The SAS System 4
 15:58 Monday, October 10,
2016
 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

 # Variable Type Len

 1 x Num 8

The physical characteristics of a SAS data set are defined with Output 29.19 on
page 529. These two physical characteristics are different for sequential access
bound libraries:

Physical Name
specifies the physical name of the native MVS data set in which the library
resides. No unique physical name exists for each member because all members
reside in the SAS bound library, which in turn resides in a single MVS data set.

Created by
specifies the name of the MVS job or TSO session under which the member was
created.

534 Chapter 29 / Procedures under z/OS

Members of a sequential library cannot be modified in place because of the
limitations of tape devices. Therefore, there are no modification statistics.

PROC CONTENTS Output for a UFS Directory
On z/OS, SAS libraries can reside in a UNIX file system directory. Each member of
the library is stored in a separate UNIX file within the directory.

The following output shows the directory information that is produced for a library
in a UFS directory. For more information, see “UFS Libraries” on page 63.

CONTENTS Procedure Statement: z/OS 535

Output 29.5 PROC CONTENTS Output for a Library in a UFS Directory, Part 1

 The SAS System 7
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Directory

 Libref UFS
 Engine V9
 Physical Name /u/user01/sample
 Owner USER01
 Group PUB
 File Size 8192
 Device number (dev) 125865
 Dir serial number (ino) 55

 Member
 # Name Type Created

 1 MEMBER01 DATA 10/10/2016 16:04:14
 2 MEMBER02 DATA 10/10/2016 16:04:14

 # Last Modified Owner Group

 1 10/10/2016 16:04:14 USER01 PUB
 2 10/10/2016 16:04:14 USER01 PUB

 Dir
 Device serial
 number number
 # File Size (dev) (ino)

 1 24576 125865 58
 2 24576 125865 59

 The SAS System 8
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Data Set Name UFS.MEMBER01 Observations 1
 Member Type DATA Variables 1
 Engine V9 Indexes 0
 Created 10/10/2016 16:04:14 Observation Length 8
 Last Modified 10/10/2016 16:04:14 Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation MVS_32
 Encoding open_ed-1047 Western
 (OpenEdition)

536 Chapter 29 / Procedures under z/OS

Output 29.6 PROC CONTENTS Output for a Library in a UFS Directory, Part 2

 Engine/Host Dependent Information

 Data Set Page Size 16384
 Number of Data Set Pages 1
 First Data Page 1
 Max Obs per Page 2013
 Obs in First Data Page 1
 Number of Data Set Repairs 0
 ExtendObsCounter YES
 Physical Name /u/user01/sample/member01.sas7bdat
 Release Created 9.0401M4
 Release Last Modified 9.0401M4
 Created by USER01
 Last Modified by USER01

 The SAS System 9
 15:58 Monday, October 10, 2016

 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

 # Variable Type Len

 1 x Num 8

The physical characteristics of a SAS data set are defined with Output 29.19 on
page 529. These three physical characteristics are different for SAS libraries on
UFS:

Physical Name
specifies the fully qualified path or name for the UNIX file in which the member
resides.

Created by
specifies the name of the MVS job or TSO session under which the member was
created. This information is available only for SAS files that were created by
SAS on z/OS. It is omitted for files that SAS created on other host platforms.

Last Modified by
specifies the name of the MVS job or TSO session under which the member was
last modified. This information is available only for SAS files that were created
by SAS on z/OS. It is omitted for files created by SAS on other host platforms.

CONVERT Procedure Statement: z/OS
Converts BMDP and OSIRIS system files and SPSS export files to SAS data sets.

z/OS specifics: All

CONVERT Procedure Statement: z/OS 537

Syntax

PROC CONVERT <options>;

Details

Overview of PROC CONVERT
PROC CONVERT produces one output SAS data set but no printed output. The new
SAS data set contains the same information as the input system file; exceptions are
noted in “How Variable Names Are Assigned” on page 539.

The procedure converts system files from these software applications:

n BMDP save files up to and including the most recent version of BMDP

n SPSS save files up to and including files that are created in SAS 9, along with
SPSS-X and the SPSS portable file format that is created by using the SPSS
EXPORT command. (If you create a system file in a later version of SPSS, then
you need to use SPSS to resave the data in export format.)

n OSIRIS files up to and including OSIRIS IV (hierarchical file structures are not
supported).

These software applications are products of other organizations. Therefore,
changes that make the system files incompatible with the current version of PROC
CONVERT might be made. SAS cannot be responsible for upgrading PROC
CONVERT to support changes to other vendor's software applications. However,
attempts to do so are made when necessary with each new version of SAS.

Information associated with each software application is given in “The BMDP,
SPSS, and OSIRIS Engines” on page 968.

PROC CONVERT Statement
PROC CONVERT <options> ;

options can be from the following list. Only one of the options that specify a system
file (BMDP, OSIRIS, or SPSS) can be included. Usually, only the PROC CONVERT
statement is used, although data set attributes can be controlled by specifying the
DROP=, KEEP=, or RENAME= data set options with the OUT= option of this
procedure. See SAS Data Set Options: Reference for more information about these
data set options. You can also use LABEL and FORMAT statements following the
PROC statement.

BMDP=fileref <(CODE=code-id | CONTENT= content-type)>
specifies the fileref of a BMDP save file. The first save file in the physical file is
converted. If you have more than one save file in the data set, then you can use
two additional options in parentheses after the libref or fileref. The CODE=
option specifies the code of the save file that you want, and the CONTENT=
option specifies the save file's content. For example, if a file CODE=JUDGES has
a content type of DATA, you can use this statement:

proc convert bmdp=bmdpfile(code=judges

538 Chapter 29 / Procedures under z/OS

 content=data);

DICT=fileref
specifies the fileref of a physical file that contains the dictionary file for the
OSIRIS data set. The DICT= option is required if you use the OSIRIS= option.

FIRSTOBS=n
gives the number of the observation at which the conversion is to begin. This
option enables you to skip over observations at the beginning of the BMDP,
OSIRIS, or SPSS file.

OBS=n
specifies the number of the last observation to be converted. This option
enables you to exclude observations at the end of the file.

OSIRIS=fileref
specifies a fileref for a physical file that contains an OSIRIS file. The DICT=
option is required when you use the OSIRIS= option.

OUT=SAS-data-set
names the SAS data set that are created to hold the converted data. If OUT= is
omitted, SAS still creates a data set and automatically names it DATAn, just as
if you omitted a data set name in a DATA statement. That is, if it is the first such
data set in a job or session, then SAS names it DATA1; the second is DATA2, and
so on. If you omit the OUT= option, or if you do not specify a two-level name in
the OUT= option, then the converted data set is not permanently saved.

SPSS=fileref
specifies a fileref for a physical file that contains an SPSS file. The SPSS file can
be in any of three formats: SPSS Release 9 (or prior), SPSS-X format, or the
portable file format from any operating environment that was created by using
the SPSS EXPORT command.

How Missing Values Are Handled
If a numeric variable in the input data set has no value or has a system missing
value, PROC CONVERT assigns a missing value to it.

How Variable Names Are Assigned
The following sections explain how names are assigned to the SAS variables that
are created by the CONVERT procedure.

CAUTION
Because some translation of variable names can occur (as indicated in the
following sections), ensure that the translated names are unique.

Variable Names in BMDP Output
Variable names from the BMDP save file are used in the SAS data set, except that
nontrailing blanks and all special characters are converted to underscores in the
SAS variable names. The subscript in BMDP variable names, such as x(1), becomes
part of the SAS variable name, but the parentheses are omitted (for example, X1).

CONVERT Procedure Statement: z/OS 539

Alphabetic BMDP variables become SAS character variables of length 4. Category
records from BMDP are not accepted.

Variable Names in OSIRIS Output
For single-response variables, the V1 through V9999 name becomes the SAS
variable name. For multiple-response variables, the suffix Rn is added to the
variable name, when n is the response. For example, V25R1 would be the first
response of the multiple response V25. If the variable after or including V1000 has
100 or more responses, then responses 99 are eliminated. Numeric variables that
OSIRIS stores in character, fixed-point binary, or floating-point binary mode
become SAS numeric variables. Alphabetic variables become SAS character
variables; any alphabetic variable whose length is greater than 200 is truncated to
200. The OSIRIS variable description becomes a SAS variable label, and OSIRIS
print format information is translated to the appropriate SAS format specification.

Variable Names in SPSS Output
SPSS variable names and labels become variable names and labels without any
changes. SPSS alphabetic variables become SAS character variables. SPSS blank
values are converted to SAS missing values. SPSS print formats become SAS
formats, and the SPSS default precision of no decimal places becomes part of the
variables' formats. The SPSS DOCUMENT data is copied so that the CONTENTS
procedure can display them. SPSS value labels are not copied.

Examples

Example 1: Converting a BMDP Save File
The following statements convert a BMDP save file and produce the temporary
SAS data set TEMP, which contains the converted data.

filename ft04f001 'userid.bmdp.savefile';
proc convert bmdp=ft04f001 out=temp;
run;
title 'BMDP CONVERT Example';
proc contents;
run;

Example 2: Converting an OSIRIS File
The following statements convert an OSIRIS file and produce the temporary SAS
data set TEMP, which contains the converted data. Output 29.25 on page 541
shows the attributes of TEMP.

filename osiris 'userid.misc.cntl(osirdata)';
filename dict 'userid.misc.cntl(osirdict)';
proc convert osiris=osiris dict=dict out=temp;
run;
title 'OSIRIS CONVERT Example';
proc contents;
run;

540 Chapter 29 / Procedures under z/OS

The following output displays the results:

Output 29.7 Converting an OSIRIS File

 OSIRIS CONVERT Example
 The CONTENTS Procedure
 Data Set Name: WORK.TEMP Observations: 20
 Member Type: DATA Variables: 9
 Engine: V9 Indexes: 0
 Created: 9:46 Monday, April 27, 2005 Observation Length: 36
 Last Modified: 9:46 Monday, April 27, 2005 Deleted Observations: 0
 Protection: Compressed: NO
 Data Set Type: Sorted: NO
 Label:
 -----Engine/Host Dependent Information-----
 Data Set Page Size: 6144
 Number of Data Set Pages: 1
 First Data Page: 1
 Max Obs per Page: 135
 Obs in First Data Page: 20
 Number of Data Set Repairs: 0
 Physical Name: SYS99117.T152416.RA000.USERID.R0121907
 Release Created: 8.0000B2
 Release Last Modified: 8.0000B2
 Created by: USERID
 Last Modified by: USERID
 Subextents: 1
 Total Blocks Used: 1
 -----Alphabetic List of Variables and Attributes-----
 # Variable Type Len Pos Format Label
 --
 1 V1 Num 4 0 INTERVIEW NUMBER REF= 1 ID=
 2 V2 Num 4 4 INTERVIEWER NUMBER REF= 2 ID=
 3 V3 Num 4 8 PRIMARY SAMPLING UNIT REF= 3 ID=
 4 V4 Num 4 12 REGION REF= 4 ID=
 5 V5 Num 4 16 CHUNK AND SEGMENT REF= 5 ID=
 6 V6 Num 4 20 LANGUAGE OF INTERVIEW REF= 6 ID=
 7 V7 Num 4 24 LANGUAGE OF INTERVIEW REF=1621 ID=
 8 V9 Num 4 28 LNGTH OF INTERVIEW REF=1620 ID=
 9 V9 Num 4 32 12.4 WEIGHT REF=1700 ID=

Example 3: Example of Converting an SPSS File
The following statements convert an SPSS Release 9 file and produce the
temporary SAS data set TEMP, which contains the converted data. The output
generated by PROC CONTENTS is similar in format to Output 29.25 on page 541.

filename spss 'userid.spssfile.num1';
proc convert spss=spss out=temp;
run;
title 'SPSSR9 CONVERT Example';
proc contents;
run;

See Also

“The BMDP, SPSS, and OSIRIS Engines” on page 968

CONVERT Procedure Statement: z/OS 541

CPORT Procedure Statement: z/OS
Writes SAS data sets and catalogs into a transport file.

z/OS specifics: Specification of transport file

See: “CPORT Procedure” in Base SAS Procedures Guide

Details

The DISK option is the default for the CPORT procedure. Therefore, PROC CPORT
defaults to writing to a file on disk instead of on a tape. If you want to write to a file
on tape, specify the TAPE option or assign the fileref or ddname of SASCAT to a
tape.

You are not required to define the logical name SASCAT to your tape, and you are
not required to specify the full DCB attributes. However, the BLKSIZE= value must
be an integral multiple of 80; a value of 8000 is recommended.

Here is an example of exporting all the SAS data sets and catalogs in a SAS library
to a transport file on disk. Note that the FILENAME statement specifies
BLKSIZE=8000.

libname oldlib 'SAS-data-library';
filename tranfile 'transport-file-name'
 blksize=8000 disp=(new,catlg);
proc cport library=oldlib file=tranfile;
run;

PROC CPORT writes a transport file to the physical file that is referenced by
TRANFILE. The file contains all the data sets and catalogs in the SAS library
OLDLIB.

Note: SAS 9.1 and later releases support using the MIGRATE procedure to migrate
a SAS library from a previous release to a later release. For more information, see
the Migration focus area at support.sas.com.

See Also

n Moving and Accessing SAS Files

Procedures

n “CIMPORT Procedure Statement: z/OS” on page 526

542 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1pihdm18p7g5wn1ezqpet80fvw8.htm&locale=en

DATASETS Procedure Statement: z/OS
Manages SAS files; creates and deletes indexes and integrity constraints for SAS data sets.

z/OS specifics: Output generated by CONTENTS statement, library information

See: “DATEKEYS Procedure” in Base SAS Procedures Guide

Details

Part of the DATASETS procedure output is system-dependent. The SAS library
information that is displayed in the SAS log depends on the operating environment
and the engine. In Output 29.26 on page 543, the SAS log shows the information
that is generated by the DATASETS procedure for the V9 (BASE) engine under
z/OS.

Note: The information that is produced for other engines varies slightly. For
information about other engines, see “Compatibility Engines” on page 48.

Output 29.8 SAS Library Information from the DATASETS Procedure

 -----Directory-----
 Libref: WORK
 Engine: V9
 Physical Name: SYS96053.T145204.RA000.USERID.R0000128
 Unit: DISK
 Volume: ANYVOL
 Disposition: NEW
 Device: 3380
 Blocksize: 6144
 Blocks per Track: 7
 Total Library Blocks: 105
 Total Used Blocks: 31
 Total Free Blocks: 74
 Highest Used Block: 44
 Highest Formatted Block: 49
 Members: 1
 # Name Memtype Indexes

 1 ORANGES DATA
 2 PROFILE CATALOG

For explanations of the fields in this output, see “CONTENTS Procedure Statement:
z/OS” on page 527.

See Also

“CONTENTS Procedure Statement: z/OS” on page 527

DATASETS Procedure Statement: z/OS 543

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p02teyw4mikic6n1kkzovv1wn4n4.htm&locale=en

DBF Procedure Statement: z/OS
Converts a dBASE file to a SAS data set or a SAS data set to a dBASE file.

z/OS specifics: All

See: “DBF Procedure” in SAS/ACCESS Interface to PC Files: Reference

Syntax

PROC DBF options ;

Optional Arguments
The following options can be used in the PROC DBF statement:

DB2 | DB3 | DB4 | DB5=fileref
specifies the fileref of a DBF file. The fileref can be allocated via a SAS
FILENAME statement, a JCL DD statement (in batch mode), or a TSO ALLOC
command (under TSO). For further information about fileref specification, see
“Ways of Assigning External Files” on page 94. The DBF file can be stored as
one of the following formats:

n a sequential data set (such as sasdemo.emp.dbf)

n a partitioned z/OS data set member (such as sasdemo.dbf.pds(emp))

n a file in a hierarchical file system (such as /u/sasdemo/emp.dbf).

For further information about file naming requirements, see “Referring to
External Files” on page 108.

If the fileref is allocated with a FILENAME statement, the statement might
specify RECFM=N to identify the DBF file as binary. This specification is
optional.

The DBn option must correspond to the version of dBASE with which the DBF
file is compatible. Specify a DBF file with the DBn option, where n is 2, 3, 4, or 5.
You can specify only one of these values.

DATA=<libref.>member
names the input SAS data set, using 1–32 characters. Use this option if you are
creating a DBF file from a SAS data set. If you use the DATA= option, do not use
the OUT= option. If you omit the DATA= option, SAS creates an output SAS
data set from the DBF file.

OUT=<libref.>member
names the SAS data set that is created to hold the converted data, using 1–32
characters. Use this option only if you do not specify the DATA= option. If OUT=
is omitted, SAS creates a temporary data set in the Work library. The name of
the temporary data set is DATA1 [...DATAn]. If OUT= is omitted or if you do not

544 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p1d25ttg3800b8n1nknp159lf8jh.htm&locale=en

specify a two-level name in the OUT= option, the SAS data set that is created
by PROC DBF remains available during your current SAS session (under the
temporary data set name), but it is not permanently saved.

Details

Overview PROC DBF
You can use PROC DBF in the z/OS environment if your site has a license for
SAS/ACCESS for PC File Formats.

The DBF procedure converts files in DBF format to SAS data sets that are
compatible with the current SAS release. You can also use PROC DBF to convert
SAS data sets to files in DBF format.

Before you convert a DBF file to a SAS file, you must first upload your DBF file from
the Windows or UNIX environments to the z/OS environment, using a mechanism
such as FTP (file transfer protocol). If you are licensed for SAS/CONNECT, you can
use PROC UPLOAD:

filename out1 'sasdemo.emp.dbf';
proc upload infile='c:\employee\emp.dbf'
 outfile=out1 binary;
run;

In the z/OS environment, sequential data sets are recommended for use with DBF,
with the following attributes:

n RECFM=FS

n DSORG=PS

n LRECL=6160

n BLKSIZE=6160

The following example illustrates the specification of attributes for a sequential
data set:

sasdemo.emp.dbf = (DSORG=PS,RECFM=FS,LRECL=6160,BLKSIZE=6160)

PROC DBF produces one output file but no printed output. The output file contains
the same information as the input file but in a different format.

The DBF procedure works with DBF files created by all the current versions and
releases of dBASE (II, III, III PLUS, IV, and 5.0) and with most DBF files that are
created by other software products.

Converting DBF Fields to SAS Variables
When you convert a DBF file to a SAS data set, DBF numeric variables become SAS
numeric variables. Similarly, DBF character variables become SAS character
variables. Any DBF character variable of length greater than 254 is truncated to
254 in SAS. Logical fields become SAS character variables with a length of 1. Date
fields become SAS date variables.

DBF Procedure Statement: z/OS 545

DBF fields whose data are stored in auxiliary files (Memo, General, binary, and OLE
data types) are ignored in SAS.

If a DBF file has missing numeric or date fields, SAS fills those missing fields with a
series of the digit 9 or with blanks, respectively.

When a dBASE II file is translated into a SAS data set, any colons in dBASE variable
names are changed to underscores in SAS variable names. Conversely, when a SAS
data set is translated into a dBASE file, any underscores in SAS variable names are
changed to colons in dBASE field names.

Converting SAS Variables to DBF Fields
In DBF files, numeric variables are stored in character form. When converting from
a SAS data set to a DBF file, SAS numeric variables become DBF numeric variables
with a total length of 16. A SAS numeric variable with a decimal value must be
stored in a decimal format in order to be converted to a DBF numeric field with a
decimal value. In other words, unless you associate the SAS numeric variable with
an appropriate format in a SAS FORMAT statement, the corresponding DBF field
does not have any value to the right of the decimal point. You can associate a
format with the variable in a SAS data set when you create the data set or by using
the DATASETS procedure. For more information, see “DATASETS Procedure
Statement: z/OS” on page 543.

If the number of digits—including a possible decimal point—exceeds 16, a warning
message is issued and the DBF numeric field is filled with a series of the digit 9. All
SAS character variables become DBF fields of the same length. When converting
from a SAS data set to a DBF file that is compatible with dBASE III or later, SAS
date variables become DBF date fields. When converting to a dBASE II file, SAS
date variables become dBASE II character fields in the form YYYYMMDD.

Transferring Other Software Files to DBF Files
You might find it helpful to save another software vendor's file to a DBF file and
then convert that file into a SAS data set. For example, you could save an Excel
XLS file in DBF format, upload the file, and use PROC DBF to convert that file into a
SAS data set. Or you could do the reverse; use PROC DBF to convert a SAS data set
into a DBF file and then load that file into an Excel spreadsheet.

Examples

Example 1: Converting a dBASE IV File to a SAS Data Set
In this example, a dBASE IV file that is named SASDEMO.EMPLOYEE.DBF is
converted to a SAS data set. A FILENAME statement specifies a fileref that names
the dBASE IV file. The FILENAME statement must appear before the PROC DBF
statement, as shown:

libname save 'sasdemo.employee.data';
filename dbfin 'sasdemo.employee.dbf';
proc dbf db4=dbfin out=save.employee;
run;

546 Chapter 29 / Procedures under z/OS

Example 2: Converting a dBASE 5 File to a SAS Data Set
In this example, a dBASE 5 file is converted to a SAS data set.

libname demo 'sasdemo.employee.data';
filename dbfout 'sasdemo.newemp.dbf' recfm=n;
proc dbf db5=dbfout data=demo.employee;
run;

FONTREG Procedure Statement: z/OS
Adds system fonts to the SAS registry.

z/OS specifics: Statement support for non-USS sites; font file requirements

See: “FONTREG Procedure” in Base SAS Procedures Guide

Details

SAS distributes font files for use by the universal printer GIF driver as native z/OS
files with the following characteristics:

n Data Set Organization (DSORG) = PS

n Record Format (RECFM) = FBS

n Logical Record Length (LRECL) = 1.

In this format, the FONTREG procedure requires the FONTFILE statement. All
other statements for this procedure require a directory specification, which is
incompatible with native z/OS files. Also, omitting all statements implies a
directory search of the directory specified by the FONTSLOC= system option. The
specification for the FONTSLOC= option for native z/OS files does not specify a
directory.

The font files can be copied to the UNIX file system. Placing the font files in a UFS
directory allows full functionality of the FONTREG procedure, with support for all
statements. Also, if no statement is supplied, the specification of the FONTSLOC=
system option for UFS allows for a directory specification.

See Also

“FONTSLOC= System Option: z/OS” on page 767

FONTREG Procedure Statement: z/OS 547

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1exv1ipezugn6n1i2xajdhp7h73.htm&locale=en

FORMAT Procedure Statement: z/OS
Creates user-defined formats and informats.

z/OS specifics: LIBRARY= option in the PROC FORMAT statement

Tip: User-defined format names cannot end in a number. For more information, see
“User-Defined Formats” in SAS Formats and Informats: Reference and “SAS Names”
in SAS Programmer’s Guide: Essentials.

See: “PROC FORMAT Statement” in Base SAS Procedures Guide

Details

To create a new format, specify a valid libref as the value of the LIBREF= option.
Specifying a valid libref creates a new format in the SAS 9 style in the FORMATS
catalog. The FORMATS catalog is stored in the SAS library that is identified by the
LIBRARY= option.

In SAS 9, you can no longer write Version 5 formats to a load library by using a
ddname as the value of the LIBRARY= option. You can read Version 5 formats, but
you cannot write them.

ITEMS Procedure Statement: z/OS
Builds, reads, and writes SAS item store files.

z/OS specifics: All

Syntax

PROC ITEMS NAME=<libref.> member;

Details

Overview PROC ITEMS
An item store is a SAS data set that consists of independently accessible chunks of
information. SAS uses item store files for online Help, where the SAS help browser
accesses an item store in the Sashelp library. You can use the ITEMS procedure to

548 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1c16dxnndwfzyn14o1kb8a4312m.htm&locale=en

create, modify, and browse your own item store files, which you can then access
through the SAS help browser.

The contents of an item store are divided into directories, subdirectories, and
topics. The directory tree structure emulates the structure of UNIX System
Services, so that a given Help topic is identified by a directory path (root_dir/
sub_dir/item). This hierarchical structure allows the SAS help browser to support
HTML links between Help topics.

The item store files that SAS uses for HTML help can be written only by users who
have the appropriate privileges. Although SAS discourages rewrites of SAS help
items, you can add items to the SAS help item store files, and you can develop new
item store files of your own for any information that you want to make available
through the SAS help browser. For information about writing your own HTML help,
see “Using User-Defined Item Store Help Files” on page 228.

To access an item store, you must first allocate the library that contains the item
store, unless the item store is a member of the Work library. After you allocate the
library, you issue the PROC ITEMS NAME=fileref statement to access the item
store in SAS. Once the item store is available in SAS, you can use the LIST, IMPORT,
EXPORT, MERGE, and DELETE statements to control item store contents. SAS
applies all of these statements to the item store name in the last PROC ITEMS
NAME= statement.

For information about the HTML tags that are supported by the SAS help browser,
see “Creating User-Defined Item Store Help Files” on page 229.

HTC File Format
Item stores are physically stored in the operating environment as HTC files. An HTC
file is a text file that lists help filenames one per line, preceded by five colons, as
follows:

:::::<filename>.htm

Directories in the HTC file are identified by a line that begins with five colons and
ends with a path specification:

:::::<dirname1>/<dirname2>/<filename>.htm

HTC files can be imported and exported in HTC file format. Importing an HTC file
with the IMPORT statement creates the necessary directories and subdirectories.
For example, if an HTC file that contains the preceding directory entry was
imported into an item store with the IMPORT statement, then the directory and
subdirectory would be created as needed. And, the file would be placed in the
specified subdirectory. Any filename that lacks a path specification goes into the
root directory or into the directory specified by the DIR= option, if it is specified in
the IMPORT statement.

Alternate Syntax for the DIR= and ITEM= Options
You can use the forward slash path character (/) to specify a path in the DIR= and
ITEM= options in all of the statements that take those options. For example, the
following two statements are equivalent:

LIST DIR='usr' ITEM='mail';
LIST ITEM='usr/mail';

ITEMS Procedure Statement: z/OS 549

Note that a full path, starting with the directory just beneath the item store's root
directory (with no initial forward slash) is required for access to anything except
items in the root directory or to item store files consisting of a single item.

Wildcards, using asterisks (*) as in UNIX, are not accepted in item store paths. Nor
can you specify more than one path (a file concatenation) for each of the following
statements.

PROC ITEMS Statement
PROC ITEMS NAME=<libref.> member;

The following argument is required in the PROC ITEMS statement:

NAME=
If no libref is specified, the libref is assumed to be Work. If libref.member is
specified, the libref must have been previously allocated. For more information
about allocation, see “LIBNAME Statement: z/OS” on page 656.

LIST Statement
LIST <options;>

The LIST statement writes a list of item names, a list of directory names, or both to
the SAS log or to a specified file. Specifying no options writes a list of all items and
directories to the SAS log.

The following options can be used in the LIST statement:

DUMP=fileref
specifies the fileref that receives the listing. If DUMP= is not specified, the
output goes to the SAS log.

DIR='dir-name'
specifies an item store directory whose item names you want to list. If you
specify the DIR= option alone, you receive a listing of item names contained in
that directory.

ITEM='item-name'
specifies that you want to list the contents of the named item in the named
directory of the item store. If you specify an item without specifying a directory,
you receive the contents of the item with the specified name in the root
directory of the item store.

IMPORT Statement
IMPORT FILEREF=fileref <options>;

The IMPORT statement imports a fileref into an item store. If the imported fileref
contains items or directories that currently exist in the item store, the new items or
directories overwrite (replace) the existing versions.

The following options can be used in the IMPORT statement:

DIR='dir-name'
specifies the item store directory that receives the imported fileref. If a directory
is not specified, the fileref is imported into the root directory of the item store.

550 Chapter 29 / Procedures under z/OS

ITEM='item-name'
specifies the name of the item that receives the imported fileref. If an item is not
specified, the imported fileref is assumed to be an HTC file.

EXPORT Statement
EXPORT FILEREF=fileref<options>;

The EXPORT statement copies an item or item store to an external fileref in HTC
format. If the fileref exists before the EXPORT statement, the new fileref
overwrites (replaces) the previous version.

The following options can be used in the EXPORT statement:

DIR='dir-name'
specifies the item store directory that is the source of the export. If you do not
specify a directory, the fileref receives the contents of the entire item store or
the specified item from the root directory of the item store.

ITEM='item-name'
specifies an item for export. If you do not specify an item, the fileref receives
the entire contents of the specified directory or item store, in HTC format.

MERGE Statement
MERGE SOURCE=<libref.> member;

The MERGE statement merges the specified item store into the item store opened
previously with PROC ITEMS.

A libref is required in the MERGE statement. If the two item store files have
directories with the same name and path, the contents of the new directory replace
the contents of the old directory. If you merge into the root directory, the entire
item store is replaced. If you merge a new item into a directory, the new item is
merged into the old directory. If the old directory contains an item of the same
name, the new item replaces the old item.

DELETE Statement
DELETE <options>;

The DELETE statement deletes all or part of the contents in an item store.

The following options can be used in the DELETE statement:

DIR='dir-name'
specifies the directory from which you want to delete. When DIR= is not
specified, either the entire contents of the item store are deleted or the
specified item is deleted from the item store's root directory.

ITEM='item-name'
deletes the specified item from the specified directory in the item store, or if a
directory is not specified, from the root directory of the item store.

ITEMS Procedure Statement: z/OS 551

See Also

“HELPLOC= System Option: z/OS” on page 775

OPTIONS Procedure Statement: z/OS
Lists the current values of SAS system options.

z/OS specifics: Host options displayed, host-specific options of OPTIONS statement

See: “OPTIONS Procedure” in SAS System Options: Reference

Syntax

PROC OPTIONS<options>;

Optional Argument
options

HOST
NOHOST

displays only host options (HOST) or only portable options (NOHOST).
PORTABLE is an alias for NOHOST.

Details

Note: The previous syntax documentation is a simplified version of the OPTIONS
procedure syntax. For the complete syntax and its explanation, see the OPTIONS
procedure in Base SAS Procedures Guide.

Portable options are the same in all operating environments. To see a list of these
options, submit

proc options portable;
run;

Certain portable options have aspects that are specific to z/OS. All portable
options with z/OS aspects are documented in “System Options under z/OS” on
page 685. All of the SAS options that are portable are documented in SAS System
Options: Reference.

Other options are entirely specific to the z/OS environment. To see a list of these
options, submit the following code:

proc options host;
run;

552 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

All options that are specific to z/OS are documented in “System Options under
z/OS” on page 685.

The following options cause the OPTIONS procedure to list the system options
that are specific to the following SAS software products or applications. Although
the OPTIONS procedure still accepts the following one-word options, it is
recommended that you use the associated GROUP= option instead:

GROUP=ADABAS
SAS/ACCESS interface to ADABAS

GROUP=INSTALL
system administrators

GROUP=DB2
SAS/ACCESS interface to DB2

GROUP=DATACOM
SAS/ACCESS interface to CA-DATACOM/DB

GROUP=IDMS
SAS/ACCESS interface to CA-IDMS

GROUP=IMS
SAS/ACCESS interface to IMS

GROUP=ISPF
SAS interface to ISPF (see “SAS Interface to ISPF” on page 293)

GROUP=SORT
sorts observations in a SAS data set

For more information about SAS system options that are associated with a
particular SAS/ACCESS interface, see the documentation for that SAS/ACCESS
interface.

See Also

“Displaying System Option Settings” on page 22

PDS Procedure Statement: z/OS
Lists, deletes, or renames members of a partitioned data set.

Restriction: When a SAS server is in the locked-down state, the PDS procedure is disabled. For
more information, see Chapter 10, “SAS Processing Restrictions for Servers in a
Locked-Down State,” on page 219.

z/OS specifics: All

PDS Procedure Statement: z/OS 553

Syntax

PROC PDS DDNAME=file-specification <options>;

DELETE member-1 <member-2 …>;

CHANGE old-name-1=new-name-1 <old-name-2=new-name-2 …>;

EXCHANGE name-1=other-name-1 <name-n =other-name-2 …>;

Details

Overview PROC PDS
Partitioned data sets (PDS) are libraries that contain files called members. There
are two types of partitioned data sets. One can contain source code, macros,
cataloged procedures, and other data. The other, called a load library, can contain
only load modules.

PROC PDS operates on the directory of a partitioned data set to list, delete, and
rename members and aliases. (Partitioned data sets are not the same as SAS
libraries.) When members are deleted or renamed, PROC PDS updates the directory
of the partitioned data set. Also, unless NOLIST is specified, PROC PDS writes an
updated listing of the PDS member names to the SAS log.

PROC PDS operates with full capabilities on both extended partitioned data sets
(PDSEs) and standard partitioned data sets (PDSs).

PROC PDS Statement

PROC PDS DDNAME=file-specification <options>;

DDNAME=file-specification
specifies the physical filename (enclosed in quotation marks) or the fileref that
is associated with the partitioned data set that you want to process. A fileref
must have been previously assigned with a FILENAME statement, FILENAME
function, a JCL DD statement, or a TSO ALLOCATE command. The DDNAME=
argument is required.

The following options can appear in the PROC PDS statement:

NOLIST
suppresses the listing of the member names and aliases in the directory of the
partitioned data set.

KILL
deletes all the members of the partitioned data set that is specified by
DDNAME=.

REFRESH | NOREFRESH
specifies whether to update the directory information of the file that is being
processed after each operation. The default, REFRESH, updates the directory
information after each operation. Unless the operations that are being

554 Chapter 29 / Procedures under z/OS

performed by PROC PDS are dependent on each other, specify NOREFRESH for
better performance.

STRICT
causes error messages to be generated and sets the return code to 8 if no
members match the selection criteria. The default behavior is for note messages
to be generated and for the return code to be set to 0 if no members match the
selection criteria.

DELETE Statement

DELETE member-1 <member-2 …>;

If you want to delete a member or members from the PDS, specify the member
names in a DELETE statement.

When a specification in the DELETE statement is followed by a colon (:), all
members whose names begin with the characters preceding the colon are deleted.
For example, when the following statement is executed, PROC PDS deletes all
members whose names begin with the characters PRGM:

delete prgm:;

CHANGE Statement

CHANGE old-name-1=new-name-1 <old-name-2=new-name-2 …> ;

If you want to rename a member or members of the PDS, use the CHANGE
statement. Specify the old name on the left side of the equal sign, and specify the
new name on the right. For example, the following statements change the name of
member TESTPGM to PRODPGM:

filename loadlib 'my.pgm.lib ';
proc pds ddname=loadlib;
 change testpgm=prodpgm;
run;

If multiple members have names that begin with the same sequence of characters
and you want to change all of the names so that they begin with a different
sequence, use a colon (:) after old-name and new-name. Here is an example:

change exam:=test:;

All of the members whose names began with the characters EXAM subsequently
have names beginning with the characters TEST.

Note: If changing the name of a member would duplicate the name of an existing
member, then the member is not renamed and a note is written to the SAS log.

It is not necessary for the lengths of the character sequences that precede the
colon to match. For example, the following statement is valid:

change am:=morn:;

However, if a new name is too long, then a note is written to the SAS log and no
change is made.

PDS Procedure Statement: z/OS 555

EXCHANGE Statement

EXCHANGE name-1=other-name-1 <name-2 =other-name-2 …>;

Use the EXCHANGE statement to switch the names of members of the partitioned
data set. For example, after the following statements are executed, the member
originally called A is named Z, and the member originally called Z is named A.

proc pds ddname='my.pgm.lib';
 exchange a=z;
run;

If multiple members have names that begin with the same sequence of characters
and you want to exchange that sequence with the sequence from another group of
data sets, use a colon (:) after name and other-name. For example, after the
following statement is executed, all data sets whose names began with ABC
subsequently begin with DEFG. In addition, all of the data sets whose names began
with DEFG subsequently begin with ABC.

exchange abc:=defg:;

It is not necessary for the lengths of the sequences of characters that precede the
colons to match. However, if a new name is too long, then a note is written to the
SAS log and no change is made.

Usage Note
Unlike other SAS procedures that deal with partitioned data sets (for example,
PROC PDSCOPY and PROC SOURCE), PROC PDS does not make any distinction
between a member name and an alias, other than to report which names in the PDS
directory are aliases for which members. If an alias is renamed, it is still an alias.
PROC PDS enables you to delete a member that has aliases in the PDS directory,
but then other procedures (PROC PDSCOPY, for example) cannot process the
aliases.

Example: Deleting and Renaming Members with the
PDS Procedure

This example writes the names of the members of USERID.MVS.OUTPUT to the
SAS log and then generates a second listing showing the member changes and
deletions that are specified by the second PROC step.

filename pdstest 'userid.mvs.output';
proc pds ddname=pdstest;
run;
proc pds ddname=pdstest;
 delete tempout tempout2;
 change mem=out1603;
run;

The following output displays the results:

556 Chapter 29 / Procedures under z/OS

Output 29.9 Deleting and Renaming Members with the PDS Procedure

 1 filename pdstest 'userid.mvs.output';
 2
 3 proc pds ddname=pdstest;
 4 run;
 SAS PROC PDS Version 9.00 04/27/99
 DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX
 Members (aliases)
 MEM OUT1601 OUT1602 TEMPOUT TEMPOUT2
 Tracks Used 1.8
 Unused 1.2
 Total 3.0
 Extents 1
 Directory Blks 11
 Blocks Used 1
 5
 6 proc pds ddname=pdstest;
 7 delete tempout tempout2;
 8 change mem=out1603;
 9 run;
 DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX
 Members (aliases)
 MEM OUT1601 OUT1602 OUT1603
 Tracks Used 1.8
 Unused 1.2
 Total 3.0
 Extents 1
 Directory Blks 11
 Blocks Used 1

PDSCOPY Procedure Statement: z/OS
Copies partitioned data sets from disk to disk, disk to tape, tape to tape, or tape to disk.

Restriction: When a SAS server is in the locked-down state, the PDSCOPY procedure is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: All

Syntax

PROC PDSCOPY INDD=file-specification OUTDD=file-specification <options>;

EXCLUDE member-name-1 <. . . member-name-2 …>;

SELECT member-name-1 <member-name-2 …>;

PDSCOPY Procedure Statement: z/OS 557

Details

Overview of PROC PDSCOPY
The PDSCOPY procedure can be used to copy an entire partitioned data set, or you
can specify which members you want to copy. This procedure cannot be used to
copy extended partitioned data sets (PDSEs). PROC PDSCOPY is useful for
backing up source libraries and load module libraries to tape. If you use PROC
PDSCOPY to copy a PDS to tape, then you must also use it if you want to copy that
PDS back to disk. However, you can use either PROC PDSCOPY or other copy
utilities to copy that tape to another tape.

When libraries are moved between disks that have different optimal block sizes,
PROC PDSCOPY can be used to reblock the libraries. PROC PDSCOPY handles
overlay programs and alias names. It also sets up the RLD count fields that are used
by the FETCH program.

When a PDS contains load modules, it generally requires 13% to 18% less disk space
after being copied by PROC PDSCOPY, because PROC PDSCOPY uses free space
on a partially filled track to store records. The linkage editor constructs records
that do not fit on a partially used track.

The PDSCOPY procedure does not copy scatter-loaded modules.

If errors are encountered during PDSCOPY processing, the return code for the job
step is set to 8.

PROC PDSCOPY Statement

Syntax of the PROC PDSCOPY Statement

PROC PDSCOPY INDD=file-specification OUTDD=file-specification <options>;

Required Arguments
INDD=file-specification

specifies either the fileref or the physical filename (enclosed in quotation
marks) of the library to copy.

OUTDD=file-specification
specifies either the fileref or the physical filename (enclosed in quotation
marks) of the output partitioned data set.

Optional Arguments
Some of the options that can appear in the PROC PDSCOPY statement apply to
both source libraries and load module libraries. Others apply only to load module
libraries. The following options apply to both source libraries and load module
libraries:

n ALIASMATCH=TTR

n BLKSIZE=

558 Chapter 29 / Procedures under z/OS

n INTAPE

n NEWMOD

n NOALIAS

n NOREPLACE

n OUTTAPE

n SHAREINPUT

The following options apply only to load module libraries:

n ALIASMATCH=BOTH | EITHER | NAME

n DC

n DCBS|NODCBS

n MAXBLOCK=

n NE

n NOTEST

All the options that can appear in the PROC PDSCOPY statement are discussed in
this section. In the discussion, the term member refers to both source library
members and to load modules. The term module refers only to load modules.

ALIASMATCH=BOTH | EITHER | NAME | TTR
specifies how to match aliases with main members to determine whether they
represent the same member.

BOTH
specifies that both the TTR (relative track and record) values and the names
must match in order for a main module to be considered a match.

EITHER
specifies that a match for either the TTR value or the name is sufficient to
identify the main module that corresponds to an alias. If more than one main
module directory entry matches, it is impossible to predict which one is
used.

NAME
specifies that the main module name in the directory entry for the alias (at
offset 36) is compared with main module names to find a match. The alias is
assumed to represent the same module as the main module that has the
matching name. When you specify ALIASMATCH=NAME, the TTR values do
not need to match.

A situation in which names match even though TTR values do not match
occurs when the main module is originally link edited specifying the alias
names, and then link edited again without specifying them. In this case, the
directory entries for the aliases still point to the old version of the module
(that is, to a back-level version). Because of this situation, you should
consider carefully whether to use the ALIASMATCH=NAME option or the
NEWMOD option. ALIASMATCH=NAME updates the aliases to point to the
current version of the main module rather than to the back-level version. The
NEWMOD option causes the older version of the module to copy. Another

PDSCOPY Procedure Statement: z/OS 559

alternative is to use TTR matching and not to copy the aliases when they are,
in fact, obsolete names.

TTR
specifies that TTR values are compared. TTR is the default. An alias is
assumed to represent the main member that has the same TTR value. If the
TTR values match, then the directory entry for the main member and the
alias currently point to the same place in the data set.

For load modules, the most common situation in which TTR values might
match, but names might not match, occurs when the main module was
renamed (for example, by using ISPF option 3.1) after the aliases were
created. The alias directory entries can still contain the old main module
name.

Whichever method you use, unmatched aliases are not copied to the output
file unless you specify the NEWMOD option. For more information, see
“NEWMOD” on page 561. Matched aliases in the output file always point to
the main module to which they were matched (that is, they have the same
TTR values), even if the TTR values were different in the input file (which
might occur if ALIASMATCH=NAME or ALIASMATCH=EITHER was used).
When modules are matched using the TTR values (that is, when TTR or
EITHER was specified), the main module name in alias directory entries is
changed in the output file.

BLKSIZE=block-size
specifies the maximum block size to use for reblocking the copied load modules
on the output device. If the BLKSIZE= option is omitted, the default depends on
the type of the output device and on the data set type:

n If output is to tape, the default is 32,760.

n If output is in tape (sequential) format on disk (that is, when the OUTTAPE
option is used), the default is either the device track size or 32,760,
whichever is less.

n If output is to disk, the default depends on the device type. However, it is
never greater than 18K unless you use the MAXBLOCK= option. In addition,
the default cannot exceed the device track size or 32,760, whichever is less.
For more information, see “MAXBLOCK=block-size | MAXBLK=block-size” on
page 561.

n Unless the NODCBS option (described later) is specified and the output data
set is a partitioned data set on disk, the default value is reduced to the data
set control block (DSCB) block size of the partitioned data set, if that is
smaller.

For tape (sequential) format output, the specified block size cannot be less than
1.125 times the maximum input device block size, nor greater than 32,760. For
disk output, the specified block size cannot be less than 1,024.

DC
specifies that load modules that are marked downward compatible (that is,
modules that can be processed by linkage editors that were used before z/OS)
are eligible for processing. After they are copied by PROC PDSCOPY, the load
modules are not marked DC in their directory entry because PROC PDSCOPY
does not produce downward compatible load modules nor does it preserve their

560 Chapter 29 / Procedures under z/OS

attributes. If you do not specify the DC option and you attempt to copy load
modules marked DC, PROC PDSCOPY issues an error message.

DCBS | NODCBS
tells SAS whether to preserve the data control block (DCB) characteristics of
the output partitioned data set on disk. If NODCBS is specified, the data control
block (DCB) characteristics of the output partitioned data set on disk can be
overridden. The default value is DCBS.

If the NODCBS option is specified, PROC PDSCOPY changes the DSCB (data
set control block) block size of the output partitioned data set to the maximum
permissible block size for the device. Otherwise, the maximum permissible
value of the BLKSIZE= option is the current block size value from the DSCB, and
the DSCB block size is not changed.

Using the NODCBS option might enable PROC PDSCOPY to block output load
modules more efficiently. However, changing the DSCB block size could cause
problems when the data set is moved, copied, or backed up by a program other
than PROC PDSCOPY, particularly if your installation has more than one type of
disk drive. Consult your systems staff before specifying NODCBS.

INTAPE
specifies that the INDD= library is in tape (sequential) format. The INTAPE
option is assumed if a tape drive is allocated to the input data set.

MAXBLOCK=block-size | MAXBLK=block-size
enables you to override the limitation of 18K on the block size of text records in
the output library. (The value of BLKSIZE must be greater than or equal to the
value of MAXBLOCK in order to get text records at MAXBLOCK size.) If the
value of MAXBLOCK is not specified, then the maximum block size for text
records is 18K; this block size is the largest text block that can be handled by the
FETCH program in many operating environments. You can specify a block size
greater than 18K for text records, but doing so might cause copied modules to
ABEND with an ABEND code of 0C4 or 106-E when they are executed. You
should use this parameter only if you are sure that your operating environment
(or TP monitor) FETCH program supports text blocks that are larger than 18K.
For example, CICS and z/OS FETCH programs support text blocks that are
larger than 18K.

NE
specifies that the output library should not contain records that are used in the
link editing process. Although programs in the output library are executable,
they cannot be reprocessed by the linkage editor, nor can they be modified by
the AMASPZAP program. Using the NE option can reduce the amount of disk
space that is required for the output library.

NEWMOD
specifies that aliases that do not match a main member are to be copied as main
members rather than being marked as aliases in the output file. The directory
entry in the output file is reformatted to main member format. See the
ALIASMATCH option for a description of how aliases are matched with main
members. If you do not specify the NEWMOD option, unmatched aliases are not
copied to the output file.

PDSCOPY Procedure Statement: z/OS 561

NOALIAS | NOA
prevents automatic copying of all aliases of each member that you have
selected for copying. Any aliases that you want to copy must be named in the
SELECT statement. If you select only an alias of a member, the member (that is,
the main member name) is still automatically copied, along with the selected
alias.

NOREPLACE | NOR
copies only members in the INDD= library that are not found in the OUTDD=
library. That is, members or aliases that have the same name are not replaced.

NOTEST
deletes the symbol records produced by the assembler TEST option from the
copied load modules. Using the NOTEST option can reduce the amount of disk
space that is required for the output library by 10% to 20%.

OUTTAPE
specifies that the OUTDD= library is to be in tape (sequential) format. The
OUTTAPE option is assumed if a tape drive is allocated to the output data set.

SHAREINPUT | SHAREIN
specifies that the INDD= library is to be shared with other jobs and TSO users.
SHAREINPUT is the default for PDSCOPY when the INDD= library is enqueued
for shared control (DISP=SHR). This value means that the INDD= library is
shared with ISPF and the linkage editor rather than being enqueued exclusively.
This sharing makes it possible for more than one person to use an INDD= library
simultaneously. (The OUTDD= library is always enqueued for exclusive control
against ISPF and the linkage editor. Therefore, it cannot be changed while PROC
PDSCOPY is processing it.)

EXCLUDE Statement

EXCLUDE member-name-1 <member-name-2 …>;

Use this statement if you want to exclude certain members from the copying
operation. The EXCLUDE statement is useful if you want to copy more members
than you want to exclude. All members that are not listed in EXCLUDE statements
are copied. You can specify more than one member in an EXCLUDE statement, and
you can specify as many EXCLUDE statements as necessary.

If you follow a specification in the EXCLUDE statement with a colon (:), then all
members whose names begin with the characters preceding the colon are excluded.

Note: You cannot use both the SELECT statement and the EXCLUDE statement in
one PROC PDSCOPY step.

SELECT Statement

SELECT member-name-1 <member-name-2 …>;

Use this statement to specify the names of members to copy if you do not want to
copy the entire library. You can specify more than one member in a SELECT
statement, and you can specify as many SELECT statements as necessary.

562 Chapter 29 / Procedures under z/OS

If you follow a specification in the SELECT statement with a colon (:), then all
members whose names begin with the characters preceding the colon are copied. In
the following example all members whose names begin with the characters FCS are
copied:

select fcs:;

Note: You cannot use both the SELECT statement and the EXCLUDE statement in
one PROC PDSCOPY step.

Output Data Set
The PDSCOPY procedure produces an output partitioned data set on disk or on
tape. The output data set contains copies of the requested members of the input
partitioned data set.

If you use PROC PDSCOPY to copy partitioned data sets that contain source
members, then the RECFM and LRECL of the output data set must match the
RECFM and LERECL of the input data set. If they differ, an error message is
displayed. The BLKSIZE values for the input and output data sets do not have to be
the same, however.

Usage Notes
If a member that you specified in a SELECT statement does not exist, PROC
PDSCOPY issues a warning message and continues processing.

PROC PDSCOPY enqueues the input and output data sets using the SPFEDIT and
SPFDSN QNAMEs.

If a data set has a name that was assigned by using the FILENAME statement, the
ENCODING value of the FILENAME statement is ignored when the data set is
processed by PROC PDSCOPY.

Output
The PDSCOPY procedure writes the following information to the SAS log:

n INPUT and OUTPUT, the data set names and volume serials of the input and
output libraries

n MEMBER, a list of the members copied

n ALIAS, the members' aliases, if any

n whether the copied members replaced others members of the same name

n whether a selected member or alias was not copied and a note explaining why
not.

If the output device is a disk, PROC PDSCOPY also writes the following information
next to each member name:

n TRACKS, the size of the member, in tenths of tracks

n SIZE, the number of bytes in the member that was copied (in decimal notation).

PDSCOPY Procedure Statement: z/OS 563

Example: Copying Members Using the PDSCOPY
Procedure

The following example copies all members and aliases that start with the letters
OUT. In this example, the alias must match the main member both by name and by
TTR in order for the alias to be copied.

filename old 'userid.mvs.output' disp=shr;
filename new 'userid.mvs.output2' disp=old;
proc pdscopy indd=old outdd=new aliasmatch=both
 shareinput;
 select out:;
run;

The following output displays the results:

Output 29.10 PDSCOPY Procedure Example

 1 filename old 'userid.mvs.output' disp=shr;
 2 filename new 'userid.mvs.output2' disp=shr;
 3
 4 proc pdscopy indd=old outdd=new aliasmatch=both shareinput;
 5 select out:;
 6 run;
 SAS PROC PDSCOPY Version 9.00 04/24/99
 INPUT DSNAME=USERID.MVS.OUTPUT VOL=SER=XXXXXX
 OUTPUT DSNAME=USERID.MVS.OUTPUT2 VOL=SER=XXXXXX
 MEMBER TRACKS SIZE
 ALIAS
 OUT1601 2.6 40019 replaced
 OUT1602 10.6 165519 replaced
 OUT1603 53.3 829081 replaced
 TRACKS USED 67.0
 UNUSED 8.0
 TOTAL 75.0
 EXTENTS 5

PMENU Procedure Statement: z/OS
Defines menu facilities for windows that are created with SAS software.

z/OS specifics: Some portable statements are ignored.

See: “PMENU Procedure” in Base SAS Procedures Guide

Details

The following statements and options are accepted without generating errors, but
with current device drivers they have no effect under z/OS:

n ACCELERATE= option in the ITEM statement

564 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p12fiom5fbp7mjn12ezd20neooi0.htm&locale=en

n MNEMONIC= option in the ITEM statement

n HELP= option in the DIALOG statement.

PRINT Procedure Statement: z/OS
Prints the observations in a SAS data set, using all or some of the variables.

See: “PRINT Procedure” in Base SAS Procedures Guide

Syntax

PRINT=“options”

Details

PROC PRINT formats each page separately in memory. During formatting, PROC
PRINT allocates memory to hold all of the data for all of the variables that are
being printed on a page. If you are using observations with large variables, such as
character strings of 32,000 bytes, your available memory allocation might not be
adequate. If your memory allocation is not adequate, PROC PRINT terminates due
to insufficient memory.

The amount of memory that PROC PRINT requires does not depend on the number
of observations that the data set contains. It is based on filling an entire page,
whether that many observations exist, or whether all of them are to be printed. The
amount of required memory is calculated by multiplying the PAGESIZE by the
LENGTH of the observation.

The following tips might help address this situation:

n Allocate a larger z/OS REGION size (and MEMSIZE) to provide more memory to
PROC PRINT.

n Specify a smaller page size. Specifying a smaller page size reduces the number
of observations that PROC PRINT must hold in memory at a given time.

n Print only the variables that you want to see instead of all of the variables for
the data set. Specifying only the variables that you want to see reduces the
number of variables that PROC PRINT must hold in memory for each
observation.

Note: This allocation issue applies only to the LISTING output destination. HTML,
RTF, PDF, and other output destinations do not have the same memory allocation
issue.

PRINT Procedure Statement: z/OS 565

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p10qiuo2yicr4qn17rav8kptnjpu.htm&locale=en

PRINTTO Procedure Statement: z/OS
Defines destinations for SAS procedure output and the SAS log.

z/OS specifics: UNIT= option; output destination

See: “PRINTTO Procedure” in Base SAS Procedures Guide

Details

In the SAS CLIST, in the SASRX exec, and in the SAS cataloged procedure that are
supplied by SAS, no filerefs of the form FTnnF001 are predefined for the UNIT=
option. Ask your SAS Installation Representative whether ddnames of the form
FTnnF001 are predefined for your site.

Under z/OS, the destination of the procedure output or the SAS log can be
specified by either of the following:

fileref
sends the log or procedure output to a sequential data set or member of a
partitioned data set that is identified by the fileref.

'physical-filename'
sends the log or procedure output to one of the following locations:

n a sequential data set

n a member of a partitioned data set

n an extended partitioned data set

n a file in a UNIX System Services hierarchical file system.

The following restrictions apply to PROC PRINTTO under z/OS:

n When writing log or procedure output files to a partitioned data set member,
you must specify the NEW option; you cannot append data to a partitioned data
set member.

n LOG files that are generated on z/OS and captured with PROC PRINTTO
contain an ASA control character in column 1. If you are using the INPUT
statement to read a LOG file that was generated on z/OS, you must account for
this character if you use column input or column pointer controls.

n If you create a file to be used with the PRINTTO procedure and specify a record
format that has no carriage-control characters, then the PROC PRINTTO output
does not include carriage-control characters.

n In order to simultaneously route both the SAS log and procedure output files to
partitioned data set members, the members must be in different partitioned
data sets.

566 Chapter 29 / Procedures under z/OS

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

See Also

“Directing Output to External Files with the PRINTTO Procedure” on page 145

RELEASE Procedure Statement: z/OS
Releases unused space at the end of a disk data set.

Restriction: When a SAS server is in the locked-down state, the RELEASE procedure is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: All

Syntax

PROC RELEASE DDNAME=file-specification <options>;

Details

Overview of PROC RELEASE
PROC RELEASE can be used with most sequential or partitioned data sets, not just
with a SAS library that contains SAS data sets. However, PROC RELEASE is not
supported for, and cannot be used to release unused space from, the following
types of data sets:

n the SAS Work library

n extended partitioned data sets (PDSEs)

n ISAM or VSAM data sets

n multivolume SAS libraries

n multivolume data sets.

If you issue PROC RELEASE against any unsupported data set type other than a
PDSE, SAS generates an error and writes an error message to the log. If you issue
PROC RELEASE against a PDSE, SAS does not generate an error. SAS writes a note
to the log that states that SAS did not release any unused space because the data
set was a PDSE. The note also states that PROC RELEASE supports only
sequential data sets and PDS data sets.

If you delete some members from a SAS library (using the DATASETS procedure,
for example), you can use the RELEASE procedure to release the unused space at
the end of the last member. You cannot use PROC RELEASE to release embedded
space. That is, you can release only space that follows the “Highest Used Block,” as
indicated by the CONTENTS or DATASETS procedure.

RELEASE Procedure Statement: z/OS 567

In order to use PROC RELEASE on a SAS library, the library reference must be
cleared. If a SAS library is allocated to the session with a LIBNAME statement, then
SAS opens the library and keeps it open until the library reference is cleared. If the
SAS library is allocated outside of SAS (for example, with a JCL DD statement or a
TSO ALLOC command), then the library is not open until the first reference to the
library is made in your SAS program. To clear the SAS library reference, issue a
LIBNAME statement of the following form for each libref currently assigned to the
library:

LIBNAME libref CLEAR;

Immediately after you issue the LIBNAME statement, issue a PROC RELEASE
statement that specifies the library’s name.

PROC RELEASE DDNAME=“file-specification”;

RUN;

Issue a new LIBNAME statement for the library after the RUN statement.

LIBNAME libref ‘physical-filename’;

Note: If you do not issue a RUN statement after the PROC RELEASE statement,
then the second LIBNAME statement is executed before the PROC RELEASE step
is executed.

In the control language, you can release unused space by using specifications such
as SPACE=(,,RLSE) in the DD statement (in batch mode), or you can use the
RELEASE operand of the TSO ALLOCATE command. However, releasing unused
space with PROC RELEASE offers several advantages over methods provided by
the operating environment. For example, with PROC RELEASE, the user, not the
operating environment, controls when unused space is released. This advantage is
especially applicable to TSO users.

Another advantage of PROC RELEASE is that you can use PROC RELEASE options
to specify exactly how many tracks you want to keep or release. There is no danger
of erasing all or part of a data set because PROC RELEASE frees only unused
space. PROC RELEASE returns unused space to the pool of available space on the
disk volume. When it is released, the space is still available for allocation to the
data set, provided a secondary space allocation is given for the data set in the
control language or SAS statement, and provided all free space on the volume is
not subsequently allocated to other data sets.

PROC RELEASE Statement

PROC RELEASE DDNAME=file-specification <options> ;

DDNAME=file-specification
specifies the ddname or the data set name of the data set whose unused space
is to be released. A name that is not enclosed in quotation marks is treated as a
ddname, and a quoted name is treated as a data set name. For data sets that
were allocated by SAS, the ddname that is associated with the data set is
usually the same as the fileref or libref that is specified in the first assignment
of the data set. If a data set name is specified, PROC RELEASE dynamically
allocates it.

568 Chapter 29 / Procedures under z/OS

options
specify how much unused space to keep or release, and specify the unit
boundary on which the data set should end.

For extended format sequential data sets and data sets residing in Extended
Addressing Space on Extended Address Volumes, PROC RELEASE can be used
only to release all unused space. Therefore, for such data sets, no options can
be specified on the PROC RELEASE invocation.

TOTAL=number | TRACKS=number
specifies the total number of tracks that the data set should contain after
unused space is released, that is, after PROC RELEASE has executed. For
example, the following statement releases all but ten tracks for the data set
that is referenced by the fileref SURVEY:

proc release ddname=survey total=10;

The procedure calculates the amount of space to release as follows:

amount of space allocated − (value of TOTAL= option) = amount of unused
space released

If the value that you specify is smaller than the amount of used space in the
data set, then SAS releases only the unused space at the end of the data set.

UNUSED=number
specifies the number of tracks of unused space that the data set should
contain after PROC RELEASE has executed. The procedure calculates the
amount of unused space to release as follows:

amount of space allocated − (used space + value of UNUSED= option) =
amount of unused space released

If the value that you specify is greater than the amount of unused space at
the end of the data set, then no space is released at the end of the data set.

RELEASE=number
specifies how many tracks of unused space to release. If the value that you
specify is greater than the amount of unused space at the end of the data
set, then SAS releases all the unused space at the end of the data set.

EXTENTS
EXTENT
EX

tells SAS to release only the space that is allocated to completely unused
secondary extents. After the procedure releases unused space from the data
set, the size of the data set is the sum of the primary extent plus all used
secondary extents.

If you do not specify one of these options in the PROC RELEASE statement,
then all unused space at the end of the data set is released.

Use the following option to specify the unit boundary on which the data set
should end:

BOUNDARY=type | TYPE=type
specifies whether the data set ends on a track boundary or on a cylinder
boundary.

RELEASE Procedure Statement: z/OS 569

After the total amount of space to be retained is calculated, this amount is
rounded up to the next unit boundary. Any remaining space is then released.
Remember that the total amount of space includes the space that is actually
used and can also include unused space that was requested with other
options. BOUNDARY=type then increases the amount of unused space that
is retained in the data set by the portion of the unit that is needed in order to
reach (or round up to) the next boundary. TYPE can be one of the following:

DATASET
DSCB

specifies that the data set ends on the next track or cylinder boundary
depending on how space was originally allocated. If allocated in tracks,
the total amount of space to be retained is calculated, and remaining
unused tracks are released. If allocated in cylinders, the space to be
retained is rounded up to the next cylinder boundary, and remaining
unused space is released. This value is the default boundary type.

CYLINDERS
CYLINDER
CYLS
CYL

specifies that space to be retained is rounded to the next cylinder
boundary before remaining unused space is released. This specification is
effective only if the data set is currently allocated in multiples of
cylinders.

TRACKS
TRACK
TRKS
TRK

specifies that unused tracks are to be released. Because the minimum
unit of space that can be released is a track, the space to be retained is
not rounded up.

ALLOC
DD
JCL

specifies that space to be retained is rounded to the next unit boundary
(tracks or cylinders) depending on the allocation unit that was specified
in the JCL statement, TSO ALLOCATE command, FILENAME or
LIBNAME statement, or FILENAME or LIBNAME function that allocated
the data set. For example, the following, in combination with
BOUNDARY=DD, is equivalent to specifying BOUNDARY=CYL:

//DD2 DD DISP=OLD,DSN=MY.DATA,
// SPACE=(CYL,2)

Usage Notes
If the messages in the SAS log indicate that no space was released from the data
set, check to see whether the data set is allocated to another job or to another user.
When PROC RELEASE is invoked, the operating environment's disk space
management function (DADSM) must be able to obtain exclusive control of the
data set. If it cannot, then no indication that DADSM does not have control is

570 Chapter 29 / Procedures under z/OS

passed to SAS software, no space is released from the data set, and no error
message is issued by SAS software.

In SAS 9.2 and later, the RELEASE procedure supports large sequential data sets,
which might occupy more than 64K tracks on any of its volumes.

Output
PROC RELEASE writes the following information to the SAS log:

n how many tracks were allocated to the data set before and after the procedure
was executed

n how many tracks were used

n how many extents were used.

However, for extended format sequential data sets, PROC RELEASE reports only
the number of tracks used after space was released.

Example: Releasing Unused Secondary Extents

The following example releases the unused secondary extents for a physical file
that is referenced by the fileref THISFILE:

filename thisfile 'my.pgm.lib';
proc release ddname=thisfile extents;
run;

See Also

IBMs MVS JCL Reference

SORT Procedure Statement: z/OS
Sorts observations in a SAS data set by one or more variables, and then stores the resulting sorted
observations in a new SAS data set or replaces the original data set.

z/OS specifics: Available z/OS sort utilities and SORT procedure statement options; host-specific
SAS system options

See: “SORT Procedure” in Base SAS Procedures Guide

SORT Procedure Statement: z/OS 571

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

Details

PROC SORT
You can direct the SORT procedure to use either the SAS sort program, which is
available under z/OS and under all other operating environments, or a sort utility
that is specific to z/OS. You can also use the SORTPGM= system option to choose
the best sort program to use. For more information, see “SORTPGM= System
Option: z/OS” on page 856.

The following SAS system options also affect any sorting that is done by SAS:

DYNALLOC SORTDEVWARN SORTSEQ=
FILSZ SORTEQOP SORTSHRB
SORT= SORTLIB= SORTSIZE=
SORTALTMSGF SORTLIST SORTSUMF
SORTBLKMODE SORTMSG SORTUADCON
SORTBLKREC SORTMSG= SORTUNIT=
SORTBUFMOD SORTNAME= SORTWKDD=
SORTCUT= SORTOPTS SORTWKNO=
SORTCUTP= SORTPARM= SORT31PL
SORTDEV= SORTPGM=

The SORTSEQ=, and SORTSIZE= options are either portable or portable with host
specifics. For information about these options, see SAS System Options: Reference.

You can see the values of the preceding options by submitting the following code:

proc options group=sort; run;

PROC SORT Statement Options
The following host-specific sort options are available in the PROC SORT statement
under z/OS in addition to the statement options that are available under all host
operating environments. The list includes the portable EQUALS option because it
has aspects that are specific to z/OS.

DIAG
passes the DIAG option to the sort utility. If the utility supports this option, then
it produces additional diagnostic information if the sort fails.

EQUALS
passes the EQUALS option to the sort utility program if the sort utility supports
it. SAS software defaults to EQUALS. If the SAS system option SORTEQOP is in
effect, the EQUALS option is passed to the sort utility. Otherwise, EQUALS
processing is simulated by adding an observation counter as the last key field.

LEAVE=n
specifies how many bytes to leave unallocated in the region. Occasionally, the
SORT procedure runs out of main storage. If main storage is exceeded, rerun the
job and increase the LEAVE= value (which has a default value of 16000) by
30000.

572 Chapter 29 / Procedures under z/OS

Note: The LEAVE option applies only if SORTSIZE=SIZE is specified.

LIST | L
lists the control statements passed to the system sort. Not all sort utilities
support the specification of the LIST option; they might require that it be
specified when the sort utility is generated or installed. This option is the
default action if the SAS system option SORTLIST is in effect. Also, this option
overrides NOSORTLIST if it is in effect.

MESSAGE | M
prints a summary of the system sort utility's actions. This option is the default
action if the SAS system option SORTMSG is in effect. Also, this option
overrides NOSORTMSG if it is in effect. MESSAGE is useful if you run PROC
SORT and the SAS log prints a message indicating that the sort did not work
properly. Explanations of the message might be found in the IBM or vendor
reference manual that describes your system sort utility.

SORTSIZE=n | nK | nM | nG | MAX | SIZE
specifies the maximum virtual storage that can be used by the system sort
utility. If not specified, the default sort size is given by the SAS system option
SORTSIZE=.

SORTWKNO=n
specifies how many sort work files PROC SORT or the sort utility allocates. If a
value is not specified, the default is given by the SAS system option
SORTWKNO=. The range for SORTWKNO is 0-99.

TECHNIQUE=xxxx | T=xxxx
specifies a four-character sort technique to be passed to the system sort utility.
SAS does not check the validity of the specified value, so you must ensure that
it is correct.

Specifying the SORTSEQ= Option with a Host Sort Utility
The SORTSEQ= option enables you to specify the collating sequence for your sort.
For more information, see “SORTSEQ= System Option: UNIX, Windows, and z/OS”
in the SAS National Language Support (NLS): Reference Guide.

CAUTION
If you are using a host sort utility to sort your data, then specifying the
SORTSEQ= option might corrupt the character BY variables if the sort
sequence translation table and its inverse are not one-to-one mappings. In
other words, for the sort to work the translation table must map each character to a
unique weight, and the inverse table must map each weight to a unique character
variable.

If your translation tables do not map one-to-one, then you can use one of the
following methods to perform your sort:

n create a translation table that maps one-to-one. Once you create a translation
table that maps one-to-one, you can easily create a corresponding inverse table
using the TRANTAB procedure. If your table is not mapped one-to-one, then
you receive the following note in the SAS log when you try to create an inverse
table:

SORT Procedure Statement: z/OS 573

NOTE: This table cannot be mapped one to one.

For more information, see “The TRANTAB Procedure” in the SAS National
Language Support (NLS): Reference Guide.

n use the SAS sort. You can specify the SAS sort using the SORTPGM system
option. For more information, see “SORTPGM= System Option: z/OS” on page
856.

n specify the collation order options of your host sort utility. See the
documentation for your host sort utility for more information.

n create a view with a dummy BY variable. The following example contains a view
with a dummy BY variable.

Note: After using one of these methods, you might need to perform subsequent BY
processing using either the NOTSORTED option or the NOBYSORTED system
option. For more information about the NOTSORTED option, see “BY Statement” in
the SAS DATA Step Statements: Reference. For more information about the
NOBYSORTED system option, see “BYSORTED System Option” in the SAS System
Options: Reference.

Example: Creating a View with a Dummy BY
Variable

The following code is an example of creating a view using a dummy BY variable:

options sortpgm=host msglevel=i;
data one;
 input name $ age;
datalines;
anne 35
ALBERT 10
JUAN 90
janet 5
bridget 23
BRIAN 45
;
data oneview / view=oneview;
 set one;
 name1=upcase(name);
run;
proc sort data=oneview out=final(drop=name1);
 by name1;
run;
proc print data=final;
run;

The following output displays the results:

574 Chapter 29 / Procedures under z/OS

Output 29.11 Creating a View with a Dummy BY Variable

 The SAS System
Obs name age
 1 ALBERT 10
 2 anne 35
 3 BRIAN 45
 4 bridget 23
 5 janet 5
 6 JUAN 90

SOURCE Procedure Statement: z/OS
Provides an easy way to back up and process source library data sets.

Restriction: When a SAS server is in the locked-down state, the SOURCE procedure is disabled.
For more information, see Chapter 10, “SAS Processing Restrictions for Servers in a
Locked-Down State,” on page 219.

z/OS specifics: All

Syntax

PROC SOURCE <options >;

SELECT member-1 <member-2 …>;

EXCLUDE member-1 <member-2 …>;

FIRST 'model-control-statement';

LAST 'model-control-statement';

BEFORE 'model-control-statement' <options>;

AFTER 'model-control-statement' <options>;

Details

Overview of PROC SOURCE
Use PROC SOURCE to read PDS or PDSE libraries and produce sequential output.

You can use the SOURCE procedure to perform the following tasks:

n write the contents of an entire library to the SAS log.

n process only the directory of a library in order to produce input for SAS
software, for a utility, or for other programs.

SOURCE Procedure Statement: z/OS 575

n route the members of a library to other programs for processing. By default,
PROC SOURCE generates records for the IBM utility, IEBUPDTE, which reloads
an unloaded data set.

n create a sequential, or unloaded, version of the library's directory records.

n construct an unloaded data set from a library. The unloaded data set is suitable
for reloading by IEBUPDTE or other source library maintenance utilities,
including the ability to recognize and properly handle aliases.

Using the SOURCE procedure, a source library can be copied into a sequential tape
or disk data set to create either a backup or a manually transportable copy of the
source data. This copy is called an unloaded data set; it consists of 80-byte records
that contain the source data and the control information that are needed to restore
the source to its original organization. When an unloaded data set is restored by the
proper utility to a device that supports the data in their original form, the data is
reconstructed, or loaded.

The INDD and OUTDD data sets can have an LRECL that is greater than 80. The
larger LRECL might be useful if you want to simply concatenate input data set
members in the output data set with no BEFORE or AFTER records. If the INDD and
OUTDD LRECL do not have the same LRECL value, then the value of the OUTTD
LRECL must be equal to or greater than the value of the INDD LRECL. If the value
of the OUTDD LRECL is less than the value of the INDD LRECL, then the records
are truncated at the OUTDD LRECL. For example, when the INDD LRECL=128 and
the OUTDD LRECL=80, records are truncated to 80 bytes and the 48 bytes of each
record is lost in OUTDD.

An advantage of having an unloaded data set is that one or more members can be
retrieved without reloading the entire library.

PROC SOURCE has several advantages over IBMs IEBPTPCH utility. With PROC
SOURCE, you can perform the following tasks:

n list members in alphabetical order

n select members by specifying a wildcard or range

n list the number of records in each member

n list each member on a new page

n produce an unloaded version of the library that can be ported to some other
host systems.

The model-control-statements in the FIRST, LAST, BEFORE, and AFTER statements
are usually either utility or job control statements, depending on the destination
given by the OUTDD= option in the PROC SOURCE statement.

PROC SOURCE Statement

PROC SOURCE <options >;

The following options are used in the PROC SOURCE statement:

DIRDD=file-specification
specifies either the fileref or physical filename of the output data set to which
PROC SOURCE writes a sequential, unloaded form of the PDS directory. Each

576 Chapter 29 / Procedures under z/OS

directory record is written into one 80-byte record. Records are left-aligned and
padded on the right with blanks. If specified, the fileref must match the
reference name that was used in the FILENAME statement, FILENAME
function, JCL DD statement, or TSO ALLOCATE command that allocated the
output data set.

INDD=file-specification
specifies the fileref or the physical filename of an input PDS that contains 80-
byte fixed-length records. The fileref, if specified, must match the reference
name that was specified in the FILENAME statement, FILENAME function, JCL
DD statement, or TSO ALLOCATE command that allocated the input library. If
the INDD= option is not specified, the default fileref is SOURCE.

If OUTDD is specified, then the RECFM of the INDD file must be either F or FB.
The fileref cannot refer to a concatenation of data sets. If it does, then an error
message is generated. If the member names in the INDD file are nonstandard,
then specify FILEEXT=ASIS in an OPTIONS statement.

MAXIOERROR=n
specifies the maximum number of I/O errors to allow before terminating.
Normally, PROC SOURCE detects, issues a warning message about, and then
ignores I/O errors that occur while reading the library members. When the
number of errors specified by MAXIOERROR= has occurred, however, PROC
SOURCE assumes that the library is unreadable and stops. The default
MAXIOERROR= value is 50.

NOALIAS
treats aliases as main member names. Therefore, PROC SOURCE does not
generate ./ ALIAS cards or alias BEFORE and AFTER cards.

NODATA
specifies that you do not want to read the members in the input PDS. In other
words, PROC SOURCE produces only control statements and a list of the
member names; it does not produce the contents of the members. The list of
member names includes any aliases. NODATA is particularly useful when you
want to process only the directory of a library.

NOPRINT
specifies that you do not want to generate the list of member names and record
counts. (These listings are produced even when the PRINT option is not
specified.) The NOPRINT option is ignored when PRINT is specified.

NOSUMMARY
specifies that you do not want to generate the member summary. The
NOSUMMARY option is ignored when the NODATA, NOPRINT, or PRINT option
is specified.

NOTSORTED
causes PROC SOURCE to process PDS members in the order in which they
either appear (in SELECT statements) or remain (after EXCLUDE statements).

Normally, PROC SOURCE processes (that is, unloads, writes to the SAS log, and
so on) the PDS members in alphabetical order by member name.

NULL
specifies that null members (PDS members that contain no records, just an
immediate end-of-file) should be processed. Such members occasionally appear

SOURCE Procedure Statement: z/OS 577

in source PDSs, but they are not normally unloaded because IEBUPDTE and
most other PDS maintenance utilities do not create null members. If you are
using a source library maintenance utility that can properly recognize and create
a null member, then specify this option and provide the appropriate BEFORE
(and possibly AFTER) statements.

OUTDD=file-specification
specifies the fileref, PDS or PDSE member name, or UNIX System Services
filename of the output file to which PROC SOURCE writes the unloaded
(sequential) form of the input PDS and any records that FIRST, LAST, BEFORE,
and AFTER statements generate. If specified, the fileref must match the
reference name used in the FILENAME statement, FILENAME function, JCL DD
statement, or TSO ALLOCATE command that allocated the data set. This option
cannot be used when the INDD file contains variable-length records.

PAGE
begins the listing of the contents of each member on a new page.

PRINT
lists the contents of the entire PDS. The PRINT option is ignored when NODATA
is specified.

SELECT Statement

SELECT member-1 <member-2 …>;

When you use the SELECT statement, only the members that you specify are
processed. You can specify more than one member in a SELECT statement, and you
can use any number of SELECT statements.

Use a colon (:) to indicate that you want to select all members whose names begin
with the characters that precede the colon. (See the following examples.)

You can include an alphabetic range of names in the SELECT statement by joining
two names with a hyphen (-). The two hyphenated members and all members in
between are processed. For example, if a library contains members called BROWN,
GRAY, GREEN, RED, and YELLOW, and you want to process the first four members,
use this SELECT statement:

select brown-red;

The colon (:) and hyphen (-) notation can be used together. For example, the
following statement produces the same results as the previous SELECT statement:

select br:-gr: red;

EXCLUDE Statement

EXCLUDE member-1 <member-2 …>;

When you use the EXCLUDE statement, all members except the ones that you
specify are processed. You can use any number of EXCLUDE statements.

Use a colon (:) to indicate that you want to exclude all members whose names
begin with the characters that precede the colon.

578 Chapter 29 / Procedures under z/OS

You can include an alphabetic range of names in the EXCLUDE statement by joining
two names with a hyphen. The two hyphenated members and all members in
between are excluded from processing. (See the SELECT examples in the SELECT
statement description.)

The colon and hyphen notation can be used together.

Sometimes it is convenient to use SELECT and EXCLUDE statements together. For
example, you can use the colon or hyphen notation in a SELECT statement to
select many members, and then use the EXCLUDE statement to exclude a few of
the selected members. Suppose there are 200 members called SMC1 through
SMC200, and you want to copy all of them except SMC30 through SMC34. You
could use these statements:

select smc:;
exclude smc30-smc34;

When you use both EXCLUDE and SELECT statements, the EXCLUDE statements
should specify only members that are specified by the SELECT statements.
However, excluding unspecified members has no effect other than to generate
warning messages.

FIRST Statement

FIRST 'model-control-statement';

The FIRST statement generates initial control statements that invoke a utility
program or that are needed only once. The specified model-control-statement is
reproduced, left-aligned, on a record that precedes all members in the unloaded
data set. You can use any number of FIRST statements. One FIRST statement can
specify one model control statement. Each model control statement generates a
record.

LAST Statement

LAST 'model-control-statement';

The LAST statement generates final control statements that terminate a utility
program or that are needed only once. The specified model-control-statement is
reproduced, left-aligned, on a record that follows all members in the unloaded data
set. You can use any number of LAST statements. One LAST statement can specify
one model control statement. Each model control statement generates a record.

BEFORE Statement

BEFORE 'model-control-statement' <options>;

The BEFORE statement generates a utility control statement before each member.
You can use any number of BEFORE statements. One BEFORE statement can
specify one model control statement. Each model-control-statement that you
specify is reproduced, left-aligned, on a record that precedes each member in the
unloaded data set.

SOURCE Procedure Statement: z/OS 579

By default, PROC SOURCE generates control statements for the IBM IEBUPDTE
utility program before each member of an unloaded data set. You can use the
BEFORE and AFTER statements to override the default and generate control
statements for other utility programs. To prevent PROC SOURCE from generating
these statements, use the BEFORE statement with no parameters.

Options for the BEFORE and AFTER statements are the same. A list of these
options follows the description of the AFTER statement.

AFTER Statement

AFTER 'model-control-statement' <options>;

The AFTER statement generates a utility control statement after each member.
You can use any number of AFTER statements. One AFTER statement can specify
one model control statement. Each model-control-statement that you specify is
reproduced, left-aligned, on a record that follows each member in the unloaded
data set.

By default, PROC SOURCE generates control statements for the IBM IEBUPDTE
utility program after each member of an unloaded data set. You can use the AFTER
statement to override the default and generate control statements for other utility
programs.

The following options are used in the BEFORE and AFTER statements:

ALIAS
tells SAS to produce a record containing the model-control-statement only for
each defined alias. (The alias is placed into the record at the specified column, if
any.)

column number
tells SAS to substitute the member name in records that are generated by
BEFORE and AFTER statements in an 8-byte field beginning in this column. The
beginning column can be any column from 1 to 73. Aliases, as well as main
member names, are substituted. The name is left-aligned in the field unless the
RIGHT option is specified, and it is padded on the right with blanks unless the
NOBLANK option is specified.

NOBLANK
is meaningful only if column number is specified. When the member name is
substituted in records that are generated by the BEFORE and AFTER
statements, NOBLANK eliminates blanks between the end of the member and
any text that follows. In the following record, a member name precedes the text;
NOBLANK has not been specified:

name ,text text text

When NOBLANK is specified, the same record looks like this:

name,text text text

RIGHT
is meaningful only if column number is specified. When the member name is
substituted in records that are generated by the BEFORE and AFTER
statements, RIGHT causes the member name to be right-aligned in the specified
field. By default, the name is left-aligned in an 8-byte field.

580 Chapter 29 / Procedures under z/OS

Output
PROC SOURCE writes the following information to the SAS log:

n the contents of the entire PDS, if the PRINT option is specified

n a listing of the member names in the PDS (unless you specify NOPRINT)

n the number of records for each member (unless you specify NOPRINT or
NODATA)

n a summary of the attributes and contents of the PDS.

Even when PRINT is not specified, some records can still be written to the log. The
signal NAME: or ENTRY: or AUTHOR: beginning in column 5 of a record in the
library starts the listing; the signal END beginning in column 5 stops it. If you do not
want SAS to list this subset of records, specify the NOSUMMARY option.

Examples

Example 1: Printing Selected Members from a PDS
The following example writes to the SAS log the contents of the member
ORANGES4 from the PDS USERID.TASTE.TEST:

proc source indd='userid.taste.test' print;
 select oranges4;
run;

The following output displays the log:

Output 29.12 Selecting a Member from a Source Statement Library

 19 proc source indd='userid.taste.test' print;
 20 select oranges4; run;
 ORANGES4
 data oranges;
 input variety $ flavor texture looks;
 total=flavor+texture+looks;
 datalines;
 navel 9 8 6
 temple 7 7 7
 valencia 8 9 9
 mandarin 5 7 8
 ;
 proc sort data=oranges;
 by descending total;
 proc print data=oranges;
 title 'Taste Test Result for Oranges';
 17 - RECORDS
 NOTE: INDD=SYS00158 data set is :
 Dsname=USERID.TASTE.TEST,
 Unit=3380,Volume=XXXXXX,Disp=SHR,Blksize=23055,
 Lrecl=259,Recfm=FB.
 3348 Members defined in source library.
 0 Aliases defined in source library.
 1 Members selected.
 17 Records read from source library.

SOURCE Procedure Statement: z/OS 581

Example 2: Building and Submitting a Job to Assemble
Programs
The following PROC SOURCE program builds and submits a job to compile
assembler programs. It writes the output directly to the internal reader so that the
compile job can be executed.

filename out sysout=a pgm=intrdr lrecl=80 recfm=f;
proc source indd='userid.asm.src' nodata outdd=out;
 first '//COMPILE JOB (0,ROOM),''DUMMY'',';
 first '// NOTIFY=,REGION=4M,TYPRUN=HOLD';
 first '/*JOBPARM FETCH';
 last '//';
 before '//XXXXXXXX EXEC ASMHCL,' 3;
 before '// MAC2=''XXX.MACLIB'' ';
 before '//SYSIN DD DISP=SHR,';
 before '// DSN=USERID.ASM.SOURCE(XXXXXXXX)' 26 NOBLANK;
run;

The output that is written to the internal reader is shown in the following output
example. Note that this output shows only the statements that are generated by
PROC SOURCE, before they are executed.

Output 29.13 Building and Submitting a Job to Assemble Programs

 //COMPILE JOB (0,ROOM),'DUMMY',
 // NOTIFY=,REGION=4M,TYPRUN=HOLD
 /*JOBPARM FETCH
 //OUT1601 EXEC ASMHCL,
 // MAC2='XXX.MACLIB'
 //SYSIN DD DISP=SHR,
 // DSN=USERID.ASM.SRC(OUT1601)
 //OUT1602 EXEC ASMHCL,
 // MAC2='XXX.MACLIB'
 //SYSIN DD DISP=SHR,
 // DSN=USERID.ASM.SRC(OUT1602)
 //OUT1603 EXEC ASMHCL,
 // MAC2='XXX.MACLIB'
 //SYSIN DD DISP=SHR,
 // DSN=USERID.ASM.SRC(OUT1603)
 //

Example 3: Producing Directory Records
The following PROC SOURCE program produces directory records. The subsequent
DATA step extracts the ISPF statistics, if any are present.

 filename indd 'userid.sas.src' disp=shr;
 filename dirent '&temp';

 proc source indd=indd nodata noprint dirdd=dirent;

 data test;

 infile dirent eof=EXIT;
 file print header=HDR;
 retain TotEntries 0;

582 Chapter 29 / Procedures under z/OS

 input member $8. ttr pib3. ind pib1. @;
 TotEntries = (TotEntries + 1);
 halfwords = mod(ind,32);

 if (halfwords = 15) or (halfwords = 20)
 then do;
 input ver pib1. /* 1 Version */
 mod pib1. /* 2 Modification */
 flags pib1. /* 3 Flags */
 modifids pib1. /* 4 Seconds last modified */
 ccreate pib1. /* 5 Creation Date */
 create pd3. /* 6-8 " " */
 cchanged pib1. /* 9-9 Last Modified Date */
 changed pd3. /* 10-12 " " */
 hh pk1. /* 13 Hour */
 mm pk1. /* 14 Minute */
 ccurrent pib2. /* 15-16 Current Lines */
 cinitial pib2. /* 17-18 Initial Lines */
 cmodifid pib2. /* 19 20 Modified Lines */
 userid $char7. /* 21-27 Userid */
 depends $char1. /* 28 If bit 3/byte 3 = ON */
 Ecurrent pib4. /* 29-32 ON: Current Lines */
 Einitial pib4. /* 33-36 ON: Initial Lines */
 Emodifid pib4. ; /* 37-40 ON: Modified Lines */

 yyyydddc = (ccreate * 100000) + 1900000 + create;
 jcreate = datejul(yyyydddc);
 yyyydddx = (cchanged * 100000) + 1900000 + changed;;
 jchange = datejul(yyyydddx);

 put @4 member $char8.
 @15 jcreate yymmdd10.
 @27 jchange yymmdd10.
 @39 hh z2. @41 ':'
 @42 mm z2. @46 '|'
 @48 userid $char8. @57 '|'
 @58 ccurrent 9.0 @68 '|'
 @69 cinitial 9.0 @79 '|'
 @80 cmodifid 9.0 @90 '|' @ ;
 end;

 if (halfwords = 15)
 then do;
 put @92 "N/A" @102 '|'
 @104 "N/A" @114 '|'
 @116 "N/A" @125 '|' ;
 put;
 end;

 if (halfwords = 20)
 then do;
 put @92 Ecurrent 9.0 @102 '|'
 @104 Einitial 9.0 @114 '|'
 @116 Emodifid 9.0 @125 '|' ;
 put;
 end;

SOURCE Procedure Statement: z/OS 583

 return;

 HDR:
 put @4 'Member ' @15 'Created ' @27 'Changed '
 @39 'Time ' @48 'Userid ' @58 ' Current'
 @69 ' Initial' @80 ' Modified' @91 ' ECurrent '
 @103 ' EInitial' @114 ' EModified';
 put;
 return;

 EXIT:
 put "Directory Entries Processed: " TotEntries;

The following output displays the results:

Output 29.14 Producing Directory Records

Example 4: Generating Control Cards for IEBCOPY
This example first produces control statements for the IBM utility program,
IEBCOPY. Then IEBCOPY executes, copying selected members.

//IEBPDS JOB (0,ROOM),'USERID',
// NOTIFY=
/*JOBPARM FETCH
// EXEC SAS
//IN DD DSN=XXX.SUBLIB,DISP=SHR
//OUT DD DSN=&&TEMP,SPACE=(CYL,(1,2)),
// DISP=(,PASS),UNIT=DISK
//SYSIN DD *
 proc source indd=in outdd=out nodata noprint;
 select hc:;
 select lm:;
 select sasextrn;
 first ' COPY INDD=IN,OUTDD=NEWPDS';
 before ' SELECT MEMBER=XXXXXXXX -----------'
 17;
 before ' S M=XXXXXXXX ***ALIAS***'
 17 ALIAS;
//S1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN DD DSN=XXX.SUBLIB,DISP=SHR
//NEWPDS DD DSN=&&NEW,SPACE=(CYL,(20,10,20)),
// UNIT=DISK
//SYSUT1 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSUT2 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSUT3 DD UNIT=DISK,SPACE=(CYL,(2,3))
//SYSIN DD DSN=&&TEMP,DISP=(OLD,DELETE)

584 Chapter 29 / Procedures under z/OS

The first output shows what is written to the SAS log after PROC SOURCE is run.
The second output shows the IEBCOPY output.

The following output displays the log:

Output 29.15 Producing Control Statements for the IEBCOPY Utility

 1 proc source indd=in outdd=out nodata noprint;
 2 select hc:;
 3 select lm:;
 4 select sasextrn;
 5 first ' COPY INDD=IN,OUTDD=NEWPDS';
 6 before ' SELECT MEMBER=XXXXXXXX -----------' 17;
 7 before ' S M=XXXXXXXX ***ALIAS***' 17 ALIAS;
 NOTE: INDD=IN data set is :
 Dsname=USERID.DATASET,
 Unit=3380,Volume=XXXXXX,Disp=SHR,Blksize=6160,
 Lrecl=80,Recfm=FB.
 NOTE: OUTDD=OUT data set is :
 Dsname=SYS96052.T131013.RA000.IEBPDS.TEMP,
 Unit=3390,Volume=,Disp=NEW,Blksize=27920,
 Lrecl=80,Recfm=FB.
 9 Members defined in source library.
 0 Aliases defined in source library.
 6 Members selected.
 0 Records read from source library.

Output 29.16 IEBCOPY Output: Selected Members Copied

 IEBCOPY MESSAGES AND CONTROL STATEMENTS
 COPY INDD=IN,OUTDD=NEWPDS
 SELECT MEMBER=HCMEM1 -----------
 SELECT MEMBER=HCMEM2 -----------
 SELECT MEMBER=HCMEM3 -----------
 SELECT MEMBER=LMMEM1 -----------
 SELECT MEMBER=LMMEM2 -----------
 SELECT MEMBER=SASEXTRN -----------
 .
 .
 .
 IEB167I FOLLOWING MEMBER(S) COPIED FROM INPUT DATA SET REFERENCED BY IN
 IEB154I HCMEM1 HAS BEEN SUCCESSFULLY COPIED
 IEB154I HCMEM2 HAS BEEN SUCCESSFULLY COPIED
 IEB154I HCMEM3 HAS BEEN SUCCESSFULLY COPIED
 IEB154I LMMEM1 HAS BEEN SUCCESSFULLY COPIED
 IEB154I LMMEM2 HAS BEEN SUCCESSFULLY COPIED
 IEB154I SASEXTRN HAS BEEN SUCCESSFULLY COPIED
 IEB144I THERE ARE 239 UNUSED TRACKS IN OUTPUT DATA SET REFERENCED BY NEWPDS
 IEB149I THERE ARE 8 UNUSED DIRECTORY BLOCKS IN OUTPUT DIRECTORY
 IEB147I END OF JOB - 0 WAS HIGHEST SEVERITY CODE

See Also

IBMs DFSMSdfp Utilities

SOURCE Procedure Statement: z/OS 585

TAPECOPY Procedure Statement: z/OS
Copies an entire tape volume (tape or cartridge), or files from one or several tape volumes, to one
output tape volume.

Restriction: When a SAS server is in the locked-down state, the TAPECOPY procedure is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: All

Syntax

PROC TAPECOPY options ;

INVOL options;

FILES file-number(s);

Details

Overview of PROC TAPECOPY
PROC TAPECOPY always begins writing at the beginning of the output tape
volume; any files that previously existed on the output tape are destroyed.

Note: PROC TAPECOPY copies to a single output tape volume.

The TAPECOPY procedure can copy either standard labeled or nonlabeled tapes or
cartridges. You can specify, within limits, whether the output tape is standard
labeled (SL) or nonlabeled (NL). You cannot create an SL tape using an NL input
tape because TAPECOPY cannot manufacture tape labels. Also, if LABEL=(,SL)
was specified in a DD statement for an output tape volume, you cannot change that
tape into a nonlabeled tape. PROC TAPECOPY does enable you to write over an
existing volume label on a standard labeled tape if you specify LABEL=(,BLP) in the
DD statement. (The BLP value indicates bypass label processing.)

The JCL DD statement parameter LABEL=(,BLP) must be authorized specifically by
each computing installation. If your installation allows the BLP specification, then
ANSI-labeled, nonstandard labeled, and standard user-labeled tapes can be treated
as nonlabeled tape volumes. If the BLP specification is not authorized at your
installation, then LABEL=(,BLP) is treated as LABEL=(,NL). PROC TAPECOPY
works as you expect it to even if your tape is not labeled. Otherwise, the operating
environment does not allow TAPECOPY to use the tape, thus preserving the label.

586 Chapter 29 / Procedures under z/OS

Throughout this description, references to specifying LABEL=(,BLP) assume that
LABEL=(,BLP) is a valid specification at your installation.

CAUTION
Record lengths cannot exceed 32K bytes. PROC TAPECOPY copies up to 32K
bytes of data per record, even if the length of the record exceeds 32K. No error message
is generated.

Input Tape DD Statement Requirements
In the DD statement that describes an input tape, you need to specify the UNIT,
VOL=SER, DISP parameters, and usually either the LABEL or DSN parameter.

VOL=SER gives the volume serial of the first input tape. You can omit VOL=SER if
the UNIT parameter specifies deferred mounting--for example,
UNIT=(tape,,DEFER). If you specify deferred mounting, remember to use the
INVOL= option in the PROC TAPECOPY statement or in an INVOL statement to
specify the volume serial of the input tape. For details, see the information about
the INVOL= option or “INVOL Statement” on page 590.

For a nonlabeled input tape, you must specify either LABEL=(,NL) or LABEL=(,BLP)
in the DD statement. If you are unsure whether the input tape volume is labeled or
nonlabeled, specify LABEL=(,BLP) in the input tape DD statement, if your
installation allows it.

For a standard labeled input tape at an installation that does not allow
LABEL=(,BLP), specify LABEL=(,SL) and the DSN parameter, giving the DSNAME of
the first data set on the tape.

Output Tape DD Statement Requirements
In the DD statement that describes the output tape, you usually need to specify
only the UNIT, VOL=SER, and DISP parameters, and possibly the LABEL or DSN
parameters.

VOL=SER gives the volume serial of the output tape. You can omit VOL=SER if the
UNIT parameter specifies deferred mounting--for example, UNIT=(tape,,DEFER). If
you specify deferred mounting, use the OUTVOL= option in the PROC TAPECOPY
statement to specify the volume serial of the output tape. For more information,
see “OUTVOL=volume-serial” on page 590.

You should usually specify DISP=(NEW,KEEP) for the output tape in the DD
statement. At some installations, it might be necessary to specify
DISP=(OLD,KEEP) along with the DSN parameter, giving the DSNAME of the first
data set on the tape volume. The LABEL parameter should give the tape's label
type as it is before the TAPECOPY procedure is executed, regardless of its label
type after the copying operation.

Output
The TAPECOPY procedure writes to the SAS log a listing of the input and output
tape characteristics plus a summary of the files that were copied.

TAPECOPY Procedure Statement: z/OS 587

PROC TAPECOPY Statement

PROC TAPECOPY options ;

The following options can appear in the PROC TAPECOPY statement:

COPYVOLSER
specifies that the output tape should have a standard label with the same
volume serial as the first input tape. COPYVOLSER is effective only when both
of the following conditions are true:

n The output tape volume is to be standard labeled--that is, LABEL=SL.

n The output tape DD statement specifies LABEL=(,NL) or LABEL=(,BLP).

Both of these conditions must be true because the PROC TAPECOPY statement
LABEL= option specifies whether the output tape is standard labeled or
nonlabeled after the copy operation. The output tape volume's DD statement
LABEL= parameter specifies what the output tape's label status is before the
copy operation.

If you specify COPYVOLSER and these conditions are not true, PROC
TAPECOPY stops processing.

DEN=density
specifies the density of the output tape. (The DEN= option should not be
specified for cartridge tapes.) If the DEN= option appears in the PROC
TAPECOPY statement, it overrides any DCB=DEN specification in the DD
statement for the output tape volume. If you do not specify a density in the
PROC TAPECOPY statement or in the DD statement, the operating environment
writes the tape at its default density. The default density is usually the highest
density at which the unit allocated to the output tape volume can record.

The following table shows the valid density values:

Tape Density Value Tape Volume Type

DEN=2 800 bpi

DEN=800

DEN=3 1600 bpi

DEN=1600

DEN=4 6250 bpi

DEN=6250

INDD=ddname
specifies the ddname that is referenced in the JCL DD statement for the first
input tape volume. The default INDD= option value is VOLIN.

588 Chapter 29 / Procedures under z/OS

INVOL=volume-serial
specifies the volume serial of the first input tape when deferred mounting is
specified in the DD statement for the first input tape. The INVOL= option
specification overrides the volume serial, if any, that was specified in the DD
statement for the tape.

Specify the INVOL= option only if you are using deferred mounting.

LABEL=SL | NL
specifies whether the output tape volume is to be standard labeled (LABEL=SL)
or nonlabeled (LABEL=NL).

Note: Be careful not to confuse the LABEL= option in the PROC TAPECOPY
statement with the DD statement parameter LABEL=(,specification). The PROC
TAPECOPY statement LABEL= option specifies whether the output tape is
standard labeled or nonlabeled after the copy operation. The output tape
volume's DD statement LABEL= parameter specifies what the output tape's
label status is before the copy operation.

The DD statement for nonlabeled output tapes must specify either
LABEL=(,NL) or LABEL=(,BLP). If the output tape has an existing label (before
the copy operation) and the output tape is to be nonlabeled (after the copy
operation), then the DD statement must specify LABEL=(,BLP).

The default LABEL= option value is NL when multiple input volumes are used
and when the DD statements for any of them specify LABEL=(,NL). If there are
multiple input tapes and LABEL=(,NL) is not specified for any of them, and if the
first input tape volume is actually standard labeled, then the default LABEL=
option value is SL. This default value applies even if the DD statement specifies
LABEL=(,BLP) for the first tape; in this case, PROC TAPECOPY reads the tape
volume's first record to determine the actual label type.

NEWVOLSER=new-volume-serial
specifies a new volume serial for the output tape. NEWVOLSER is effective only
if the output tape is standard labeled. If the output tape has an existing label,
then the DD statement for the output tape must specify LABEL=(,BLP).
Otherwise, PROC TAPECOPY stops processing and does not write over the
label.

NOFSNRESEQ | NFR
specifies that file sequence numbers in the file labels should not be
resequenced when a standard labeled output tape volume is being produced.
PROC TAPECOPY usually resequences these numbers and updates the label in
order to reflect both the ordinal position of the file on the output tape as it is
copied and the actual density at which the output tape is written.

NOLIST
tells SAS not to write the tape characteristics and the summary of copied files
to the SAS log. Even when you specify NOLIST, the SAS log contains a brief
summary of PROC TAPECOPY's action; this summary is usually enough to verify
proper functioning of PROC TAPECOPY if you are familiar with the contents of
the input tapes.

TAPECOPY Procedure Statement: z/OS 589

NORER
tells SAS not to specify the "reduced error recovery for tape devices" feature of
the operating environment for each input tape volume. When NORER is
specified, some tapes of marginal quality can be read successfully by PROC
TAPECOPY because the error recovery procedures are more extensive.

OUTDD=ddname
specifies the ddname that is referenced in the JCL DD statement for the output
tape. The default OUTDD= option value is VOLOUT.

OUTVOL=volume-serial
specifies the volume serial of the output tape when deferred mounting is
specified in the DD statement for the output tape. The OUTVOL= option
specification overrides the volume serial, if any, that was specified in the DD
statement for the tape.

Specify the OUTVOL= option only if you are using deferred mounting.

INVOL Statement

INVOL options;

The INVOL statement defines an input tape volume from which some or all files are
to be copied to the output tape volume. The INVOL statement is not necessary if
you are using only one input tape nor for the first of several input tapes. (Use the
INDD= and INVOL= options of the PROC TAPECOPY statement instead.) When
you are using several input tapes, use an INVOL statement for each tape after the
first input tape.

The following options can appear in the INVOL statement:

DSN | DSNAME='physical-filename'
specifies the data set name of the first file on the current input tape. You must
use this option when both of the following conditions are true:

n The data set name specified in the DD statement is incorrect or missing.

n LABEL=(,SL) is specified (or implied by default) in the input tape volume DD
statement.

You typically use this option when one of the following conditions is true:

n The DD statement for the input tape specifies deferred mounting.

n You are reusing a DD statement (and tape drive). That is, the fileref is the
same but you want another standard labeled tape volume on the same unit.
LABEL=(,SL) should be specified or implied by default, and the data set
name cannot be the same as the data set name on the previous tape that
was used with this fileref.

INDD=ddname
specifies the ddname that is referenced in the JCL DD statement for the current
input tape. The default INDD= option value is the ddname that is already in
effect for the previous input tape volume, as specified in the PROC TAPECOPY
statement or in the last INVOL statement.

590 Chapter 29 / Procedures under z/OS

INVOL=volume-serial
specifies the volume serial of the current input tape. Use the INVOL= option
when the JCL DD statement for the input tape specifies deferred mounting (as
described in “PROC TAPECOPY Statement” on page 588), or when you are
reusing a DD statement (and tape drive). That is, the ddname is the same, but
you want a different tape volume on the same unit.

NL
specifies that the input tape is nonlabeled. If LABEL=(,SL) or LABEL=(,BLP) has
been specified in the DD statement for the input tape and the tape is actually
standard labeled, specifying the NL option causes the tape to be treated as if it
were nonlabeled. In this case, any file numbers that are specified in FILES
statements must be physical file numbers, not logical file numbers.

NORER
tells SAS not to specify the "reduced error recovery for tape devices" feature of
the operating environment for the input tape volume. When this option is
specified, some tapes of marginal quality can be read successfully by PROC
TAPECOPY because the error recovery procedures are more extensive. If
NORER is specified in the PROC TAPECOPY statement, then NORER is in effect
for all input tape volumes and INVOL statements.

SL
specifies that the input tape is standard labeled. If you specify LABEL=(,BLP) in
the DD statement for the input tape and specify SL in the INVOL statement,
PROC TAPECOPY verifies that the tape is standard labeled. Do not specify SL
unless the tape is actually standard labeled.

Note: If you do not specify NL or SL in the INVOL statement, the actual input
tape label type determines whether PROC TAPECOPY treats the tape as
nonlabeled or standard labeled, even when LABEL=(,BLP) is specified in the DD
statement.

FILES Statement

Overview of the FILES Statement

FILES file-number(s);

When you want to copy particular files from an input tape, use the FILES statement
to specify which files you want to copy. Use as many FILES statements as you
want. Give the physical file numbers for nonlabeled tapes or for labeled tapes that
are being treated as nonlabeled. Give the logical file numbers for standard labeled
tapes that are not being treated as nonlabeled, even when the output tape volume
is to be nonlabeled (LABEL=NL). FILE is an alias for the FILES statement.

If you are using only one input tape, the FILES statements can directly follow the
PROC TAPECOPY statement. When you use several input tape volumes, follow
each INVOL statement with the associated FILES statement or statements.

TAPECOPY Procedure Statement: z/OS 591

Specifying Individual Files
File numbers in a FILES statement can be specified in any order. For example, you
might want to copy file 5 and then file 2 and then file 1, as in the following example:

proc tapecopy;
 files 5 2;
 files 1;
run;

Specifying a Range
You can specify a range of files by putting a hyphen between two file numbers, as in
the following example:

proc tapecopy;
 files 1-7;
run;

In a range, the second number must be greater than the first. The keyword EOV
(end of volume) can be used as the last file in a range. PROC TAPECOPY copies all
files on the input tape until the end of the volume (in most cases, a double tape
mark). On a nonlabeled tape, you can copy files from the input tape beyond the
double tape mark by specifying the physical file number, counting tape marks as
usual. If another double tape mark exists on the input tape volume, you can then
specify EOV in another range.

Examples

Example 1: Copying Standard Labeled to Standard Labeled
The following job copies a standard labeled tape (volume serial XXXXXX) to
another standard labeled tape (volume serial YYYYYY).

//jobname JOB
account,name
// EXEC SAS
//VOLIN DD UNIT=TAPE,DISP=OLD,
// VOL=SER=XXXXXX,LABEL=(,SL),
// DSN=first-dsname-on-tape
//VOLOUT DD UNIT=TAPE,DISP=(,KEEP),
// VOL=SER=YYYYYY,LABEL=(,SL)
//SYSIN DD *
 proc tapecopy;
 run;
/*
//

After PROC TAPECOPY executes, the output tape volume is labeled YYYYYY.

If LABEL=(,BLP) had been specified in the input tape DD statement (VOLIN), then
it would not have been necessary to use the DSN= option. Because some
installations do not permit the BLP label type specification, and because no volume

592 Chapter 29 / Procedures under z/OS

label checking is performed when it is specified, it is recommended that you specify
(or allow to default) LABEL=(,SL).

The specification of LABEL=(,SL) in the output tape DD statement (VOLOUT)
causes the operating environment to check the volume label when a tape volume is
mounted on the tape drive. The operating environment ensures that a tape with
volume serial YYYYYY is mounted. However, if the tape with external volume label
YYYYYY is internally labeled something other than YYYYYY, PROC TAPECOPY
fails. In this case, you must specify LABEL=(,BLP) or give the actual internal
volume serial in the output tape DD statement. If the output tape is not labeled
internally, you can specify LABEL=(,NL) or LABEL=(,BLP).

Example 2: Copying Standard Labeled to Nonlabeled
The next job copies a standard labeled tape with volume serial TAPEIN to a
nonlabeled tape, FCSTP1. After the job is executed, the output tape volume is still a
nonlabeled tape, presumably with only an external volume label of FCSTP1. You
must specify LABEL=NL in the PROC TAPECOPY statement. Otherwise, the
procedure defaults to LABEL=SL because the first (and only) input tape volume is
standard labeled.

//jobname JOB
account,name
// EXEC SAS
//VOLIN DD UNIT=TAPE,DISP=OLD,VOL=SER=TAPEIN,
// LABEL=(,BLP)
//VOLOUT DD UNIT=TAPE,DISP=(,KEEP),VOL=SER=FCSTP1,
// LABEL=(,NL)
//SYSIN DD *
 proc tapecopy label=nl;
 run;
/*
//

Example 3: Copying Nonlabeled to Nonlabeled
The following job copies a nonlabeled tape with volume serial QDR123 to a
nonlabeled, 1600 bpi tape, SLXATK:

//jobname JOB
account,name
// EXEC SAS
//INTAPE DD UNIT=TAPE,DISP=OLD,VOL=SER=QDR123,
// LABEL=(,NL)
//OUTTAPE DD UNIT=2927-3,DISP=(,KEEP),
// VOL=SER=SLXATK,LABEL=(,NL)
//SYSIN DD *
 proc tapecopy indd=intape outdd=outtape
 den=1600;
 run;
/*
//

TAPECOPY Procedure Statement: z/OS 593

Example 4: Copying Multiple Files from One Input Tape
This next job copies the first seven files from the standard labeled input tape
U02746 plus four files from the standard labeled input tape T13794 to an initially
nonlabeled output tape with volume serial MINI01. After the procedure is executed,
the output tape is standard labeled and has a volume serial of U02746, as specified
by the COPYVOLSER option.

//jobname JOB
account,name
// EXEC SAS
//TAPI1 DD DISP=SHR,UNIT=TAPE,
// VOL=SER=U02746,LABEL=(,SL),
// DSN=first-file-dsname
//TAPI2 DD UNIT=(TAPE,,DEFER)
//OUTDDN DD DISP=(,KEEP),UNIT=TAPE,VOL=SER=MINI01,
// LABEL=(,NL)
//SYSIN DD *
 proc tapecopy outdd=outddn indd=tapi1
 copyvolser;
 files 3 2 1;
 invol indd=tapi2 invol=t13794
 dsn='first-dsname-on-this-tape ';
 file 3;
 invol indd=tapi1;
 files 5-7 4;
 invol indd=tapi2;
 files 2 4 1;
 run;
/*
//

Example 5: Copying Multiple Files from Multiple Input Tapes
The next job copies several files from several input tape volumes to one output
tape volume:

//REARRNGE JOB account,name
// EXEC SAS
//DEN2IN DD UNIT=(2927-4,,DEFER),LABEL=(,BLP)
//DEN3IN DD UNIT=(2927-3,,DEFER),LABEL=(,SL)
//TAPE1 DD UNIT=TAPE,DISP=SHR,VOL=SER=XR8475,
// LABEL=(,BLP)
//TAPE2 DD UNIT=TAPE,DISP=OLD,VOL=SER=BKT023,
// DSN=first-file-dsname
//OUTPUT DD UNIT=(3400-5,,DEFER),DISP=(,KEEP)
//SYSIN DD *
 proc tapecopy label=sl den=6250 nolist
 outdd=output outvol=histpe;
 invol indd=den2in invol=ptftp0;
 files 2-4 8-eov 7 6;
 invol indd=tape1;
 files 5 7 9-eov;
 invol indd=tape2;
 files 4 5 1;
 invol indd=den3in invol=s03768
 dsn='xrt.bkt120.g0081v00';

594 Chapter 29 / Procedures under z/OS

 files 1-6 22-34;
 invol invol=so3760 dsn='t.bkt120.g0023v00';
 files 4 5 6 9;
 invol indd=tape2;
 files 7-eov;
 run;
/*
//

TAPELABEL Procedure Statement: z/OS
Writes the label information of an IBM standard-labeled tape volume to the SAS procedure output
file.

Restriction: When a SAS server is in the locked-down state, the TAPELABEL procedure is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

z/OS specifics: All

Syntax

PROC TAPELABEL <options >;

Details

Overview of PROC TAPELABEL
The procedure writes information from the tape label, including the data set name,
DCB information, and data set history, to the SAS procedure output file.

A ddname must be allocated for each tape volume before that volume can be read
by the TAPELABEL procedure. Multiple tape volumes can be read in one PROC
TAPELABEL statement, using a list of ddnames in the DDNAME= option, as shown
in the following list. At some installations, you might need to specify the data set
name of the first file on the tape volume as the first entry in your list of ddnames.
This specification is necessary if you cannot use LABEL=(,BLP), which is restricted
at many sites.

PROC TAPELABEL Statement

PROC TAPELABEL <options >;

The following options can be specified in the PROC TAPELABEL statement:

DCBDEVT=128
enables PROC TAPELABEL to process Fujitsu F6470 tape cartridges.

TAPELABEL Procedure Statement: z/OS 595

DDNAME=(ddname-1...ddname-n)
specifies the ddname of the tape volume that you want to process. More than
one ddname can be specified. Use blank spaces to delimit the list. If you specify
only one ddname, you can omit the parentheses.

If DDNAME= is omitted, the default ddname is TAPE.

DUMP
sends to output the first 80 bytes in the first 10 blocks of each data set on the
tape.

NOTRAP813
tells the TAPELABEL procedure not to trap 813-04 abends. When you use
LABEL=(,SL) to access an IBM standard labeled tape, this option prevents you
from reading the tape unless you specify the data set name of the first file on
the tape volume.

PAGE
begins the output for each tape volume on a new page.

Output
For each file on a tape volume, TAPELABEL generates the following information:

n FILE NUMBER, the file sequence number

n DSNAME, the data set name

n RECFM, the record format

n LRECL, the logical record length

n BLKSIZE, the block size

n BLOCK COUNT, the number of blocks in the file (from the trailer label)

n EST FEET, the estimated length of the file in feet (assumes all blocks=BLKSIZE)

n CREATED, the file creation date

n EXPIRES, the file expiration date

n CREATED BY JOB NAME STEPNAME, the job name and the step name of the
job that created the file

n TRTCH, the track recording technique

n DEN, the file recording density code

n PSWD, the file protection indicator

n UHL, the number of user header labels

n UTL, the number of user trailer labels.

TAPELABEL also lists the sum of the estimated file lengths.

Note: On an IBM standard tape label, only 17 characters are available for the data
set name. If a longer name is specified in the JCL when the data set is created, only
the rightmost 17 characters are used. PROC TAPELABEL displays what is stored in
the tape's header label. Some tape management systems catalog data sets by the

596 Chapter 29 / Procedures under z/OS

full name specified in the JCL and therefore require you to specify the full name
when you access the data set.

Example: Generating Tape Label Information

The following job generates the label information for all files on the MVSV9 tape
volume allocated to the ddname OURTAPE:

//jobname JOB acct,name
/*JOBPARM FETCH
//TLABEL EXEC SAS
//OURTAPE DD UNIT=TAPE,DISP=OLD,VOL=SER=MVSV9
//SYSIN DD *
 proc tapelabel ddname=ourtape;
 run;
/*
//

The following output displays the results.

Output 29.17 Output from the TAPELABEL Procedure

 The SAS System
 TAPE LIST FOR DDNAME - OURTAPE
 CONTENTS OF TAPE VOLUME -
OS390T OWNER -
 FILE BLOCK EST CUM
CREATED BY
 NUMBER DSNAME RECFM LRECL BLKSIZE COUNT FEET FEET CREATED EXPIRES JOB NAME
STEPNAME TRTCH DEN PSWD UHL UTL
 1 SAS.SASROOT FB 80 6160 175 3.6 3.6 12MAR2005 0000000 E70S701 /
GO 5 NO 0 0
 2 SAS.V186.@P@BA$H FB 6144 6144 77 1.6 5.2 12MAR2005 0000000 E70S701 /
GO 5 NO 0 0
 3 SAS.V186.EMO1CLR U 0 6164 633 12.9 18.0 12MAR2005 0000000 E70S701 /
GO 5 NO 0 0

TAPELABEL Procedure Statement: z/OS 597

598 Chapter 29 / Procedures under z/OS

30
Statements under z/OS

Statements in the z/OS Environment . 599

Dictionary . 600
ABORT Statement: z/OS . 600
ATTRIB Statement: z/OS . 601
CARDS Statement: z/OS . 602
DSNEXST Statement: z/OS . 602
FILE Statement: z/OS . 604
FILENAME Statement: z/OS . 616
FILENAME Statement: EMAIL (CSSMTP and SMTP) Access Method 640
FOOTNOTE Statement: z/OS . 644
%INCLUDE Statement: z/OS . 644
INFILE Statement: z/OS . 647
LENGTH Statement: z/OS . 655
LIBNAME Statement: z/OS . 656
OPTIONS Statement: z/OS . 674
SASFILE Statement: z/OS . 675
SYSTASK LIST Statement: z/OS . 677
TITLE Statement: z/OS . 678
TSO Statement: z/OS . 679
WAITFOR Statement: z/OS . 680
X Statement: z/OS . 681

Statements in the z/OS Environment
Portable statements are documented in SAS DATA Step Statements: Reference. This
chapter documents statements that are specific to z/OS or that have aspects that
are specific to z/OS.

599

Dictionary

ABORT Statement: z/OS
Stops the execution of the current DATA step, SAS job, or SAS session.

Valid in: In a DATA step

z/OS specifics: Action of ABEND and RETURN, maximum value of n

See: “ABORT” in SAS DATA Step Statements: Reference

Syntax

ABORT <ABEND | RETURN> <n> ;

Optional Arguments
The following options are used primarily in batch processing, although they can be used with
any method of running SAS. These options have host-specific characteristics.

ABEND
causes normal z/OS abend processing to occur after the ABORT statement is
issued.

RETURN
causes an immediate normal termination of the SAS system. The step return
code (condition code) should be used to indicate the error. To pass a specific
return code back to the operating environment, use the n option. You can then
use this return code in your JCL to conditionally execute later steps in your
z/OS job stream.

n
enables you to specify an ABEND code or a condition code that SAS returns to
the operating environment when it stops executing. The value of n must be an
integer. Under z/OS, the range of acceptable values is from 1 to 4095. If you do
not specify a value for n, an ABORT ABEND statement returns a user abend 999
('3E7'x); an ABORT RETURN statement returns condition code 20. ('3E7'x is the
hexadecimal expression of 999.) If you issue the ABORT statement without
specifying either ABEND or RETURN, and you do not specify a value for n, then
the statement returns condition code 16.

600 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0hp2evpgqvfsfn1u223hh9ubv3g.htm&locale=en

Details

You can use the ABORT statement to control the conditional execution of z/OS job
steps. For example, depending on the result of the z/OS job step that executes your
SAS program, you might need to either bypass or execute later steps. To enable this
control, you can establish a variable in your SAS DATA step program that is set to a
particular value whenever an error occurs. In the following example, we use a
variable named ERRCODE that is set to 16 if an error occurs in the DATA step. You
can choose any variable name and value that are required by your program. Then,
use the following ABORT statement, coded in the THEN clause of an IF statement,
to cause the z/OS job step to ABEND if ERRCODE=16:

if errcode=16 then abort return;

When the z/OS job step that is used to execute your SAS job ends (either normally
or abnormally), the next z/OS job step is processed. You could then use the
following EXEC statement to conditionally execute that job step if an ABEND
occurs. If ERRCODE is not set to 16, then the ABORT statement is disabled, and
because an ABEND did not occur the job step is bypassed.

//stepname EXEC
PGM=your-program,COND=ONLY

If a SAS session abends when it is processing an ABORT statement, then SAS uses
the normal termination disposition when it deallocates any z/OS data set that SAS
dynamically allocated during the session as a part of FILENAME or LIBNAME
processing. For more information, see the description of the DISP option for
“FILENAME Statement: z/OS” on page 616 or “LIBNAME Statement: z/OS” on page
656.

See Also

IBM MVS JCL Reference

ATTRIB Statement: z/OS
Associates a format, informat, label, length, or any combination of these attributes, with one or more
variables.

Valid in: In a DATA step

z/OS specifics: LENGTH= specification in attribute-list

See: “ATTRIB” in SAS DATA Step Statements: Reference

Syntax

ATTRIB variable-list-1 attribute-list-1 <...variable-list-n attribute-list-n > ;

ATTRIB Statement: z/OS 601

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en

Details

LENGTH=<$> length is one of the attributes that can be specified in the attribute-
list. The LENGTH= attribute specifies the length of variables in the variable-list.
Under z/OS, numeric variables can range from 2 to 8 bytes in length, and character
variables can range from 1 to 32,767 bytes in length.

CARDS Statement: z/OS
Indicates that data lines follow.

Valid in: In a DATA step

z/OS specifics: Behavior

See: “CARDS” in SAS DATA Step Statements: Reference

Details

The behavior of the CARDS statement is affected by the CARDIMAGE system
option. For more information, see “CARDIMAGE System Option: z/OS” on page
716.

DSNEXST Statement: z/OS
Checks to see whether the specified physical file exists and is available.

Valid in: Anywhere

z/OS specifics: all

Syntax

DSNEXST 'physical-filename ';

Required Argument
'physical-filename '

is the name of a physical file. Quotation marks around the name are optional.
However, the data set name must always be fully qualified. In this case,
physical-filename cannot specify a UNIX System Services file.

When a SAS server is in a locked-down state, access to a permanent z/OS data
set is limited to entries that are found in a lockdown list that is maintained by

602 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0x2s4ogqx2lwun1c3mzlxpf8jmj.htm&locale=en

the server administrator. Because the output is a Boolean macro variable, no
distinction can be made between the file not being found and the file not being
accessible. Therefore, when SAS is in the locked-down state, if the specified
physical-name is not in the lockdown list, DSNEXST returns a value of false, as
if the file did not exist. For more information, see Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219.

Details

DSNEXST is a global statement. The first time the statement is issued, it performs
one of the following actions:

n creates the macro variable &SYSDEXST and assigns a value of 1 to it if the data
set exists and is available for allocation

n creates the macro variable &SYSDEXST and assigns a value of 0 to it if the data
set does not exist.

Note: The DSNEXST statement causes SAS to perform a z/OS data set dynamic
allocation. If the specified data set is on a removable volume, such as a tape, then it
is mounted. Data sets that have been migrated by HSM (the z/OS Hierarchical
Storage Manager) are recalled. To avoid these problems, use the DSNCATLGD
function.

The following example allocates a data set differently depending on whether the
data set already exists or not.

%macro mydsn;
 dsnexst 'my.data.set';
 filename myds 'my.data.set'
%if &sysdexst %then %do;
 disp=old;
 %end;
%else %do;
 disp=(new,catlg) space=(cyl,(1,1)) blksize=6160
 dsorg=ps recfm=fb lrecl=80 unit=disk
 volser='MYVOL';
 %end;
%mend mydsn;
%mydsn

The next example shows how you can submit some SAS statements if a data set
already exists and bypass them if it does not.

%macro copylib;
 dsnexst 'my.data.library';
%if &sysdexst %then %do;
 libname mylib 'my.data.library' disp=shr;
 proc copy in=mylib out=work;
 run;
 %end;
%mend;
%copylib

DSNEXST Statement: z/OS 603

In situations where there could be more than one user of the data set, the following
example shows how you can use the &SYS99ERR automatic macro variable to
distinguish between “data set does not exist” and “data set exists but is not
available.”

%macro dsexist(loc);
 dsnexst &loc;
 %if &sysdexst=0 and &sys99err=1708
 %then %do;
 %put &loc does not exist;
 %end;
 %else %do;
 %put &loc exists;
 %end;
 %mend;
%dsexist(my.data.set)

See Also

SAS Macro Language: Reference

FILE Statement: z/OS
Specifies the current output file for PUT statements.

Valid in: In a DATA step

Restriction: The FILE statement cannot modify or override the device type that was set by an
earlier FILENAME statement.

z/OS specifics: file-specification, type, host-options

See: “FILE” in SAS DATA Step Statements: Reference

Syntax

FILE file-specification <PERMISSION='permission-value'><type>
<ENCODING=encoding-value> <options>;

FILE LOG | PRINT <options>;

Required Argument
file-specification

identifies a file in one of the following forms:

fileref
specifies a fileref or the allocated ddname of the file. A fileref can consist of
up to eight letters, numbers, national characters ($, @, and #), and

604 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en

underscores (_). The first character must be either a letter, a national
character, or an underscore.

fileref(member)
specifies a member of a partitioned data set, where the PDS or PDSE is
specified by the assigned fileref or allocated ddname.

If you specify a fileref that is not allocated, then SAS attempts to construct a
data set name with the following three qualifiers:

n the value of the SYSPREF= option (usually the user ID)

n the specified fileref

n DATA

If a file that has this constructed data set name is found, then SAS opens it
and writes to it. If a file is not found, and the FILEPROMPT option is in effect,
then you are asked if you want to create and catalog the file.

The value of the FILEEXT= system option can affect how SAS interprets PDS
and PDSE member names. For more information, see “FILEEXT= System
Option: z/OS” on page 746.

'physical-filename'
specifies a physical file, which can be a sequential file, a member of
partitioned data set (PDS), a member of an extended partitioned data set
(PDSE), or a UNIX System Services file, using the following syntax:

n a UNIX System Services file. For example:

'/u/userid/raw'

or

'HFS:raw'

n a fully qualified data set name. For example:

'myid.raw.datax'

n a fully qualified data set name with a member in parentheses. For
example:

'sas.raw.data(mem1)'

n a partially qualified data set name with a period preceding it. For
example:

'.raw.data'

n a partially qualified data set name with a period preceding it and a
member name in parentheses. For example:

'.raw.data(mem1)'

n a temporary data set name. For example:

'&mytemp'

The value of the FILEEXT= system option can affect how SAS interprets file
specifications for PDS and PDSE files. For more information, see “FILEEXT=
System Option: z/OS” on page 746.

FILE Statement: z/OS 605

For more information about partially qualified data set names, see Chapter 5,
“Specifying Physical Files,” on page 89. For information about encodings for
z/OS resources such as data set names and UFS paths, see “PEEKLONG
Function: z/OS” on page 492.

When a SAS server is in a locked-down state, access to a permanent z/OS
data set or UFS file is limited to entries that are found in a lockdown list that
is maintained by the server administrator. For more information, see Chapter
10, “SAS Processing Restrictions for Servers in a Locked-Down State,” on
page 219.

LOG
directs output to the SAS log file.

PRINT
directs output to the SAS procedure output file.

Optional Arguments
PERMISSION='permission-value'

specifies permissions to set for the specified fileref. To specify more than one
set of permission values, separate them with a comma within quotation marks.

Note: The PERMISSION option applies only to UFS files.

Provide the permission-value in the following format:

A::<trustee_type>::<permissions>

The ‘A’ indicates that these are access permissions. No other values are
currently supported.

The trustee_type can take the following values:

u user

g group (group owner of the file)

o other (all other users)

The permission value takes the letters r (Read), w (Write), and x (Execute), in
that order. If you do not want to grant one of these permissions, enter a ‘-’ in its
place (for example, r-x or rw-).

Suppose that you want to have Read, Write, and Execute permission for a fileref.
You also want to specify Read and Execute permission for the group owner of
the file. Finally, you want to allow all other users to have only Read permission
for the file. You can specify these options as follows:

permission='A::u::rwx,A::g::r-x,A::o::r--'

Supply a permission value for all three trustee types. Any trustee type that you
omit from the list of permission values is denied all access to the specified
fileref. For example, suppose you used the following permission values:

permission='A::u::rwx,A::g::r-x'

606 Chapter 30 / Statements under z/OS

In this case, only the owner and the group owner have access to the specified
file. Any user other than the owner or group owner is denied all access to the
file.

type
specifies the type of file. When you omit type, the default is a standard external
file. Nonstandard (host-specific) file types that you can specify for z/OS are

DLI
for IMS-DL/I databases. For information about IMS-DL/I options for the
FILE statement, see SAS/ACCESS Interface to IMS: Reference.

HFS
for UNIX System Services files. For more information, see “Accessing UNIX
System Services Files” on page 129.

MVS
for z/OS data sets.

PIPE
for pipelines in UNIX System Services. See “Piping Data from SAS to a UNIX
System Services Command” on page 137.

VSAM
for VSAM files. See “Accessing VSAM Data Sets” on page 128.

ENCODING=encoding-value
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the
current session encoding. However, you can also specify the same encoding for
the output file as the encoding of the current session. You must enclose the
value in quotation marks if it contains a hyphen.

If you specify an encoding value different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when
you write data to the output file. The default encoding is the session encoding,
which is the value of the ENCODING= SAS system option.

For valid encoding values and more information about encoding, see “Encoding
Values in SAS Language Elements” in the SAS National Language Support (NLS):
Reference Guide.

options
are either portable or host-specific. For information about portable options that
can be specified in the FILE statement, see the SAS DATA Step Statements:
Reference.

You can specify portable options and host options in any order. When you
specify more than one option, separate the options with a blank space.

The host options that you can specify depend on what type of file you are
accessing. See the following sections for details:

n “Standard Host Options for the FILE Statement under z/OS” on page 608

n “Host Options for Retrieving Information about Data Sets” on page 610

n “Options That Specify SMS Keywords” on page 632

FILE Statement: z/OS 607

n “VSAM Options for the FILE and INFILE Statements under z/OS” on page
610

n “Host-Specific Options for UNIX System Services Files” on page 613

Details

Standard Host Options for the FILE Statement under z/OS
You can use the following options with all external files under z/OS:

BLKSIZE=value | BLK=value
specifies the block size of the file. Block size is discussed in more detail in “DCB
Option Descriptions” on page 628 and in “Overview of DCB Attributes” on page
630.

BUFNO=value
specifies how many memory buffers to allocate for writing. If you specify
BUFNO= in a FILE statement, it takes precedence over specifying it in a
FILENAME statement. If you omit BUFNO= from the FILE statement, then
specifying it in the FILENAME statement takes precedence. If you do not
specify BUFNO= in a FILE statement or a FILENAME statement, SAS uses the
value of the FILEBUFNO= system option. For information about using BUFNO or
the FILEBUFNO system option, see “FILEBUFNO= System Option: z/OS” on
page 742.

CLOSE=keyword
indicates how a tape volume is positioned at the end of the DATA step. Values
for keyword are

REREAD positions the tape at the logical beginning of the data set.

LEAVE positions the tape at the logical end of the data set.

REWIND rewinds the tape to the physical beginning of the volume.

FREE dynamically deallocates the tape volume.

DISP is implied by the control language.

CSRC
specifies that you want to use CSRCESRV services (available with z/OS) to
compress data on output. For example:

data _null_;
 file myfile csrc;
 put ... ;
run;

You cannot use this option with an external file that has a fixed-length record
format.

DCB=fileref
specifies the fileref of an external file that was referenced in an earlier FILE or
INFILE statement in the same DATA step. SAS uses that file's RECFM=, LRECL=,
and BLKSIZE= information for the current file.

608 Chapter 30 / Statements under z/OS

LINESIZE=width
works with LRECL to specify the maximum number of characters per line or
record in print files, nonprint files, and the SAS log. Under z/OS, the range of
acceptable values of LINESIZE= is 64 to 256. The default value of the
LINESIZE= system option under z/OS is 132. This default applies only to print
files (with carriage returns) or to the SAS log. For nonprint files (without
carriage returns), the value of LRECL= is used in place of the default value for
LINESIZE=.

LRECL=value
specifies the logical record length of the file. The specified value depends on
the access method and the device type. For more information, see the
discussion of LRECL= in “DCB Option Descriptions” on page 628 and the IBM
MVS JCL Reference.

MOD
writes the output lines following any existing lines in the file. This option
overrides a disposition that was specified in JCL or under TSO. It is not valid if
the specified file is a member of a partitioned data set (PDS).

NOPROMPT
specifies that if the file that you reference in the FILE statement is unavailable,
a dialog box is not displayed, and an error is written to the SAS log.

OLD
writes the output lines at the beginning of the file, overwriting any existing data
in the file. This option overrides a disposition that was specified in JCL or under
TSO, and it is the default if no disposition is specified. Using OLD is necessary
only if you used MOD for the file in an earlier FILE statement and you want to
overwrite the file.

PRINT | NOPRINT
specifies whether carriage-control characters are placed in output files. Under
z/OS, PRINT adds carriage-control characters to the beginning of all lines of
output that are directed to print files and to the SAS log.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.

The following values can be appended to the RECFM values:

A specifies that the first byte of each record is an ANSI printer-control
character.

S if appended to V, specifies that the file contains spanned records; if
appended to F, specifies that the file contains standard blocks.

The following value stands alone; no other values can be appended:

FILE Statement: z/OS 609

N indicates that the file is in binary format. The file is processed as a
stream of bytes with no record boundaries, which includes the default
value of LRECL. This record format is specific to SAS.

Host Options for Retrieving Information about Data Sets
The following options are used in the FILE, FILENAME, and INFILE statements to
retrieve information about a data set from the operating environment control
blocks. SAS assigns values to the variables that are defined by these options when
it opens the data set. It updates the values every time it opens a new data set in a
concatenation. You can use these options with all standard external files under
z/OS.

DEVTYPE=variable
defines a character variable (minimum length 24) that SAS sets to the device
type. SAS obtains the device type by using the z/OS operating environment
DEVTYPE macro. For more information, see the IBM documentation for your
operating environment.

DSCB=variable
defines a character variable (minimum length 96) that SAS sets to the Data Set
Control Block (DSCB) information from a non-VSAM data set. For more
information, see the IBM documentation for your operating environment.

JFCB=variable
defines a character variable (minimum length 176) that SAS sets to the Job File
Control Block (JFCB). For more information, see the IBM documentation for
your operating environment.

UCBNAME=variable
defines a character variable (minimum length 3) that SAS sets to the unit name
(device address), which is derived from information in the unit control block
(UCB).

VOLUME=variable | VOLUMES=variable
defines a character variable (with a minimum length of six characters) that SAS
sets to the tape VOLSER or the disk volume serial number. In the case of a
multivolume file, the VOLUME= variable contains the concatenated volume
serial numbers up to the length of the variable or the first 30 volumes,
whichever is less. The value in the VOLUME= variable contains the volume
serial number of the first data set in the concatenation when the file is opened.
This serial number changes if you open a subsequent data set in the
concatenation.

VSAM Options for the FILE and INFILE Statements under z/OS
You can use the following options for VSAM files in the FILE statement and in the
INFILE statement. (Unless otherwise indicated, the option can be used in both.)

BACKWARD | BKWD
causes SAS to read the VSAM data set backward (INFILE only).

BUFND=value
indicates how many data buffers to use for the VSAM data set.

610 Chapter 30 / Statements under z/OS

BUFNI=value
indicates how many index buffers to use for the VSAM data set.

CONTROLINTERVAL | CTLINTV | CNV
indicates that you want to read physical VSAM control interval records rather
than logical records. This option is typically used for diagnostic purposes
(INFILE only).

ERASE=variable
defines a numeric SAS variable that you must set to 1 when you want to erase a
VSAM record (INFILE only).

FEEDBACK=variable | FDBK=variable
defines a numeric variable that SAS sets to the VSAM logical error code. This
option is similar to the _FDBK_ automatic variable. When SAS sets the
FEEDBACK variable, you must reset it to 0 in order to continue.

GENKEY
causes SAS to use the KEY= variable as the leading portion of a record's key.
VSAM retrieves the first record whose key matches the generic key (INFILE
only).

KEY=variable | KEY=(variable1 variable2 . . .)
indicates that direct keyed access is being used to read records either from a
KSDS or from an ESDS via an alternate index. Also, the variable contains the key
value to be used in the retrieval of a record (input) or the writing of a record
(output) (INFILE ONLY).

KEYGE
is used in conjunction with the KEY= option. KEYGE indicates that when KEY= is
used in a retrieval request, SAS retrieves any record whose key is equal to or
greater than the specified key. This option is useful when the exact key is not
known (INFILE only).

KEYLEN=variable
specifies a numeric SAS variable that, when used with GENKEY, specifies the
length of the key that is to be compared to the keys in the file.

KEYPOS=variable
indicates the numeric variable that SAS sets to the position of the VSAM key
field. This option enables you to read keys without knowing the key position in
advance. This variable is set to the column number (starting from 1).

NORLS | NRLS
specifies not to use record-level sharing (RLS) to open an RLS-eligible data set
(INFILE only).

Note: This argument overrides the VSAMRLS system option.

PASSWD=value
gives the appropriate password for a VSAM data set that has password
protection.

RBA=variable
specifies a numeric variable that you set to the relative byte address (RBA) of
the data record that you want to read. The RBA= option indicates that

FILE Statement: z/OS 611

addressed direct access is being used; it is appropriate for KSDS and ESDS. If
you specify the CONTROLINTERVAL option, you can use the RBA= option to
access control records in an RRDS (INFILE only). This variable is set to zero
when a path is defined over an alternate index.

RC4STOP
stops the DATA step from executing if a return code greater than 4 is returned
by the operating environment when the VSAM data set is opened.

RECORDS=variable
defines a numeric variable that SAS sets to the number of logical records in a
VSAM data set that has been opened for input.

RECORG=record-organization
specifies the organization of records in a new VSAM data set. Use this option
only if SMS is active. Valid values are

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

LS specifies a VSAM linear-space data set.

RESET
indicates that the VSAM file is reset to empty (no records) when it is opened.
This option applies only to loading a VSAM data set that has been marked
REUSE. You cannot use this option if the data set contains an alternate index.

RLS
specifies that this data set should be opened in RLS mode. If the data set is not
RLS-eligible, the specification is ignored.

Note Overrides the NOVSAMRLS system option.

RLSREAD=NRI | CR | CRE
specifies the Read integrity level to be applied to this RLS data set.

Restriction Valid only for the INFILE statement.

Note Overrides any specification made with a DD statement or TSO
ALLOC command.

RRN=variable
defines a numeric variable that you set to the relative record number (RRN) of
the record that you want to read or write. This option indicates that keyed direct
access is being used; it is appropriate for RRDS only.

SEQUENTIAL
specifies sequential VSAM record retrieval when either the RBA= (for an ESDS)
or the RRN= option (for an RRDS) is specified (INFILE only).

SKIP
indicates skip-sequential processing of VSAM files. Skip-sequential processing
finds the first record whose value is the same as the value specified by the
KEY= option; records are read sequentially thereafter (INFILE only).

612 Chapter 30 / Statements under z/OS

UPDATE=variable
defines a numeric SAS variable that indicates that not every record that it reads
is to be updated. Use this option when you are updating records in a VSAM data
set (INFILE only). When an INFILE statement and a FILE statement reference
the same VSAM data set, records are retrieved for update by default.

In most cases when you retrieve a record for update, no user, including you, can
access that particular record or any other records in the same control interval
until you free the record by executing a PUT statement or an INPUT statement
for the data set. The UPDATE= option avoids user lockout when only a few of
many records read need to be updated. When you set the UPDATE= variable to
a value of 1 before the INPUT statement, the record is retrieved for update. This
value is the default if UPDATE= is not specified. If you set UPDATE=0 before
the INPUT statement, the record is not retrieved for update.

VSMDBUG=nnnn
indicates that a message should be written to the SAS log that indicates the
filename, function requested, return code, and reason code after each VSAM
system request (for example, GET, POINT, PUT) until the number specified by
nnnn is exceeded.

Note The value of nnnn can be 1–9999.

Host-Specific Options for UNIX System Services Files
The following table shows which host-specific options are recognized by the
FILENAME, FILE, and INFILE statements for UNIX System Services files and pipes.
No other options are recognized, including such options specific to z/OS as DISP,
CLOSE, and DCB. Descriptions of the options follow the table.

Table 30.1 Host-Specific Options for UNIX System Services Files and Pipes

Option FILENAME FILE INFILE %INCLUDE

BLKSIZE= X X X X

BOM X X

BOMFILE X X

FILEDATA= X X X

LRECL= X X X X

MOD X X

NOBOM X X

NOBOMFILE X X

OLD X X

RECFM= X X X X

FILE Statement: z/OS 613

Option FILENAME FILE INFILE %INCLUDE

TERMSTR= X X X

BLKSIZE=
specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

BOMFILE
includes a Byte-Order Mark when a UNICODE-encoded file is created.

Alias BOM

FILEDATA=BINARY | TEXT
The FILEDATA= option specifies that the file being processed is expected to
contain one of the following:

BINARY data without record separator character sequences.

TEXT data with records terminated by the EBCDIC newline character.
The EBCDIC newline character is defined at code point x'15'
and is typically represented as NL or \n.

Note: The FILEDATA= option is meant to be similar to the FILEDATA=
parameter on the DD JCL statement, but is evaluated at run time by SAS. The
JCL parameter is used by z/OS to set an attribute of the file when the file is
created by the JCL

LRECL=value
specifies the maximum number of characters in a line (unless the file has been
opened with RECFM=N). The default is 255. Lines longer than value are
truncated. value must be between 1 and 16,777,215, inclusive.

MOD
appends the output lines to the file. This option has no effect on a pipe.

NOBOMFILE
specifies that a Byte-Order Mark is not included when a UNICODE-encoded file
is created.

Alias NOBOM

OLD
replaces the previous contents of the file. This option is the default. It has no
effect on a pipe.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies that all lines in the file have the length that is specified in
the LRECL= option. In output files, lines that are shorter than the
LRECL= value are padded on the right with blanks.

614 Chapter 30 / Statements under z/OS

V | D specifies that the lines in the file are of variable length, ranging from
one character to the number of characters specified by LRECL=. This
option is the default.

P specifies that the file has variable-length records and is in print
format.

N specifies that the file is in binary format. The file is treated as a byte
stream. That is, line boundaries are not recognized.

TERMSTR=NONE | NL | CR | LF | CRLF | LFCR | CRNL
The TERMSTR= option specifies the type of record separator character
sequences to use to terminate records in the file. TERMSTR= accepts the
following parameters:

NONE Record terminators are not used. This parameter provides the
same function as FILEDATA=BINARY.

NL The newline character (x'15') is used as the record terminator.
This parameter provides the same function as FILEDATA=TEXT.

CR The carriage return character (x'0D') is used as the record
terminator.

LF The line feed character (x'25') is used as the record terminator.

CRLF The sequence CR followed by LF is used as the record terminator.

LFCR The sequence LF followed by CR is used as the record terminator.

CRNL The sequence CR followed by NL is used as the record terminator.

All of the previous specifications (x'15', x'0D', and x'25') assume that the files
use an ENCODING= value whose short (12 byte) name is in the form open_ed-
nnnn and whose long (32 byte) name contains (OpenEdition) (for example,
open_ed-1047 or Western(OpenEdition)). These characters are automatically
transcoded to or from the file's encoding if they are required by the ENCODING=
or LOCALE= options.

The last occurrence of FILEDATA= or TERMSTR= takes precedence.
Specification of one or the other of these options on a FILE or INFILE statement
takes precedence over the specification in a related FILENAME statement. The
full precedence order is as follows:

1 Specification of FILEDATA= or TERMSTR= on a FILE or INFILE statement.

2 Specification of FILEDATA= or TERMSTR= in a FILENAME statement.

3 Specification of FILEDATA= on a DD JCL statement when the file was
created by that DD statement

4 Implied by the RECFM= option in effect for the file.

The RECFM= option in the FILENAME, FILE, and INFILE statement can imply
the value assumed for the termination sequence. This implication is always
overridden by the presence of a TERMSTR= or FILEDATA= option for the file.
Here are the default values:

RECFM=V|D TERMSTR=NL is implied. (This option is the default.)

FILE Statement: z/OS 615

RECFM=F TERMSTR=NONE is implied.

RECFM=P TERMSTR=NL implied, along with other formatting control
characters.

RECFM=N TERMSTR=NONE is implied.

Note: The FILEDATA= parameter on the DD JCL statement is used only by
z/OS when the file is being created by that JCL statement. For existing files, the
FILEDATA= parameter is ignored by z/OS, and SAS is informed of its value at
file creation time. Therefore, SAS cannot detect a change in the JCL. However,
SAS honors the values of FILEDATA= or TERMSTR= that are specified in the
FILENAME, INFILE, or FILE statements when you replace an existing file or read
a file.

CAUTION
The combination of RECFM= and TERMSTR= provides much flexibility for
reading and writing many different file formats. It is possible to use these
options in a way that can produce a file that might be difficult to process in
the future. For example, a PRINT file can be created without record
terminators, but this file would look strange when printed on a printer or
viewed in an editor.

For more information about these options, see “Writing to External Files” on page
110 and “Using the FILE Statement to Specify Data Set Attributes” on page 115.

See Also

SAS VSAM Processing for z/OS

FILENAME Statement: z/OS
Associates a SAS fileref with an external file.

Valid in: Anywhere

Restriction: When a SAS server is in a locked-down state, access to a permanent z/OS data set
or UFS file is limited to entries that are found in a lockdown list that is maintained
by the server administrator. For more information, see Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219.

z/OS specifics: fileref, device-type, physical-filename, host-options

Tip: For information about the length limit of a fileref, see “SAS Name Literals” in SAS
Programmer’s Guide: Essentials.

See: “FILENAME Statement” in SAS Global Statements: Reference

616 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en

Syntax

FILENAME fileref <device-type> 'physical-filename' <PERMISSION='permission-
value'>
<host-options>;

FILENAME fileref <device-type> ('physical–filename–1' 'physical-filename-2' …)
<host-options>;

FILENAME fileref | _ALL_ CLEAR;

FILENAME fileref | _ALL_ LIST;

Required Arguments
fileref

is a symbolic name for an external file. The fileref can consist of up to eight
letters, numbers, national characters ($, @, #), and underscores (_). The first
character must be either a letter, a national character, or an underscore.

'physical-filename' or ('physical-filename-1'... 'physical-filename-n')
identifies an external file or a concatenation of external files. Enclose physical-
filename in quotation marks. In a concatenation, enclose the entire group of
concatenated file specifications in parentheses.

The physical file can be in one of the following formats:

n a sequential data set

n a member of a partitioned data set (PDS)

n a member of an extended partitioned data set (PDSE)

n a file in UNIX System Services (USS).

For information about files in USS directories, see “Accessing a Particular File in
a UNIX System Services Directory” on page 135. 'physical-filename' can be
specified as

n a fully qualified data set name. For example:

'myid.raw.datax'

n a fully qualified data set name with a member in parentheses. For example:

'sas.raw.data(mem1)'

n a partially qualified data set name with a period preceding it. For example:

'.raw.data'

n a partially qualified data set name with a period preceding it and a member
name in parentheses. For example:

'.raw.data(mem1)'

n for PDS members, a fully or partially qualified data set name with a wildcard
name in parentheses. For example:

'.raw.data(mem*)'

'.raw.data(*mem1)'

FILENAME Statement: z/OS 617

'.raw.data(*)'

n a temporary data set name. For example:

'&mytemp'

n a UNIX System Services file. For example:

'/u/userid/raw'

or

'HFS:raw'

or

'/u/userid/test/data/*'

Note: The * wildcard character indicates a concatenation of UNIX System
Services files. For more information about the use of the wildcard, see
“Concatenating UNIX System Services Pathnames” on page 132.

SAS on z/OS does not support specifying physical files that have a member
type of AUDIT. Specifying physical filenames such as the following returns an
error:

n filename mylib data='./saslib/memb01.sas7baud';

n filename mylib data='/u/user01/mylib/inventory.sas7baud'

The value of the FILEEXT= system option can affect how SAS interprets
physical file specifications for PDS and PDSE files. For more information, see
“FILEEXT= System Option: z/OS” on page 746.

The value of the FILESYSTEM= system option can also affect how SAS
interprets filenames. For more information, see “FILESYSTEM= System Option:
z/OS” on page 761.

For more information about partially qualified data set names, see Chapter 5,
“Specifying Physical Files,” on page 89. For information about encodings for
z/OS resources such as data set names and UFS paths, see “PEEKLONG
Function: z/OS” on page 492.

ALL
specifies to clear or list all currently allocated filerefs.

CLEAR
specifies to deallocate the specified fileref, or to deallocate all currently
allocated filerefs.

LIST
specifies to list the fileref name and physical name, or to list information about
all currently allocated filerefs.

Optional Arguments
PERMISSION='permission-value'

specifies permissions to set for the specified fileref. To specify more than one
set of permission values, separate them with a comma within quotation marks.

618 Chapter 30 / Statements under z/OS

Note: The PERMISSION option applies only to UFS files.

Provide the permission-value in the following format:

A::<trustee_type>::<permissions>

The ‘A’ indicates that these are access permissions. No other values are
currently supported.

The trustee_type can take the following values:

u user

g group (group owner of the file)

o other (all other users)

The permission value takes the letters r (Read), w (Write), and x (Execute), in
that order. If you do not want to grant one of these permissions, enter a ‘-’ in its
place (for example, r-x or rw-).

Suppose that you want to have Read, Write, and Execute permission for a fileref.
You also want to specify Read and Execute permission for the group owner of
the file. Finally, you want to allow all other users to have only Read permission
for the file. You can specify these options as follows:

permission='A::u::rwx,A::g::r-x,A::o::r--'

Supply a permission value for all three trustee types. Any trustee type that you
omit from the list of permission values is denied all access to the specified
fileref. For example, suppose you used the following permission values:

permission='A::u::rwx,A::g::r-x'

In this case, only the owner and the group owner have access to the specified
file. Any user other than the owner or group owner is denied all access to the
file.

device-type
specifies a device type for the file.

You can specify device-type between the fileref and the file specification in the
FILENAME statement. If you do not specify a device type value for a new file,
SAS uses the current value of the SAS system option FILEDEV=.

device type can be one of the following:

ACTIVEMQ
specifies an access method that enables you to access an ActiveMQ
messaging broker. For more information, see Application Messaging with SAS.

Interaction If the DATA step does not recognize the access method option,
the DATA step passes the option to the access method for
handling.

CATALOG
references a SAS catalog as a flat file. The external file is a valid two-, three-,
or four- part SAS catalog name followed by any catalog options needed. See
SAS DATA Step Statements: Reference for a description of catalog options.

FILENAME Statement: z/OS 619

DATAURL
specifies the access method that enables you to read data from the data-url-
spec.

DISK
sends the input or output to a disk drive.

DUMMY
specifies a null input or output device. This value is especially useful in
testing situations. Any output that would normally be sent to the external
file is discarded.

EMAIL
enables you to send electronic mail programmatically from SAS.

FTP
reads or writes to a file from any machine on a network that is running an
FTP server. The external file is the pathname of the external file on the
remote machine followed by FTP options. Only one member of a z/OS PDS
can be written to at a time. If you need to write to multiple members at the
same time, a z/OS PDSE or a UNIX System Services directory should be
used. For more information about using FTP with the FILENAME statement,
see “Assigning Filerefs to Files on Other Systems (FTP and SOCKET Access
Types)” on page 99.

HFS
specifies a UNIX System Services file.

JMS
specifies a Java Message Service (JMS) destination.

MVS
specifies an MVS data set.

NOMVSTRANS
suppresses the EBCDIC to ASCII translation that is internal to the Socket
access method.

Restriction The NOMVSTRANS option is supported only for the SBCS
(Single-Byte Character Set) version of SAS.

PIPE
specifies that SAS open a UNIX System Services pipeline for execution of
UNIX System Services commands that are issued within the statement.

PLOTTER
sends the output to the default system plotter.

PRINTER
sends the output to the default system printer.

SOCKET
reads and writes information over a TCP/IP socket. The external file depends
on whether the SAS application is a server application or a client application.
In a client application, the external file is the name or IP address of the host
and the TCP/IP port number to connect to, followed by any TCP/IP options.
In server applications, it is the port number to create for listening, followed

620 Chapter 30 / Statements under z/OS

by the SERVER keyword, and then any TCP/IP options. For more information,
see “FILENAME Statement: SOCKET Access Method” in SAS Global
Statements: Reference in the SAS DATA Step Statements: Reference.

The maximum number of directory or PDS members that you can have open
at the same time is limited by the number of sockets that your FTP server
can have open at one time. This limitation is restricted by the maximum
number of connections created when the FTP server is installed.

You might want to limit the number of sockets that you have open at the
same time to prevent potential degradation of your system's performance.
The number of sockets that are open at the same time is proportional to the
number of directory or PDS members open at the same time. When the job
that you are running opens the maximum number of sockets that can be
open at the same time, the results of the job can become unpredictable.

TAPE
sends the input or output to a tape drive.

TEMP
allocates a temporary data set. For more information, see “FILETEMPDIR
System Option: z/OS” on page 762.

TERMINAL
reads the input from your terminal, or sends the output to your terminal.

UPRINTER
associates the fileref with the Universal Printing device. Any output
generated to a fileref that is defined for this device type is formatted and
sent to the default device that has been set up interactively through the
Printer Setup dialog box. By default on z/OS, output is sent to a data set
called <prefix>.sasprt.ps, where <prefix> is the value of the SYSPREF=
system option. For more information about Universal Printing, see Chapter 9,
“Universal Printing,” on page 185 and .

URL
enables you to access remote files using the URL of the file. The external file
is the name of the file that you want to read from or write to on a URL server.
The URL must be in one of the following forms:

http://hostname/file
http://hostname:portno/file

For more information, see SAS DATA Step Statements: Reference.

WebDAV
specifies the access method that enables you to use WebDAV (Web
Distributed Authoring and Versioning) to read from or write to a file from any
host machine that you can connect to on a network with a WebDAV server
running.

ZIP
specifies the access method that enables you to use ZIP files.

Note: The ZIP access method supports only UFS files.

FILENAME Statement: z/OS 621

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05zmmen6g0n0wn1heom8cixi2dy.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05zmmen6g0n0wn1heom8cixi2dy.htm&locale=en
https://go.documentation.sas.com/?docsetId=lrcon&docsetTarget=p0mif0r24tdhodn14nxw7lfccrw8.htm&docsetVersion=9.4

host-options
are host-specific options that can be specified in the FILENAME statement.
These options can be categorized into several groups. For details, see the
following sections:

n “Standard File Options for the FILENAME Statement” on page 622

n “DCB Attribute Options” on page 628

n “SYSOUT Data Set Options for the FILENAME Statement” on page 634

n “Subsystem Options for the FILENAME Statement” on page 636

n “Options That Specify SMS Keywords” on page 632

n “Host-Specific Options for UNIX System Services Files” on page 613

You can specify these options in any order following 'physical-filename'. When
specifying more than one option, use a blank space to separate each option.
Values for options can be specified with or without quotation marks. However, if
a value contains one of the supported national characters ($, #, or @), the
quotation marks are required.

ALL
specifies to clear or list all currently allocated filerefs.

CLEAR
specifies to deallocate the specified fileref, or to deallocate all currently
allocated filerefs.

LIST
specifies to list the fileref name and physical name, or to list information about
all currently allocated filerefs.

Details

Standard File Options for the FILENAME Statement
Standard file options provide information about a data set's disposition and
physical attributes. The following standard options can be used with all external
files under z/OS except for files that are in the Hierarchical File System of UNIX
System Services. For more information, see “Host-Specific Options for UNIX
System Services Files” on page 613.

AVGREC=multiplier
AVGREC can be used only when the unit of space subparameter of the SPACE
option is a number, which indicates an average record length. The multiplier
value modifies the interpretation of the primary and secondary space
subparameters of the SPACE option. The multiplier value can be any of the
following:

U specifies that the primary and secondary space subparameters are to
be interpreted as requests for sufficient space to contain the number of
records that are to be allocated. The value specified with the unit of

622 Chapter 30 / Statements under z/OS

the space subparameter of the SPACE option is also interpreted as the
length of the records.

K specifies that the primary and secondary space subparameters are to
be interpreted as a number of records multiplies by 1024. The value
that is specified with the unit of the space subparameter of the SPACE
option is also interpreted as the average length of the records.

M specifies that the primary and secondary space subparameters are to
be interpreted as a number of records multiplied by 1024 times 1024
(1048576). The value that is specified with the unit of the space
subparameter of the SPACE option is also interpreted as the average
length of the records.

The following example specifies the AVGREC option with a value of K for file
avgrec.

filename avgrec 'USERID.AVGREC.FILE' DISP=(NEW,CATLG,DELETE)
 SPACE=(800,(1,1)) AVGREC=K recfm=fb lrecl=80 blksize=27920;

DISP=status | (status,<normal-termination-disp>,<abnormal-termination-disp>)
specifies the status of the physical file at the beginning and ending of a job, as
well as what to do if the job step terminates abnormally. If you specify only
status, you can omit the parentheses.

status
specifies the status of the data set at the beginning of a job. Valid values are:

NEW creates a new data set.

OLD does not share the existing data set.

SHR shares the existing data set.

MOD if the data set exists, adds new records to the end. If the data set
does not exist, it creates a new data set. MOD cannot be
specified for a partitioned data set.

REP for non-PDS members, implies DISP=OLD if the data set exists
and is cataloged. Otherwise, it implies DISP=NEW. For PDS
members, it implies DISP=SHR if the PDS is cataloged.
Otherwise, it implies DISP=NEW.

The default is SHR.

Note:

n You can also supply any of these values for status as a separate, individual
keyword in the FILENAME statement rather than as a subparameter of the
DISP= option.

n DISP=REP is ignored if a volume is specified in the FILENAME statement.

normal-termination-disp
specifies what to do with the data set when the fileref is cleared or when the
job step that was using the data set terminates normally. Valid values are:

DELETE deletes the data set at the end of the step.

FILENAME Statement: z/OS 623

KEEP keeps the data set.

CATLG places the entry in the system catalog or user catalog.

UNCATLG deletes the entry from the system catalog or user catalog.

For a new data set, the default is CATLG. For an existing data set, the default
is KEEP.

abnormal-termination-disp
specifies what to do if the job step terminates abnormally. The default is to
take the action that is specified or implied by normal-termination-disp. Valid
values are:

DELETE deletes the data set at the end of a job step.

KEEP keeps the data set.

CATLG places the entry in the system catalog or user catalog.

UNCATLG deletes the entry from the system catalog or user catalog.

Note: The conditional disposition for libraries and files is not honored for
any abend that SAS or TSO (in the TSO environment) handles. It is not
honored even if you specify the ERRORABEND option or the ABORT ABEND
statement.

Here are some examples of the DISP parameter:

 DISP=SHR
 DISP=REP
 DISP=(NEW,CATLG)
 DISP=(OLD,UNCATLG,DELETE)

EATTR=OPT | NO
Specifies whether a sequential data set can have extended attribute DSCBs and
can reside in extended addressing space (EAS). EATTR accepts the following
values:

OPT specifies that the data set has extended attributes if it is created on
an EAV.

NO specifies that the sequential data set cannot reside in EAS.

If the EATTR option is not specified, then the default value for the option can be
supplied by the SMS data class that is specified or that is selected for the
allocation. Otherwise, the default is NO.

ENCODING=encoding-value
specifies the encoding to use when writing to an output file or reading from an
input file. Typically, you would specify a value for ENCODING= that indicates
that the file has a different encoding from the current session encoding.
However, you can also specify the same encoding for the file as the encoding of
the current session. You must enclose the value in quotation marks if it contains
a hyphen.

624 Chapter 30 / Statements under z/OS

If you specify an encoding value different from the session encoding, SAS
performs the transcoding as the records are read. The default encoding is the
session encoding, which is the value of the ENCODING= SAS system option.

Note: ENCODING is not supported for the PIPE, PRINTER, and UPRINTER
access methods.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide and
“SBCS, DBCS, and Unicode Encoding Values for Transcoding Data” in SAS
National Language Support (NLS): Reference Guide.

SPACE=(unit,(primary,secondary,directory),RLSE,type,ROUND)
is the amount of disk space to be provided for a data set that is being created.

unit
can be any of the following:

TRK allocates the space in tracks.

CYL allocates the space in cylinders.

blklen allocates space in blocks whose block length is blklen bytes.
The system computes how many tracks are allocated.

primary
specifies how many tracks, cylinders, or blocks to allocate.

secondary
specifies how many additional tracks, cylinders, or blocks to allocate if more
space is needed. The system does not allocate additional space until it is
needed.

directory
specifies how many 256-byte directory blocks are needed for the directory
of a partitioned data set.

RLSE
causes unused space that was allocated to an output data set to be released
when the data set is closed. Unused space is released only if the data set is
opened for output and if the last operation was a Write operation.

type
can be any of the following:

CONTIG specifies to use contiguous space.

MXIG specifies to use the maximum contiguous space.

ALX specifies to use different areas of contiguous space.

Note: You can also specify MXIG or ALX as a separate, individual keyword
in the FILENAME statement rather than as a subparameter of the SPACE=
option.

FILENAME Statement: z/OS 625

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en

ROUND
specifies that the allocated space must be equal to an integral number of
cylinders when the specified unit was a block length. If unit was specified as
TRK or CYL, the system ignores ROUND.

Here are some examples of the SPACE parameter:

SPACE=(CYL,10)
 or SPACE=(CYL,(10,,10),,CONTIG)
SPACE=(1024,(100,50,20),RLSE,MXIG,ROUND)

If you do not specify SPACE, its values are taken from the SAS system options
FILEUNIT=, FILESPPRI=, FILESPSEC=, and FILEDIRBLK=, in the following form:

SPACE=(FILEUNIT,(FILESPPRI, FILESPSEC,FILEDIRBLK))

The default specification is SPACE=(CYL,(1,1,6)) for partitioned data sets and
SPACE=(CYL,(1,1)) for sequential data sets.

See MVS JCL Reference by IBM for complete information about how to use the
SPACE= option.

VOLSER=value | VOL=value | VOL=(value-1, ..., value-n)
specifies the disk or tape volume serial number or numbers. Up to 30 volume
serial numbers can be specified.

If you do not specify VOLSER=, its value is taken from the SAS system option
FILEVOL=.

VOLCOUNT=nnn
Where nnn is the maximum number of volumes that an output data set requires.
The volume count is a decimal number from 1 through 200.

VOLSEQ=nnn
Where nnn identifies which volume of an existing multivolume data set is to be
used to begin processing the data set. The volume sequence number is a
decimal number from 1 to 200.

UNIT=value | UNIT=(value,n)
specifies one of several devices. The value parameter must be enclosed in
quotation marks if the unit name contains characters other than alphanumeric
characters. The n parameter is a number from 1 to 59 that specifies the number
of devices to be allocated for the data set. If n is the letter “p” or “P”, then all
volumes for the data set are mounted in parallel.

If you specify a device type with UNIT=, the value overrides any device type
specified in the FILENAME statement with the device-type option. Some valid
values follow, but not all values are available at all sites. Ask your system
administrator whether additional values are defined at your site.

n DISK

n DUMMY

n PLOTTER

n PRINTER

n SYSDA

n SYSALLDA

626 Chapter 30 / Statements under z/OS

n TAPE

n TERMINAL

The default for UNIT= is the value of the FILEDEV= SAS system option.

A list of specific volume serial numbers in the FILENAME statement might
result in the allocation of more devices to the data set than the number that is
specified by n.

LABEL=(subparameter-list)
specifies the type and contents of the label of either a tape data set or a disk
data set. It also specifies other information such as the retention period or
expiration date for the data set. It is identical to the JCL LABEL= parameter.
Here is a simple example:

label=(3,SL,,,EXPDT=2005/123)

This label specification indicates that the data set sequence number is 3, that it
uses standard labels, and that it expires on the 123rd day of 2005. See the IBM
MVS JCL Reference for complete information about how to use the LABEL=
option, including which subparameters you can specify in subparameter-list.

LOCKINTERNAL=

AUTO
specifies the SAS system locking that is to be used for the file or files that
are identified by a FILENAME statement. AUTO does not allow two
applications within the same SAS session to have simultaneous Read and
Write access to a file. If an application has Write access to a file, no other
applications can have Read or Write access to it. If an application has Read
access to a file, no other application can have Write access to it. Multiple
applications can have simultaneous Read access to a file.

SHARED
specifies the SAS system locking that is to be used for the file or files that
are identified by a FILENAME statement. SHARED does not allow two
applications within the same SAS session to have simultaneous Write access
to a file. SHARED allows one writer and multiple readers to have
simultaneous access to a file.

NOMOUNT
specifies that the mount message is not issued for a volume that is not already
online. The default action is to issue the mount message.

NOPROMPT
specifies that if the file that you reference in the FILENAME statement is
unavailable, a dialog box is not displayed, and an error message is written to the
SAS log.

REUSE
specifies that dynamic allocation reuse an existing allocation, if possible, to
fulfill a new allocation request. By default, SAS requests that dynamic
allocation create a unique allocation for this request. For more information
about reusing an existing allocation, see the IBM document z/OS Programming:
Authorized Assembler Services.

FILENAME Statement: z/OS 627

WAIT=n
controls how many minutes SAS waits if the file that you reference in the
FILENAME statement is unavailable. SAS tries to reacquire the reserved data
set every 15 seconds. The value n specifies a length of time in minutes.

Note: This parameter only applies to native z/OS files and cannot be used with
HFS/ZFS files.

DCB Attribute Options

DCB Option Descriptions
The following DCB options can be used in the FILENAME statement for all types of
external files under z/OS. They cannot be used for files that are stored in the
directory structure of UNIX System Services. For information about options that
are available for UNIX System Services files, see “Host-Specific Options for UNIX
System Services Files” on page 613. These options correspond to the DCB
parameters that you would specify in a JCL DD statement. For additional
information about DCB characteristics, see “Overview of DCB Attributes” on page
630.

BLKSIZE=value
specifies the number of bytes in a block of records. A block is a group of records
that SAS and the operating environment move as a unit when they read or write
an external file. The term also refers to the space allocated for each group of
records. You seldom need to calculate block size when you write an external file
because SAS automatically selects the block size.

The values of the FILEBLKSIZE(device-type)= system option contain, for each
model of disk that is currently available, the best block size for your installation
for external, nonprint data sets on that type of disk. Some installations might
provide different FILEBLKSIZE default values for batch processing than they do
for interactive processing. Therefore, to see the values for the
FILEBLKSIZE(device-type)= option, run the OPTIONS procedure both in a batch
job and in a SAS session under TSO.

For print data sets, which by default have variable-length records, SAS uses a
default block size of 264, with one record per block.

You can use the OPT value of the FILEBLKSIZE(device-type)= option to
calculate the optimal block size for nonprint files (see “FILEBLKSIZE(device-
type)= System Option: z/OS” on page 741). Or you can calculate the block size
yourself:

n For fixed-length records, multiply the LRECL= value by the number of
records that you want to put into the block.

n For variable-length records, multiply the LRECL= value by the number of
records per block and add 4 bytes.

In each case, if you are writing the data set to disk, compare the block size to the
track size for the disk. A block cannot be longer than one track of the disk
device on which it is stored, and the operating environment does not split a
block between tracks. Make sure that the block size does not leave a large

628 Chapter 30 / Statements under z/OS

portion of the track unused. (If you are not sure, consult your computing center
staff.) For information about determining the optimal block size for your data,
see “Optimizing SAS I/O” on page 905.

The following maximum block sizes are supported:

n 262,144 bytes for 3590 tapes

n 65,535 bytes for 3480 and 3490e tapes

n 32,760 bytes for direct access devices

BUFNO=value
specifies how many memory buffers to allocate for reading and writing. If you
specify BUFNO= on a FILE or INFILE statement, it takes precedence over
specifying it in a FILENAME statement. If you omit BUFNO= from the FILE or
INFILE statement, then specifying it in the FILENAME statement takes
precedence. If you do not specify BUFNO= in a FILE statement, INFILE
statement, or FILENAME statement, SAS uses the value of the FILEBUFNO=
system option. For information about using BUFNO or the FILEBUFNO system
option, see “FILEBUFNO= System Option: z/OS” on page 742.

DSORG=organization
can be any of the following:

DA specifies direct access.

PO specifies PDS, PDSE.

PS specifies sequential.

The following values for organization refer to physical files that contain
location-dependent information: DAU, POU, PSU.

You do not need to include the DSORG= value when you create an external file
of type PS or PO because the operating environment identifies a partitioned
data set by the presence of a directory allocation in the SPACE= parameter.
When you use a FILE statement to write data, SAS identifies a PDS or PDSE by
the presence of a member name in the FILE statement. If no member name is
present, SAS assumes that the data set is sequential.

LRECL=value
specifies the logical record length (that is, the number of bytes in a record). SAS
defaults to the size that is needed (for either print or nonprint files) when a file
is opened.

Logical record length is affected by the record format. See RECFM=. When the
record format is fixed (indicated by an F as part of the RECFM= value), all
records have the same length, and that length is the value of the LRECL= value.

When the record format is variable (indicated by a V as part of the RECFM=
value), records can have different lengths, and each record contains 4 bytes of
length information in addition to its other data. Therefore, you must specify an
LRECL= value that is 4 bytes longer than the longest record that you expect to
write. If you do not know the length of the longest record to be put into a
variable-format data set, choose a maximum value and add 4 to it to create an
LRECL= value.

FILENAME Statement: z/OS 629

OPTCD=value
specifies the optional services to be performed by the operating environment.
For example, specifying W requests a validity check for Write operations on
direct-access devices. For more information, see the appropriate IBM MVS JCL
manual for your system.

Valid values are R, J, T, Z, A, Q, F, H, O, C, E, B, U, and W. You can specify more
than one code by listing them with no blanks or commas between them (as with
RECFM). A maximum of four characters is allowed.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies fixed-length records, unblocked.

V specifies variable-length records, unblocked.

FB specifies fixed-length records, blocked.

VB specifies variable-length records, blocked.

U specifies undefined-length records, unblocked.

The following values can be appended to the RECFM= values:

A specifies that the first byte of each record is an ANSI printer-control
character.

M specifies that the file is a machine control character file. SAS does not
interpret machine-code control characters, nor does it create them in
output files. See MVS JCL Reference by IBM for more information.

S specifies that the file contains spanned records (when appended to V),
or that the file contains standard blocks (when appended to F).

The next format stands alone; no other values can be appended:

N indicates that the file is in binary format. The file is processed as a
stream of bytes with no record boundaries, which includes the default
value of LRECL. This record format is specific to SAS.

Overview of DCB Attributes
DCB attributes and options are relevant to INFILE and FILE statements as well as
to the FILENAME statement. This section provides some background information
about DCB characteristics.

DCB attributes are those data set characteristics that describe the organization and
format of the data set records. If you do not specify these attributes, SAS uses
default values. This section discusses how and under what circumstances these
attributes are changed or default values are used.

The discussion focuses on the RECFM, LRECL, and BLKSIZE file attributes. For
more information, see the appropriate data administration guide for your system.

Values for these attributes are kept in each of the following operating environment
control blocks:

630 Chapter 30 / Statements under z/OS

Data Set Control Block (DSCB)
is the description found in the VTOC of the disk device on which the physical
file resides. They are the permanent characteristics of the data set. For tape
devices, the data set label in the header of SL tapes contains this information.

Job File Control Block (JFCB)
maps a physical file on a device to a logical name (ddname). Contains
information from a JCL DD statement, TSO ALLOCATE command, SAS
FILENAME statement, or SAS FILENAME function. These attributes are either
temporary (for the duration of the allocation) or new (to be made permanent).

Data Control Block (DCB)
describes the current state of an open data set. z/OS and its access methods
(BSAM for SAS software) use the DCB to control how data is read or written.
These attributes are temporary for input, but they become permanent for
output.

For existing data sets, DCB attributes are almost never changed from the DSCB.
These attributes can be overridden by a DD statement or TSO ALLOCATE
command or by SAS FILENAME, FILE, or INFILE statement options. If a DCB option
is specified in both places, the FILENAME, FILE, or INFILE option takes precedence.

When you open a data set, z/OS merges information from the DSCB (or data set
label) and the JFCB to obtain the current DCB characteristics before entering the
DCB open exit. SAS then merges its own information (FILENAME/FILE/INFILE
statement options, data set device type, requested data set type, requested line
size from LS=) and inspects the resulting DCB attributes. If the result is invalid for
some reason, SAS terminates the Open operation and issues an appropriate
message. Attributes can be considered invalid for any of the following reasons:

n For RECFM=V or VB, BLKSIZE is not at least 4 bytes greater than LRECL.

n For RECFM=F, LRECL equals neither 0 nor BLKSIZE.

n For RECFM=FB, BLKSIZE is not a multiple of LRECL.

n BLKSIZE or LRECL is greater than the z/OS maximum (32,760).

n LRECL is greater than BLKSIZE (except RECFM=VBS).

n RECFM is not consistent with the requested data set type.

n The requested data length cannot be contained in LRECL.

For any unspecified attributes, SAS uses default values that seem to fit existing
attributes. For input files, the attributes are usually complete and consistent. For
output files, it is best to specify the values for RECFM and LRECL. SAS fills in the
value for BLKSIZE automatically based on the settings for the
FILEBLKSIZE(device)= option.

If no permanent attributes are present (as is possible with a new data set), and if
none are given by FILENAME/FILE/INFILE options, then SAS uses default values
that are based on the device type and data set type.

The following table summarizes these default values:

FILENAME Statement: z/OS 631

Table 30.2 Default Attribute Values

Attribute DISK TAPE
PRINT/
SYSOUT TERMINAL

DUMM
Y

RECFM FB FB VBA V FB

LRECL 80 80 260 261 80

BLKSIZE 1 2 264 265 1

1 The smaller of the SAS system option FILEBLKSIZE(device-type)= value and the output device
maximum, rounded down to a multiple of the LRECL.

2 The smaller of the SAS system option FILEBLKSIZE(device-type)= value and 32,760, rounded down
to a multiple of the LRECL.

If you specify a line size (LS=) parameter, SAS uses it to compute the LRECL and
the BLKSIZE.

If you override permanent attributes on input, SAS uses the new values only for the
duration of the INFILE processing; the permanent attributes of the data set are not
changed. However, if you override the attributes on output, the new attributes
become permanent for the data set, even if no records are physically written.

Options That Specify SMS Keywords
Several options that specify SMS (Storage Management Subsystem) keywords can
be specified in the FILENAME or FILE statement when you create an external file.
All of these options are ignored for existing data sets; they apply only when you are
creating a data set. If you do not specify any of these options when you create an
SMS data set, the system defaults are used. The default values are site-dependent;
see your system administrator for details. For more information about SMS data
sets, see MVS JCL Reference by IBM.

DATACLAS=data-class-name
specifies the data class for an SMS-managed data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for
existing data sets. The data class is predefined and controls the DCB attributes
for a data set.

The implementation of the DATACLAS= option is compatible with the SMS
DATACLAS= JCL parameter. For complete information about this parameter, see
MVS JCL Reference. Ask your system administrator for the data-class names
that are used at your site.

Note: If your specified value for DATACLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' MGMTCLAS='#MGMT';

632 Chapter 30 / Statements under z/OS

DSNTYPE=BASIC | LARGE | EXTREQ | EXTPREF | LIBRARY | PDS | NONE
specifies the type of name for the data set. The DSNTYPE values BASIC,
LARGE, EXTREQ, and EXTPREF are valid for z/OS V1R7 systems and later.

BASIC specifies that the system selects the BASIC format if the data
set is sequential (DSORG=PS or PSU), or if DSORG is omitted
from all sources and the data set is not VSAM. The data set
cannot exceed 65535 tracks per volume.

LARGE specifies that the system selects the LARGE format if the data
set is sequential (DSORG=PS or PSU), or if DSORG is omitted
from all sources and the data set is not VSAM. The data set can
exceed 65535 tracks per volume.

EXTREQ specifies that the data set is in the EXTENDED format if the
data set is VSAM, sequential, or if DSORG is omitted from all
sources. The assignment fails if the system cannot allocate an
extended format data set.

EXTPREF specifies that you prefer that the data set is in the EXTENDED
format if the data set is VSAM, sequential, or if DSORG is
omitted from all sources. If extended format is not possible, the
system selects the BASIC format.

LIBRARY specifies that the data set is a PDSE (DSORG=PO).

PDS specifies that the data set is a PDS (DSORG=PO).

NONE specifies that the default DSNTYPE of the system should be
used when a new sequential file is allocated.

The FILESEQDSNTYPE system option provides a default value for creation of
sequential files when no DSNTYPE parameter is specified. For more information
about this option, see “FILESEQDSNTYPE System Option: z/OS” on page 756.

LIKE=data-set-name
allocates an external file that has the same attributes as an existing file. See
MVS JCL Reference for more information.

MGMTCLAS=management-class-name
specifies a management class for an SMS data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for
existing data sets. The management class is predefined and controls how your
data set is managed, such as how often it is backed up and how it is migrated.

The implementation of the MGMTCLAS= option is compatible with the SMS
MGMTCLAS= JCL parameter. For complete information about this parameter,
see MVS JCL Reference. Ask your system administrator for the management
class names that are used at your site.

Note: If your specified value for MGMTCLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' MGMTCLAS='#MGMT';

FILENAME Statement: z/OS 633

RECORG=record-organization
specifies the organization of records in a new VSAM data set. Use this option
only if SMS is active. Valid values are

KS specifies a VSAM key-sequenced data set.

ES specifies a VSAM entry-sequenced data set.

RR specifies a VSAM relative-record data set.

LS specifies a VSAM linear-space data set.

STORCLAS=storage-class-name
specifies a storage class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing
data sets. The storage class is predefined and controls which device your SMS
data set is stored on, such as disk or tape.

The implementation of the STORCLAS= option is compatible with the SMS
STORCLAS= JCL parameter. For full details about this parameter, see MVS JCL
Reference. See your system administrator for storage class names at your site.

Note: If your specified value for STORCLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' STORCLAS='#SCLAS';

SYSOUT Data Set Options for the FILENAME Statement
The following options apply to data sets that are sent to a system output device
(usually a printer). The default value is usually the value that was specified by your
site at installation. For more information about print data sets, see “Writing to Print
Data Sets” on page 117, as well as your IBM JCL reference.

ALIGN
tells the operator to check the alignment of the printer forms before printing the
data set.

BURST
tells the operator that the printed output goes to a burster-trimmer-stacker
machine, to be burst into separate sheets.

CHAR1=
specifies a one- to four-character name for character-arrangement table #1
(used in conjunction with the 3800 Printing Subsystem).

CHAR2=
specifies a one- to four-character name for character-arrangement table #2
(used in conjunction with the 3800 Printing Subsystem).

CHAR3=
specifies a one- to four-character name for character-arrangement table #3
(used in conjunction with the 3800 Printing Subsystem).

634 Chapter 30 / Statements under z/OS

CHAR4=
specifies a one- to four-character name for character-arrangement table #4
(used in conjunction with the 3800 Printing Subsystem).

CLOSE
tells the operating environment to deallocate the data set when the DCB is
closed.

COPIES=
specifies how many copies of the SYSOUT data set to print. The default is
COPIES=1.

DEST=
specifies a destination for the SYSOUT data set. If DEST= is not defined, its
value is taken from the SAS system option FILEDEST=.

FCB=
specifies the forms control buffer image that JES uses to control the printing of
the SYSOUT data set.

FLASH=
specifies the forms-overlay frame to use when printing on a 3800 Printing
Subsystem.

FLASHC=
specifies the number of copies on which to print the forms overlay frame.

FOLD
specifies that the print chain or print train for the universal character set is
loaded in fold mode.

FORMDEF=
identifies a member that contains statements that tell the Print Services Facility
from IBM how to print the SYSOUT data set on a page-mode printer. This option
has no effect on SAS forms.

FORMS=
specifies the IBM form number. If FORMS= is not defined, its value is taken from
the FILEFORMS= system option. This option has no effect on SAS forms.

HOLD
tells the system to hold the SYSOUT data set when it is deallocated until it is
released by the system operator.

ID=
specifies the user ID for the SYSOUT destination.

MODIFY=
specifies a copy-modification module that tells JES how to print the SYSOUT
data set on a 3800 Printing Subsystem.

MODIFYT=n
specifies which of the CHARn tables to use. For example, if n is 1, then the
character-arrangement table that is identified by the CHAR1= option is used.

OUTDES=
specifies the output descriptor.

FILENAME Statement: z/OS 635

OUTLIM=
specifies a limit for the number of logical records in the SYSOUT data set.

PAGEDEF=
identifies a member that contains statements that tell the Print Services Facility
how to format the page on a page-mode printer.

PGM=
specifies the SYSOUT program name.

When a SAS server is in a locked-down state, access to SYSOUT programs is
limited to entries that are found in a lockdown list that is maintained by the
server administrator. For more information, see Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219.

PRMODE=
specifies which process mode is required for printing the SYSOUT data set.

SYSOUT=
specifies the output class for the SYSOUT data set. If SYSOUT is not defined,
its value is taken from the SAS system option FILESYSOUT=.

UCS=
specifies the Universal Character Set.

UCSVER
tells the operator to visually verify that the character set image is for the
correct print chain or print train. The character set image is displayed on the
printer before the data set is printed.

VERIFY
tells the operator to verify that the image displayed on the printer is for the
correct FCB image.

Subsystem Options for the FILENAME Statement
The following subsystem data set options are also available. For more information
about subsystem data sets, see the appropriate IBM MVS JCL manual for your site.

SUBSYS=
specifies the name of the subsystem (up to four characters).

PARM1=
specifies a subsystem parameter (up to 67 characters).

PARM2=
specifies a subsystem parameter (up to 67 characters).

PARM3=
specifies a subsystem parameter (up to 67 characters).

PARM4=
specifies a subsystem parameter (up to 67 characters).

PARM5=
specifies a subsystem parameter (up to 67 characters).

636 Chapter 30 / Statements under z/OS

Host-Specific Options for UNIX System Services Files
The following table shows which host-specific options are recognized by the
FILENAME, FILE, and INFILE statements for UNIX System Services files and pipes.
No other options are recognized, including such options specific to z/OS as DISP,
CLOSE, and DCB. Descriptions of the options follow the table.

Table 30.3 Host-Specific Options for UNIX System Services Files and Pipes

Option FILENAME FILE INFILE %INCLUDE

BLKSIZE= X X X X

BOM X X

BOMFILE X X

LRECL= X X X X

MOD X X

NOBOM X X

NOBOMFILE X X

OLD X X

RECFM= X X X X

TERMSTR= X X X

BLKSIZE=
specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 16M-1 or 16,777,215.

BOMFILE
includes a Byte-Order Mark when a UNICODE-encoded file is created.

Alias BOM

FILEDATA=BINARY | TEXT
The FILEDATA= option specifies that the file being processed is expected to
contain one of the following:

BINARY data without record separator character sequences.

TEXT data with records terminated by the EBCDIC newline character.
The EBCDIC newline character is defined at code point x'15'
and is typically represented as NL or \n.

Note: The FILEDATA= option is meant to be similar to the FILEDATA=
parameter on the DD JCL statement, but is evaluated at run time by SAS. The

FILENAME Statement: z/OS 637

JCL parameter is used by z/OS to set an attribute of the file when the file is
created by the JCL

LRECL=value
specifies the maximum number of characters in a line (unless the file has been
opened with RECFM=N). The default is 255. Lines longer than value are
truncated. value must be between 1 and 16,777,215, inclusive.

MOD
appends the output lines to the file. This option has no effect on a pipe.

NOBOMFILE
specifies that a Byte-Order Mark is not included when a UNICODE-encoded file
is created.

Alias NOBOM

OLD
replaces the previous contents of the file. This option is the default. This option
has no effect on a pipe.

RECFM=record-format
specifies the record format of the file. Valid values are

F specifies that all lines in the file have the length that is specified in
the LRECL= option. In output files, lines that are shorter than the
LRECL= value are padded on the right with blanks.

V | D specifies that the lines in the file are of variable length, ranging from
one character to the number of characters specified by LRECL=. This
option is the default.

P specifies that the file has variable-length records and is in print
format.

N specifies that the file is in binary format. The file is treated as a byte
stream. That is, line boundaries are not recognized.

TERMSTR=NONE | NL | CR | LF | CRLF | LFCR | CRNL
The TERMSTR= option specifies the type of record separator character
sequences to use to terminate records in the file. TERMSTR= accepts the
following parameters:

NONE Record terminators are not used. This parameter provides the
same function as FILEDATA=BINARY.

NL The newline character (x'15') is used as the record terminator.
This parameter provides the same function as FILEDATA=TEXT.

CR The carriage return character (x'0D') is used as the record
terminator.

LF The line feed character (x'25') is used as the record terminator.

CRLF The sequence CR followed by LF is used as the record terminator.

LFCR The sequence LF followed by CR is used as the record terminator.

638 Chapter 30 / Statements under z/OS

CRNL The sequence CR followed by NL is used as the record terminator.

All of the previous specifications (x'15', x'0D', and x'25') assume that the files
use an ENCODING= value whose short (12 byte) name is in the form open_ed-
nnnn and whose long (32 byte) name contains (OpenEdition) (for example,
open_ed-1047 or Western(OpenEdition)). These characters are automatically
transcoded to or from the file's encoding if they are required by the ENCODING=
or LOCALE= options.

The last occurrence of FILEDATA= or TERMSTR= takes precedence.
Specification of one or the other of these options on a FILE or INFILE statement
takes precedence over the specification in a related FILENAME statement.

1 Specification of FILEDATA= or TERMSTR= on a FILE or INFILE statement.

2 Specification of FILEDATA= or TERMSTR= in a FILENAME statement.

3 Specification of FILEDATA= on a DD JCL statement when the file was
created by that DD statement.

4 Implied by the RECFM= option in effect for the file.

The RECFM= option in the FILENAME, FILE, and INFILE statement can imply
the value assumed for the termination sequence. This implication is always
overridden by the presence of a TERMSTR= or FILEDATA= option for the file.
Here are the default values:

RECFM=V | D
TERMSTR=NL is implied. (This option is the default.)

RECFM=F
TERMSTR=NONE is implied.

RECFM=P
TERMSTR=NL implied, along with other formatting control characters.

RECFM=N
TERMSTR=NONE is implied.

Note: The FILEDATA= parameter on the DD JCL statement is used only by
z/OS when the file is being created by that JCL statement. For existing files, the
FILEDATA= parameter is ignored by z/OS, and SAS is informed of its value at
file creation time. Therefore, SAS cannot detect a change in the JCL. However,
SAS honors the values of FILEDATA= or TERMSTR= that are specified in the
FILENAME, INFILE, or FILE statements when you replace an existing file or read
a file.

CAUTION
The combination of RECFM=, FILEDATA=, and TERMSTR= provides much
flexibility for reading and writing many different file formats. It is possible
to use these options in a way that can produce a file that might be difficult
to process in the future. For example, a PRINT file can be created without
record terminators, but this file would look strange when printed on a
printer or viewed in an editor.

FILENAME Statement: z/OS 639

For more information about these options, see “Accessing UNIX System Services
Files” on page 129, “Writing to External Files” on page 110, and “Using the FILE
Statement to Specify Data Set Attributes” on page 115.

See Also

n z/OS V1R9.0 MVS JCL Reference

Functions

n “FILENAME Function: z/OS” on page 474

Statements

n “FILENAME Statement” in SAS Global Statements: Reference

FILENAME Statement: EMAIL (CSSMTP and
SMTP) Access Method
Enables you to send electronic mail programmatically from SAS using the Simple Mail Transfer
Protocol SMTP email interface.

Valid in: Anywhere

Category: Data Access

Restrictions: When SAS is in a locked-down state, the FILENAME statement EMAIL access
method is not available. Your server administrator can enable this access method
so that it is accessible in the locked-down state. For more information, see “SAS
Processing Restrictions for Servers in a Locked-Down State” in SAS Programmer’s
Guide: Essentials.
z/OS V2R3 does not support the SMTPD email server. Specify CSSMTP to access
an SMTP email server if you are using SAS on z/OS V2R3.

See: “FILENAME Statement: EMAIL (SMTP) Access Method” in SAS Global Statements:
Reference
“EMAILSYS= System Option: z/OS” on page 736
“FILESPPRI= System Option: z/OS” on page 757
“FILESPSEC= System Option: z/OS” on page 758

Syntax

FILENAME fileref EMAIL < 'address' > < email-options>;

640 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en

Email Options
LRECL=lrecl

specifies the record length of the data where lrecl is the logical record length of
the data.

Default 256

Notes The record length for normal SMTP communications is 80 bytes. Make
sure that the specified value for LRECL accommodates this length.
Otherwise, the message might be corrupted.

If the recipient’s email client does not support read-receipt requests or
if the recipient does not allow these return requests, the sender does
not receive a read-receipt notification when the recipient reads the
email.

PRESERVELRECL
preserves spaces of fixed-length records in text files.

Default By default, SAS trims spaces from fixed-length records in text files that
are sent as email attachments. Beginning in SAS 9.4M7, if
PRESERVELRECL is specified, spaces are preserved for fixed-length
records in text files.

Note This option can be set by the system administrator as a value in the
SAS Registry. For more information about the SAS Registry, see “The
SAS Registry File” on page 23.

RECFM
specifies the record format to use for the CSSMTP file.

Default variable format

BLKSIZE=
specifies the block size for the CSSMTP file.

Default 10 times the specified record length

SYSOUT=
specifies the destination for the CSSMTP file in the file system.

SYSOUT=A

Default printer A

PGM=
specifies the external writer program to attach to the CSSMTP file.

Default CSSMTP

CONTENT_TYPE="type/subtype"
specifies the content type of the message body.

FILENAME Statement: EMAIL (CSSMTP and SMTP) Access Method 641

Note: z/OS automatically transcodes EBCDIC to ASCII for all files that have
the content type "TEXT/*". This transcoding includes files that do not have a
specified content type.

Default "text/plain"

DEBUG
enables writing data about the creation of the email to a log in a temporary file.
This log is not the log that is written to the final destination. The data lines
follow the format used by SMTP, but all lines are prefaced with an S because
the data is not received at the final destination.

FROM='from-address'
specifies the email address of the author of the message that is being sent.
Specify this option when the person who is sending the message is not the
author. You must enclose an address in quotation marks. You can specify only
one email address. To specify the author's real name along with the address,
enclose the address in angle brackets (< >). Here are examples:

from='martin@home.com'
from="Brad Martin <martin@home.com>"

Default The default value for FROM= is the email address of the user who
is running SAS. Beginning in SAS 9.4M6, if the SENDER= option is
specified, the default value for FROM= is the email address that is
specified in the SENDER= option.

Range 1–255 characters

Requirement The FROM option is required if the EMAILFROM system option is
set. For more information, see “EMAILFROM System Option” in
SAS System Options: Reference.

Interaction Use the SENDER= option to specify a return email address that is
different from the author-specified email address in the FROM=
option.

See “SENDER='sender-address'” on page 642

SENDER='sender-address'
specifies the return email address for the message that is being sent. If a
message cannot be delivered, a notification is sent to the sender email address.
To specify the author's real name along with the address, enclose the address in
angle brackets (< >). Here are examples:

sender='martin@home.com'
sender='Brad Martin <martin@home.com>'

Default The default value for SENDER= is the email address of the user who
is running SAS. Beginning in SAS 9.4M6, if the FROM= option is
specified, the default value for SENDER= is the email address that is
specified in the FROM= option.

Range 1–255 characters

642 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n019az3lkee2bun1grhii379mhw8.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n019az3lkee2bun1grhii379mhw8.htm&locale=en

Interaction The SENDER= address can be different from the FROM= address,
which allows for the message to be sent on behalf of the email
address that is specified in the FROM= option.

See “FROM='from-address'” on page 642

Details

CSSMTP Usage Details
Communications Server Simple Mail Transfer Protocol (CSSMTP) is an interface
that transports email across the internet much like SMTP. CSSMTP is supported
only on z/OS hosts. It supports most of the functionality of SMTP.

Configuring CSSMTP
Set EMAILSYS=CSSMTP on your MVS host to enable the CSSMTP interface. Your
CSSMTP program must be running for the interface to work. CSSMTP does not
work the same as SMTP because SAS does not have direct contact with an SMTP
server. Instead, it writes a file that the CSSMTP program uses.

Because this email information is written to a file, errors can occur if you have not
allocated adequate space. If you do not have adequate space for the file, set the
FILESPPRI (primary space allocation) and FILESPSEC (secondary space allocation)
system options to values that are large enough to resolve the problem.

Note: CSSMTP sends emails that are incomplete. Temporary files are used to
verify that you have supplied valid values for the options before the email is written
to the destination where CSSMTP accesses it. Because the server interaction does
not occur within SAS, most errors are gathered by the CSSMTP program. SAS
displays only blatant errors that occur when you send an email. Remember to check
your logs to determine whether the email was sent correctly.

Example: Using the SYSOUT and PGM Options

This example shows how to use the SYSOUT and PGM arguments.

options emailsys=cssmtp;

filename myemail EMAIL to=("userid1@sender.com" "userid2@dest.com")
from="Firstname Lastname myname@sender.com"
sender="myname@sender.com"
importance="HIGH"
expires="25 Dec 2016 23:00"
attach=("file.txt" "home.html" ct="text/html" lrecl=8000)
subject="Hello!"
sysout=A
pgm=CSSMTP

FILENAME Statement: EMAIL (CSSMTP and SMTP) Access Method 643

lrecl=80
blksize=80
recfm=FB;

data _null_;
 file myemail;
 put "Hello World!";
run;

FOOTNOTE Statement: z/OS
Prints up to ten lines at the bottom of the procedure output.

Valid in: Anywhere

z/OS specifics: Maximum length of footnote

See: “FOOTNOTE Statement” in SAS Global Statements: Reference

Syntax

FOOTNOTE<n> <'text' | "text"> ;

Details

Under z/OS, the maximum footnote length is determined by the value of the
LINESIZE= system option. The maximum value of LINESIZE= is 256. Footnotes
longer than the value of LINESIZE= are truncated.

Note: No space is permitted between FOOTNOTE and the number n.

%INCLUDE Statement: z/OS
Includes SAS statements and data lines.

Valid in: Anywhere

z/OS specifics: file-specification, JCLEXCL, options

See: “%INCLUDE Statement” in SAS Global Statements: Reference

644 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0wh407rnaleinn1rqyudxuzhkhu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en

Syntax

%INCLUDE source-1 <source-2 …>

</<SOURCE2> <S2=length> <S2V=column> <JCLEXCL>
<ENCODING='encoding-value'> <host-options>>;

Required Arguments
The following list explains some of the components of the %INCLUDE statement. For
complete syntax information, see “%INCLUDE Statement” in SAS Global Statements:
Reference.

source
describes the location of the information that you want to access with the
%INCLUDE statement. Here are the three possible sources:

file-specification
Under z/OS, this value can be a fileref or a physical filename enclosed in
quotation marks. If you specify a fileref that is not allocated, then SAS
attempts to construct a data set name with the following three qualifiers:

If you specify a physical filename and the SAS server is in a locked-down
state, access to a permanent z/OS data set or UFS file is limited to entries
that are found in a lockdown list that is maintained by the server
administrator. For more information, see Chapter 10, “SAS Processing
Restrictions for Servers in a Locked-Down State,” on page 219.

n the value of the SYSPREF= option (usually the user ID)

n the specified fileref

n SAS

If a file that has this constructed data set name is found, then SAS opens it
and reads it.

internal-lines
You can access lines that were entered earlier in the same SAS job or
session. In order to use this technique in a line mode session, the SAS
system option SPOOL must be in effect.

keyboard-entry
You can enter the statements or data lines directly from the terminal. Use an
asterisk (*) to indicate that the statements are to come from the terminal.

SOURCE2
causes the SAS log to show the source statements that are being included in
your SAS program. In other words, this option has the same effect as the SAS
system option SOURCE2, except that it applies only to the records that you are
currently including. Specifying SOURCE2 in the %INCLUDE statement works
even if the NOSOURCE2 system option is in effect.

S2=length
specifies the length of the record to be used for input. Here are the possible
values:

S sets S2 equal to the current setting of the SAS system option S=.

%INCLUDE Statement: z/OS 645

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en

0 specifies to use the setting of the SAS system option SEQ= to
determine whether the line contains a sequence field. If the line does
contain a sequence field, SAS determines the line length by excluding
the sequence field from the total length.

n indicates which columns SAS should scan and which columns, if any,
contain sequence numbers that should be ignored. n specifies the
column in which to start scanning (for variable-length records) or stop
scanning (for fixed-length records).

If the source lines in an external file that you are including contain sequence
numbers, then either delete them before including the SAS program in your SAS
session, or specify S2=0. The maximum line length is 6K bytes.

S2V=column
specifies which column to use to begin scanning text from secondary source
files that have a variable record format. The default value is S2. Here are the
possible values:

S2 specifies to use the value of the S2=system option to compute the
column to begin scanning text that comes from a %INCLUDE
statement, an autoexec file, or an autocall macro file.

S specifies to use the value of the S=system option to compute the
column to begin scanning text that comes from a %INCLUDE
statement, an autoexec file, or an autocall macro file.

n specifies to use the value of n to compute the column to begin
scanning text that comes from a %INCLUDE statement, an autoexec
file, or an autocall macro file. The value for n can range from 0 to
2147483647.

JCLEXCL
ignores any lines of JCL in the included source.

ENCODING='encoding-value'
specifies the encoding to use when reading from the specified source. The value
for ENCODING= indicates that the specified source has a different encoding
from the current session encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide and
“SBCS, DBCS, and Unicode Encoding Values for Transcoding Data” in SAS
National Language Support (NLS): Reference Guide .

host-options
consists of statement options that are valid under z/OS. The following options
are available:

n BLKSIZE=block-size

BLK=block-size

n LRECL=record-length

n RECFM=record-format

646 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en

See Also

n “DCB Attribute Options” on page 628

n “Host-Specific Options for UNIX System Services Files” on page 613

INFILE Statement: z/OS
Specifies an external file to read with an INPUT statement.

Valid in: In a DATA step

Restriction: The INFILE statement cannot modify or override the device type that was set by an
earlier FILENAME statement.

z/OS specifics: file-specification, type, host-options

See: “INFILE” in SAS DATA Step Statements: Reference

Syntax

INFILE file-specification <type> <ENCODING=encoding-value> <options> ;

INFILE DATALINES | CARDS <options> ;

Required Arguments
file-specification

identifies a file in one of the following forms:

fileref
specifies the assigned fileref or the allocated ddname of the file. A fileref
must conform to the rules for ddnames. That is, it can consist of up to eight
letters, numbers, or national characters ($, @, and #) and underscores (_).
The first character must be either a letter or a national character.

fileref(member)
specifies a member of a partitioned data set, where the PDS or PDSE is
specified by the assigned fileref or allocated ddname.

If you specify a fileref that is not allocated, then SAS attempts to construct a
data set name with the following three qualifiers:

n the value of the SYSPREF= option (usually the user ID)

n the specified fileref

n DATA

If a file that has this constructed data set name is found, then SAS opens it
and reads it.

INFILE Statement: z/OS 647

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en

The value of the FILEEXT= system option can affect how SAS interprets PDS
and PDSE member names. For more information, see “FILEEXT= System
Option: z/OS” on page 746.

'physical-filename'
specifies a physical file, which can be a member of a partitioned data set
(PDS), an extended partitioned data set (PDSE), or a UNIX System Services
file, using the following syntax:

n a fully qualified data set name. For example:

'myid.raw.datax'

n a fully qualified data set name with a member in parentheses. For
example:

'sas.raw.data(mem1)'

n a partially qualified data set name with a period preceding it. For
example:

'.raw.data'

n a partially qualified data set name with a period preceding it and a
member name in parentheses. For example:

'.raw.data(mem1)'

n for PDS members, a fully or partially qualified data set name with a
wildcard name in parentheses. For example:

n a UNIX System Services file. For example:

The * wildcard character indicates a concatenation of UNIX System
Services files. For more information about the use of the wildcard, see
“Concatenating UNIX System Services Pathnames” on page 132.

The value of the FILEEXT= system option can affect how SAS interprets file
specifications for PDS and PDSE files. For more information, see “FILEEXT=
System Option: z/OS” on page 746.

For more information about partially qualified data set names, see Chapter 5,
“Specifying Physical Files,” on page 89. For information about encodings for
z/OS resources such as data set names and UFS paths, see “PEEKLONG
Function: z/OS” on page 492.

When a SAS server is in a locked-down state, access to a permanent z/OS
data set or UFS file is limited to entries that are found in a lockdown list that
is maintained by the server administrator. For more information, see Chapter
10, “SAS Processing Restrictions for Servers in a Locked-Down State,” on
page 219.

DATALINES | CARDS
specifies that input data immediately follows a DATALINES or CARDS
statement in your SAS program.

Optional Arguments
type

specifies the type of file. When you omit type, the default is a standard external
file. Nonstandard (host-specific) file types that you can specify for z/OS are

648 Chapter 30 / Statements under z/OS

DLI
for IMS-DL/I databases. For information about IMS-DL/I options for the
FILE statement, see SAS/ACCESS Interface to IMS: Reference.

HFS
for UNIX System Services. For information about files in the UNIX System
Services, see “Accessing UNIX System Services Files” on page 129.

MVS
for z/OS data sets.

PIPE
opens a pipe to issue UNIX System Services commands from within the
statement. For information about files in the UNIX System Services, see
“Piping Data from SAS to a UNIX System Services Command” on page 137.

IDMS
for CA-IDMS files. For information about CA-IDMS options for the INFILE
statement, see SAS/ACCESS Interface to IMS: Reference.

VSAM
for VSAM files. For information about VSAM files, see “Accessing Other File
Types” on page 127.

VTOC
for a Volume Table of Contents (VTOC).

ENCODING= encoding-value
specifies the encoding to use when reading from the input file. Typically, you
would specify a value for ENCODING= that indicates that the input file has a
different encoding from the current session encoding. However, you can also
specify the same encoding for the input file as the encoding of the current
session. You must enclose the value in quotation marks if it contains a hyphen.

If you specify an encoding value different from the session encoding, SAS
transcodes the data from the session encoding to the specified encoding when
you read data from the input file. The default encoding is the session encoding,
which is the value of the ENCODING= SAS system option.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide and
“SBCS, DBCS, and Unicode Encoding Values for Transcoding Data” in SAS
National Language Support (NLS): Reference Guide .

options
are either portable or host-specific. For information about portable options, see
SAS System Options: Reference.

You can specify portable options and host options in any order. When you
specify more than one option, separate the options with a blank space.

The host-options that you can specify depend on which type of external file is
being accessed. See the following sections for details:

n “Standard Options for the INFILE Statement under z/OS” on page 650

n “Host Options for Retrieving Information about Data Sets” on page 652

n “VSAM Options for the FILE and INFILE Statements under z/OS” on page 610

INFILE Statement: z/OS 649

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en

n “VTOC Options for the INFILE Statement under z/OS” on page 652

n “Host-Specific Options for UNIX System Services Files” on page 613

Details

Standard Options for the INFILE Statement under z/OS
You can use the following standard options with all standard external files under
z/OS.

BLKSIZE=value | BLK=value
specifies the block size of the file. Block size is discussed in more detail in “DCB
Attribute Options” on page 628.

BUFNO=value
specifies how many memory buffers to allocate for reading. If you specify
BUFNO= in an INFILE statement, it takes precedence over specifying it in a
FILENAME statement. If you omit BUFNO= from the INFILE statement, then
specifying it in the FILENAME statement takes precedence. If you do not
specify BUFNO= in an INFILE statement or a FILENAME statement, SAS uses
the value of the FILEBUFNO= system option. For information about using
BUFNO or the FILEBUFNO system option, see “FILEBUFNO= System Option:
z/OS” on page 742.

CCHHR=variable
specifies a character variable to which the physical address (cylinder head
record) of a record is returned. This applies to files on CKD disks only.

CLOSE=keyword
indicates how a tape volume is positioned at the end of the DATA step. Values
for keyword are

REREAD
positions the tape at the logical beginning of the data set.

LEAVE
positions the tape at the logical end of the data set.

REWIND
rewinds the tape to the physical beginning of the volume.

FREE
dynamically deallocates the tape volume.

DISP
is implied by the control language.

CSRC
specifies that you want to use CSRCESRV services (available with z/OS) to
decompress data on input. For example:

data;
 infile myfile csrc;
 input;
run;

650 Chapter 30 / Statements under z/OS

DCB=fileref
specifies the fileref of an external file that was referenced in an earlier FILE or
INFILE statement in the same DATA step. SAS uses that file's RECFM=, LRECL=,
and BLKSIZE= information for the current file.

LINESIZE=width
works with LRECL to specify the maximum number of characters per line or
record in print files, nonprint files, and the SAS log. Under z/OS, the range of
acceptable values of LINESIZE= is 64 to 256. The default value of the
LINESIZE= system option under z/OS is 132. This default applies only to print
files (with carriage returns) or to the SAS log. For nonprint files (without
carriage returns), the value of LRECL= is used in place of the default value for
LINESIZE=.

LRECL=value
specifies the logical record length of the file. The specified value depends on
the access method and the device type. For more information, see the
discussion of LRECL= in “DCB Option Descriptions” on page 628 and in the IBM
MVS JCL Reference.

RECFM=record-format
specifies the record format of the file. Valid values are

F
specifies fixed-length records, unblocked.

V
specifies variable-length records, unblocked.

FB
specifies fixed-length records, blocked.

VB
specifies variable-length records, blocked.

U
specifies undefined-length records, unblocked.

The following values can be appended to the RECFM= values:

A
specifies that the first byte of each record is an ANSI printer-control
character.

M
specifies that the file is a machine control character file. SAS does not
interpret machine code control characters, nor does it create them in output
files. See MVS JCL Reference by IBM for more information.

S
specifies that the file contains spanned records (V), or the file contains
standard blocks (F).

The following value stands alone; no other values can be appended:

N
indicates that the file is in binary format. The file is processed as a stream of
bytes with no record boundaries, which includes the default value of LRECL.
This record format is specific to SAS.

INFILE Statement: z/OS 651

Host Options for Retrieving Information about Data Sets
For information about options that retrieve information about a data set from
operating environment control blocks, see “Host Options for Retrieving Information
about Data Sets” on page 610.

VTOC Options for the INFILE Statement under z/OS
The following options are used only in INFILE statements that involve VTOC
(Volume Table of Contents) access:

CCHHR=variable
defines a SAS character variable of length 5 whose value is set to the CCHHR of
the last VTOC record that was read by SAS. The returned value is in
hexadecimal format; it can be printed by using the $HEX10. SAS format.

CVAF
tells SAS to use the Common VTOC Access Facility (CVAF) of the IBM program
product Data Facility/Device Support (DF/DS) for indexed VTOCs. If the VTOC
is not indexed, or if your installation does not have CVAF, this option is ignored.

Note:

n When you use CVAF and CCHHR=, values that are returned for Format-5 DSCB
records are not valid, because indexed VTOCs do not have Format-5 DSCB
records.

n When a SAS server is in the locked-down state, the VTOC access method is
disabled. For more information, see Chapter 10, “SAS Processing Restrictions for
Servers in a Locked-Down State,” on page 219.

Host-Specific Options for UNIX System Services Files
The following table shows which host-specific options are recognized by the
FILENAME, FILE, and INFILE statements for UNIX System Services files and pipes.
No other options are recognized, including such options specific to z/OS as DISP,
CLOSE, and DCB. Descriptions of the options follow the table.

Table 30.4 Host-Specific Options for UNIX System Services Files and Pipes

Option FILENAME FILE INFILE %INCLUDE

BLKSIZE= X X X X

FILEDATA= X X X

OLD X X

MOD X X

LRECL= X X X X

RECFM= X X X X

652 Chapter 30 / Statements under z/OS

Option FILENAME FILE INFILE %INCLUDE

TERMSTR= X X X

BLKSIZE=
specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

FILEDATA=BINARY | TEXT
The FILEDATA= option specifies that the file being processed is expected to
contain one of the following:

BINARY
data without record separator character sequences.

TEXT
data with records terminated by the EBCDIC newline character. The EBCDIC
newline character is defined at code point x'15' and is typically represented
as NL or \n.

Note: The FILEDATA= option is meant to be similar to the FILEDATA=
parameter on the DD JCL statement, but is evaluated at run time by SAS. The
JCL parameter is used by z/OS to set an attribute of the file when the file is
created by the JCL

OLD
replaces the previous contents of the file. This option is the default. This option
has no effect on a pipe.

MOD
appends the output lines to the file. This option has no effect on a pipe.

LRECL=value
specifies the maximum number of characters in a line (unless the file has been
opened with RECFM=N). The default is 255. Lines longer than value are
truncated. value must be between 1 and 65,535, inclusive.

RECFM=record-format
specifies the record format of the file. Valid values are

F
specifies that all lines in the file have the length that is specified in the
LRECL= option. In output files, lines that are shorter than the LRECL= value
are padded on the right with blanks.

V
D

specifies that the lines in the file are of variable length, ranging from one
character to the number of characters specified by LRECL=. This option is
the default.

P
specifies that the file has variable-length records and is in print format.

INFILE Statement: z/OS 653

N
specifies that the file is in binary format. The file is treated as a byte stream.
That is, line boundaries are not recognized.

TERMSTR=NONE | NL | CR | LF | CRLF | LFCR | CRNL
The TERMSTR= option specifies the type of record separator character
sequences to use to terminate records in the file. TERMSTR= accepts the
following parameters:

NONE
Record terminators are not used. This parameter provides the same function
as FILEDATA=BINARY.

NL
The newline character (x'15') is used as the record terminator. This
parameter provides the same function as FILEDATA=TEXT.

CR
The carriage return character (x'0D') is used as the record terminator.

LF
The line feed character (x'25') is used as the record terminator.

CRLF
The sequence CR followed by LF is used as the record terminator.

LFCR
The sequence LF followed by CR is used as the record terminator.

CRNL
The sequence CR followed by NL is used as the record terminator.

All of the previous specifications (x'15', x'0D', and x'25') assume that the files
use an ENCODING= value whose short (12 byte) name is in the form open_ed-
nnnn and whose long (32 byte) name contains (OpenEdition) (for example,
open_ed-1047 or Western(OpenEdition)). These characters are automatically
transcoded to or from the file's encoding if they are required by the ENCODING=
or LOCALE= options.

The last occurrence of FILEDATA= or TERMSTR= takes precedence.
Specification of one or the other of these options on a FILE or INFILE statement
takes precedence over the specification in a related FILENAME statement.

The full precedence order is as follows:

1 Specification of FILEDATA= or TERMSTR= on a FILE or INFILE statement.

2 Specification of FILEDATA= or TERMSTR= in a FILENAME statement.

3 Specification of FILEDATA= on a DD JCL statement when the file was
created by that DD statement.

4 Implied by the RECFM= option in effect for the file.

The RECFM= option in the FILENAME, FILE, and INFILE statement can imply
the value assumed for the termination sequence. This implication is always
overridden by the presence of a TERMSTR= or FILEDATA= option for the file.
Here are the default values:

654 Chapter 30 / Statements under z/OS

RECFM=V | D
TERMSTR=NL is implied. (This option is the default.)

RECFM=F
TERMSTR=NONE is implied.

RECFM=P
TERMSTR=NL implied, along with other formatting control characters.

RECFM=N
TERMSTR=NONE is implied.

Note: The FILEDATA= parameter on the DD JCL statement is used only by
z/OS when the file is being created by that JCL statement. For existing files,
the FILEDATA= parameter is ignored by z/OS, and SAS is informed of its
value at file creation time. Therefore, SAS cannot detect a change in the JCL.
However, SAS honors the values of FILEDATA= or TERMSTR= that are
specified in the FILENAME, INFILE, or FILE statements when you replace an
existing file or read a file.

CAUTION
The combination of RECFM= and TERMSTR= provides much flexibility
for reading and writing many different file formats. It is possible to use
these options in a way that can produce a file that might be difficult to
process in the future. For example, a PRINT file can be created without
record terminators, but this file would look strange when printed on a
printer or viewed in an editor.

See Also

n “Accessing UNIX System Services Files” on page 129

n “Reading from External Files” on page 119

n “Using the FILE Statement to Specify Data Set Attributes” on page 115

n “Writing to External Files” on page 110

LENGTH Statement: z/OS
Specifies how many bytes SAS uses to store a variable's value.

Valid in: In a DATA step

z/OS specifics: Length of numeric variables

See: “LENGTH” in SAS DATA Step Statements: Reference

LENGTH Statement: z/OS 655

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en

Syntax

LENGTH variable(s) <$> length …<DEFAULT=n >;

Required Arguments
This syntax is a simplified version of the LENGTH statement syntax. For more information,
see “LENGTH” in SAS DATA Step Statements: Reference..

length
can range from 2 to 8 for numeric variables and from 1 to 32,767 for character
variables. The minimum value for length for a numeric value might be greater
than 2 when you create a SAS data set that is written in a data representation
other than the native data representation for SAS on z/OS.

n
changes from 8 to n the default number of bytes that SAS uses for storing the
values of newly created numeric variables. Under z/OS, n can range from 2 to 8.

See Also

“Using the LENGTH Statement to Save Storage Space” on page 400

LIBNAME Statement: z/OS
Assigns a SAS libref and an engine to a SAS library.

Valid in: Anywhere

Restriction: When a SAS server is in a locked-down state, permanent SAS libraries cannot be
accessed unless they are found in a lockdown list that is maintained by the server
administrator. For more information, see Chapter 10, “SAS Processing Restrictions
for Servers in a Locked-Down State,” on page 219.

z/OS specifics: libref, engine, physical-filename, library-specification, engine/host-options

Tip: For information about the length limit of a libref, see “SAS Name Literals” in SAS
Programmer’s Guide: Essentials.

See: “LIBNAME Statement” in SAS Global Statements: Reference

Syntax

LIBNAME libref <engine> <'<file-system-prefix> physical-filename'> <engine/host-
options> ;

LIBNAME libref <engine> <(library-specification-1, library-specification-2 …)>
<engine/host-options>;

656 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

LIBNAME libref | _ALL_ CLEAR;

LIBNAME libref | _ALL_ LIST;

Details

Overview of the LIBNAME Statement
The LIBNAME statement can be used to assign a SAS library, deassign a library
assignment, or display a list of all library assignments. The LIBNAME function
provides similar functionality. For more information, see the “LIBNAME Statement”
in SAS Global Statements: Reference.

You can set the DLCREATEDIR system option to create the directory for the SAS
library that is specified in the LIBNAME statement if that directory does not exist.
For more information, see the “DLCREATEDIR System Option: z/OS” on page 724.

The first two preceding syntax diagrams are used for assigning SAS libraries. The
last two are used for deassigning libraries and for listing library assignments. The
following topics contain information about the specified LIBNAME statement
forms:

n “LIBNAME Statement Forms for Assigning Libraries ” on page 657

n “LIBNAME Statement Form for Deassigning Libraries” on page 661

n “LIBNAME Statement Form for Listing Library Assignments” on page 661

For more information, see the “LIBNAME Function” in SAS Functions and CALL
Routines: Reference.

LIBNAME Statement Forms for Assigning Libraries
The LIBNAME statement enables you to identify a library to SAS, specify which
engine SAS should use to process the library, and identify the z/OS resources that
are required to process the library. For a complete discussion of assigning libraries,
see “Assigning SAS Libraries” on page 72. For direct or sequential access bound
libraries, the LIBNAME statement can be used to specify the necessary options to
allocate the library data set. For information about z/OS allocation as it relates to
SAS libraries, see “Allocating the Library Data Set” on page 73.

Note: If an error is detected by SAS while it is processing a LIBNAME statement,
then the SAS session return code is not affected unless the SAS system option
ERRORCHECK=STRICT is specified.

The form of the LIBNAME statement that is used to assign a SAS library is
described in the following list. For examples of assigning libraries, see “Example 1:
Assigning an Existing Bound Library” on page 672.

LIBNAME libref <engine> <'<file-system-prefix> physical-filename'> <engine/host-
options>;

LIBNAME libref <engine> <(library-specification-1, library-specification-2 …)>

LIBNAME Statement: z/OS 657

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

<engine/host-options'>;

libref
is a SAS name that can be used to refer to the library in subsequent SAS
statements. The libref can be a maximum of eight characters. The first character
must be a letter (A–Z) or an underscore. The remaining characters can be any of
these characters or numerals 0–9.

If the specified libref is already assigned, SAS deassigns the libref before
performing the specified assignment.

If the LIBNAME statement is specified with a non-blank, non-empty physical
filename or with a list of library specifications, then the physical filename or list
of library specifications identify the resources that are to be assigned. However,
if the LIBNAME statement does not specify either a resource name or the
HIPERSPACE option, then the libref must correspond to an externally defined
logical name that refers to the resource that is to be assigned. The logical name
can be a DDNAME that is allocated externally to a library data set. In that case,
the externally allocated DDNAME must conform to the rules for the spelling of
a libref. The logical name can also be an environment variable that is defined by
an instance of the SET system option. For more information, see “Allocating the
Library Data Set” on page 73 and “Assigning SAS Libraries Externally” on page
77.

Note: SAS 9.2 for z/OS supports libref names that begin with or contain
underscores. For example, libref names with formats such as libref_name,
_librefname, or _libref_name are now supported. Unlike filerefs, librefs cannot
include the special characters $, @, and #.

engine
specifies which engine to use to access the SAS library.

For general information about these engines and other engines, see “SAS
Engines” in SAS Programmer’s Guide: Essentials .

It is generally necessary to specify the engine only when creating a library that
is processed by an engine other than the default engine that is indicated by the
ENGINE= system option or the SEQENGINE= system option. For more
information, see “ENGINE= System Option: z/OS” on page 737 or the
“SEQENGINE= System Option: z/OS” on page 839. For existing libraries, SAS
can examine the format of the library to determine which engine to use. For
complete details about how SAS selects an engine when an engine is not
specified, see “How SAS Assigns an Engine” on page 81.

Note: The V5 and V5TAPE engine names can be specified in the LIBNAME
statement. These engines are still supported for Read-Only access to existing
libraries in those formats.

physical-filename
specifies the physical name of the library. The physical-filename syntax element
and its enclosing quotation marks can be omitted entirely. A z/OS data set name
or a UFS path can be specified for physical-filename. If a file system prefix was
not specified to indicate whether the physical name refers to a z/OS data set or

658 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en

a UFS path, SAS assumes that the physical name refers to a UFS path if any of
the following conditions are true:

n The LIBNAME host option HFS is specified.

n The SAS system option FILESYSTEM=HFS is in effect.

n The physical name specified contains a slash (/) or a tilde (~).

If the physical filename does not refer to a UFS path and the HIPERSPACE
option is specified, then SAS creates a new hiperspace library and the physical
filename is disregarded. SAS assumes that the physical name refers to a z/OS
data set in the following circumstances:

n The physical filename is not blank or empty and does not refer to a UFS
path.

n The HIPERSPACE option is not specified.

If the physical filename is blank or empty and the HIPERSPACE option is not
specified, then the libref must match an externally defined logical name that
refers to the resource that is to be assigned. This specification is discussed in
the description of the previous libref syntax element. In this case, SAS attempts
to complete the assignment for the SAS library with which the logical name is
associated. Specifying this form of the LIBNAME statement to assign an
externally defined library ensures that the library exists in the SAS dictionary
table, which can be accessed with the SAS view SASHELP.VLIBNAM. For more
information, see “Assigning SAS Libraries Externally” on page 77.

The physical-filename and its file-system-prefix, can be specified in single
quotation marks, as indicated in the syntax diagram, or they can be specified in
double quotation marks instead.

For a library that resides in a z/OS data set, the physical name of the library
data set can be specified in one of the following ways:

n a fully qualified data set name. For example:

 'user934.mylib.saslib'

n a partially qualified data name. For example, if the value of the SYSPREF
option is USER934, the following specification is equivalent to the preceding
example:

'.mylib.saslib'

For more information, see “SYSPREF= System Option: z/OS” on page 873.

n a temporary data set name specified as an ampersand (&), followed by one
alphabetic character, and up to seven additional alphanumeric or special ($,
#, or @) characters. For example:

'&tmp#lib1'

This specification always creates a new temporary library, even if you have
already specified the same temporary data set name in a previous LIBNAME
statement. To assign an additional libref to a temporary library, specify the
original libref, as shown in the following example:

libname t '&tmp#lib1';
libname x (t);

LIBNAME Statement: z/OS 659

Note: Temporary libraries receive system-generated data set names in the
following form, which is guaranteed to be unique across the sysplex:

SYSyyddd.Thhmmss.RA000.jjobname.Rggnnnn

For a library that resides in a UFS directory, the physical name of the library is
the directory path. This path can be specified in the following ways:

n an absolute pathname:

 '/u/userid/mylib'

a pathname relative to the current working directory:

'./mylib'

or

 'HFS:mylib'

The HFS prefix is needed when the SAS system option FILESYSTEM=MVS is
in effect and the specified directory pathname does not contain a slash (/)
to indicate a UFS file. For more information, see “FILESYSTEM= System
Option: z/OS” on page 761.

n a pathname relative to the home directory of the user ID under which SAS is
running:

'~/saslib';

If the home directory of the user ID under which SAS is running is /u/usera,
then this specification is equivalent to '/u/usera/saslib'.

a pathname relative to the home directory of another user ID:

'~userb/saslib';

If the home directory for userb is '/u/userhome/userb', then the home
directory is equivalent to '/u/userhome/userb/saslib'.

SAS on z/OS does not support specifying physical files that have a member
type of AUDIT. Specifying physical filenames such as the following returns an
error:

n filename mylib data='./saslib/memb01.sas7baud';

n filename mylib data='/u/user01/mylib/inventory.sas7baud'

For information about encodings for z/OS resources such as data set names and
UFS paths, see “PEEKLONG Function: z/OS” on page 492.

library-specification
Specifies one of the following:

'<file-system-prefix> physical-filename'

"<file-system-prefix> physical-filename"

libref

ddname

file-system-prefix and physical-filename are described in the preceding list item.
libref is described in the first list item, and refers to any SAS libref currently that

660 Chapter 30 / Statements under z/OS

is assigned within the SAS session. ddname ddname refers to a z/OS ddname
that is allocated to a single z/OS data set or UFS directory. This allocation must
be established external to SAS in the job step or TSO session in which the SAS
session is running. For more information about using a ddname, see “Allocating
the Library Data Set” on page 73 and “Assigning SAS Libraries Externally” on
page 77.

As noted in the syntax diagram, multiple library specifications can be specified
in a single LIBNAME statement. In that case, the libref refers to a logical
concatenation of the libraries. For more information, see “Library
Concatenation” in SAS Programmer’s Guide: Essentials . In addition, note that
libraries of different implementation types (such as direct access bound and
UFS) can be included within the concatenation.

engine/host-options
are options that govern processing of the SAS library. Each option is identified
by a keyword, and most keywords assign a specific value to that option. You can
specify one or more of these options using the following forms:

keyword=value | keyword

When you specify more than one option, use a blank space to separate each
option.

There are two categories of options, engine options and host options. Engine
options can vary from engine to engine but are the same for all operating
environments. These options are documented as part of the syntax of the
“LIBNAME Statement” in SAS Global Statements: Reference. The host options,
which are documented in the following sections, apply exclusively to the z/OS
environment. For convenience, the host options are divided into two groups,
general options and options that govern the allocation of a library data set.
Many host options apply only to certain library implementation types. For more
information, see “Library Implementation Types for Base and Sequential
Engines” on page 51.

LIBNAME Statement Form for Deassigning Libraries

LIBNAME libref | _ALL_ CLEAR;

This form of the LIBNAME statement can be used to deassign an individual libref
(specified by libref) or all library assignments (specified by _ALL_). However, library
assignments, such as Work and Sashelp, that were established when the SAS
session was initialized, and that are required for the session to continue, cannot be
deassigned.

Deassigning an individual libref removes the individual library assignment that is
associated with that libref. If the libref is the last remaining libref associated with
the library, then the library is physically deassigned as well. When it physically
deassigns bound libraries, SAS performs additional processing to release the library
data set and the resources that are associated with processing it. For more
information, see “Deassigning SAS Libraries” on page 83.

LIBNAME Statement Form for Listing Library Assignments

LIBNAME Statement: z/OS 661

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p18zfdjy9kpck2n1ws67qt2qlly8.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p18zfdjy9kpck2n1ws67qt2qlly8.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

LIBNAME libref | _ALL_ LIST;

This form of the LIBNAME statement can be used to list an individual library
assignment that is associated with a specified libref or all library assignments
(specified by _ALL_). LIBNAME LIST displays the physical name of the library, the
engine assigned, and other information that is dependent upon the type of the
library.

Note: Listing a bound library causes SAS to physically open the library data set if
the library is not already open.

General Host Options
DLLBI=YES | NO

specifies whether the default BLKSIZE for the sequential access bound library
that is being assigned can exceed 32760 if the library resides on a tape device.

YES
specifies that the default BLKSIZE for SAS sequential access bound libraries
on tape devices is the optimum value for the hardware. This value can
exceed 32760.

NO
specifies that SAS uses a default BLKSIZE of 32760 for sequential access
bound libraries that reside on tape devices.

If the BLKSIZE value is not explicitly specified on either the LIBNAME
statement or the external allocation, then SAS must determine the block size to
use when it processes a new sequential access bound library. If the library
resides on a tape device, then the DLLBI LIBNAME option specifies whether the
default BLKSIZE for the sequential access bound library can exceed 32760 for
the library that is being assigned. BLKSIZE values greater than 32760 reduce
elapsed time for tape devices and can also improve tape utilization.

The DLLBI LIBNAME option takes precedence over the SAS system option
DLLBI. For more information, see “Controlling Library Block Size” on page 62.

Note:

n SAS 9.4M1 and earlier do not support library data sets that have a block size
greater than 32760. If you intend to read the library with an earlier version of
SAS, specify DLLBI=NO or allocate the library data set with a BLKSIZE value
that does not exceed 32760.

n The DLLBI option is disregarded for all library implementation types other than
the sequential access bound implementation type.

n The DLLBI option is honored only for the initial assignment of a sequential
access bound library. If an additional assignment is made before the initial
assignment is cleared, the value of DLLBI that is in effect for the initial
assignment is used afterward regardless of the settings of the DLLBI LIBNAME
option or the DLLBI SAS system option.

For more information, see:

662 Chapter 30 / Statements under z/OS

n “DLLBI System Option: z/OS” on page 729

n “Example 5: Assigning an Engine and Requesting BLKSIZE > 32760 for an
Externally Allocated Library” on page 673

n “Sequential Access Bound Libraries” on page 57

n “Optimizing Performance” on page 60

DLTRUNCHK | NODLTRUNCHK
overrides the system option DLTRUNCHK for this LIBNAME statement
assignment only. This option applies only to direct access bound libraries. For
more information, see “DLTRUNCHK System Option: z/OS” on page 732.

HFS
specifies that the library physical name refers to a UFS directory in the user's
UFS working directory. For more information, see “UFS Libraries” on page 63.

It is not necessary to specify this option if the physical-filename in the
LIBNAME statement contains a slash (/) or if the HFS: data-set-name syntax
is used.

HIPERSPACE
specifies that SAS is to assign the libref to a newly created hiperspace library
that is distinct from any other hiperspace library that is assigned within the SAS
session. This hiperspace library, including any members created in it, exists only
until the libref is de-assigned. The library is deleted when the libref is de-
assigned. When assigning a hiperspace library, specify an empty string (two
adjacent quotation marks) as the library physical filename because SAS itself
generates a unique name for each hiperspace library. HIP is an alias for the
HIPERSPACE option. For more information, see “Hiperspace Libraries” on page
66.

Note: For SAS 9.4M1 and earlier, the LIBNAME statement required a physical
filename when assigning a hiperspace library. If the physical filename specifies a
UFS path, SAS disregards the HIPERSPACE option and assigns the UFS library.
Otherwise, SAS ignores the physical filename and assigns a hiperspace library.

NOPROMPT
for this assignment, specifies that no dialog box is displayed to prompt you to
create the library, even if the system option FILEPROMPT is in effect and if the
library does not already exist.

Host Options for Allocating Library Data Sets
The host options in this category specify the parameters for allocating the library
data set, or they control the allocation process itself. Therefore, these options
apply only for library implementation types in which the library resides in a single
z/OS data set: direct access bound libraries and sequential access bound libraries.

AVGREC=multiplier
AVGREC can be used only when the unit of space subparameter of the SPACE
option is a number, which indicates an average record length. The multiplier
value modifies the interpretation of the primary and secondary space

LIBNAME Statement: z/OS 663

subparameters of the SPACE option. The multiplier value can be any of the
following:

U specifies that the primary and secondary space subparameters are to
be interpreted as requests for sufficient space to contain the number of
records that are to be allocated. The value specified with the unit of
the space subparameter of the SPACE option is also interpreted as the
length of the records.

K specifies that the primary and secondary space subparameters are to
be interpreted as a number of records multiplies by 1024. The value
that is specified with the unit of the space subparameter of the SPACE
option is also interpreted as the average length of the records.

M specifies that the primary and secondary space subparameters are to
be interpreted as a number of records multiplied by 1024 times 1024
(1048576). The value that is specified with the unit of the space
subparameter of the SPACE option is also interpreted as the average
length of the records.

The following example specifies the AVGREC option with a value of U for
LIBNAME AVGREC.

LIBNAME AVGREC 'USERID.AVGREC.LIBN' DISP=(NEW,CATLG,DELETE)
 SPACE=(800,(1,1)) AVGREC=U;

BLKSIZE=n
specifies the block size that SAS is to use when dynamically allocating the
library data set. The BLKSIZE host option is ignored for libraries that are already
externally allocated by a DD statement.

Valid values for BLKSIZE include 0 (zero) and any number from 4096 through
32760. SAS replaces specified block sizes of 1 through 4095 with the alternate
value 4096. SAS replaces specified block sizes greater than 32760 with the
maximum acceptable value of 32760. SAS writes a note to the log when it
replaces a value that is specified for the block size.

Note: SAS rejects the LIBNAME statement if you specify a BLKSIZE that is
greater than 262144. It writes an error to the log that the LIBNAME is not
assigned because of an invalid value for the BLKSIZE option.

If the BLKSIZE option is omitted and SAS must dynamically allocate the library
data set, then the block size associated with the allocation is zero unless the
BLKALLOC option is specified. For more information, see “BLKALLOC System
Option: z/OS” on page 711.

The value of the BLKSIZE host option for the LIBNAME statement is just one of
many factors, which might influence the block size that SAS uses to process a
library. Different rules apply for different library implementation types. For more
information, see the following topics :

n “Controlling Library Block Size” on page 56 for Direct Access Bound Libraries

n “Controlling Library Block Size” on page 62 for Sequential Access Bound
Libraries

664 Chapter 30 / Statements under z/OS

DATACLAS=data-class-name
specifies the data class for an SMS-managed data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for
existing data sets. The data class is predefined and controls the DCB attributes
for a data set.

The implementation of the DATACLAS= option is compatible with the SMS
DATACLAS= JCL parameter. For complete information about this parameter, see
MVS JCL Reference by IBM. Ask your system administrator which data-class
names are used for SAS libraries at your site.

Note: If your specified value for DATACLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' MGMTCLAS='#MGMT';

DISP= status | (< status >,< normal-termination-disp>, < abnormal-termination-
disp>)

specifies the status of the data set at the beginning and ending of a job, as well
as what to do if the job step terminates abnormally. If you are specifying only
the status, you can omit the parentheses.

status
specifies the status of the physical file at the beginning of a job. Valid values
are

NEW a new data set is to be created.

OLD the data set exists and is not to be shared.

SHR the data set exists and can be shared.

The default value for status is OLD except under the following conditions.
Under these conditions, the default for status is SHR:

n The library data set is already externally allocated DISP=SHR.

n ACCESS=READONLY was specified in the LIBNAME statement.

n The library data was allocated DISP=SHR by SAS for an assignment that
is still in effect, and the DLDISPCHG option specifies a value that
prevents the allocation from being upgraded to OLD. For more
information about changing the allocation of an existing library data set,
see “DLDISPCHG System Option: z/OS” on page 725.

normal-termination-disp
specifies how the operating system handles the library data set when the
final assignment for the library is cleared. If you omit the normal termination
disposition value, the default value for new data sets is CATLG, and the
default value for existing data sets is KEEP. If SAS uses this value, whether
specified or supplied by default for normal-termination-disp, then the value
is ignored if SAS uses an existing external allocation to assign the library
data set. When this situation occurs, SAS displays a NOTE on the SAS log.

The following values are valid:

LIBNAME Statement: z/OS 665

DELETE the data set is deleted at the end of the step.

KEEP the data set is to be kept.

CATLG the system should place an entry in the system catalog or
user catalog.

UNCATLG the system is to delete the entry in the system catalog or
user catalog.

abnormal-termination-disp
specifies how the operating system handles the library data set if the job
step under which SAS is running terminates abnormally in such a way that
SAS cannot handle the abend. However, under TSO, or if SAS can handle the
abend, the data set is handled according to the normal-termination-
disposition. The normal-termination-disposition is used if SAS abends as a
result of the ERRORABEND option or the ABORT ABEND statement.

Valid values for abnormal-termination-disposition are the same as for
normal-termination-disposition. If abnormal-termination-disposition is
omitted, then the default value is the same as the value that is specified or
supplied by default for normal-termination-disposition.

Note: If SAS uses an existing external allocation to assign the library data
set, then the value that is specified or supplied by default for abnormal-
termination-disp is ignored.

DSKEYLBL=label_name
specifies the encryption key label to access a library that uses pervasive
encryption.

Requirement The key label must point to an AES-256 bit encryption DATA key
within the z/OS Integrated Cryptographic Service Facility (ICSF) key
repository (CKDS). In addition, the user must have a minimum of
READ access to the encryption key label name in the RACF
CSFKEYS class. (See IBM's manual, IBM Data Set Encryption, for
complete information on defining data set encryption labels.

Notes The DSKEYLBL= option is available beginning with SAS 9.4M8.

If the user does not have RACF access to the encryption key label,
SAS generates an error, Insufficient Access Authority.

If a SAS library has been allocated for pervasive encryption support,
the ISPF Data Set information panel shows Data set encryption :
YES.

Examples The following LIBNAME statement accesses an existing library that
has been allocated for pervasive encryption:
libname test BASE ".encrypt.saslib" DISP=MOD, DSKEYLBL=DSKEY1;

The following libname statement creates a new encrypted SAS
bound library:
libname test BASE ".encrypt.saslib" DISP=(NEW,CATLG) UNIT=(RIO,1)
SPACE=(TRK,(5000,5000)) BLKSIZE=4096 DATACLAS=STD

666 Chapter 30 / Statements under z/OS

https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-data-set-encryption

MGMTCLAS=STD STORCLAS=STD DSNTYPE=BASIC
DSKEYLBL=DSKEY1;

For more information, see:

n “IBM z/OS Pervasive Encryption for Data Sets with SAS 9.4M8” in Encryption
in SAS.

n “DLDSKEYLBL= System Option” on page 727

n IBM Data Set Encryption

n Getting Started with z/OS Data Set Encryption

n Using the z/OS data set encryption enhancements

DSNTYPE=BASIC | LARGE | EXTREQ | EXTPREF | NONE
specifies the type of data set that SAS should create for a new library data set
that does not already exist.

BASIC
specifies that SAS creates a regular format sequential data set that cannot
use more than 64K tracks on any single volume.

LARGE
specifies that SAS creates a regular format sequential data set that can use
more than 64K tracks on any single volume.

EXTREQ
specifies that SAS must create an extended format sequential data set. If
the system cannot create an extended format data set, then the library
assignment fails. This option value is intended for use with sequential access
bound libraries on disk. See the LINEAR option in “General Host Options” on
page 662. EXTREQ cannot be specified for direct access bound libraries that
reside in DSORG=PS data sets.

EXTPREF
specifies that SAS creates an extended format sequential data set, if
possible. However, if extended format is not supported for the type of library
that is being created, or if the operating system cannot create an extended
format data set, then a regular format data set is created.

NONE
causes SAS to not specify a DSNTYPE value when allocating the library data
set. The type of data set that is created is determined by the system, and
uses default values that are supplied by the SMS data class, and so on.

If DSNTYPE is not specified for a new library, then the value that is used for
DSNTYPE depends on the engine that is assigned and the type of library that
you are creating. SAS creates the new library according to the following rules,
which are listed in order of precedence:

n SAS does not specify a DSNTYPE value when it allocates a library that
resides in a temporary data set.

n If the specified engine is V6, SAS uses DSNTYPE=BASIC to provide
compatibility with SAS 6, which does not support DSNTYPE=LARGE.

LIBNAME Statement: z/OS 667

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en
https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-data-set-encryption
https://www.redbooks.ibm.com/redbooks/pdfs/sg248410.pdf
https://www.ibm.com/docs/en/zos/2.4.0?topic=v2r4-using-zos-data-set-encryption-enhancements

n When SAS creates a direct access bound library that resides in a DSORG=PS
data set, it uses the value that you specify with the SAS system option
DLDSNTYPE.

n When SAS creates a sequential access bound library that resides on disk, it
uses the value that you specify with the SAS system option
DLSEQDSNTYPE.

For more information about DLDSNTYPE and DLSEQDSNTYPE, see:

n “DLDSNTYPE System Option: z/OS” on page 726

n “DLSEQDSNTYPE System Option: z/OS” on page 731

EATTR=OPT | NO
For a SAS library in a z/OS data set, EATTR specifies whether the library data
set, when created, is eligible to have extended attributes. In order to reside in
the extended addressing space (EAS) of an extended address volume (EAV), a
data set must have extended attributes. EATTR accepts the following values:

OPT specifies that the data set has extended attributes if it is created on
an EAV.

NO specifies that the data set does not have extended attributes, even if
it is created on an EAV.

If the EATTR option is not specified, then the default value for the option can be
supplied by the SMS data class that is specified or selected for the allocation.
Otherwise, the default is NO.

The EATTR option has no effect for UFS libraries, nor does it have any effect
when assigning a library data set that already exists.

EXTEND
specifies that when SAS allocates this library, it allocates it with a volume count
that is one greater than the current number of DASD volumes on which the
library resides. With this option, a single-volume library can be converted to a
multivolume library, and existing multivolume libraries can be extended to
another volume.

LABEL=(subparameter-list)
enables you to specify for a tape or direct access data set the type and contents
of the label of the tape or disk data set, as well as other information such as the
retention period or expiration date for the data set.

The LABEL= option is identical to the JCL LABEL= parameter. For example:

label=(3,SL,,,EXPDT=2005/123)

This label specification indicates the data set sequence number is 3, that it uses
standard labels, and that it expires on the 123rd day of 2005. See MVS JCL
Reference by IBM for complete information about how to use the LABEL=
option, including which subparameters you can specify in subparameter-list.

LIKE='physical-filename'
when allocating a new library, specifies that SAS sets the DCB attributes of the
new library to the same values as those values in the specified data set.

668 Chapter 30 / Statements under z/OS

MGMTCLAS=management-class-name
specifies a management class for an SMS data set. The name can have up to
eight characters. This option applies only to new data sets; it is ignored for
existing data sets. The management class is predefined and controls how your
data set is managed, such as how often it is backed up and how it is migrated.

The implementation of the MGMTCLAS= option is compatible with the SMS
MGMTCLAS= JCL parameter. For complete information about this parameter,
see z/OS JCL Reference by IBM. Ask your system administrator which
management class names are used at your site.

Note: If your specified value for MGMTCLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' MGMTCLAS='#MGMT';

SPACE=(unit,(primary<,secondary>), <RLSE>,<type>,<ROUND>)
specifies how much disk space to provide for a data set that is being created.
The space can be requested in terms of tracks, cylinders, or blocks.

unit
can be any of the following:

TRK specifies that the space is to be allocated in tracks.

CYL specifies that the space is to be allocated in cylinders.

blklen specifies that the space is to be allocated in blocks whose block
length is blklen bytes. The system computes how many tracks
are allocated.

primary
specifies how many tracks, cylinders, or blocks to allocate.

secondary
specifies how many additional tracks, cylinders, or blocks to allocate if more
space is needed. The system does not allocate additional space until it is
needed.

RLSE
causes unused space that was allocated to an output data set to be released
when the data set is closed. Unused space is released only if the data set is
opened for output, and if the last operation was a Write operation.

type
can be any of the following:

CONTIG specifies that the space to be allocated must be contiguous.

MXIG specifies that the maximum contiguous space is required.

ALX specifies that different areas of contiguous space are needed.

LIBNAME Statement: z/OS 669

ROUND
specifies that the allocated space must be equal to an integral number of
cylinders when the unit specified was a block length. If unit was specified as
TRK or CYL, the system ignores ROUND.

If SPACE is not defined, its values are taken from the SAS system options
FILEUNIT=, FILESPPRI=, and FILESPSEC=, in the following form:

SPACE=(FILEUNIT,(FILESPPRI,FILESPSEC))

STORCLAS=storage-class-name
specifies a storage class for an SMS data set. The name can have up to eight
characters. This option applies only to new data sets; it is ignored for existing
data sets. The storage class is predefined and controls which device your SMS
data set is stored on, such as disk or tape.

The implementation of the STORCLAS= option is compatible with the SMS
STORCLAS= JCL parameter. Ask your system administrator which storage class
names are used at your site. For full details about this parameter, see MVS JCL
Reference by IBM.

Note: If your specified value for STORCLAS begins with national characters
such as @, #, or $, then you need to enclose the value in single quotation marks
as indicated in the following example:

LIBNAME WEEK 'physical.dataset.name'
 DISP=(NEW,CATLG,DELETE) DATACLAS='#DCLAS' STORCLAS='#SCLAS';

UNIT=value | (value,n) | (value,P)
specifies that value is a generic device type name or a symbolic (esoteric) name
for a group of devices. value must be enclosed in quotation marks if the generic
device type name or group name contains characters other than alphanumeric
characters. Contact your systems administrator to determine the appropriate
generic device type or group name to specify.

n is the number of devices to be allocated for processing the library data set. A
value from 1 to 59 can be specified. For multi-volume direct access bound
libraries residing in non-SMS managed data sets, the device count can be
specified to indicate the maximum number of volumes to which the data library
can be extended during the current assignment.

For tape libraries, P requests that one device is allocated for each volume on
which the data set resides.

For more information, see the IBM document JCL Reference.

VOLCOUNT=nnn
specifies the maximum number of volumes on which a new library can reside.
VOLCOUNT enables the creation of a multivolume tape library without the
specification of a list of volumes with the VOLSER option. The value of
VOLCOUNT is a decimal number from 1 through 255.

VOLSER=value | (value-1, ..., value-n)
specifies up to 30 volume serial numbers. If VOLSER= is not specified, its value
is taken from the SAS system option FILEVOL=. For more information, see
“FILEVOL= System Option: z/OS” on page 764. The VOLSER option does not

670 Chapter 30 / Statements under z/OS

need to be specified for existing cataloged data sets unless your SAS job
extends the library to additional volumes, and you want to specify the volumes
(as opposed to allowing z/OS to select the volumes).

If the VOLSER option is specified, SAS supports option value specifications of 1
to 6 positions that consist of any combination of alphanumeric characters (A-Z,
0-9), national characters (#, $, @), or a hyphen. VOLSER values that contain a
hyphen or any of the national characters must be enclosed in quotation marks.
SAS writes an error to the log if an invalid VOLSER option value is specified.

WAIT=n
specifies how long SAS software waits for a data set that is held by another job
or user before the LIBNAME statement fails. The value n specifies a length of
time in clock minutes. If the data set becomes free before n minutes expire, then
the LIBNAME statement is processed as usual. The dynamic allocation request
is retried internally every 15 seconds.

When you use the WAIT= option, you must also specify the engine name in the
LIBNAME statement if you are accessing uncataloged libraries or libraries that
do not reside on disk. Otherwise, you do not have to specify the engine name.

For batch jobs using WAIT=, also specify the FILEMSGS option, which causes a
message to be written to the system log for each allocation attempt, thus
allowing system operators to determine why the job is waiting. For more
information, see “FILEMSGS System Option: z/OS” on page 753.

Host Options for the XPORT, BMDP, OSIRIS, and SPSS Engines
The general form of the LIBNAME statement for the XPORT, BMDP, OSIRIS, and
SPSS Engines is

LIBNAME libref <engine > <'physical-filename'> < engine/host-options> ;

LIBNAME libref <engine> <('physical-filename-1', ..., 'physical-filename-n')>

LIBNAME libref | _ALL_ CLEAR;

LIBNAME libref | _ALL_ LIST;

libref
is a logical name by which the library is referenced during your SAS session. The
libref must contain 1-8 characters and follow the rules for SAS names. To read,
update, or create files that belong to a permanent SAS library, you must include
the libref as the first part of a two-level SAS member name in your program
statements, as follows:1

libref.member

libref could also be a ddname that was specified in a JCL DD statement or in a
TSO ALLOCATE command. The first time the ddname of a SAS library is used in
a SAS statement or procedure, SAS assigns it as a libref for the SAS library.

SAS 9 for z/OS supports libref names that begin with or contain underscores.
For example, libref names with formats such as libref_name, _librefname, or
_libref_name are now supported.

1. An exception is a SAS file in the USER library. In this case, you can use a one-level name. For more information about the
USER library, see Chapter 3, “SAS Software Files,” on page 25.

LIBNAME Statement: z/OS 671

engine
tells SAS which engine to use for accessing the library. Valid engine names for
z/OS include V9 (or its alias, BASE), V9TAPE, V8, V8TAPE, V7, V7TAPE, V6,
V6TAPE, V5, V5TAPE, XPORT, REMOTE, BMDP, OSIRIS, SPD Engine Server, and
SPSS. For more information, see “SAS Library Engines” on page 46. If you do not
specify an engine, then SAS uses the procedures described in “How SAS Assigns
an Engine” on page 81 to assign an engine for you. If the engine name that you
supply does not match the actual format or attributes of the library, then any
attempt to access the library fails.

'physical-filename'
is the z/OS operating environment data set name or the HFS directory name of
the SAS library, enclosed in quotation marks. For more information, see Chapter
5, “Specifying Physical Files,” on page 89. You can omit this argument if you are
merely specifying the engine for a previously allocated ddname. Examples:

'userid.V9.library'
'MVS:userid.V9.library'
'HFS:/u/userid/V9/library'
'/u/userid/V9/library'

('physical-filename-1', ..., 'physical-filename-n')
is used to allocate an ordered concatenation of SAS libraries and associate that
concatenation with a single libref. The concatenation can include direct-access
bound libraries, UNIX System Services directories, and sequential libraries, as
long as all of the libraries in the concatenation can be accessed with the
specified engine.

When accessing a member of a concatenated series of libraries, SAS searches
through the concatenation in the order which it was specified. SAS accesses the
first member that matches the specified name. SAS does not access any
members with the same name that are positioned after the first occurrence in
the concatenation.

engine/host options
are options that apply to the SAS library. The host-specific options that are
available depend on which engine you are using to access the library. For more
information about SAS engine options, see “SAS Library Engines” on page 46.
Specify as many options as you need. Separate them with a blank space. For a
complete list of available options, see “LIBNAME Statement: z/OS” on page
656.

Examples

Example 1: Assigning an Existing Bound Library
The following LIBNAME statement associates the libref mylib with the existing
library USER934.MYLIB.SASLIB. SAS examines the internal format of the library
data set in order to select the appropriate engine. SAS would dynamically allocate
the library for shared access if the library were not already assigned externally or
internally.

libname mylib 'user934.mylib.saslib' disp=shr;

672 Chapter 30 / Statements under z/OS

Example 2: Assigning a UFS Library
The following LIBNAME statement associates the libref hfslib with the collection
of UFS files residing in the directory /u/user905/saslib. This form of assignment
does not use any host options and is, therefore, simple to port to or from other
platforms.

libname UFSlib '/u/user905/saslib';

Example 3: Assigning an Engine for an Externally Allocated
Library
The following LIBNAME statement completes the assignment process for the
externally assigned library CORP.PROD.PAYROLL.R200305 and specifies that the
TAPE engine is used to process this library. It is necessary to specify the LIBNAME
statement because the Base SAS engine is the default engine in this particular case.

//REGISTER DD DSN=CORP.PROD.PAYROLL.R200305,DISP=(NEW,CATLG),
// UNIT=DISK,SPACE=(CYL,(5,5))
libname register TAPE;

Example 4: Creating a New Bound Library
The following LIBNAME statement specifies the host options necessary to create
and catalog a new multivolume, SMS-managed bound library:

libname new '.newproj.saslib' disp=(new,catlg)
 unit=(disk,2) space=(cyl,(50,20)) dataclas=sasstnd;

Example 5: Assigning an Engine and Requesting BLKSIZE >
32760 for an Externally Allocated Library
The following LIBNAME statement completes the assignment process for the
externally assigned library CORP.PROD.PAYROLL.MONTH, specifies DLLBI, and
specifies that the TAPE engine is used to process this library. It is necessary to
specify the LIBNAME statement to request the TAPE engine and a default BLKSIZE
that is greater than 32760.

//REGISTER DD DSN=CORP.PROD.PAYROLL.MONTH,DISP=(NEW,CATLG),
// UNIT=3590-1,LABEL=(1,SL),VOLUME=(PRIVATE,,,2)
libname register TAPE DLLBI=YES;

Example 6: Concatenating a Personal Library to a Base Library
The following LIBNAME statements associate the libref project with the library
concatenation in which a library containing modified members is concatenated in
front of the base project library, which is accessed as read-only:

libname projbase '.project.base.saslib' disp=shr;
libname project ('.project.modified.saslib' projbase);

LIBNAME Statement: z/OS 673

See Also

n “Assigning SAS Libraries” on page 72

n “Deassigning SAS Libraries” on page 83

n “Listing Your Current Librefs” on page 82

n SAS Programmer’s Guide: Essentials

Functions

n “LIBNAME Function” in SAS Functions and CALL Routines: Reference

OPTIONS Statement: z/OS
Changes the value of one or more SAS system options.

Valid in: Anywhere

z/OS specifics: options

See: “OPTIONS Statement” in SAS Global Statements: Reference

Syntax

OPTIONS options-1 <. . . option-n > ;

Details

Some of the options that you can specify are host-specific. “System Options under
z/OS” on page 685 contains information about all of the system options that are
available in SAS under z/OS. Descriptions of the portable system options are
provided in the SAS System Options: Reference.

Some system options can be changed only when you invoke SAS, not in an
OPTIONS statement. “OPTIONS Statement” in SAS Global Statements: Reference
contains information about where each system option can be specified.

See Also

Chapter 1, “Invoking SAS in the z/OS Environment,” on page 3

674 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en

SASFILE Statement: z/OS
Reduces I/O processing by holding the entire data set in memory.

Valid in: Anywhere

z/OS specifics: Performance considerations

See: “SASFILE Statement” in SAS Global Statements: Reference

Syntax

SASFILE <libref.> member-name<.member-type> <(password-options)>
OPEN | LOAD | CLOSE;

Arguments
libref

specifies a name that is associated with a SAS library. The libref must be a valid
SAS name. The default libref is either User (if assigned) or Work (if User is not
assigned).

Restriction The libref cannot represent a concatenation of SAS libraries that
contain a library in sequential format.

member-name
specifies a valid SAS name that is a SAS data file that is a member of the SAS
library associated with the libref.

Restriction The SAS data set must have been created with the V7, V8, or V9
Base SAS engine.

member-type
specifies the type of SAS file to be opened. Valid value is DATA, which is the
default.

password-options
specifies one or more of the following password options:

ENCRYPTKEY=key-value
enables the SASFILE statement to open a SAS data file that is encrypted
with Advanced Encryption Standard (AES). If a SAS data file is encrypted
with the AES algorithm, a key value is assigned to the file and must be
specified in order to access the file. The key value can be up to 64 bytes
long.

Interaction If you do not specify the ENCRYPTKEY= option for an AES-
encrypted SAS data file, a dialog box prompts you to specify the
key value.

SASFILE Statement: z/OS 675

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en

See “SAS Data File Encryption” in SAS Programmer’s Guide: Essentials

READ=password
enables the SASFILE statement to open a read-protected file. The password
must be a valid SAS name.

WRITE=password
enables the SASFILE statement to use the WRITE password to open a file
that is both read-protected and write-protected. The password must be a
valid SAS name.

ALTER=password
enables the SASFILE statement to use the ALTER password to open a file
that is both read-protected and alter-protected. The password must be a
valid SAS name.

PW=password
enables the SASFILE statement to use the password to open a file that is
assigned for all levels of protection. The password must be a valid SAS
name.

Tip When SASFILE is executed, SAS checks whether the file is read-protected.
Therefore, if the file is read-protected, you must include the READ=
password in the SASFILE statement. If the file is either write-protected or
alter-protected, you can use a WRITE=, ALTER=, or PW= password.
However, the file is opened only in input (read) mode. For subsequent
processing, you must specify the necessary password or passwords. See
“Specifying Passwords with the SASFILE Statement” in SAS Global
Statements: Reference.

OPEN
opens the file, allocates the buffers, but defers reading the data into memory
until a procedure, statement, or application is executed.

LOAD
opens the file, allocates the buffers, and reads the data into memory.

Note: If the total number of allowed buffers is less than the number of buffers
required for the file based on the number of data set pages and index file pages,
SAS issues a warning about how many pages are read into memory.

CLOSE
frees the buffers and closes the file.

Details

The SASFILE statement can greatly reduce both the elapsed time required for a
SAS job to run and the CPU time for the job. However, in an environment where the
various z/OS processes (batch jobs, TSO users, and started tasks) are competing
for real (central) storage, the SAS data set might require more virtual storage than

676 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&docsetTargetAnchor=n1jg6ywedaft4nn19tqtaoo4653z&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&docsetTargetAnchor=n1jg6ywedaft4nn19tqtaoo4653z&locale=en

is available. Unless steps are taken to manage memory usage, virtual storage
paging delays can negate the benefits of using the SASFILE statement.

Using the SASFILE statement requires that the job step or TSO region size be
increased sufficiently to allow a complete copy of the member to be stored in
memory from the time SASFILE OPEN or LOAD is issued until SASFILE CLOSE is
issued. SAS allocates virtual storage above the 16M line from the address space
private region for buffers and associated control blocks for a SAS data set. The
amount of storage that is required is approximately equal to the number of pages in
the data set multiplied by the page size, provided that the file is not encrypted. The
amount of storage required for an encrypted file is approximately double the
amount required for a non-encrypted file. You can determine the number of pages
in the data set and the size of those pages by running PROC CONTENTS against
the data set. Therefore, your job’s REGION value and the SAS MEMSIZE option
must be set large enough to accommodate both your SASFILE data and any other
memory that SAS requires for execution. However, if the overall environment is
constrained for storage, or if a memory-intensive task is processing a heavy
workload, the page frames that are occupied by the SAS data set buffers can be
stolen, and virtual storage paging delays can occur.

When planning for SASFILE usage in your installation, first consider the importance
of the workload that is requesting it. Weigh this importance against everything else
in your workload (including work that is not related to your SAS work), and decide
whether it is warranted. Use Workload Manager (WLM) to assign the appropriate
importance level and velocity for all of your workload. The more important work
automatically has higher priority for storage as it is needed.

For more information about Goal Mode, see the IBM documentation about WLM.

SYSTASK LIST Statement: z/OS
Lists asynchronous tasks.

Valid in: Anywhere

z/OS specifics: All

Syntax

SYSTASK LIST <_ALL_ | taskname> <STATE> ;

Optional Arguments
ALL

specifies all active tasks in the system. A task is active if it is running, or if it has
completed and has not been waited for using the WAITFOR statement on the
remote host that submitted the task.

STATE
displays the status of the task, which can be Start Failed, Running, or Complete.

SYSTASK LIST Statement: z/OS 677

taskname
requests information for one remotely submitted task. If the task name contains
a blank character, enclose taskname in quotation marks.

Details

Task names can be listed with the SYSTASK LIST statement. These task names are
assigned on other hosts and are supplied to the z/OS SAS session via RSUBMIT
commands or statements in SAS/CONNECT software.

The preferred method for displaying any task (not just SAS/CONNECT processes)
is to use the LISTTASK statement instead of SYSTASK LIST. For more information
about LISTTASK, see “LISTTASK” in SAS/CONNECT User’s Guide.

See Also

n “WAITFOR Statement: z/OS” on page 680

n SAS/CONNECT User’s Guide

TITLE Statement: z/OS
Specifies title lines for SAS output.

Valid in: Anywhere

z/OS specifics: Maximum length of title

See: “TITLE Statement” in SAS Global Statements: Reference

Syntax

TITLE<n> <'text' | "text"> ;

Details

Under z/OS, the maximum title length is determined by the value of the LINESIZE=
system option. The maximum value of LINESIZE= is 256. Titles longer than the
value of LINESIZE= are truncated.

Note: No space is permitted between TITLE and the number n.

678 Chapter 30 / Statements under z/OS

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n05rg2yqorbjx2n1rz2pibf2mfav.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en

TSO Statement: z/OS
Executes a TSO command, emulated USS command, or MVS program.

Valid in: Anywhere

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0.

z/OS specifics: All

Syntax

TSO <command>;

Optional Argument
command

is a TSO command, emulated USS command, or MVS program. For more
information, see “X Statement: z/OS” on page 681.

Details

Overview of the TSO Statement
The TSO statement is an alias of the X statement. In other operating environments,
the TSO statement has no effect, whereas the X statement is always processed.

See Also

Statements

n “X Statement: z/OS” on page 681

Functions

n “SYSTEM Function: z/OS” on page 494

n “TSO Function: z/OS” on page 497

CALL Routines

n “CALL SYSTEM Routine: z/OS” on page 459

n “CALL TSO Routine: z/OS” on page 461

TSO Statement: z/OS 679

Commands

n “SAS Interface to REXX” on page 313

n “TSO Command: z/OS” on page 285

WAITFOR Statement: z/OS
Suspends execution of the current SAS session until the specified tasks finish executing.

Valid in: Anywhere

z/OS specifics: All

Syntax

WAITFOR <_ANY_ | _ALL_> taskname-1 <taskname-2 …> <TIMEOUT=seconds>;

Optional Arguments
taskname

specifies the name of the remotely submitted tasks that you want to complete
execution before resuming execution of SAS. You cannot use wildcards to
specify task names. Resumption of the SAS session depends first on the value
of the TIMEOUT= option and second on the execution state of the specified
tasks.

ANY | _ALL_
suspends execution of the current SAS session until either one or all of the
specified remote tasks finishes execution. The default setting is _ANY_, which
means that as soon as one of the specified tasks completes execution, the
WAITFOR statement also finishes execution. Note again that resumption of
execution is primarily dependent on the TIMEOUT= option.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session, regardless of the execution state of any or all specified
tasks. The SAS session resumes execution at the end of the TIMEOUT= period
even if specified tasks are still executing. If you do not specify the TIMEOUT=
option and you do not specify any task names, WAITFOR suspends execution of
the SAS session indefinitely. If you specify any task names and you do not
specify a TIMEOUT= value, the SAS session resumes execution when the
specified tasks complete execution. If you specify a TIMEOUT= value without
specifying task names, the SAS suspends execution for the specified number of
seconds.

680 Chapter 30 / Statements under z/OS

Details

Task names can be listed with the SYSTASK LIST statement. These task names are
assigned on other hosts and are supplied to the z/OS SAS session via RSUBMIT
commands or statements in SAS/CONNECT software.

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, then the SYSRC macro
variable is set to a nonzero value. For example, the WAITFOR statement might
contain syntax errors. If the number of seconds specified with the TIMEOUT option
elapses, then the WAITFOR statement finishes executing and the SYSRC macro
variable is set to a nonzero value if any of the following occur:

n You specify a single task that does not finish executing.

n You specify more than one task and the _ANY_ option (which is the default
setting), but none of the tasks finish executing.

n You specify more than one task and the _ALL_ option, and any one of the tasks
does not finish executing.

See Also

n SAS/CONNECT User’s Guide

n “SYSTASK LIST Statement: z/OS” on page 677

X Statement: z/OS
Executes a TSO command, emulated USS command, or MVS program.

Valid in: Anywhere

Restriction: A TSO command executes successfully only in a TSO SAS session. In a non-TSO
session, the command is disabled and the return code is set to 0. The NOXCMD
option disables the X statement.

z/OS specifics: The command must be a TSO command or simulated USS command, or an MVS
program.

Note: Under z/OS, the X and TSO statements are identical. In other operating
environments, the TSO statement has no effect, whereas the X statement is always
processed.

See: “X Statement” in SAS Global Statements: Reference

Syntax

X <command> ;

X Statement: z/OS 681

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p11ba12uypvfazn1jk7acffuzlbl.htm&locale=en

X TSO:<command>;

X XEQ: pgmname <parms> ;

X AEQ: pgmname <parms> ;

X WEQ: pgmname <parms> ;

X Ann: pgmname <parms> ;

X Wnn: pgmname <parms> ;

Optional Argument
command

can be a system command (TSO command, CLIST, or REXX exec) or one of a set
of emulated USS commands, enclosed in quotation marks, an expression whose
value is a command, or the name of a character variable whose value is a
command.

You cannot issue the TSO commands LOGON, LOGOFF, or TEST, and you
cannot execute CLISTs that include the TSO ATTN statement. Nor can you
issue authorized commands. However, you can use the TSOEXEC command to
issue authorized commands, as in this example:

X TSOEXEC ALTDSD ...;

You can issue the following emulated shell commands: cd, env, pwd, and umask.
The shell command names must be specified in lowercase. These commands
emulate the basic function of the corresponding UNIX System Services shell
commands. The emulated env command displays values that are set by
TKMVSENV and by the SET option. These commands work in batch and under
TSO.

It is not possible to directly issue UNIX System Services commands other than
the four listed here with the X statement. However, there are two ways to issue
them indirectly. You can use the PIPE access method of the FILENAME
statement or function to invoke a USS command and send input to the
command or read its output. For more information, see “Piping Data between
SAS and UNIX System Services Commands” on page 136. You can use the IBM
REXX exec SYS1.SBPXEXEC(OSHELL) to execute a USS command with
BPXBATCH, for example:

x oshell ls;

To issue a TSO command that has the same name as one of the emulated-shell
commands, such as a CLIST named CD, either enter the command using
uppercase characters, or use the TSO: prefix, as in the following examples:

x CD option1 option2 ...;
x tso:cd option1 option2 ...;

682 Chapter 30 / Statements under z/OS

Details

TSO Submode
In an interactive SAS session, you can specify the X statement (or TSO statement)
with no arguments to enter TSO submode. Any commands that you issue in TSO
submode are processed by TSO. They are not processed as SAS statements.

To return to the SAS session from TSO submode, issue RETURN, END, or EXIT. Any
characters that follow the RETURN, END, or EXIT subcommand are ignored. An
END command that occurs within a CLIST terminates the command procedure
without ending the TSO submode.

Command Execution
If you specify the X statement or the TSO statement with a command, then SAS
executes the specified command immediately.

Examples

Example 1: SAS Macro
The following example SAS Macro enables you to determine whether the current
SAS execution environment is TSO. If the environment is TSO, the macro invokes
the TSO LISTA command. If the environment is not TSO, the macro sets SYSRC to
12.

%macro TSOONLY(mycmd);
%if "&sysscp" = "OS" and "&sysenv" = "FORE" %then %do;
%sysexec &mycmd;
%end;
%else %do;
%let sysrc=12;
%end;
%mend;
%let mycmd=lista sta sys hist;
%TSOONLY(&mycmd);
%put &sysrc;

Example 2: MVS Program Execution: Synchronous
The X statement or TSO statement can also be used to execute an MVS program,
rather than a TSO command. The statements work in batch and under TSO.

To execute an MVS program synchronously, prefix its name with XEQ:.

The following example attaches the program mypgm, passes it the argument
myparms, and does not return until the program completes processing. All of the
text between mypgm and the terminating semicolon are considered to be
parameters.

X XEQ: mypgm myparms;

X Statement: z/OS 683

Example 3: MVS Program Execution: Asynchronous
The X statement or TSO statement can also be used to execute an MVS program
asynchronously. To start the execution of an MVS program, prefix its name with
either AEQ: or Ann:, where nn is a two-digit number. To wait for the completion of
the MVS program, issue a second X statement or TSO statement with only the
prefix WEQ: or Wnn:, where nn matches the same two digits used on the Ann:
statement.

Example 4: MVS Program Execution: Concurrent Asynchronous
The following example attaches two programs, executes some more SAS
statements, and waits for each program to execute separately. To wait for a
particular program to execute, issue an X Wnn: statement where the value of nn is
the same as the value of the nn in the corresponding X Ann: statement.

X A01: pgm1 parms1;
X A02: pgm2 parms2;
data x;x=1;run;
proc print;run;
X W02:;
X W01:;

See Also

“TSO Statement: z/OS” on page 679

684 Chapter 30 / Statements under z/OS

31
System Options under z/OS

System Options in the z/OS Environment . 689

Definition of System Options . 689

SAS System Options for z/OS by Category . 690

Dictionary . 702
ALIGNSASIOFILES System Option: z/OS . 702
ALTLOG= System Option: z/OS . 703
ALTPRINT= System Option: z/OS . 704
APPEND= System Option: z/OS . 705
APPLETLOC= System Option: z/OS . 707
ARMAGENT= System Option: z/OS . 708
ASYNCHIO System Option: z/OS . 709
AUTOEXEC= System Option: z/OS . 710
BLKALLOC System Option: z/OS . 711
BLKSIZE= System Option: z/OS . 712
BLKSIZE(device-type)= System Option: z/OS . 714
CAPSOUT System Option: z/OS . 715
CARDIMAGE System Option: z/OS . 716
CATCACHE= System Option: z/OS . 717
CHARTYPE= System Option: z/OS . 718
CLIENTWORK System Option: z/OS . 719
CLIST System Option: z/OS . 721
CONFIG= System Option: z/OS . 722
DEVICE= System Option: z/OS . 723
DLCREATEDIR System Option: z/OS . 724
DLDISPCHG System Option: z/OS . 725
DLDSNTYPE System Option: z/OS . 726
DLDSKEYLBL= System Option . 727
DLEXCPCOUNT System Option: z/OS . 728
DLLBI System Option: z/OS . 729
DLMSGLEVEL= System Option: z/OS . 730
DLSEQDSNTYPE System Option: z/OS . 731
DLTRUNCHK System Option: z/OS . 732
DSRESV System Option: z/OS . 733
DYNALLOC System Option: z/OS . 734
ECHO= System Option: z/OS . 735
EMAILSYS= System Option: z/OS . 736

685

ENGINE= System Option: z/OS . 737
ERRORABEND System Option: z/OS . 738
FILEAUTHDEFER System Option: z/OS . 739
FILEBLKSIZE(device-type)= System Option: z/OS . 741
FILEBUFNO= System Option: z/OS . 742
FILECC System Option: z/OS . 743
FILEDEST= System Option: z/OS . 744
FILEDEV= System Option: z/OS . 744
FILEDIRBLK= System Option: z/OS . 745
FILEEXT= System Option: z/OS . 746
FILEFORMS= System Option: z/OS . 748
FILELBI System Option: z/OS . 749
FILELOCKS= System Option: z/OS . 750
FILEMOUNT System Option: z/OS . 752
FILEMSGS System Option: z/OS . 753
FILENULL System Option: z/OS . 753
FILEPROMPT System Option: z/OS . 754
FILEREUSE System Option: z/OS . 755
FILESEQDSNTYPE System Option: z/OS . 756
FILESPPRI= System Option: z/OS . 757
FILESPSEC= System Option: z/OS . 758
FILESTAT System Option: z/OS . 758
FILESYNC= System Option: z/OS . 759
FILESYSOUT= System Option: z/OS . 760
FILESYSTEM= System Option: z/OS . 761
FILETEMPDIR System Option: z/OS . 762
FILEUNIT= System Option: z/OS . 763
FILEVOL= System Option: z/OS . 764
FILSZ System Option: z/OS . 764
FONTRENDERING= System Option: z/OS . 765
FONTSLOC= System Option: z/OS . 767
FSBCOLOR System Option: z/OS . 768
FSBORDER= System Option: z/OS . 769
FSDEVICE= System Option: z/OS . 769
FSMODE= System Option: z/OS . 770
FULLSTATS System Option: z/OS . 771
GHFONT= System Option: z/OS . 773
HELPHOST System Option: z/OS . 774
HELPLOC= System Option: z/OS . 775
HELPTOC System Option: z/OS . 776
HOSTINFOLONG System Option: z/OS . 778
HSLXTNTS= System Option: z/OS . 779
HSMAXPGS= System Option: z/OS . 780
HSMAXSPC= System Option: z/OS . 781
HSWORK System Option: z/OS . 782
INSERT= System Option: z/OS . 783
ISPCAPS System Option: z/OS . 784
ISPCHARF System Option: z/OS . 785
ISPCSR= System Option: z/OS . 786
ISPEXECV= System Option: z/OS . 787
ISPMISS= System Option: z/OS . 788
ISPMSG= System Option: z/OS . 789
ISPNOTES System Option: z/OS . 789
ISPNZTRC System Option: z/OS . 790

686 Chapter 31 / System Options under z/OS

ISPPT System Option: z/OS . 791
ISPTRACE System Option: z/OS . 792
ISPVDEFA System Option: z/OS . 793
ISPVDLT System Option: z/OS . 794
ISPVDTRC System Option: z/OS . 795
ISPVIMSG= System Option: z/OS . 796
ISPVRMSG= System Option: z/OS . 796
ISPVTMSG= System Option: z/OS . 797
ISPVTNAM= System Option: z/OS . 798
ISPVTPNL= System Option: z/OS . 799
ISPVTRAP System Option: z/OS . 799
ISPVTVARS= System Option: z/OS . 800
JREOPTIONS= System Option: z/OS . 801
LINESIZE= System Option: z/OS . 803
LOG= System Option: z/OS . 804
LOGPARM= System Option: z/OS . 805
LRECL= System Option: z/OS . 810
MEMLEAVE= System Option: z/OS . 811
MEMRPT System Option: z/OS . 813
MEMSIZE= System Option: z/OS . 814
METAPROFILE= System Option: z/OS . 815
MINSTG System Option: z/OS . 816
MSG= System Option: z/OS . 817
MSGCASE System Option: z/OS . 818
MSGSIZE= System Option: z/OS . 819
MSYMTABMAX= System Option: z/OS . 820
MVARSIZE= System Option: z/OS . 821
OPLIST System Option: z/OS . 822
PAGEBREAKINITIAL System Option: z/OS . 822
PAGESIZE= System Option: z/OS . 823
PARMCARDS= System Option: z/OS . 824
PFKEY= System Option: z/OS . 825
PGMPARM= System Option: z/OS . 827
PRINT= System Option: z/OS . 828
PRINTINIT System Option: z/OS . 828
PROCLEAVE= System Option: z/OS . 829
REALMEMSIZE= System Option: z/OS . 830
REXXLOC= System Option: z/OS . 831
REXXMAC System Option: z/OS . 832
SASAUTOS= System Option: z/OS . 833
SASHELP= System Option: z/OS . 835
SASLIB= System Option: z/OS . 836
SASSCRIPT System Option: z/OS . 837
SASUSER= System Option: z/OS . 838
SEQENGINE= System Option: z/OS . 839
SET= System Option: z/OS . 840
SORT= System Option: z/OS . 841
SORTALTMSGF System Option: z/OS . 842
SORTBLKMODE System Option: z/OS . 843
SORTBLKREC System Option: z/OS . 844
SORTBUFMOD System Option: z/OS . 844
SORTCUT= System Option: z/OS . 845
SORTCUTP= System Option: z/OS . 846
SORTDEV= System Option: z/OS . 848

Contents 687

SORTDEVWARN System Option: z/OS . 849
SORTEQOP System Option: z/OS . 850
SORTLIB= System Option: z/OS . 850
SORTLIST System Option: z/OS . 851
SORTMSG System Option: z/OS . 852
SORTMSG= System Option: z/OS . 853
SORTNAME= System Option: z/OS . 853
SORTOPTS System Option: z/OS . 854
SORTPARM= System Option: z/OS . 855
SORTPGM= System Option: z/OS . 856
SORTSHRB System Option: z/OS . 857
SORTSIZE= System Option: z/OS . 858
SORTSUMF System Option: z/OS . 859
SORTUADCON System Option: z/OS . 860
SORTUNIT= System Option: z/OS . 861
SORTWKDD= System Option: z/OS . 862
SORTWKNO= System Option: z/OS . 863
SORT31PL System Option: z/OS . 864
STAE System Option: z/OS . 865
STATS System Option: z/OS . 865
STAX System Option: z/OS . 866
STEPCHKPTLIB= System Option: z/OS . 867
STIMER System Option: z/OS . 868
SVC11SCREEN System Option: z/OS . 869
SYNCHIO System Option: z/OS . 870
SYSIN= System Option: z/OS . 871
SYSINP= System Option: z/OS . 872
SYSLEAVE= System Option: z/OS . 872
SYSPREF= System Option: z/OS . 873
SYSPRINT= System Option: z/OS . 874
S99NOMIG System Option: z/OS . 875
TAPECLOSE= System Option: z/OS . 875
USER= System Option: z/OS . 877
UTILLOC= System Option: z/OS . 877
V6GUIMODE System Option: z/OS . 882
VALIDMEMNAME= System Option: z/OS . 883
VERBOSE System Option: z/OS . 886
WORK= System Option: z/OS . 887
WORKTERM System Option: z/OS . 888
WTOUSERDESC= System Option: z/OS . 888
WTOUSERMCSF= System Option: z/OS . 889
WTOUSERROUT= System Option: z/OS . 891
XCMD System Option: z/OS . 892

688 Chapter 31 / System Options under z/OS

System Options in the z/OS
Environment

The SAS System Options: Reference contains information about system options that
can be used in all operating environments. Only the Base SAS system options that
are specific to z/OS or that have aspects specific to z/OS are documented in this
chapter. However, some system options are specific to topics that are covered in
other books. For example, system options that are related to security are
documented in Encryption in SAS. For information about all Base SAS system
options that are supported under z/OS, see SAS System Options: Reference.

n For information about system options that support a SAS product, such as
SAS/ACCESS, SAS/CONNECT, or SAS/SHARE, see the documentation for that
product.

n For information about using SAS system options under z/OS, see “SAS System
Options” on page 19.

n For information about file specifications, see “Referring to External Files” on
page 108 and “Ways of Assigning External Files” on page 94.

n Restricted options are system options whose values are determined by the site
administrator and cannot be overridden. The site administrator can create a
restricted options table that specifies the option values that are restricted when
SAS starts. Any attempt to modify a system option that is listed in the
restricted options table results in a message to the SAS log indicating that the
system option has been restricted by the site administrator and cannot be
updated. For information about restricted options, see “Restricted Options” in
SAS System Options: Reference.

n If you include system options when you start SAS, and the value for the option
contains blank spaces, then you need to place quotation marks around the
value. The following example shows the correct format:

pgparm='string1 string2'

Definition of System Options
System options are instructions that affect your SAS session. They control how
SAS performs operations such as SAS initialization, hardware and software
interfacing, and the input, processing, and output of jobs and SAS files.

Definition of System Options 689

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

SAS System Options for z/OS by
Category

Category Language Elements Description

Communications:
Email

EMAILSYS= System Option:
z/OS (p. 736)

Specifies the email protocol to use for sending electronic
mail.

Communications:
Metadata

METAPROFILE= System
Option: z/OS (p. 815)

Identifies the file that contains the SAS Metadata Server
user profiles.

Communications:
Networking and
Encryption

DLDSKEYLBL= System
Option (p. 727)

Specifies a default dataset pervasive encryption key label
for accessing SAS libraries.

SASSCRIPT System Option:
z/OS (p. 837)

Specifies one or more storage locations of SAS/CONNECT
script files.

DATA Step: WTO
Function

WTOUSERDESC= System
Option: z/OS (p. 888)

Specifies a WTO DATA step function descriptor code.

WTOUSERMCSF= System
Option: z/OS (p. 889)

Specifies WTO DATA step function MCS flags.

WTOUSERROUT= System
Option: z/OS (p. 891)

Specifies a WTO DATA step function routing code.

Environment
Control: Display

CHARTYPE= System Option:
z/OS (p. 718)

Specifies a character set or screen size to use for a device.

FSBCOLOR System Option:
z/OS (p. 768)

Specifies whether you can set background colors in SAS
windows on vector graphics devices.

FSBORDER= System Option:
z/OS (p. 769)

Specifies what type of symbols are to be used in borders.

FSDEVICE= System Option:
z/OS (p. 769)

Specifies the full-screen device driver for your terminal.

FSMODE= System Option:
z/OS (p. 770)

Specifies the full-screen data stream type.

GHFONT= System Option:
z/OS (p. 773)

Specifies the default graphics hardware font.

PFKEY= System Option:
z/OS (p. 825)

Specifies which set of function keys to designate as the
primary set of function keys.

690 Chapter 31 / System Options under z/OS

Category Language Elements Description

V6GUIMODE System
Option: z/OS (p. 882)

Specifies whether SAS uses SAS 6 style SCL selection list
windows.

Environment
Control: Error
Handling

ERRORABEND System
Option: z/OS (p. 738)

Specifies whether SAS responds to errors by terminating.

STAE System Option: z/OS
(p. 865)

Enables or disables a system abend exit.

STAX System Option: z/OS
(p. 866)

Specifies whether to enable attention handling.

STEPCHKPTLIB= System
Option: z/OS (p. 867)

Specifies the libref of the library where checkpoint-restart
data is saved.

Environment
Control: Files

ALTLOG= System Option:
z/OS (p. 703)

Specifies a destination for a copy of the SAS log.

ALTPRINT= System Option:
z/OS (p. 704)

Specifies the destination for the copies of the output files
from SAS procedures.

APPEND= System Option:
z/OS (p. 705)

Appends the specified value to the existing value at the end
of the specified system option.

APPLETLOC= System
Option: z/OS (p. 707)

Specifies the location of Java applets.

AUTOEXEC= System
Option: z/OS (p. 710)

Specifies the SAS autoexec file.

CONFIG= System Option:
z/OS (p. 722)

Specifies the configuration file that is used when initializing
or overriding the values of SAS system options.

HELPLOC= System Option:
z/OS (p. 775)

Specifies the location of the text and index files for the
facility that is used to view SAS Help and Documentation.

INSERT= System Option:
z/OS (p. 783)

Inserts the specified value at the beginning of the specified
system option.

LOG= System Option: z/OS
(p. 804)

Specifies a destination for a copy of the SAS log when
running in batch mode.

MSG= System Option: z/OS
(p. 817)

Specifies the library that contains the SAS messages.

MSGCASE System Option:
z/OS (p. 818)

Specifies whether notes, warnings, and error messages that
are generated by SAS are displayed in uppercase
characters.

MSGSIZE= System Option:
z/OS (p. 819)

Specifies the size of the message cache.

PRINT= System Option:
z/OS (p. 828)

Specifies a destination for SAS output when running in
batch mode.

SAS System Options for z/OS by Category 691

Category Language Elements Description

SASAUTOS= System Option:
z/OS (p. 833)

Specifies the location of the autocall library.

SASHELP= System Option:
z/OS (p. 835)

Specifies the location of the Sashelp SAS library.

SASLIB= System Option:
z/OS (p. 836)

Specifies the ddname for an alternate load library.

SASUSER= System Option:
z/OS (p. 838)

Specifies the location of an external SAS library that
contains the user Profile catalog.

SET= System Option: z/OS
(p. 840)

Defines an environment variable.

SYSIN= System Option:
z/OS (p. 871)

Specifies the location of the primary SAS input data stream.

USER= System Option: z/OS
(p. 877)

Specifies the location of the default SAS library.

WORK= System Option:
z/OS (p. 887)

Specifies the location of the SAS Work library.

WORKTERM System Option:
z/OS (p. 888)

Specifies whether SAS erases WORK files at the
termination of a SAS session.

Environment
Control: Help

HELPHOST System Option:
z/OS (p. 774)

Specifies the name of the computer where the remote help
browser is running.

HELPTOC System Option:
z/OS (p. 776)

Specifies the table of contents files for the online SAS Help
and Documentation.

Environment
Control:
Initialization and
Operation

CLIST System Option: z/OS
(p. 721)

Specifies that SAS obtains its input from a CLIST.

Files: External
Files

ASYNCHIO System Option:
z/OS (p. 709)

Specifies whether asynchronous I/O is enabled.

CAPSOUT System Option:
z/OS (p. 715)

Specifies that all output is to be converted to uppercase.

DSRESV System Option:
z/OS (p. 733)

Requests exclusive use of shared disk volumes when
accessing partitioned data sets on shared disk volumes.

FILEAUTHDEFER System
Option: z/OS (p. 739)

Controls whether SAS performs file authorization checking
for z/OS data sets or defers authorization checking to z/OS
system services such as OPEN.

FILEBLKSIZE(device-type)=
System Option: z/OS (p.
741)

Specifies the default block size for external files.

692 Chapter 31 / System Options under z/OS

Category Language Elements Description

FILEBUFNO= System
Option: z/OS (p. 742)

Specifies how many memory buffers to allocate for reading
and writing.

FILECC System Option:
z/OS (p. 743)

Specifies whether to treat data in column 1 of a printer file
as carriage-control data when reading the file.

FILEDEST= System Option:
z/OS (p. 744)

Specifies the default printer destination.

FILEDEV= System Option:
z/OS (p. 744)

Specifies the device name used for allocating new physical
files.

FILEDIRBLK= System
Option: z/OS (p. 745)

Specifies the number of default directory blocks to allocate
for new partitioned data sets.

FILEEXT= System Option:
z/OS (p. 746)

Specifies how to handle file extensions when accessing
members of partitioned data sets.

FILELBI System Option:
z/OS (p. 749)

Controls the use of the z/OS Large Block Interface support
for BSAM and QSAM files, as well as files on tapes that
have standard labels.

FILELOCKS= System Option:
z/OS (p. 750)

Specifies the default SAS file locking that is to be used for
external files (both UFS and native MVS). Also specifies the
operating system file locking to be used for UFS files (both
SAS files and external files).

FILEMOUNT System Option:
z/OS (p. 752)

Specifies whether an off-line volume is to be mounted.

FILEMSGS System Option:
z/OS (p. 753)

Controls whether you receive expanded dynamic allocation
error messages when you are assigning a physical file.

FILENULL System Option:
z/OS (p. 753)

Specifies whether zero-length records are written to
external files.

FILEPROMPT System
Option: z/OS (p. 754)

Controls whether you are prompted if you reference a data
set that does not exist.

FILEREUSE System Option:
z/OS (p. 755)

Specifies whether to reuse an existing allocation for a file
that is being allocated to a temporary ddname.

FILESEQDSNTYPE System
Option: z/OS (p. 756)

Specifies the default value that is assigned to DSNTYPE
when it is not specified with a FILENAME statement, a DD
statement, or a TSO ALLOC command.

FILESPPRI= System Option:
z/OS (p. 757)

Specifies the default primary space allocation for new
physical files.

FILESPSEC= System Option:
z/OS (p. 758)

Specifies the default secondary space allocation for new
physical files.

FILESTAT System Option:
z/OS (p. 758)

Specifies whether ISPF statistics are written.

SAS System Options for z/OS by Category 693

Category Language Elements Description

FILESYSTEM= System
Option: z/OS (p. 761)

Specifies the default file system used when the filename is
ambiguous.

FILETEMPDIR System
Option: z/OS (p. 762)

Specifies the parent directory for FILENAME TEMPFILE.

FILEUNIT= System Option:
z/OS (p. 763)

Specifies the default unit of allocation for new physical
files.

FILEVOL= System Option:
z/OS (p. 764)

Specifies which VOLSER to use for new physical files.

LRECL= System Option:
z/OS (p. 810)

Specifies the default logical record length to use for reading
and writing external files.

PGMPARM= System Option:
z/OS (p. 827)

Specifies the parameter that is passed to the external
program specified by the SYSINP= option.

SYSINP= System Option:
z/OS (p. 872)

Specifies the name of an external program that provides
SAS input statements.

SYSPREF= System Option:
z/OS (p. 873)

Specifies a prefix for partially qualified physical filenames.

S99NOMIG System Option:
z/OS (p. 875)

Tells SAS whether to recall a migrated data set.

Files: SAS Files ALIGNSASIOFILES System
Option: z/OS (p. 702)

Aligns output data on a page boundary for SAS data sets
written to UFS libraries.

ASYNCHIO System Option:
z/OS (p. 709)

Specifies whether asynchronous I/O is enabled.

BLKALLOC System Option:
z/OS (p. 711)

Causes SAS to set LRECL and BLKSIZE values for a SAS
library when it is allocated rather than when it is first
accessed.

BLKSIZE= System Option:
z/OS (p. 712)

Specifies the default block size for SAS libraries.

BLKSIZE(device-type)=
System Option: z/OS (p.
714)

Specifies the default starting point for block size
calculations for new direct access bound libraries that
reside in DSORG=PS data sets.

CATCACHE= System Option:
z/OS (p. 717)

Specifies the number of SAS catalogs to keep open.

CLIENTWORK System
Option: z/OS (p. 719)

Specifies dynamic allocation options for creating client
work libraries in a SAS server environment.

DLCREATEDIR System
Option: z/OS (p. 724)

Creates a directory for a SAS library that is specified in a
LIBNAME statement if the directory does not exist.

694 Chapter 31 / System Options under z/OS

Category Language Elements Description

DLDISPCHG System Option:
z/OS (p. 725)

Controls changes in allocation disposition for an existing
library data set.

DLDSNTYPE System Option:
z/OS (p. 726)

Specifies the default value of the DSNTYPE LIBNAME
option for direct access bound libraries in DSORG=PS data
sets.

DLEXCPCOUNT System
Option: z/OS (p. 728)

Reports number of EXCPs to direct access bound SAS
libraries.

DLLBI System Option: z/OS
(p. 729)

Specifies whether the default BLKSIZE for the sequential
access bound library that is being assigned can exceed
32760 if the library resides on a tape device.

DLMSGLEVEL= System
Option: z/OS (p. 730)

Specifies the level of messages to generate for SAS
libraries.

DLSEQDSNTYPE System
Option: z/OS (p. 731)

Specifies the default value of the DSNTYPE LIBNAME
option for sequential-access bound libraries on disk.

DLTRUNCHK System
Option: z/OS (p. 732)

Enables checking for SAS library truncation.

FILEAUTHDEFER System
Option: z/OS (p. 739)

Controls whether SAS performs file authorization checking
for z/OS data sets or defers authorization checking to z/OS
system services such as OPEN.

FILEDEV= System Option:
z/OS (p. 744)

Specifies the device name used for allocating new physical
files.

FILELOCKS= System Option:
z/OS (p. 750)

Specifies the default SAS file locking that is to be used for
external files (both UFS and native MVS). Also specifies the
operating system file locking to be used for UFS files (both
SAS files and external files).

FILEMSGS System Option:
z/OS (p. 753)

Controls whether you receive expanded dynamic allocation
error messages when you are assigning a physical file.

FILEPROMPT System
Option: z/OS (p. 754)

Controls whether you are prompted if you reference a data
set that does not exist.

FILESPPRI= System Option:
z/OS (p. 757)

Specifies the default primary space allocation for new
physical files.

FILESPSEC= System Option:
z/OS (p. 758)

Specifies the default secondary space allocation for new
physical files.

FILESYNC= System Option:
z/OS (p. 759)

Specifies when operating system buffers that contain
contents of permanent SAS files are written to disk.

FILEUNIT= System Option:
z/OS (p. 763)

Specifies the default unit of allocation for new physical
files.

FILEVOL= System Option:
z/OS (p. 764)

Specifies which VOLSER to use for new physical files.

SAS System Options for z/OS by Category 695

Category Language Elements Description

HSLXTNTS= System Option:
z/OS (p. 779)

Specifies the size of each physical hiperspace that is
created for a SAS library.

HSMAXPGS= System
Option: z/OS (p. 780)

Specifies the maximum number of hiperspace pages
allowed in a SAS session.

HSMAXSPC= System
Option: z/OS (p. 781)

Specifies the maximum number of hiperspaces allowed in a
SAS session.

HSWORK System Option:
z/OS (p. 782)

Tells SAS to place the Work library in a hiperspace.

SEQENGINE= System
Option: z/OS (p. 839)

Specifies the default engine to use when assigning
sequential access SAS libraries.

SYNCHIO System Option:
z/OS (p. 870)

Specifies whether synchronous I/O is enabled.

S99NOMIG System Option:
z/OS (p. 875)

Tells SAS whether to recall a migrated data set.

TAPECLOSE= System
Option: z/OS (p. 875)

Specifies how sequential access bound libraries on tape are
handled when SAS closes the library data set.

UTILLOC= System Option:
z/OS (p. 877)

Specifies location of certain types of temporary utility files.

VALIDMEMNAME= System
Option: z/OS (p. 883)

Specifies the rules for naming SAS data sets, data views,
and item stores.

Graphics: Driver
Settings

DEVICE= System Option:
z/OS (p. 723)

Specifies a device driver for graphics output for SAS/
GRAPH software.

Host Interfaces:
ISPF

ISPCAPS System Option:
z/OS (p. 784)

Specifies whether to convert to uppercase printable ISPF
parameters that are used in CALL ISPEXEC and CALL
ISPLINK.

ISPCHARF System Option:
z/OS (p. 785)

Specifies whether the values of SAS character variables are
converted using their automatically specified informats or
formats each time they are used as ISPF variables.

ISPCSR= System Option:
z/OS (p. 786)

Tells SAS to set an ISPF variable to the name of a variable
whose value is found to be invalid.

ISPEXECV= System Option:
z/OS (p. 787)

Specifies the name of an ISPF variable that passes its value
to an ISPF service.

ISPMISS= System Option:
z/OS (p. 788)

Specifies the value assigned to SAS character variables
defined to ISPF when the associated ISPF variable has a
length of zero.

ISPMSG= System Option:
z/OS (p. 789)

Tells SAS to set an ISPF variable to a message ID when a
variable is found to be invalid.

696 Chapter 31 / System Options under z/OS

Category Language Elements Description

ISPNOTES System Option:
z/OS (p. 789)

Specifies whether ISPF error messages are to be written to
the SAS log.

ISPNZTRC System Option:
z/OS (p. 790)

Specifies whether nonzero ISPF service return codes are to
be written to the SAS log.

ISPPT System Option: z/OS
(p. 791)

Specifies whether ISPF parameter value pointers and
lengths are to be written to the SAS log.

ISPTRACE System Option:
z/OS (p. 792)

Specifies whether the parameter lists and service return
codes are to be written to the SAS log.

ISPVDEFA System Option:
z/OS (p. 793)

Specifies whether all current SAS variables are to be
identified to ISPF via the SAS VDEFINE user exit.

ISPVDLT System Option:
z/OS (p. 794)

Specifies whether VDELETE is executed before each SAS
variable is identified to ISPF via VDEFINE.

ISPVDTRC System Option:
z/OS (p. 795)

Specifies whether to trace every VDEFINE for SAS
variables.

ISPVIMSG= System Option:
z/OS (p. 796)

Specifies the ISPF message ID that is to be set by the SAS
VDEFINE user exit when the informat for a variable returns
a nonzero return code.

ISPVRMSG= System Option:
z/OS (p. 796)

Specifies the ISPF message ID that is to be set by the SAS
VDEFINE user exit when a variable has a null value.

ISPVTMSG= System Option:
z/OS (p. 797)

Specifies the ISPF message ID that is to be displayed by the
SAS VDEFINE user exit when the ISPVTRAP option is in
effect.

ISPVTNAM= System Option:
z/OS (p. 798)

Restricts the information that is displayed by the
ISPVTRAP option to the specified variable only.

ISPVTPNL= System Option:
z/OS (p. 799)

Specifies the name of the ISPF panel that is to be displayed
by the SAS VDEFINE user exit when the ISPVTRAP option
is in effect.

ISPVTRAP System Option:
z/OS (p. 799)

Specifies whether the SAS VDEFINE user exit writes
information to the SAS log (for debugging purposes) each
time it is entered.

ISPVTVARS= System
Option: z/OS (p. 800)

Specifies the prefix for the ISPF variables to be set by the
SAS VDEFINE user exit when the ISPVTRAP option is in
effect.

Host Interfaces:
REXX

REXXLOC= System Option:
z/OS (p. 831)

Specifies the ddname of the REXX library to be searched
when the REXXMAC option is in effect.

REXXMAC System Option:
z/OS (p. 832)

Enables or disables the REXX interface.

Input Control:
Data Processing

CARDIMAGE System
Option: z/OS (p. 716)

Processes SAS source and data lines as 80-byte records.

SAS System Options for z/OS by Category 697

Category Language Elements Description

XCMD System Option: z/OS
(p. 892)

Specifies whether the X command is valid in the SAS
session.

Log and
Procedure
Output Control:
ODS Printing

FILEFORMS= System
Option: z/OS (p. 748)

Specifies the default SYSOUT form for a print file.

FILESYSOUT= System
Option: z/OS (p. 760)

Specifies the default SYSOUT CLASS for a printer file.

FONTRENDERING= System
Option: z/OS (p. 765)

Specifies whether SAS/GRAPH devices that are based on
the SASGDGIF, SASGDTIF, and SASGDIMG modules render
fonts by using the operating system or by using the
FreeType engine.

SYSPRINT= System Option:
z/OS (p. 874)

Specifies the handling of output that is directed to the
default print file.

Log and
Procedure
Output Control:
Procedure
Output

PRINTINIT System Option:
z/OS (p. 828)

Initializes the procedure output file.

Log and
Procedure
Output Control:
SAS Log

ECHO= System Option: z/OS
(p. 735)

Specifies a message to be echoed to the SAS log while
initializing SAS.

FULLSTATS System Option:
z/OS (p. 771)

Specifies whether to write all available system performance
statistics to the SAS log.

HOSTINFOLONG System
Option: z/OS (p. 778)

Specifies to print additional operating environment
information in the SAS log when SAS starts.

ISPNOTES System Option:
z/OS (p. 789)

Specifies whether ISPF error messages are to be written to
the SAS log.

ISPNZTRC System Option:
z/OS (p. 790)

Specifies whether nonzero ISPF service return codes are to
be written to the SAS log.

ISPPT System Option: z/OS
(p. 791)

Specifies whether ISPF parameter value pointers and
lengths are to be written to the SAS log.

ISPTRACE System Option:
z/OS (p. 792)

Specifies whether the parameter lists and service return
codes are to be written to the SAS log.

ISPVDTRC System Option:
z/OS (p. 795)

Specifies whether to trace every VDEFINE for SAS
variables.

ISPVTRAP System Option:
z/OS (p. 799)

Specifies whether the SAS VDEFINE user exit writes
information to the SAS log (for debugging purposes) each
time it is entered.

LINESIZE= System Option:
z/OS (p. 803)

Specifies the line size for the SAS Log and SAS procedure
output.

698 Chapter 31 / System Options under z/OS

Category Language Elements Description

LOGPARM= System Option:
z/OS (p. 805)

Controls when SAS log files are opened, closed, and, in
conjunction with the LOG= system option, how they are
named.

OPLIST System Option:
z/OS (p. 822)

Specifies whether the settings of the SAS system options
are written to the SAS log.

STATS System Option: z/OS
(p. 865)

Specifies whether statistics are to be written to the SAS
log.

VERBOSE System Option:
z/OS (p. 886)

Specifies whether SAS writes the start-up system option
settings to the SAS log.

Log and
Procedure
Output Control:
SAS Log and
Procedure
Output

PAGEBREAKINITIAL System
Option: z/OS (p. 822)

Inserts an initial page break in SAS log and procedure
output files.

PAGESIZE= System Option:
z/OS (p. 823)

Specifies the number of lines that compose a page of SAS
output.

Macro: SAS
Macro

MSYMTABMAX= System
Option: z/OS (p. 820)

Specifies the maximum amount of memory available to the
macro variable symbol tables.

MVARSIZE= System Option:
z/OS (p. 821)

Specifies the maximum size for macro variables that are
stored in memory.

SASAUTOS= System Option:
z/OS (p. 833)

Specifies the location of the autocall library.

Sort: Procedure
Options

DYNALLOC System Option:
z/OS (p. 734)

Controls whether SAS or the host sort utility allocates sort
work data sets.

FILSZ System Option: z/OS
(p. 764)

Specifies that the host sort utility supports the FILSZ
parameter.

SORT= System Option: z/OS
(p. 841)

Specifies the minimum size of all allocated sort work data
sets.

SORTALTMSGF System
Option: z/OS (p. 842)

Enables sorting with alternate message flags.

SORTBLKMODE System
Option: z/OS (p. 843)

Enables block mode sorting.

SORTBLKREC System
Option: z/OS (p. 844)

Enables control of SORTBLKMODE buffers.

SORTBUFMOD System
Option: z/OS (p. 844)

Enables modification of the sort utility output buffer.

SORTCUT= System Option:
z/OS (p. 845)

Specifies the size of the data in observations above which
the host sort is likely to perform more efficiently than the
internal sort.

SAS System Options for z/OS by Category 699

Category Language Elements Description

SORTCUTP= System Option:
z/OS (p. 846)

Specifies the size of the data in bytes above which the host
sort is likely to perform more efficiently than the internal
sort. SORTCUTP is used only when SORTCUT=0.

SORTDEV= System Option:
z/OS (p. 848)

Specifies the unit device name if SAS dynamically allocates
the sort work file.

SORTDEVWARN System
Option: z/OS (p. 849)

Enables device type warnings.

SORTEQOP System Option:
z/OS (p. 850)

Specifies whether the host sort utility supports the
EQUALS option.

SORTLIB= System Option:
z/OS (p. 850)

Specifies the name of the sort library.

SORTLIST System Option:
z/OS (p. 851)

Enables passing of the LIST parameter to the host sort
utility.

SORTMSG System Option:
z/OS (p. 852)

Controls the class of messages to be written by the host
sort utility.

SORTMSG= System Option:
z/OS (p. 853)

Specifies the ddname to be dynamically allocated for the
message print file of the host sort utility.

SORTNAME= System
Option: z/OS (p. 853)

Specifies the name of the host sort utility.

SORTOPTS System Option:
z/OS (p. 854)

Specifies whether the host sort utility supports the
OPTIONS statement.

SORTPARM= System
Option: z/OS (p. 855)

Specifies parameters for the host sort utility.

SORTPGM= System Option:
z/OS (p. 856)

Specifies which sort utility SAS uses, the SAS sort utility or
the host sort utility.

SORTSHRB System Option:
z/OS (p. 857)

Specifies whether the host sort interface can modify data in
buffers.

SORTSIZE= System Option:
z/OS (p. 858)

Specifies the SIZE parameter that SAS is to pass to the sort
utility.

SORTSUMF System Option:
z/OS (p. 859)

Specifies whether the host sort utility supports the SUM
FIELDS=NONE control statement.

SORTUADCON System
Option: z/OS (p. 860)

Specifies whether the host sort utility supports passing a
user address constant to the E15/E35 exits.

SORTUNIT= System Option:
z/OS (p. 861)

Specifies the unit of allocation for sort work files.

SORTWKDD= System
Option: z/OS (p. 862)

Specifies the prefix of sort work data sets.

700 Chapter 31 / System Options under z/OS

Category Language Elements Description

SORTWKNO= System
Option: z/OS (p. 863)

Specifies how many sort work data sets to allocate.

SORT31PL System Option:
z/OS (p. 864)

Controls what type of parameter list is used to invoke the
host sort utility.

System
Administration:
Memory

MEMLEAVE= System
Option: z/OS (p. 811)

Specifies the amount of memory in the user's region that is
reserved exclusively for the use of the operating
environment.

MEMRPT System Option:
z/OS (p. 813)

Specifies whether memory usage statistics are to be written
to the SAS log for each step.

MEMSIZE= System Option:
z/OS (p. 814)

Specifies the limit on the total amount of memory that can
be used by a SAS session.

MINSTG System Option:
z/OS (p. 816)

Tells SAS whether to minimize its use of storage.

MSGSIZE= System Option:
z/OS (p. 819)

Specifies the size of the message cache.

PROCLEAVE= System
Option: z/OS (p. 829)

Specifies an amount of memory that is to be held in reserve,
and that is to be made available only when memory
allocation would otherwise fail.

REALMEMSIZE= System
Option: z/OS (p. 830)

Specifies the amount of real memory SAS can expect to
allocate.

SORTSIZE= System Option:
z/OS (p. 858)

Specifies the SIZE parameter that SAS is to pass to the sort
utility.

SYSLEAVE= System Option:
z/OS (p. 872)

Specifies how much memory to leave unallocated to ensure
that SAS software tasks are able to terminate successfully.

System
Administration:
Performance

ARMAGENT= System
Option: z/OS (p. 708)

Specifies another vendor's ARM agent, which is an
executable module that contains a vendor's implementation
of the ARM API.

FULLSTATS System Option:
z/OS (p. 771)

Specifies whether to write all available system performance
statistics to the SAS log.

STATS System Option: z/OS
(p. 865)

Specifies whether statistics are to be written to the SAS
log.

STIMER System Option:
z/OS (p. 868)

Specifies whether to write a subset of system performance
statistics to the SAS log.

SVC11SCREEN System
Option: z/OS (p. 869)

Specifies whether to enable SVC 11 screening to obtain host
date and time information.

SAS System Options for z/OS by Category 701

Dictionary

ALIGNSASIOFILES System Option: z/OS
Aligns output data on a page boundary for SAS data sets written to UFS libraries.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NOSASALIGNIOFILES

Syntax

ALIGNSASIOFILES | NOALIGNSASIOFILES

Syntax Description
ALIGNSASIOFILES

specifies to align output data on page boundary.

NOALIGNSASIOFILES
specifies to write output data using standard SAS practices.

Details

A SAS data set in a UFS library consists of a header that is followed by one or more
pages of data. The ALIGNSASIOFILES system option forces the header to be the
same size as the data pages so that the data pages are aligned to boundaries that
are whole-number multiples of the member page size. Although aligning the pages
provides no performance benefit on z/OS, SAS data sets with aligned pages can be
processed more efficiently by SAS on other platforms. Therefore, when creating
SAS data sets in a non-native data representation for use on another host platform
(by using the OUTREP option of the LIBNAME statement), specify
ALIGNSASIOFILES.

The ALIGNSASIOFILES option has no effect on the creation or processing of
members in direct access bound libraries or sequential access bound libraries
because they have a different physical organization that the SAS files in UFS
libraries.

702 Chapter 31 / System Options under z/OS

You can use the BUFSIZE= system option or the BUFSIZE= data set option to set
the page size.

See Also

n “Techniques for Optimizing I/O” in SAS Programmer’s Guide: Essentials

Data Set Options:

n “BUFSIZE= Data Set Option: z/OS” on page 438

System Options:

n “BUFSIZE= System Option” in SAS System Options: Reference

ALTLOG= System Option: z/OS
Specifies a destination for a copy of the SAS log.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: file-specification

Syntax

ALTLOG=<file-specification>

NOALTLOG

Optional Argument
file-specification

identifies an external file. Under z/OS, it can be a valid ddname, a physical
filename, or the name of a file stored in the directory structure of the UNIX file
system. The ddname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

ALTLOG= System Option: z/OS 703

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0c2raoxd7nwhon1mhishbaykfgv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1d8hx95jb53wqn0zzvawxw94nvi.htm&locale=en

Details

The ALTLOG= system option specifies a destination to which a copy of the SAS log
is written. Use the ALTLOG= option to capture the log output for printing.

The NOALTLOG option specifies that the SAS log is not copied.

When SAS is started with the OBJECTSERVER and NOTERMINAL system options
and no log is specified, SAS discards all log and alternate log messages.

Using directives in the value of the ALTLOG system option enables you to control
when logs are open and closed and how they are named, based on real-time events,
such as time, month, day of week, and so on. For a list of directives see the
“LOGPARM= System Option: z/OS” on page 805.

See Also

n “Directing Output to an External File at SAS Invocation” on page 146

n “The SAS Log” in SAS Programmer’s Guide: Essentials

System Options

n “ALTPRINT= System Option: z/OS” on page 704

ALTPRINT= System Option: z/OS
Specifies the destination for the copies of the output files from SAS procedures.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: file-specification

Syntax

ALTPRINT=<file-specification>

NOALTPRINT

704 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en

Optional Argument
file-specification

identifies an external file. Under z/OS, it can be a valid ddname, a physical
filename, or the name of a file stored in the directory structure of the UNIX file
system. The ddname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

Details

Use the ALTPRINT= option to capture procedure output for printing.

The NOALTPRINT option causes any previous ALTPRINT specifications to be
ignored.

See Also

n “Directing Output to a Printer” on page 150

System Options

n “ALTLOG= System Option: z/OS” on page 703

APPEND= System Option: z/OS
Appends the specified value to the existing value at the end of the specified system option.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: SAS invocation syntax

Syntax

APPEND=(system-option=appended-value)

APPEND= System Option: z/OS 705

Required Arguments
system-option

can be AUTOEXEC, CMPLIB, FMTSEARCH, HELPLOC, MAPS, MSG,
SASAUTOS, SASHELP, or SASSCRIPT.

Note: You can submit proc options listinsertappend; to produce a
complete list of options that can be appended.

appended-value
is the new value that you want to append to the current value of system-
option.

Details

If you specify a SAS system option more than once, then the last specification of
the option is the one that SAS uses. You must use the APPEND system option if
you want to add additional values to the end of the value that is already specified
for the following options:

AUTOEXEC HELPLOC SASAUTOS
CMPLIB MAPS SASHELP
FMTSEARCH MSG SASSCRIPT

For example, if your configuration file contains the following option specification:

sasautos='prefix.prod.sasautos'

and you enter the following SASRX command,

sasrx -sasautos 'prefix.more.sasautos'

then the only location where SAS looks for autocall macros is
'prefix.more.sasautos'. The output of PROC OPTIONS shows
'prefix.more.sasautos' as the value of the SASAUTOS option.

If you want SAS to look in both locations for autocall macros, then you must use
the following APPEND option:

sasrx -append=(sasautos='prefix.more.sasautos')

PROC OPTIONS then shows the following value for the SASAUTOS option:

('prefix.prod.sasautos' 'prefix.more.sasautos')

If the original value of system-option or appended-value is enclosed in
parentheses, then the resulting option value is merged into one pair of parentheses.
For example,

SASAUTOS=(.a.sasautos .b.sasautos)
APPEND=(sasautos=(.c.sasautos .d.sasautos))

sets the value of the SASAUTOS option to

(.a.sasautos .b.sasautos .c.sasautos .d.sasautos)

706 Chapter 31 / System Options under z/OS

See Also

n “Changing an Option Value By Using the INSERT and APPEND System Options”
in SAS System Options: Reference

n “PEEKLONG Function: z/OS” on page 492

System Options

n “CMPLIB= System Option” in SAS System Options: Reference

n “INSERT= System Option: z/OS” on page 783

n Appendix 3, “Encoding for z/OS Resource Names,” on page 939

APPLETLOC= System Option: z/OS
Specifies the location of Java applets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Syntax

APPLETLOC=“base-URL”

Syntax Description
“base-URL”

specifies the address where the SAS Java applets are located. The maximum
address length is 256 characters.

Details

The APPLETLOC= system option specifies the base location (typically a URL) of
Java applets. These applets are typically accessed from an intranet server or a local
CD-ROM.

Example

APPLETLOC="http://server.abc.com:server.abc.port/SAS/applets"

APPLETLOC= System Option: z/OS 707

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p128h36bs9q0bon1mqwrlgxb9ucp.htm&locale=en

ARMAGENT= System Option: z/OS
Specifies another vendor's ARM agent, which is an executable module that contains a vendor's
implementation of the ARM API.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options

Category: System Administration: Performance

PROC OPTIONS
GROUP=

PERFORMANCE

Default: None

Restriction: After you enable the ARM subsystem, you cannot specify a different ARM agent
using ARMAGENT=.

z/OS specifics: Length of module name

See: “ARMAGENT= System Option” in SAS Interface to Application Response
Measurement (ARM): Reference

Syntax

ARMAGENT=module

Required Argument
module

is the name of the module that contains an ARM agent, which is a program
module that contains a vendor's implementation of the ARM API. The maximum
length for the module name in z/OS environments is eight characters.

Details

An ARM agent is an executable module that contains a vendor's implementation of
the ARM API. The ARM agent is a set of executable routines that are called from an
application. The ARM agent and SAS run concurrently. The SAS application passes
transaction information to the ARM agent, which collects and manages the writing
of the ARM records to the ARM log. SAS, as well as other vendors, provide an ARM
agent.

By default, SAS uses the SAS ARM agent. Use ARMAGENT= to specify another
vendor's ARM agent in order to monitor both the internal SAS processing
transactions (using ARMSUBSYS=) as well as for user-defined transactions (using
ARM macros).

708 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=armref&docsetVersion=9.4&docsetTarget=n1ug8f4366fde6n1kndlvxk9g89n.htm&locale=en
http://documentation.sas.com/?docsetId=armref&docsetVersion=9.4&docsetTarget=n1ug8f4366fde6n1kndlvxk9g89n.htm&locale=en

See Also

SAS Interface to Application Response Measurement (ARM): Reference

ASYNCHIO System Option: z/OS
Specifies whether asynchronous I/O is enabled.

Valid in: Configuration file, SAS invocation

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: ASYNCHIO

Syntax

ASYNCHIO | NOASYNCHIO

Required Arguments
ASYNCHIO

allows other logical SAS tasks to execute (if any are ready) while the I/O is
being done, which improves system performance.

NOASYNCHIO
causes I/O to wait for completion.

Details

Overview of ASYNCHIO System Option
The ASYNCHIO system option is the mirror alias of the system option
NOSYNCHIO. NOASYNCHIO is equivalent to SYNCHIO.

Asynchronous I/O or Task Switching
The Base SAS engine and other engines are able to process several tasks
concurrently. For example, you can enter statements into the Program Editor at the
same time that PROC SORT is processing a large file. The reason that this is
possible is that the engine enables task switching.

ASYNCHIO System Option: z/OS 709

Task switching is possible because the engine architecture supports the ability to
start one task before another task is finished, or to handle work asynchronously.
This ability provides greater efficiencies during processing and often results in
faster processing time. The ASYNCHIO system option controls this activity.

AUTOEXEC= System Option: z/OS
Specifies the SAS autoexec file.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: file-specification

Syntax

AUTOEXEC=(file-specification1<file-specification-2 …>) | NOAUTOEXEC

Required Arguments
file-specification

identifies an external file. Under z/OS, it can be a single ddname, a single MVS
data set name, or a single UFS filename. If a ddname is used, it must have been
previously associated with an external file using either a TSO ALLOCATE
command or a JCL DD statement. Under TSO, file-specification can also be a
list of MVS data set names that are enclosed in parentheses. For batch mode,
use a SASEXEC DD statement instead of the AUTOEXEC option for multiple
autoexec files.

NOAUTOEXEC
disables AUTOEXEC, as if the file-specification was blank.

Details

The autoexec file contains SAS statements that are executed automatically when
you invoke SAS. The autoexec file can contain any SAS statements. For example,
you can include LIBNAME statements for SAS libraries that you access routinely in
SAS sessions.

During initialization, if AUTOEXEC= is not explicitly specified, SAS checks to see
whether the SASEXEC ddname has been allocated. If so, SAS initializes
AUTOEXEC= to SASEXEC. Otherwise, SAS sets the SASEXEC ddname to null.

710 Chapter 31 / System Options under z/OS

You can use the APPEND= and INSERT= system options to add additional file
specifications if all of the files are UFS files. For more information, see the
APPEND= and INSERT= system options. INSERT adds files to be executed before
the autoexec file, and APPEND adds files to be executed after the autoexec file.

See Also

n “Autoexec Files” on page 14

System Options

n “APPEND= System Option: z/OS” on page 705

n “INSERT= System Option: z/OS” on page 783

BLKALLOC System Option: z/OS
Causes SAS to set LRECL and BLKSIZE values for a SAS library when it is allocated rather than when
it is first accessed.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS Systems Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NOBLKALLOC

z/OS specifics: All

Syntax

BLKALLOC | NOBLKALLOC

Details

The BLKALLOC option causes LIBNAME statement processing to use a nonzero
block size value when allocating a direct access or sequential access bound library.
The block size value is derived from one of the following sources, which are listed in
order of precedence:

1 the value specified with the BLKSIZE host option of the LIBNAME statement

2 the value specified with the BLKSIZE system option

BLKALLOC System Option: z/OS 711

3 the value specified with the BLKSIZE(OTHER) system option

4 6144.

The block size value is set only if both of following conditions are met:

n The library is not already allocated either externally or internally to SAS.

n DISP=NEW is specified.

The purpose of BLKALLOC is to ensure that the library data set is allocated with a
default nonzero block size value, even if the library is not accessed by SAS in the
current session, and therefore not initialized. The block size value thus set is saved
in the data set label (format-1 DSCB in VTOC). If such a library is accessed in a later
SAS session, it is treated as a preallocated, but uninitialized, library.

Note: The BLKALLOC option has no effect for libraries that were already
allocated, either externally or internally to SAS.

See Also

n “Direct Access Bound Libraries” on page 51

n “Sequential Access Bound Libraries” on page 57

Statements

n “LIBNAME Statement: z/OS” on page 656

BLKSIZE= System Option: z/OS
Specifies the default block size for SAS libraries.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: 0

z/OS specifics: All

Syntax

BLKSIZE=n | nK | hexX | MIN | MAX

712 Chapter 31 / System Options under z/OS

Required Arguments
n | nK

specifies the block size in multiples of 1 (bytes) or 1,024 (kilobytes). You can
specify decimal values for the number of kilobytes. For example, a value of 8
specifies a block size of 8 bytes, and a value of .782K specifies a block size of
801 bytes.

hexX
specifies the block size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hexadecimal characters (0–9, A–F),
and then followed by an X. For example, the value 2dx sets the block size to 45
bytes and a value of 0a0x sets the block size to 160 bytes.

MIN
sets the default block size to 0.

If BLKSIZE=0 is specified, SAS uses the value of the appropriate
BLKSIZE(device) option. If a nonzero value is specified for BLKSIZE, then SAS
uses the value specified for all device types.

MAX
sets the default block size to 32,760.

Details

The BLKSIZE= option sets the physical block size of the library when you create a
SAS library. After the library is created, the block size is set.

The default value of zero indicates that SAS uses the value of the appropriate
BLKSIZE(device-type)= option. When a nonzero value is specified for BLKSIZE=,
this value takes precedence over any value specified with the BLKSIZE(device-
type)= option.

Note: Because of the constraints on the block size for direct access bound
libraries, SAS uses a lower value than the value that is specified in some situations
for direct access bound libraries. For more information, see “Controlling Library
Block Size” on page 56.

See Also

n “Direct Access Bound Libraries” on page 51

n “Sequential Access Bound Libraries” on page 57

BLKSIZE= System Option: z/OS 713

BLKSIZE(device-type)= System Option: z/OS
Specifies the default starting point for block size calculations for new direct access bound libraries
that reside in DSORG=PS data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: Varies by device type

z/OS specifics: All

Syntax

BLKSIZE(device-type)=value

Required Arguments
device-type

specifies any valid specific device type number (such as 3380 or 3390), DASD,
DISK, or OTHER.

DISK or DASD
indicates that the specified value is to be used as the default block size for
all types of disk devices.

OTHER
specifies the value that SAS uses to allocate a library when the BLKALLOC
option is specified and the BLKSIZE host option was not specified in the
LIBNAME statement or LIBNAME function. For more information, see
“BLKSIZE= System Option: z/OS” on page 712.

value
specifies the default block size. Here are the valid values:

number
specifies the block size that SAS is to use for the device.

OPT
specifies that SAS is to choose the most efficient block size for the device
and the type of library.

MAX or FULL
specifies that SAS is to use the maximum permitted block size for the device
or 32760, whichever is lower.

714 Chapter 31 / System Options under z/OS

HALF, THIRD, FOURTH, or FIFTH
specifies that SAS is to use the largest value that results in obtaining two,
three, four, and five blocks per track, respectively.

Details

The following example tells SAS to choose optimum block size values for all disk
devices except 3380s, for which one-third track blocking is requested:

options blksize(disk)=opt
 blksize(3380)=third;

For all DASD devices currently supported on z/OS, the default value of
BLKSIZE(device-type) is HALF. This value corresponds to the largest efficient block
size that is supported by SAS and standard access methods.

When the library BLKSIZE is not specified by other means, such as with the library
data set allocation or the BLKSIZE system option, SAS uses the block size value
specified for the BLKSIZE(device-type) as a starting point for determining the block
size. Constraints on the block size for direct access bound libraries might cause
SAS to use a lower value than the specified value in some situations for direct
access bound libraries. For more information, see “Controlling Library Block Size” on
page 56.

Note: The BLKSIZE(device) option has no influence over the block size for
sequential access bound libraries.

See Also

“Optimizing SAS I/O” on page 905

CAPSOUT System Option: z/OS
Specifies that all output is to be converted to uppercase.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NOCAPSOUT

z/OS specifics: All

CAPSOUT System Option: z/OS 715

Syntax

CAPSOUT | NOCAPSOUT

Details

CAPSOUT applies only to native z/OS files. It does not apply to files in UFS
directories. The CAPSOUT setting takes effect when a file is opened. Changing the
setting does not affect files that are already open.

CARDIMAGE System Option: z/OS
Processes SAS source and data lines as 80-byte records.

Valid in: Configuration file, SAS invocation, OPTIONS statement

Category: Input Control: Data Processing

PROC OPTIONS
GROUP=

INPUTCONTROL

Default: NOCARDIMAGE

z/OS specifics: Default value

See: “CARDIMAGE System Option” in SAS System Options: Reference

Syntax

CARDIMAGE | NOCARDIMAGE

Details

The default setting on z/OS is NOCARDIMAGE.

Note: The default setting of CARDIMAGE for SAS 9.3 and earlier was
CARDIMAGE.

716 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0r48a3yh1ob57n153b8to8kuik0.htm&locale=en

CATCACHE= System Option: z/OS
Specifies the number of SAS catalogs to keep open.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: 0

z/OS specifics: All

See: “CATCACHE= System Option” in SAS System Options: Reference

Syntax

CATCACHE=n | hexX | MIN | MAX

Required Arguments
n

specifies any integer greater than or equal to 0 in terms of bytes. If n > 0, SAS
places up to that number of open-file descriptors in cache memory instead of
closing the catalogs.

hexX
specifies the number of open-file descriptors that are kept in cache memory as a
hexadecimal number. You must specify the value beginning with a number (0–
9), followed by hexadecimal characters (0–9, A–F), and then followed by an X.
For example, the value 2dx sets the number of catalogs to keep open to 45
catalogs.

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

MAX
sets the number of open-file descriptors that are kept in cache memory to the
largest, signed, 4-byte integer that is representable in your operating
environment. The recommended maximum setting for this option is 10.

Details

By using the CATCACHE= system option to specify the number of SAS catalogs to
keep open, you can avoid the repeated opening and closing the same catalogs.

CATCACHE= System Option: z/OS 717

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p18wjy2w9vlu9ln1rg5s5j1oliil.htm&locale=en

Note: If MINSTG is in effect, then SAS sets the value of CATCACHE to 0.

See Also

“Optimizing System Performance” in SAS Language Reference: Concepts

CHARTYPE= System Option: z/OS
Specifies a character set or screen size to use for a device.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: 0

z/OS specifics: All

Syntax

CHARTYPE=cell-size | screen-size

Required Arguments
cell-size

specifies the character set number for an IBM 3290 terminal. Values are 1 for a 6
x 12 cell and 2 for a 9 x 16 cell.

screen-size
specifies the screen size for other Extended-Data-Stream (EDS) terminals.
Values are 1 for a primary screen size and 2 for an alternate screen size.

Details

For an IBM 3290 terminal, the CHARTYPE= option specifies which character cell
size to use. For other EDS terminals, it specifies which screen size to use. This
option corresponds to the CHARTYPE option in SAS/GRAPH.

The default value, 0, indicates that the CHARTYPE= option is not applicable to the
terminal that you are using.

718 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1xjhzwjv6ojukn18mi4j1ysye76.htm&locale=en

See Also

“Improving Screen Resolution on an IBM 3290 Terminal” on page 260

CLIENTWORK System Option: z/OS
Specifies dynamic allocation options for creating client work libraries in a SAS server environment.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: null

z/OS specifics: All

Syntax

CLIENTWORK=“operand ... <operand ...>”

Required Argument
The required operands can be one of the following TSO ALLOCATE command operands:

operand
can be one of the following operands. You must specify all of these operands.

n UNIT(device type)

n TRACKS, CYL, BLOCK()

n SPACE(primary<,secondary>)

Optional Argument
The optional operands can be one of the following TSO ALLOCATE commands:

operand
can be any of the following operands. You can specify one or more of these
operands.

n UCOUNT(<number of devices>)

n VOL(volser<,volser...>)

n STORCLAS(storage class

n MGMTCLAS(management class)

n DATACLAS(data class)

n DSNTYPE(LARGE)

CLIENTWORK System Option: z/OS 719

Details

The CLIENTWORK option specifies the data set dynamic allocation options that a
SAS server attempts to use when it creates a temporary work library for a client
session. The CLIENTWORK option is used only when the server’s Work library
resides in a direct access bound library. The CLIENTWORK option has no effect
when the server’s Work library resides in a UFS directory. For more information, see
“Work Library and Other Utility Files” on page 26.

The operands in the preceding list have the same syntax and meaning as when they
are specified on the TSO ALLOCATE command. For more information, see the IBM
documentation about the ALLOCATE command. However, the CLIENTWORK
option does not depend on TSO services. CLIENTWORK can be specified in any
execution environment supported by SAS, including batch, started task, and USS
shell.

If the server’s Work library resides in a direct access bound library, the SAS server
dynamically allocates a temporary MVS data set for each client that connects to
the server. If CLIENTWORK is specified, then its operands are used to determine
the allocation. This data set contains the work library for the client. It is created
with a unique system-generated name.

If any of the following three conditions are true, then the SAS server reverts to the
behavior that is described for the case in which CLIENTWORK is null:

n CLIENTWORK is not specified.

n CLIENTWORK is specified with a value of NULL.

n The CLIENTWORK operands refer to resources (for example, a non-existent
SMS data class) that are not defined on the z/OS system.

If the value that is specified for CLIENTWORK is null, then the size of the client
Work library is governed by the values of the following SAS system options that are
in effect for the initialization of the SAS server:

FILESPPRI
primary space allocation

FILESPSEC
secondary space allocation

FILEUNIT
unit of space

Note:

n The CLIENTWORK option provides the advantage of enabling a SAS server to
create client work libraries that can span multiple volumes.

n The temporary data sets that are created for client work libraries must be
regular-format sequential data sets. Extended-format sequential data sets are
not supported. Therefore, for the DATACLAS operand, do not specify a data
class with a data set name type of extended.

n The processing for the CLIENTWORK option is identical to that for the
UTILLOC option with the exception that the ALLOC command name is not

720 Chapter 31 / System Options under z/OS

specified as part of CLIENTWORK. For more information, see “UTILLOC=
System Option: z/OS” on page 877.

CLIST System Option: z/OS
Specifies that SAS obtains its input from a CLIST.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Initialization and Operation

PROC OPTIONS
GROUP=

EXECMODES

Default: NOCLIST

z/OS specifics: All

Syntax

CLIST | NOCLIST

Details

The CLIST option controls whether SAS obtains its input from the terminal directly
(NOCLIST specified or defaulted) or indirectly (CLIST specified) when running
interactively under TSO. When the CLIST option is specified and SAS is executed
from a CLIST, any statements following the SASCP command in the CLIST are
executed by SAS. Any of those statements that resolve as commands are executed
as SAS statements. If the end of the CLIST is reached, then SAS continues to read
statements from the REXX stack until it is empty. SAS then reads from the
terminal. An ENDSAS statement in any of these three input locations terminates
the session. To take advantage of this feature, you should provide your own CLIST
in place of the one that is shipped with SAS.

The CLIST option can also be used when SAS is executed from a REXX exec. In this
case, there is no support for reading statements from the REXX code, but
statements are read from the REXX stack and then from the terminal. Thus, you can
use the REXX exec that is shipped with SAS.

When the CLIST option is specified, the NODMS option is automatically set.

The following example shows how a user-written REXX exec can use the CLIST
option to submit statements to a SAS session that is started from the REXX exec
that SAS supplies:

queue "data_null_;"
queue "put 'Use QUEUE to provide input when using the CLIST option';"

CLIST System Option: z/OS 721

queue "run;"
queue "endsas;"
'SASRX -clist'

CONFIG= System Option: z/OS
Specifies the configuration file that is used when initializing or overriding the values of SAS system
options.

Valid in: SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: CONFIG

z/OS specifics: All

Syntax

CONFIG=file-specification

Required Argument
file-specification

The value of the CONFIG= option can be any valid ddname, a data set name, a
PDS member name, a UFS filename, or a list in parentheses that contains any
combination of these types of file designations.

Details

The configuration file can contain any of the SAS system options, including the
CONFIG= option.

Note: Typically, CONFIG= is not directly specified as a command-line option, but
indirectly with SASRX, SAS CLIST, or batch PROC parameters.

See Also

“Configuration Files” on page 11

722 Chapter 31 / System Options under z/OS

DEVICE= System Option: z/OS
Specifies a device driver for graphics output for SAS/GRAPH software.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Graphics: Driver Settings

PROC OPTIONS
GROUP=

GRAPHICS

Default: none

z/OS specifics: device-driver-name

Syntax

DEVICE=device-driver-name

Required Argument
device-driver-name

specifies the name of a terminal device driver.

Details

To see a list of device drivers that are available, use the GDEVICE procedure. If you
are in the windowing environment, submit the following statements:

proc gdevice catalog=sashelp.devices;
run;

If you are running in interactive line mode, noninteractive mode, or batch mode,
submit the following statements:

proc gdevice catalog=sashelp.devices nofs;
list _all_;
run;

See Also

“DEVICE= System Option” in SAS/GRAPH: Reference

DEVICE= System Option: z/OS 723

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0sfduua0e145gn1d8ez4qs8lcu9.htm&locale=en

DLCREATEDIR System Option: z/OS
Creates a directory for a SAS library that is specified in a LIBNAME statement if the directory does
not exist.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: DLCREATEDIR

Restriction: If the path specified in the LIBNAME statement contains multiple components, SAS
creates only the final component in the path. If any intermediate components of the
path do not exist, SAS does not assign the specified path. For example, when the
code libname mytestdir ‘c:\mysasprograms\test’ executes, and
c:\mysasprograms exists, SAS creates the test directory. If c:\mysasprograms does
not exist, SAS does not create the test directory.

z/OS specifics: All

Syntax

DLCREATEDIR | NODLCREATEDIR

Details

When the DLCREATEDIR system option is specified, and a UFS directory that does
not exist is specified in a LIBNAME statement or function, then SAS creates the
directory.

Note: The following restrictions apply if DLCREATEDIR is specified on z/OS:

n The FILEPROMPT system option is ignored.

n The NOPROMPT option of the LIBNAME statement is ignored when a library is
being assigned.

See Also

n “FILEPROMPT System Option: z/OS” on page 754

724 Chapter 31 / System Options under z/OS

n “HFS, UFS, and zFS Terminology” on page 8

n The NOPROMPT option of the “LIBNAME Statement: z/OS” on page 656

DLDISPCHG System Option: z/OS
Controls changes in allocation disposition for an existing library data set.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: COMPAT91

z/OS specifics: All

Syntax

DLDISPCHG=AUTO | BYREQUEST | COMPAT91 | NONE

Required Arguments
When SAS is assigning a SAS library that the SAS job has already allocated as DISP=SHR,
the DLDISPCHG option controls whether SAS re-allocates a library as DISP=OLD.

AUTO
SAS determines whether to upgrade an existing DISP=SHR allocation based on
all available information. This information includes the level of authorization
with which the client user ID (if applicable) and the SAS session itself have to
access the library. AUTO is recommended for SAS/SHARE servers.

BYREQUEST
SAS upgrades an existing DISP=SHR allocation only if it is explicitly requested
by DISP=OLD on the library assignment. BYREQUEST is recommended for
single user SAS sessions.

COMPAT91
SAS applies the same rules as specified in SAS Release 9.1.3 when upgrading an
existing DISP=SHR allocation. COMPAT91 is the default.

NONE
SAS does not upgrade an existing DISP=SHR allocation under any
circumstances.

DLDISPCHG System Option: z/OS 725

DLDSNTYPE System Option: z/OS
Specifies the default value of the DSNTYPE LIBNAME option for direct access bound libraries in
DSORG=PS data sets.

Valid in: Configuration file, SAS invocation, Options statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NONE

z/OS specifics: All

Syntax

DLDSNTYPE= BASIC | LARGE | NONE

Required Arguments
BASIC

specifies a regular-format sequential data set that cannot exceed 64K tracks
per volume.

LARGE
specifies a regular-format sequential data set that can exceed 64K tracks per
volume.

NONE
causes SAS to not specify a DSNTYPE value when allocating the library data
set. The type of data set that is created is determined by the system, which uses
the default values that are supplied by the SMS data class.

Details

Use the DLDSNTYPE option to specify the default value of the DSNTYPE
LIBNAME option that is to be used when you create direct access bound libraries
that reside in DSORG=PS data sets.

Note: This option is ignored when you create V6 libraries.

The value that you specify for DLDSNTYPE can be overridden by the DSNTYPE
LIBNAME option.

726 Chapter 31 / System Options under z/OS

See Also

n “DLSEQDSNTYPE System Option: z/OS” on page 731

n DLDSNTYPE under “Host Options for Allocating Library Data Sets” on page 663

DLDSKEYLBL= System Option
Specifies a default dataset pervasive encryption key label for accessing SAS libraries.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

COMMUNICATIONS

Requirement: The key label must point to an AES-256 bit encryption DATA key within the z/OS
Integrated Cryptographic Service Facility (ICSF) key repository (CKDS). In addition,
the user must have a minimum of READ access to the encryption key label name in
the RACF CSFKEYS class. (See IBM's manual, IBM Data Set Encryption, for
complete information on defining data set encryption labels.

Notes: The DLDSKEYLBL= system option is available beginning with SAS 9.4M8.
If the user does not have RACF access to the encryption key label, SAS generates
an error, Insufficient Access Authority.
If a SAS library has been allocated for pervasive encryption support, the ISPF Data
Set information panel shows Data set encryption : YES.

Syntax

DLDSKEYLBL=label_name

Details

The DSKEYLBL= LIBNAME option overrides the DLDSKEYLBL= system option for
the library specified in the LIBNAME statement.

For more information, see:

n “IBM z/OS Pervasive Encryption for Data Sets with SAS 9.4M8” in Encryption in
SAS.

n DSKEYLBL= LIBNAME option on page 666

n IBM Data Set Encryption

n Getting Started with z/OS Data Set Encryption

DLDSKEYLBL= System Option 727

https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-data-set-encryption
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p19ff246by4voyn14kjco15ia1er&locale=en
https://www.ibm.com/docs/en/zos/2.5.0?topic=sets-data-set-encryption
https://www.redbooks.ibm.com/redbooks/pdfs/sg248410.pdf

n Using the z/OS data set encryption enhancements

DLEXCPCOUNT System Option: z/OS
Reports number of EXCPs to direct access bound SAS libraries.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NODLEXCPCOUNT

z/OS specifics: All

Syntax

DLEXCPCOUNT | NODLEXCPCOUNT

Required Arguments
DLEXCPCOUNT

reports the EXCPs (Execute Channel Program calls) that SAS performs on
direct access bound libraries and the number of blocks that were transferred in
these EXCPs.

NODLEXCPCOUNT
does not report the number of EXCPs that SAS performs on direct access bound
libraries and the number of blocks that were transferred in these EXCPs.

Details

Specifying DLEXCPCOUNT causes SAS to generate a message that reports the
number of blocks that are processed. It also reports the corresponding number of
EXCPs that are issued to each SAS library since the library was opened. This
message is produced when the library is closed. The message is written to the z/OS
system log as a WTO message. The message is also written to the SAS log except
when the library is closed during termination of the SAS session. The message text
output is in this form:

SAS processed <number> blocks and performed <number> EXCPs on
library 'data set name'

728 Chapter 31 / System Options under z/OS

https://www.ibm.com/docs/en/zos/2.4.0?topic=v2r4-using-zos-data-set-encryption-enhancements

Note: A library is opened the first time it is referenced in a SAS session. It is closed
when the last libref that is assigned to the library is cleared. If the library is still
open at the end of a SAS session, the library is closed as part of SAS termination.

The values of BUFSIZE= and BUFNO=, specified as data set options or SAS system
options, have a direct effect on the number of EXCPs performed. Increasing the
value of BUFSIZE= increases page size and reduces the number of EXCPs required.
Specifying a larger value for BUFNO= causes more blocks to be read with a single
EXCP under certain circumstances, thus reducing the total EXCP count.

DLLBI System Option: z/OS
Specifies whether the default BLKSIZE for the sequential access bound library that is being assigned
can exceed 32760 if the library resides on a tape device.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NODLLBI

Restriction: The DLLBI= LIBNAME statement option takes precedence over the DLLBI system
option.

z/OS specifics: ALL

Syntax

DLLBI | NODLLBI

Details

The DLLBI system option specifies the default behavior for the DLLBI LIBNAME
option.

Specifying the DLLBI system option causes each assignment of a sequential access
library to be processed as if the LIBNAME option DLLBI=YES is specified, unless it
is overridden by the DLLBI LIBNAME option.

Specifying NODLLBI causes each assignment of a sequential access library to be
processed as if the LIBNAME option DLLBI=NO is specified, unless it is overridden
by the DLLBI LIBNAME option.

DLLBI System Option: z/OS 729

Note: Setting DLLBI causes the block size to exceed 32760 for sequential access
bound libraries on tape devices. SAS 9.4M1 and earlier do not support library block
sizes that are greater than 32760. Do not specify DLLBI if you need to read newly
created libraries with SAS 9.4M1 or earlier.

See Also

n “LIBNAME Statement: z/OS” on page 656

n “Sequential Access Bound Libraries” on page 57

DLMSGLEVEL= System Option: z/OS
Specifies the level of messages to generate for SAS libraries.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: ERROR

z/OS specifics: All

Syntax

DLMSGLEVEL=ERROR | WARN | INFO | DIAG

Required Arguments
ERROR

causes a message to be written to the SAS log when an error occurs during
processing of a SAS library. This value is the default.

WARN
causes a message to be written to the SAS log when SAS detects an abnormal
or unusual situation during processing of a SAS library, yet is able to continue
processing.

INFO
causes a message to be written to the SAS log that details processing for
certain types of libraries. This setting can be requested by SAS Technical
Support for high-level problem diagnosis.

730 Chapter 31 / System Options under z/OS

DIAG
causes SAS to produce SNAP dumps of key internal control blocks when
processing certain types of libraries. In order to receive the dumps, it is
necessary to allocate the SASSNAP ddname to a SYSOUT data set or to a
sequential data set. This setting would be requested by SAS Technical Support
for detailed problem diagnosis.

Each setting also implies all the preceding settings in the list. For example,
DLMSGLEVEL=INFO would cause SAS to also produce the messages that
would be generated for WARN and ERROR.

DLSEQDSNTYPE System Option: z/OS
Specifies the default value of the DSNTYPE LIBNAME option for sequential-access bound libraries
on disk.

Valid in: Configuration file, SAS invocation, Options statement, SAS System Options
Window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NONE

z/OS specifics: All

Syntax

DLSEQDSNTYPE=BASIC | LARGE | EXTREQ | EXTPREF | NONE

Required Arguments
BASIC

specifies a regular-format sequential data set that cannot exceed 64K tracks
per volume.

LARGE
specifies a regular-format sequential data set that can exceed 64K tracks per
volume.

EXTREQ
specifies that an extended-format sequential data set is required. The library
assignment fails if the system cannot create an extended-format data set.

EXTPREF
specifies that an extended-format sequential data set is preferred. This library
resides in an extended format data set if that format is available. Otherwise, a
regular format data set is created.

DLSEQDSNTYPE System Option: z/OS 731

NONE
causes SAS to not specify a DSNTYPE value when allocating the library data
set. The type of data set that is created is determined by the system, which uses
default values that are supplied by the SMS data class, and so on.

Details

Use DLSEQDSNTYPE to specify the default value of the DSNTYPE LIBNAME
option, which can be specified in LIBNAME statements when creating new
sequential-access bound libraries on disk.

See Also

n “DLDSNTYPE System Option: z/OS” on page 726

n DSNTYPE under “Host Options for Allocating Library Data Sets” on page 663

DLTRUNCHK System Option: z/OS
Enables checking for SAS library truncation.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: DLTRUNCHK

z/OS specifics: All

Syntax

DLTRUNCHK | NODLTRUNCHK

Details

Overview of DLTRUNCHK
The first time a SAS direct access bound library is accessed after it is assigned, SAS
compares the external count of library blocks from the z/OS data set label with the

732 Chapter 31 / System Options under z/OS

count of library blocks maintained by SAS within the library itself. If the external
count is less, SAS considers the library to be truncated. How SAS processes a
truncated library depends on the setting of the DLTRUNCHK option:

n If the DLTRUNCHK option is in effect, then SAS issues an error message and
does not process the library in any manner. The SAS session return code is 8 or
higher.

n If NODLTRUNCHK is in effect, then SAS issues a warning message. It also
allows Read access to the library so that its contents can be copied, to the
extent possible, to a new library data set. The SAS session return code is 4 or
higher.

SAS does not allow Write access to a truncated library regardless of the
DLTRUNCHK setting.

Usage Notes
n The setting of the DLTRUNCHK option of the LIBNAME statement takes

precedence over the setting of the DLTRUNCHK system option.

n Depending on the type of damage a library data set has received, recovery of
some data from a truncated library might be possible. For assistance with this
problem, contact SAS Technical Support.

DSRESV System Option: z/OS
Requests exclusive use of shared disk volumes when accessing partitioned data sets on shared disk
volumes.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NODSRESV

z/OS specifics: All

Syntax

DSRESV | NODSRESV

Required Arguments
DSRESV

reserves the device, which prevents other processors from accessing the volume
on which the partitioned data set resides.

DSRESV System Option: z/OS 733

NODSRESV
enqueues the resources that are defined by the operating environment.

Details

The DSRESV option controls whether certain SAS utility procedures, such as
PDSCOPY, issue the RESERVE macro instruction when they access partitioned
data sets on shared disk volumes.

DYNALLOC System Option: z/OS
Controls whether SAS or the host sort utility allocates sort work data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Alias: DYN

Default: NODYNALLOC

z/OS specifics: All

Syntax

DYNALLOC | NODYNALLOC

Required Arguments
DYNALLOC

specifies that the host sort utility supports dynamic allocation of any necessary
work files. Therefore, SAS does not attempt to allocate them.

NODYNALLOC
specifies that SAS allocates sort work files. This specification might be
necessary if the host sort utility does not support allocation. Some sort
programs do not reallocate previously allocated work files even if the space
requirements are greater.

734 Chapter 31 / System Options under z/OS

Details

The host sort is used if the number of observations that are to be sorted is
unknown.

See Also

n “SORT= System Option: z/OS” on page 841

n “SORTDEV= System Option: z/OS” on page 848

n “SORTUNIT= System Option: z/OS” on page 861

n “SORTWKDD= System Option: z/OS” on page 862

n “SORTWKNO= System Option: z/OS” on page 863

ECHO= System Option: z/OS
Specifies a message to be echoed to the SAS log while initializing SAS.

Valid in: Configuration file, SAS invocation

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL

Default: none

z/OS specifics: All

Syntax

ECHO= "message"

Required Argument
"message"

specifies the text of the message to be echoed to the SAS log. The text must be
enclosed in single or double quotation marks if the message is more than one
word. Otherwise, quotation marks are not needed.

ECHO= System Option: z/OS 735

Details

You can specify multiple ECHO options. The strings are displayed in the order in
which SAS encounters them. For information about how that order is determined,
see “Precedence for Option Specifications” on page 23.

Example: Specifying an ECHO Option

For example, you can specify the following:

echo="SAS under z/OS
 is initializing."

The message appears in the log as SAS initializes.

EMAILSYS= System Option: z/OS
Specifies the email protocol to use for sending electronic mail.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Email

PROC OPTIONS
GROUP=

EMAIL

Default: SMTP

Restriction: z/OS V2R3 does not support the SMTPD email server. Specify CSSMTP to access
an SMTP email server if you are using SAS on z/OS V2R3.

z/OS specifics: interface

See: “Sending Email from within SAS Software” on page 169

Syntax

EMAILSYS= interface

Required Argument
interface

SMTP
enables you to send electronic mail programmatically from SAS using the
Simple Mail Transfer Protocol (SMTP) email interface.

736 Chapter 31 / System Options under z/OS

CSSMTP
is an interface that transports email across the internet much like SMTP.
Communications Server Simple Mail Transfer Protocol (CSSMTP) is
supported only on z/OS hosts. It supports most of the functionality of SMTP.

Details

The EMAILSYS= system option is supported for compatibility with other hosts. For
more information about SMTP, see “The SMTP E-Mail Interface” in SAS Language
Reference: Concepts.

ENGINE= System Option: z/OS
Specifies the default engine to use when assigning direct access SAS libraries.

Valid in: Configuration file, SAS invocation

PROC OPTIONS
GROUP=

SASFILES

Default: BASE

z/OS specifics: Valid values for engine-name

See: “ENGINE= System Option” in SAS System Options: Reference

Syntax

ENGINE=engine-name

Required Argument
engine-name

For information about SAS engines, see “SAS Library Engines” on page 46.

Details

When you assign a SAS library that is not currently assigned within the SAS
session, if the engine is not specified on the assignment request, then SAS has to
determine which engine to use to process the library. If the library already exists,
and if its engine format can be determined, then SAS uses the newest engine that is
compatible with the format of the library. Otherwise, if the engine format of the
library cannot be determined, then SAS selects an engine to use by default. If the
assignment request specifies a device or type of library that supports random

ENGINE= System Option: z/OS 737

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1rbxnmpig2bhan1fex9rlzns0td.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1rbxnmpig2bhan1fex9rlzns0td.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0z1880hy56m9gn105dlswu7e0sk.htm&locale=en

access, then SAS uses the engine that is specified by the ENGINE system option.
Otherwise, SAS uses the engine that is specified by the SEQENGINE option.

The ENGINE option supplies the default value when the library assignment
specification refers to one of the following conditions:

n a z/OS data set on disk that is not cataloged

n an empty z/OS disk data set with DSORG=PS specified and for which RECFM=U
is not specified.

n A UFS directory that contains members of multiple engine formats that are
different

See Also

n “How SAS Assigns an Engine” on page 81

n “SAS Engines” in SAS Programmer’s Guide: Essentials

System Options

n “SEQENGINE= System Option: z/OS” on page 839

ERRORABEND System Option: z/OS
Specifies whether SAS responds to errors by terminating.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Error Handling

PROC OPTIONS
GROUP=

ERRORHANDLING

Alias: ERRABEND | NOERRABEND

Syntax

ERRORABEND | NOERRORABEND

Required Arguments
ERRORABEND

specifies that SAS terminates for most errors (including syntax errors and file
not found errors) that normally cause it to issue an error message, set OBS=0,
and go into syntax-check mode (if syntax checking is enabled). SAS also

738 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en

terminates if an error occurs in any global statement other than the LIBNAME
and FILENAME statements.

Use the ERRORABEND system option with SAS production programs, which
presumably should not encounter any errors. If errors are encountered and
ERRORABEND is in effect, SAS brings the errors to your attention immediately
by terminating. ERRORABEND does not affect how SAS handles notes such as
invalid data messages.

NOERRORABEND
specifies that SAS handle errors normally, that is, issue an error message, set
OBS=0, and go into syntax-check mode (if syntax checking is enabled).

Details

If a SAS session abends when it is processing an ABORT statement, then SAS uses
the normal termination disposition when it deallocates any z/OS data set that SAS
dynamically allocated during the session as a part of FILENAME or LIBNAME
processing. For more information, see the description of the DISP option for
“FILENAME Statement: z/OS” on page 616 or “LIBNAME Statement: z/OS” on page
656.

See Also

n SAS Global Statements: Reference

System options

n “ERRORBYABEND System Option” in SAS System Options: Reference

n “ERRORCHECK= System Option” in SAS System Options: Reference

FILEAUTHDEFER System Option: z/OS
Controls whether SAS performs file authorization checking for z/OS data sets or defers
authorization checking to z/OS system services such as OPEN.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: NOFILEAUTHDEFER

FILEAUTHDEFER System Option: z/OS 739

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0m7a75t5mj45yn1bby8jpz791c5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n074sx2hkq8dzpn1ptoydcmzfspt.htm&locale=en

z/OS specifics: All

Syntax

FILEAUTHDEFER | NOFILEAUTHDEFER

Required Arguments
FILEAUTHDEFER

specifies that SAS does not attempt to perform file authorization checking for
z/OS data sets before invoking z/OS system services such as OPEN.
FILEAUTHDEFER enables the site's authorization system to record failed access
attempts in its audit log.

NOFILEAUTHDEFER
specifies that SAS does not attempt to open a z/OS data set without first
verifying that the user is authorized to access the file in the manner requested.
NOFILEAUTHDEFER prevents security system messages (such as ICH408I) and
S913 abends from being issued.

Details

If the user ID under which the session or server is running is not authorized to
access a z/OS data set in the manner requested (either read or update), by default
SAS then produces an explanatory message in the SAS log. SAS does not attempt
to open the data set if the user ID does not have the proper authorization. However,
the auditing requirements for some installations cause unauthorized access
attempts to be sent to the log for that site's authorization facility. An attempt to
open the data set must actually occur before a message is sent to the log of the
authorization facility. Specify FILEAUTHDEFER for unauthorized access attempts
to be logged with the authorization facility at your site.

The FILEAUTHDEFER option controls the checking of file authorization for external
files and SAS libraries. However, it applies only to files or libraries that reside in
z/OS data sets. FILEAUTHDEFER does not apply to the processing of UFS files.

FILEAUTHDEFER does not control the authorization checking for z/OS data sets
that a SAS server accesses on behalf of a client. Such third-party authorization
checking is performed regardless of the FILEAUTHDEFER setting, and access
failures are intercepted by SAS rather than resulting in abends or system errors.
Nonetheless, FILEAUTHDEFER governs attempts by a SAS server to access a data
set in a manner not authorized for the ID under which the server is running.
However, the unauthorized access is logged as having been attempted by the
server ID, not the client ID.

740 Chapter 31 / System Options under z/OS

FILEBLKSIZE(device-type)= System Option: z/OS
Specifies the default block size for external files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: Varies by device type

z/OS specifics: All

Syntax

FILEBLKSIZE(device-type)=value

Required Arguments
device-type

specifies any valid specific device number, as well as DASD, DISK, OTHER,
SYSOUT, TAPE, and TERM.

DASD or DISK
indicates that the specified value is to be used as the default block size for
all types of tape devices.

OTHER
specifies the value that SAS uses when it is unable to determine the exact
device type.

SYSOUT
sets values for SYSOUT data sets.

TAPE
sets values for the 3400, 3480, 3490E, and 3590 device types.

TERM
sets values for data sets that are directed to the terminal.

value
specifies the default block size. Valid values are

number
specifies the block size that SAS is to use for the device.

OPT
tells SAS to choose an optimum block size for the device.

FILEBLKSIZE(device-type)= System Option: z/OS 741

MAX or FULL
tells SAS to use the maximum permitted block size for the device.

HALF, THIRD, FOURTH, or FIFTH
instructs SAS to use the largest value that results in obtaining two, three,
four, and five blocks per track, respectively (if a disk device), or the
maximum permitted block size divided by two, three, four, and five,
respectively (if not a disk device).

MIN
specifies the same as FIFTH above.

Details

The minimum value for FILEBLKSIZE(device-type)= is 5; the maximum value is
device dependent and can be obtained by using the DEFINE option in the PROC
OPTIONS statement. For example:

proc options option=fileblksize(3390) define;
run;

FILEBUFNO= System Option: z/OS
Specifies how many memory buffers to allocate for reading and writing.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: 5

See: Appendix 1, “Optimizing Performance,” on page 903

Syntax

FILEBUFNO=n

Required Arguments
FILEBUFNO

specifies the default value of the number of buffers to allocate for reading and
writing.

n
specifies the default value of FILEBUFNO.

742 Chapter 31 / System Options under z/OS

Details

The FILEBUFNO system option specifies the default value of the number of buffers
to allocate for reading and writing. The default value of FILEBUFNO is 5. The value
specified for FILEBUFNO is used by the FILE, FILENAME, and INFILE statements.

These conditions determine whether the value specified for the FILEBUFNO
system option or the BUFNO argument is used.

n If BUFNO is not specified on the FILE, FILENAME, or INFILE statements, the
value specified for FILEBUFNO is used.

n If the BUFNO argument is specified in the FILENAME statement, it overrides the
value specified for FILEBUFNO.

n If the BUFNO argument is specified on the FILE or INFILE statements, it
overrides the values that are specified for the FILEBUFNO system option and
the BUFNO argument in the FILENAME statement.

See Also

n “FILE Statement: z/OS” on page 604

n “FILENAME Statement: z/OS” on page 616

n “INFILE Statement: z/OS” on page 647

FILECC System Option: z/OS
Specifies whether to treat data in column 1 of a printer file as carriage-control data when reading the
file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NOFILECC

z/OS specifics: All

Syntax

FILECC | NOFILECC

FILECC System Option: z/OS 743

Required Arguments
FILECC

specifies that data in column 1 of a printer file should be treated as carriage-
control data.

NOFILECC
indicates that data in column 1 of a printer file should be treated as data.

FILEDEST= System Option: z/OS
Specifies the default printer destination.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: None

z/OS specifics: All

Syntax

FILEDEST=printer-destination

Details

The FILEDEST= system option specifies the default destination to be used for
printer data sets when the DEST= option is omitted. This situation can occur when
the FILENAME statement or FILENAME function does not have a DEST= value or
when the form being used does not have a DEST= value.

See Also

“SYSOUT Data Set Options for the FILENAME Statement” on page 634

FILEDEV= System Option: z/OS
Specifies the device name used for allocating new physical files.

744 Chapter 31 / System Options under z/OS

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: SYSDA

z/OS specifics: All

Syntax

FILEDEV=device-name

Details

FILEDEV= specifies the device name to be used when dynamically allocating a new
physical file if device-type or UNIT= is not specified in the FILENAME statement or
FILENAME function, or if UNIT= is not specified in the LIBNAME statement or
LIBNAME function. Device names are site-specific.

FILEDIRBLK= System Option: z/OS
Specifies the number of default directory blocks to allocate for new partitioned data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: 6

z/OS specifics: All

Syntax

FILEDIRBLK=n

FILEDIRBLK= System Option: z/OS 745

Details

The FILEDIRBLK= system option specifies how many directory blocks to allocate
for a new partitioned data set when the SPACE= option is omitted from the
FILENAME statement or FILENAME function.

See Also

n “FILESPPRI= System Option: z/OS” on page 757

n “FILESPSEC= System Option: z/OS” on page 758

n “FILEUNIT= System Option: z/OS” on page 763

FILEEXT= System Option: z/OS
Specifies how to handle file extensions when accessing members of partitioned data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: IGNORE

z/OS specifics: All

Syntax

FILEEXT=VERIFY | IGNORE | INVALID | ASIS

Required Arguments
VERIFY

verifies that the part of the name after the period corresponds to the last level
of the partitioned data set name.

IGNORE
ignores the part of the name after the period and specifies that only the part
before the period is to be used.

INVALID
disallows any member name with an extension.

746 Chapter 31 / System Options under z/OS

ASIS
accepts the member name as it is. These member names must conform to the
naming conventions of partitioned data sets.

Details

For compatibility with SAS on other platforms, the FILEEXT= system option
enables you to write portable SAS programs that run on systems that either
support or do not support file extensions.

Portable SAS programs can access external files with file extensions when you run
those programs in environments such as Windows and UNIX. When you run those
programs in z/OS, and when the program accesses members in partitioned data
sets, the value of FILEEXT= determines how the file extensions are interpreted.

Member names in partitioned data sets must consist of one to eight alphanumeric
characters starting with a letter or with one of the following national characters: $,
#, @. A member name extension is an optional part of the member name that
follows a period.

SAS on z/OS does not support specifying physical files that have a member type of
AUDIT. Specifying physical filenames such as the following returns an error:

n filename mylib data='./saslib/memb01.sas7baud';

n filename mylib data='/u/user01/mylib/inventory.sas7baud'

Examples

Example 1: Specifying FILEEXT=VERIFY
In this example, SAS verifies that the part of the name that follows the period
corresponds to the last level of the partitioned data set name. If it does not, an
error message is written to the SAS log:

options fileext=verify;
 /* allocate a PDS */
filename out2 'myid.fileext.sas' disp=old;
data _null_;
 /* the member name is 'versas'*/
 file out2(versas.sas);
 put 'text';
run;

Example 2: Specifying FILEEXT=IGNORE
Using the IGNORE value causes the extension, if present, to be ignored:

options fileext=ignore;
 /* allocate a PDS */
filename out2 'myid.fileext.testsrc' disp=old;
 data _null_;

FILEEXT= System Option: z/OS 747

 /* the member name is 'dotnd' */
 file out2(dotnd.some);
 put 'text';
run;

Example 3: Specifying FILEEXT=ASIS
With the ASIS parameter, the member name is accepted as-is:

options fileext=asis;
 /* allocate a PDS */
filename out2 'myid.fileext.testsrc' disp=old;
data _null_;
 /* the member name is 'mem.as' */
 file out2(mem.as);
 put 'text';
run;

FILEFORMS= System Option: z/OS
Specifies the default SYSOUT form for a print file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: ODS Printing

PROC OPTIONS
GROUP=

LISTCONTROL

Default: none

z/OS specifics: All

Syntax

FILEFORMS=operating-environment-form

Details

The FILEFORMS= system option specifies a default operating environment form
using one to four characters. The default form is used when a printer file is
dynamically allocated if FORMS= is not specified in the FILENAME statement or
FILENAME function.

748 Chapter 31 / System Options under z/OS

Comparisons

The FILEFORMS= option specifies operating environment forms, whereas the
portable FORMS= system option specifies the name of the default form that is
used by the SAS FORM subsystem. For information about the FORM subsystem
and about the FORMS= system option, see “Using the PRINT Command and the
FORM Subsystem” on page 154 and “FORMS= System Option” in SAS System
Options: Reference.

FILELBI System Option: z/OS
Controls the use of the z/OS Large Block Interface support for BSAM and QSAM files, as well as files
on tapes that have standard labels.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: FILELBI

z/OS specifics: All

Syntax

FILELBI | NOFILELBI

Details

The FILELBI option controls the use of the z/OS Large Block Interface support for
BSAM and QSAM files, as well as files on tapes that have standard labels. When
FILELBI is specified, the following maximum block sizes are supported:

n 262,144 bytes for 3490E and 3590 tapes

n 65,535 bytes for 3480 and 3490 tapes

n 32,760 bytes for direct access devices

When NOFILELBI is specified, only blocks with a size of 32,760 bytes or less are
supported.

Note: When NOFILELBI is in effect, FILEBLKSIZE(tttt) values for tape devices that
support maximum block sizes greater than 32,760 become invalid and are not used.
In these cases the values that are used are based on a maximum block size of

FILELBI System Option: z/OS 749

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1n8evzg889j7nn1f5h8ldtbpne0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1n8evzg889j7nn1f5h8ldtbpne0.htm&locale=en

32,760. For more information, see “FILEBLKSIZE(device-type)= System Option:
z/OS” on page 741.

FILELOCKS= System Option: z/OS
Specifies the default SAS file locking that is to be used for external files (both UFS and native MVS).
Also specifies the operating system file locking to be used for UFS files (both SAS files and external
files).

Valid in: Configuration file, SAS invocation, OPTIONS statement

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

ENVFILES
EXTFILES
SASFILES

Default: AUTO; ('/ ' FAIL)

z/OS specifics: All

Syntax

FILELOCKS=AUTO | SHARED

FILELOCKS= (path setting)

Required Arguments
AUTO

specifies that SAS locking for external files is performed as if the
LOCKINTERNAL=AUTO option value had been specified in the FILENAME
statement (unless another value for LOCKINTERNAL was specified). For more
information, see the LOCKINTERNAL option of “FILENAME Statement: z/OS”
on page 616. AUTO is valid only in the configuration file and at SAS invocation.

SHARED
specifies that SAS locking for external files is performed as if the
LOCKINTERNAL=SHARED option value had been specified in the FILENAME
statement (unless another value for LOCKINTERNAL was specified). When
SHARED is in effect for a particular file, one SAS application can write a file at
the same time that one or more other SAS applications are reading the file. For
more information, see the LOCKINTERNAL option of “FILENAME Statement:
z/OS” on page 616. The SHARED value is valid only in the configuration file and
at SAS invocation.

750 Chapter 31 / System Options under z/OS

path
specifies a path for a UFS directory. Use path with setting to specify an
operating system locking value for a UFS directory.

setting
specifies the operating system locking value for the specified path. Use setting
only when you specify a UFS directory with path. The setting value can be one
of the following values:

FAIL
SAS attempts to place an operating system lock on the file. Access to the
file is denied if the file is already locked, or if it cannot be locked.

NONE
SAS opens the file without checking for an existing lock on the file, and does
not place an operating system lock on the file.

CONTINUE
SAS attempts to place an operating system lock on the file. If a file is already
locked by someone else, an attempt to open it fails. If the file cannot be
locked for some other reason, then the file is opened.

Details

When SAS accesses a file, it normally attempts to obtain a SAS file lock and an
operating system file lock. If either of these locks cannot be obtained, SAS does not
access the file.

SAS file locking is performed on all types of files that SAS accesses. However, the
AUTO and SHARED values control only the default SAS file locking for external
files. It prevents a SAS application from using a particular file in a manner that is
incompatible with how the file is currently being used by other SAS applications
within the same SAS session. The AUTO and SHARED values specify a default
value for SAS file locking for external files for which the LOCKINTERNAL option of
the FILENAME statement was not specified. SAS recommends that you specify
LOCKINTERNAL=SHARED in the FILENAME statement only for those files that
require simultaneous Read and Write access. External files are files that are
identified by the FILENAME statement or related internal SAS facilities. For more
information, see “Definition of External Files” in SAS Language Reference: Concepts.

Note: SAS file locking governs use of a file by two separate applications within a
single SAS session, or by two separate clients of the same SAS server.

Operating system file locking prevents the current SAS session from using a
particular file in a manner that is incompatible with how the file is being used by
another z/OS batch job, TSO user, or other z/OS process. Use the path and setting
values to specify operating system file locking for SAS files, external files, and
utility files residing in a UFS directory. SAS attempts to place an exclusive lock
when it needs to modify or rewrite the file. The operating system grants this
request only if no other address spaces (batch jobs, TSO users, or z/OS processes)
hold a lock (shared or exclusive) on the file. If SAS merely needs to read the file,
then it attempts to place a shared lock. The operating system grants this request

FILELOCKS= System Option: z/OS 751

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1pn6a1f4imra5n1we1x1axh6c46.htm&locale=en

only if no other address spaces hold an exclusive lock on the file. However, multiple
address spaces can simultaneously hold a shared lock on the same file.

Note: Operating system file locking for UFS files is implemented via the UNIX
System Services fcntl() function.

When the value of the FILELOCKS option is a set of path and setting values for a
UFS file, the values must be enclosed in parentheses. The AUTO and SHARED
values should not be enclosed in parentheses.

You can specify multiple instances of the FILELOCKS option to establish different
settings for various paths. One path can be a subdirectory of another path. In that
case, the most specific matching path currently in effect governs operating system
file locking. The following example shows how you can specify multiple instances
of the FILELOCKS option in a configuration file.

FILELOCKS = AUTO
filelocks=('/u/myuserid/temp' NONE)
filelocks=('/tmp' CONTINUE)

See Also

“FILENAME Statement: z/OS” on page 616

FILEMOUNT System Option: z/OS
Specifies whether an off-line volume is to be mounted.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: FILEMOUNT

z/OS specifics: All

Syntax

FILEMOUNT | NOFILEMOUNT

752 Chapter 31 / System Options under z/OS

Details

This option applies to the allocation of external files. It tells SAS what to do when
an attempt is made to allocate a physical file on a volume that is offline.

If FILEMOUNT is in effect, a request is made to mount the volume. If
NOFILEMOUNT is in effect, then the volume is not mounted and the allocation
fails.

FILEMSGS System Option: z/OS
Controls whether you receive expanded dynamic allocation error messages when you are assigning a
physical file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: NOFILEMSGS

z/OS specifics: All

Syntax

FILEMSGS | NOFILEMSGS

Details

The FILEMSGS option applies to physical files that are referenced in either a
FILENAME statement or function or in a LIBNAME statement or function.

If FILEMSGS is in effect and you try to assign a data set that is allocated to another
user, SAS generates detailed error messages explaining why the allocation failed.

If NOFILEMSGS is in effect, you still receive some error messages in your SAS log,
but they might not be as detailed.

FILENULL System Option: z/OS
Specifies whether zero-length records are written to external files.

FILENULL System Option: z/OS 753

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: FILENULL

z/OS specifics: All

Syntax

FILENULL | NOFILENULL

Required Arguments
FILENULL

allows zero-length records to be written to external files. FILENULL is the
default value.

NOFILENULL
prevents zero-length records from being written to external files. This type of
record is ignored.

Details

If your file transfer program cannot handle zero-length records, you should specify
NOFILENULL before you create the file that you want to transfer.

FILEPROMPT System Option: z/OS
Controls whether you are prompted if you reference a data set that does not exist.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: FILEPROMPT (interactive); NOFILEPROMPT (batch)

z/OS specifics: All

754 Chapter 31 / System Options under z/OS

Syntax

FILEPROMPT | NOFILEPROMPT

Required Arguments
FILEPROMPT

specifies that you want to be prompted. The prompt enables you to create the
data set dynamically or to cancel the request. FILEPROMPT is the default value
in the interactive environment.

NOFILEPROMPT
specifies that you do not want to be prompted. In this case, the data set is not
created, and your LIBNAME or FILENAME statement or function fails.

Details

The FILEPROMPT option controls whether you are prompted if the physical file
that is referenced in a FILENAME statement or function or in a LIBNAME statement
or function does not exist. This option has no effect in batch mode.

FILEREUSE System Option: z/OS
Specifies whether to reuse an existing allocation for a file that is being allocated to a temporary
ddname.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NOFILEREUSE

z/OS specifics: All

Syntax

FILEREUSE | NOFILEREUSE

FILEREUSE System Option: z/OS 755

Details

If FILEREUSE is in effect and there is a request to allocate a file that is already
allocated, the existing allocation is used whenever dynamic allocation can use the
existing allocation. The default, NOFILEREUSE, requests that dynamic allocation
create a new unique allocation. For more information about reusing an existing
allocation, see z/OS V1R8.0 MVS Authorized Assembler Services Guide from IBM.

FILESEQDSNTYPE System Option: z/OS
Specifies the default value that is assigned to DSNTYPE when it is not specified with a FILENAME
statement, a DD statement, or a TSO ALLOC command.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NONE

z/OS specifics: All

Syntax

FILESEQDSNTYPE=BASIC | LARGE | EXTREQ | EXTPREF | NONE

Required Arguments
BASIC

specifies that the system selects the BASIC format if the data set is sequential
(DSORG=PS or PSU), or if DSORG is omitted from all sources and the data set is
not VSAM. The data set cannot exceed 65535 tracks per volume.

LARGE
specifies that the system selects the LARGE format if the data set is sequential
(DSORG=PS or PSU), or if DSORG is omitted from all sources and the data set is
not VSAM. The data set can exceed 65535 tracks per volume.

EXTREQ
specifies that the data set is in the EXTENDED format if the data set is VSAM,
sequential, or if DSORG is omitted from all sources. The assignment fails if the
system cannot allocate an extended format data set.

EXTPREF
specifies that the data set is in the EXTENDED format if the data set is VSAM,
sequential, or if DSORG is omitted from all sources. If extended format is not
possible, then the system selects the BASIC format.

756 Chapter 31 / System Options under z/OS

NONE
specifies that the default DSNTYPE of the system should be used when a new
sequential file is allocated.

Details

This option is valid for z/OS V1R7 systems and later.

See Also

n DSNTYPE in the “FILENAME Statement: z/OS” on page 616

n “FILENAME Statement: z/OS” on page 616

FILESPPRI= System Option: z/OS
Specifies the default primary space allocation for new physical files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: 1

z/OS specifics: All

Syntax

FILESPPRI=primary-space-size

Details

The default primary space is allocated in units that are specified by the FILEUNIT=
option. Use the FILESPSEC= option to specify secondary space allocation and the
FILEDIRBLK= option to specify the number of directory blocks to be allocated.

FILESPPRI= System Option: z/OS 757

The value of this option is used if you omit the SPACE= option from the FILENAME
statement or function or from the LIBNAME statement or function when creating a
new physical file.

The range of acceptable values for FILESPPRI= is 1-32760.

FILESPSEC= System Option: z/OS
Specifies the default secondary space allocation for new physical files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: 1

z/OS specifics: All

Syntax

FILESPSEC=secondary-space-size

Details

The default secondary space is allocated in units that are specified by the
FILEUNIT= system option. Use the FILESPPRI= option to specify primary space
allocation, and use the FILEDIRBLK= option to specify the number of directory
blocks to allocate.

The value of this option is used if you omit the SPACE= option in the FILENAME
statement or function or in the LIBNAME statement or function when creating a
new physical file.

The range of acceptable values is 0-32760.

FILESTAT System Option: z/OS
Specifies whether ISPF statistics are written.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

758 Chapter 31 / System Options under z/OS

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NOFILESTAT

z/OS specifics: All

Syntax

FILESTAT | NOFILESTAT

Details

The FILESTAT option causes ISPF statistics to be written in the directory entry for
a new member of a partitioned data set, or updated for an existing member that
already contains ISPF statistics. The NOFILESTAT option suppresses ISPF
statistics.

The FILESTAT option saves ISPF statistics for PDS or PDSE members that are
allocated with a FILENAME statement or the FILENAME function, and for those
members that are specified with aggregate syntax. ISPF statistics are not updated
for PDS or PDSE members that are allocated externally with a JCL DD statement or
a TSO ALLOC command.

To get statistics on the log file, specify the log on the SAS invocation options as
follows:

LOG="data.set.name(member)"

This statement causes SAS to dynamically allocate the log file, which causes
statistics to be generated. Note that in the preceding example, the SASLOG DD
statement generated by the cataloged procedure is ignored.

FILESYNC= System Option: z/OS
Specifies when operating system buffers that contain contents of permanent SAS files are written to
disk.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: HOST

z/OS specifics: All

FILESYNC= System Option: z/OS 759

See: “FILESYNC= System Option” in SAS System Options: Reference

Syntax

FILESYNC= SAS | CLOSE | HOST | SAVE

Required Arguments
SAS

specifies that SAS requests the operating system to force buffered data to be
written to disk when it is best for the integrity of the SAS file. SAS is the default
value.

CLOSE
specifies that SAS requests the operating system to force buffered data to be
written to disk when the SAS file is closed.

HOST
specifies that the operating system schedules when the buffered data for a SAS
file is written to disk.

SAVE
specifies that the buffers are written to disk when the SAS file is saved.

Details

By using the FILESYNC= system option, SAS can tell the operating system when to
force data that is temporarily stored in operating system buffers to be written to
disk. Only SAS files in a permanent SAS library are affected; files in any temporary
library are not affected. The FILESYNC= system option affects only SAS files in
UFS libraries.

For direct access bound libraries and sequential access bound libraries, updates to
files are performed as if FILESYNC=SAS has been specified, regardless of the
setting of the FILESYNC option.

FILESYSOUT= System Option: z/OS
Specifies the default SYSOUT CLASS for a printer file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: ODS Printing

PROC OPTIONS
GROUP=

LISTCONTROL

Default: Z

760 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pl6a4pbz6kisn1bks3beakr59o.htm&locale=en

z/OS specifics: All

Syntax

FILESYSOUT=sysout-class

Required Argument
sysout-class

is a single character (number or letter only). Valid classes are site dependent. At
some sites, data center personnel might have set up a default class that cannot
be overridden.

Details

The FILESYSOUT= option specifies the default SYSOUT CLASS that is used when a
printer file is allocated dynamically and when the SYSOUT= option is omitted from
the FILENAME statement or FILENAME function.

FILESYSTEM= System Option: z/OS
Specifies the default file system used when the filename is ambiguous.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: MVS

z/OS specifics: All

Syntax

FILESYSTEM=MVS | HFS

Required Arguments
MVS

specifies that the filesystem is native z/OS, which includes partitioned data sets
(PDS, PDSE).

FILESYSTEM= System Option: z/OS 761

HFS
specifies the UNIX file system (UFS).

Details

The FILESYSTEM= system option specifies the file system that is used when the
physical filename is valid in both file systems. For example:

options filesystem='HFS';
/* resolves to a UNIX file system */
/* path, such as /homedir/hfs.file */
filename myhfs 'hfs.file';

See Also

“How SAS Determines the File System” on page 109

FILETEMPDIR System Option: z/OS
Specifies the parent directory for FILENAME TEMPFILE.

Valid in: Configuration file, SAS invocation

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: NULL

z/OS specifics: All

Syntax

FILETEMPDIR='dir-name'

Required Argument
dir-name

specifies an existing UFS directory to use as a parent directory. This directory
contains the subdirectories and files that are created as a result of specifying
the TEMP device-type or the TEMPFILE option of the FILENAME statement.

762 Chapter 31 / System Options under z/OS

Details

A temporary data set that is created by a FILENAME statement is put in the Work
library if the Work library is in a UFS directory. If the Work library is not in a UFS
directory, the data set is put in the directory that is specified by the FILETEMPDIR
system option. If the option is not specified, the data set is put in the /tmp
directory.

FILEUNIT= System Option: z/OS
Specifies the default unit of allocation for new physical files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: CYLS

z/OS specifics: All

Syntax

FILEUNIT=unit-type

Required Argument
unit-type

specifies the unit of allocation. Valid values include BLK, BLKS, CYL, CYLS,
TRK, and TRKS, or an integer. The default is CYLS. If an integer is specified, it is
the block size that is used for the allocation.

Details

The FILEUNIT= option specifies the default unit of allocation that is used for new
physical files if the SPACE= option is not specified in either the FILENAME
statement or function or the LIBNAME statement or function.

FILEUNIT= System Option: z/OS 763

FILEVOL= System Option: z/OS
Specifies which VOLSER to use for new physical files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: External Files
Files: SAS Files

PROC OPTIONS
GROUP=

EXTFILES
SASFILES

Default: None

z/OS specifics: All

Syntax

FILEVOL=volser | (volser-1, volser-2 …)

Required Argument
volser

specifies 1 to 30 volume serial numbers (VOLSERs); the VOLSERs can be
separated by blanks or commas. A VOLSER is a six-character name of a z/OS
DASD or tape volume. The name contains one to six alphanumeric or special
characters. VOLSERs are site-specific.

Details

The FILEVOL= option specifies the default VOLSER that is used for allocating new
physical files if the VOL= option is omitted from the FILENAME statement or
function or from the LIBNAME statement or function.

Parentheses are required if more than one VOLSER is specified.

FILSZ System Option: z/OS
Specifies that the host sort utility supports the FILSZ parameter.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

764 Chapter 31 / System Options under z/OS

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: FILSZ

z/OS specifics: All

Syntax

FILSZ | NOFILSZ

Required Arguments
FILSZ

specifies that the host sort utility supports the FILSZ parameter. SAS uses the
FILSZ= option in the SORT control statement that it generates and passes to
the sort program. FILSZ is more efficient than the SIZE parameter.

NOFILSZ
specifies that the host sort utility does not support the FILSZ parameter. SAS
uses the SIZE= option in the SORT control statement that it generates and
passes to the sort utility program.

Details

If a program product sort utility that supports the FILSZ parameter is installed,
specifying the FILSZ option increases the sort efficiency.

See Also

“Consider Changing the Values of SORTPGM= and SORTCUTP=” on page 913

FONTRENDERING= System Option: z/OS
Specifies whether SAS/GRAPH devices that are based on the SASGDGIF, SASGDTIF, and
SASGDIMG modules render fonts by using the operating system or by using the FreeType engine.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: ODS Printing

PROC OPTIONS
GROUP=

ODSPRINT

FONTRENDERING= System Option: z/OS 765

Restriction: This option is set to HOST_PIXELS for devices that begin with “Z”.

Note: This option can be restricted by a site administrator.

Syntax

FONTRENDERING=HOST_PIXELS | FREETYPE_POINTS

Required Arguments
HOST_PIXELS

specifies that fonts are rendered by the operating system and that font size is
requested in pixels.

Note: On z/OS, HOST_PIXELS is not supported. If HOST_PIXELS is specified,
SAS uses FREETYPE_POINTS as the value for this option.

FREETYPE_POINTS
specifies that fonts are rendered by the FreeType engine and that font size is
requested in points. This is the default.

Details

Use the FONTRENDERING= system option to specify how SAS/GRAPH devices
that are based on the SASGDGIF, SASGDTIF, and SASGDIMG modules render fonts.
When the operating system renders fonts, the font size is requested in pixels. When
the FreeType engine renders fonts, the font size is requested in points.

Use the GDEVICE procedure to determine which module a SAS/GRAPH device
uses:

proc gdevice c=sashelp.devices browse nofs;
 list devicename;
quit;

For example,

proc gdevice c=sashelp.devices browse nofs;
 list gif;
quit;

The following is partial output from the GDEVICE procedure output:

766 Chapter 31 / System Options under z/OS

 GDEVICE procedure
 Listing from SASHELP.DEVICES - Entry GIF
 Orig Driver: GIF Module: SASGDGIF Model: 6031
 Description: GIF File Format Type: EXPORT
 *** Institute-supplied ***
 Lrows: 43 Xmax: 8.333 IN Hsize: 0.000 IN Xpixels: 800
 Lcols: 88 Ymax: 6.250 IN Vsize: 0.000 IN Ypixels: 600
 Prows: 0 Horigin: 0.000 IN
 Pcols: 0 Vorigin: 0.000 IN
 Aspect: 0.000 Rotate:
 Driver query: Y Queued messages: N
 Paperfeed: 0.000 IN

The Module entry names the module that is used by the device.

FONTSLOC= System Option: z/OS
Specifies the location of the SAS fonts that are loaded during the SAS session.

Valid in: SAS invocation

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: NULL

z/OS specifics: All

See: “FONTSLOC= System Option” in SAS System Options: Reference

Syntax

FONTSLOC=HFS directory path

Required Argument
HFS directory path

specified if the font files are saved in a UFS directory.

Details

SAS distributes font files for use by the universal printer GIF driver in a UFS
directory.

FONTSLOC= System Option: z/OS 767

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0f8g1hh7oku8on1bhkgq8z3ljr0.htm&locale=en

FSBCOLOR System Option: z/OS
Specifies whether you can set background colors in SAS windows on vector graphics devices.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: NOFSBCOLOR

z/OS specifics: All

Syntax

FSBCOLOR | NOFSBCOLOR

Required Arguments
FSBCOLOR

enables you to set the background color in your SAS windows. For example, if
you specify FSBCOLOR when you invoke SAS, you can issue commands such as
the following in any SAS window:

color back blue

This command sets the background color to blue.

Use the FSBCOLOR option only on vector graphics devices. The FSBCOLOR
system option is ignored if you specify it on a program symbols device. SAS
issues an error message if you try to set the background color of a window.

NOFSBCOLOR
specifies that no background colors are to be used. NOFSBCOLOR is the default
value on all devices.

Details

Nongraphics terminals and program symbols graphics terminals, such as the IBM
3279, the PC 3270 emulators, and the Tektronix 4205, do not enable you to set the
background color of individual windows. The background color is always black for
these terminals. Vector graphics terminals such as the IBM 3179G, 3192G, and
3472G enable you to set the background color.

768 Chapter 31 / System Options under z/OS

FSBORDER= System Option: z/OS
Specifies what type of symbols are to be used in borders.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: BEST

z/OS specifics: All

Syntax

FSBORDER=BEST | PS | APL | NONE

Required Arguments
BEST

tells SAS to choose the border symbols based on the type of terminal that you
are using.

PS
tells SAS to use programmed symbols for border symbols in the windowing
environment.

APL
tells SAS to use APL symbols.

NONE
indicates that no special border symbols are to be used (normal text is used).

Details

The FSBORDER= system option specifies what type of symbols are to be used in
window borders and other widgets.

FSDEVICE= System Option: z/OS
Specifies the full-screen device driver for your terminal.

Valid in: Configuration file, SAS invocation

FSDEVICE= System Option: z/OS 769

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Alias: FSD=

Default: none

z/OS specifics: All

Syntax

FSDEVICE=device-name

Details

The value of the FSDEVICE= system option is needed to run windowing procedures.
For a list of all devices that are supported by the SAS terminal-based interactive
windowing system under z/OS, see “Terminal Support in the z/OS Environment” on
page 257.

FSMODE= System Option: z/OS
Specifies the full-screen data stream type.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: IBM

z/OS specifics: All

Syntax

FSMODE=data-stream-type

Required Argument
data-stream-type

is the name of an acceptable data stream type. Valid values are

IBM
is the default.

770 Chapter 31 / System Options under z/OS

FACOM
FUJITSU

specifies the F6683 data stream, which can be used for F6683 and F6653
terminals.

HITAC
HITACHI

specifies the T560/20 data stream, which can be used for T560/20, H2020,
and H2050 terminals.

Details

The FSMODE= system option specifies the type of IBM 3270 data stream for the
terminal. An incorrect setting of this option can cause a 3270 data stream program
check or a system abend.

FULLSTATS System Option: z/OS
Specifies whether to write all available system performance statistics to the SAS log.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Log and Procedure Output Control: SAS Log
System Administration: Performance

PROC OPTIONS
GROUP=

LOGCONTROL

Alias: FULLSTIMER

Default: NOFULLSTATS

z/OS specifics: All

Syntax

FULLSTATS | NOFULLSTATS

Required Arguments
FULLSTATS

tells SAS to write expanded statistics to the SAS log.

NOFULLSTATS
tells SAS not to write expanded statistics to the SAS log.

FULLSTATS System Option: z/OS 771

Details

The STATS, FULLSTATS, STIMER, and MEMRPT system options control the
resource usage statistics that are written to the SAS log for each SAS step.

The STATS system option controls whether any statistics are listed and provides a
quick way to turn off all resource usage Notes. The STIMER and MEMRPT system
options specify the type of statistics that are reported. The FULLSTATS system
option controls whether just one line of CPU time or memory resource statistics, or
both is listed, or whether expanded statistics are listed on multiple lines.

Expanded statistics for STIMER include CPU time, elapsed time, EXCP count, and
possibly RSM hiperspace time (the hiperspace time is listed only if it is not zero).

Expanded statistics for MEMRPT include program memory and data memory usage
for the step and program memory and data memory usage for the entire SAS
session.

The following example illustrates the statistics that are generated with the
FULLSTATS system option:

Example Code 31.1 Output from FULLSTATS

NOTE: The DATA statement used the following resources:
 CPU time - 00:00:00.00
 Elapsed time - 00:00:00.06
 EXCP count - 145
 Task memory - 4614K (144K data, 4470K program)
 Total memory - 19153K (4768K data, 14385K program)
 Timestamp - 10/31/2012 3:42:05 PM

The following table describes the statistics for the FULLSTATS option:

Table 31.1 Description of FULLSTATS Statistics

Statistic Description

CPU time is the total CPU time used in the address
space during the execution of this DATA
step or proc. This number includes all
CPUs on a multiprocessor system and all
threads generated to complete this SAS
step.

Elapsed time is the actual clock time that passed
during the execution of this DATA step or
proc.

RSM Hiperspace time is the total CPU time used by the z/OS
real storage manager in support of
hiperspace libraries during the execution
of this DATA step or proc. This statistic is
not reported if its value is zero.

772 Chapter 31 / System Options under z/OS

Statistic Description

EXCP count is the number of Execute Channel
Program (EXCP) system service calls
executed in the address space during the
execution of this DATA step or proc. This
number is a measure of the IO activity
during this SAS step.

Task memory is the amount of memory that was used
by the current SAS DATA step or proc.

Total memory is the actual memory, in kilobytes, that is
required for all tasks. This session total is
useful for deciding the minimum region
size required so that the entire job can
execute successfully.

Timestamp is the date and time that the DATA step
was run.

Note: z/OS hardware does not have a vector facility, and the values of Vector
affinity time and Vector usage time are always zero when running SAS on
z/OS.

See Also

n “Collecting Performance Statistics” on page 904

System Options

n “MEMRPT System Option: z/OS” on page 813

n “STATS System Option: z/OS” on page 865

n “STIMER System Option: z/OS” on page 868

GHFONT= System Option: z/OS
Specifies the default graphics hardware font.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

GHFONT= System Option: z/OS 773

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: None

z/OS specifics: All

Syntax

GHFONT=font-specification

Required Arguments
Examples of values for font-specification are

F6X9
specifies characters that are six pixels wide and nine pixels high.

F9X12
specifies characters that are nine pixels wide and twelve pixels high.

I6X9
specifies an italic font with characters that are six pixels wide and nine pixels
high. See your system administrator for a complete list of fonts that are
available to you.

Details

The GHFONT= option specifies the default hardware font in graphics. It applies
only to vector graphics devices that support stroke precision in the vector graphics
symbol set (for example, IBM terminals such as 3179G, 3192G, and 3472G).

This option is used with SAS software products where you can specify a smaller
font and display more information in the tables on the display.

HELPHOST System Option: z/OS
Specifies the name of the computer where the remote help browser is running.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Help

PROC OPTIONS
GROUP=

HELP

Default: None

z/OS specifics: All

774 Chapter 31 / System Options under z/OS

Syntax

HELPHOST=host

Required Argument
host

specifies the name of the computer where the remote help is to be displayed.
Quotation marks or parentheses are required. The maximum number of
characters is 2048.

Details

If you do not specify the HELPHOST option, and the HELPBROWSER system
option is set to REMOTE, then an HTML page that contains remote help
instructions appears in the SAS session. If you use the default value of the
HELPHOST option, then the address is determined from the network address of the
TN3270 server that you are using to connect to z/OS.

See Also

n “Converting Item Store Help to HTML Help” on page 230

n Chapter 11, “Using the SAS Remote Browser,” on page 223

System Options

n “HELPBROWSER= System Option” in SAS System Options: Reference

n “HELPHOST System Option” in SAS System Options: Reference

n “HELPPORT= System Option” in SAS System Options: Reference

HELPLOC= System Option: z/OS
Specifies the location of the text and index files for the facility that is used to view SAS Help and
Documentation.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

HELP

Default: NONE

z/OS specifics: All

HELPLOC= System Option: z/OS 775

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n04utbe2faik63n14cmamwsu80r6.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0oh1hkh0zlcirn1d3noglknr02o.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yu1cr572z0yon1tt928pimzmyd.htm&locale=en

Syntax

HELPLOC=<(>location-1,<location-2, …><)>

Required Argument
location

specifies the location of the Help files that are to be used with the remote
browser.

Details

The HELPLOC= system option specifies the location of the Help files and index
files that the SAS Remote Browser uses. You can concatenate values to the
HELPLOC value during initialization with the following methods:

n Use the INSERT system option to place a new value at the front of the list of
values.

n Use the APPEND system option to place a new value at the end of the list of
values.

For more information, see the “APPEND= System Option: z/OS” on page 705 and
“INSERT= System Option: z/OS” on page 783 system options documentation.

See Also

n “Converting Item Store Help to HTML Help” on page 230

n Chapter 11, “Using the SAS Remote Browser,” on page 223

n “Using User-Defined Item Store Help Files” on page 228

System Options

n “APPEND= System Option: z/OS” on page 705

n “HELPTOC System Option: z/OS” on page 776

n “INSERT= System Option: z/OS” on page 783

HELPTOC System Option: z/OS
Specifies the table of contents files for the online SAS Help and Documentation.

Valid in: configuration file, SAS invocation

Category: Environment Control: Help

776 Chapter 31 / System Options under z/OS

PROC OPTIONS
GROUP=

HELP

Default: HELPTOC=(/help/helpnav.hlp/navigation.xml /help/common.hlp/toc.htm,
common.hhc)

UNIX specifics: applet and HTML files must reside in the path specified by the HELPLOC option

Syntax

HELPTOC TOC-pathname-1 < TOC-pathname-2 < TOC-pathname-3> >

Required Argument
TOC-pathname

specifies a partial pathname for the table of contents that is to be used by the
online SAS Help and Documentation. TOC-pathname can be any or all of the
following:

/help/applet-TOC-filename
specifies the partial pathname of the table of contents file that is to be used
by the SAS Documentation Java applet in a UNIX environment. The
applet-TOC-filename must have a file extension of .txt, and it must reside in a
path that is specified by the HELPLOC system option. The default
is /help/helpnav.hlp/config.txt.

See the default table of contents file for the format that is required for an
index file.

/help/accessible-TOC-filename
specifies the partial pathname of an accessible table of contents file that is
to be used by the online SAS Help and Documentation in UNIX or z/OS
environments. An accessible table of contents file is an HTML file that can
be used by web browsers. The accessible-TOC-filename must have a file
extension of .htm, and it must reside in a path that is specified by the
HELPLOC system option. The default pathname
is /help/common.hlp/toc.htm.

See the default table of contents file for the format that is required for a
table of contents.

HTML-Help-TOC-pathname
specifies the complete pathname to the Microsoft HTML Help table of
contents that is to be used by the online SAS Help and Documentation in
Windows environments. The default pathname is common.hhc. For
information about creating an index for Microsoft HTML Help, see your
Microsoft HTML Help documentation.

HELPTOC System Option: z/OS 777

Details

Use the HELPTOC system option if you have a customized table of contents that
you want to use, instead of the table of contents that SAS provides. If you use one
configuration file to start SAS in more than one operating environment, you can
specify all of the partial pathnames in the HELPTOC option. The order of the
pathnames is not important, although only one pathname of each type can be
specified.

When the HELPTOC option specifies the pathname for UNIX or z/OS operating
environments, SAS determines the complete path by replacing /help/ in the partial
pathname with the pathname specified in the HELPLOC option. If the HELPLOC
option contains more than one pathname, SAS searches each path for the table of
contents.

For example, when HELPTOC is /help/common.hlp/mytoc.htm, and the value of
HELPLOC is /u/myhome/myhelp, the complete path to the table of contents
is /u/myhome/myhelp/common.hlp/mytoc.htm.

See Also

“HELPLOC= System Option: z/OS” on page 775

HOSTINFOLONG System Option: z/OS
Specifies to print additional operating environment information in the SAS log when SAS starts.

Valid in: Configuration file, SAS invocation

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL

Syntax

HOSTINFOLONG | NOHOSTINFOLONG

Required Arguments
HOSTINFOLONG

specifies to print additional operating environment information in the SAS log
when SAS starts.

NOHOSTINFOLONG
specifies to omit additional operating environment information in the SAS log
when SAS starts.

778 Chapter 31 / System Options under z/OS

Details

When HOSTINFOLONG is specified, SAS writes additional information about the
operating environment to the SAS log.

NOTE: Copyright (c) 2002-2012 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software 9.4 (TS04.01B0P09052012)
 Licensed to SAS Institute Inc., Site 1.
NOTE: This session is executing on the z/OS V01R13M00 platform.

NOTE: Running on IBM Model 2817 Serial Number 035EA6.

NOTE: Updated analytical products:

SAS/OR 12.1

NOTE: Additional host information:

IBM 2817-706, DEVA, FMID HBB7780, CPU: 8, GP: 6, zAAP: 0, zIIP: 2

See Also

n “The SAS Log” in SAS Programmer’s Guide: Essentials

System Options:

n “CPUID System Option” in SAS System Options: Reference

HSLXTNTS= System Option: z/OS
Specifies the size of each physical hiperspace that is created for a SAS library.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: 1,500

z/OS specifics: All

Syntax

HSLXTNTS=value

HSLXTNTS= System Option: z/OS 779

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0188g8w4pguhkn1ehp9b2wlyf2u.htm&locale=en

Details

The HSLXTNTS= option specifies the size in pages of each physical hiperspace that
is created for a SAS library with the HIPERSPACE option in the LIBNAME
statement or LIBNAME function. These physical hiperspaces are analogous to
physical data set extents. When one is filled, another is obtained. They are logically
combined internally to form a single logical hiperspace representing a library.

The value that you specify must be in the range 0 to 524,287. If you specify 0, SAS
uses the value 1,800. To verify the maximum number of pages specific to your site,
contact your system administrator.

See Also

n “Optimizing SAS I/O” on page 905

n Tuning SAS Applications in the OS/390 and z/OS Environments

HSMAXPGS= System Option: z/OS
Specifies the maximum number of hiperspace pages allowed in a SAS session.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: 75,000

z/OS specifics: All

Syntax

HSMAXPGS=value

Details

The HSMAXPGS= option specifies the maximum number of hiperspace pages that
can be allocated in a single SAS session for all hiperspaces. The value of the
HSMAXPGS= option is equal to the product of the values of the HSLXTNTS= and
HSMAXSPC= options.

780 Chapter 31 / System Options under z/OS

The value that you specify must be in the range 0 to 2,147,483,647. If you specify 0,
SAS allocates 1,920 blocks of hiperspace to the library. Check with your system
administrator for any site-specific maximum number of pages that you can have.

If you are responsible for controlling resource use at your site and you are
concerned with hiperspace usage, then you can use the IBM SMF installation exit,
IEFUSI, to limit the hiperspace resources that are available to users.

See Also

n “Optimizing SAS I/O” on page 905

n Tuning SAS Applications in the OS/390 and z/OS Environments

HSMAXSPC= System Option: z/OS
Specifies the maximum number of hiperspaces allowed in a SAS session.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: 50

z/OS specifics: All

Syntax

HSMAXSPC=value

Details

The HSMAXSPC= option specifies the maximum number of physical hiperspaces
that can be allocated in a single SAS session. The size of each hiperspace is
specified by the HSLXTNTS= option.

The value that you specify must be in the range 0 to 2,147,483,647. If you specify
zero, SAS allocates 1,920 blocks of VIO for the library. Check with your system
administrator for any site-specific maximum number of hiperspaces that you can
have.

HSMAXSPC= System Option: z/OS 781

See Also

n “Optimizing SAS I/O” on page 905

n Tuning SAS Applications in the OS/390 and z/OS Environments

HSWORK System Option: z/OS
Tells SAS to place the Work library in a hiperspace.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NOHSWORK

z/OS specifics: All

Syntax

HSWORK | NOHSWORK

Details

HSWORK indicates that a hiperspace should be used for the Work library.
Specifying NOHSWORK indicates that the Work library is not a hiperspace.

NOHSWORK is the default setting for this option, and this default is probably
suitable for most of your programming needs. However, there might be times when
you want to place the Work library in a hiperspace. For example, the performance
of programs (with regard to elapsed time) that perform only output operations to
the Work library can improve significantly when the Work library is a hiperspace
library. The maximum size of the resulting WORK library is the lessor of the
following:

n HSMAXPGS

n HSLXTNTS * HSMAXSPC

Note: The effect on performance of using a hiperspace for WORK data sets is site-
dependent. Your system administrator might want to make recommendations
based on investigation of this issue for your site.

782 Chapter 31 / System Options under z/OS

See Also

n “Optimizing SAS I/O” on page 905

n Tuning SAS Applications in the OS/390 and z/OS Environments

INSERT= System Option: z/OS
Inserts the specified value at the beginning of the specified system option.

Valid in: Configuration file, SAS invocation, OPTIONS statement, Options window

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: SAS invocation syntax

Syntax

INSERT=(system-option=inserted-value)

Required Arguments
system-option

can be AUTOEXEC, CMPLIB, FMTSEARCH, HELPLOC, MAPS, MSG,
SASAUTOS, SASHELP, or SASSCRIPT.

inserted-value
is the new value that you want to insert at the beginning of the current value of
system-option.

Details

If you specify a SAS system option more than once, then the last specification of
the option is the one that SAS uses. You must use the INSERT system option to add
additional values to the beginning of the value that is already specified for the
following system options:

AUTOEXEC HELPLOC SASAUTOS
CMPLIB MAPS SASHELP
FMTSEARCH MSG SASSCRIPT

For example, if your configuration file contains the following option specification:

INSERT= System Option: z/OS 783

sasautos='prefix.prod.sasautos'

and you enter the following SASRX command,

sasrx -sasautos 'prefix.test.sasautos'

then the only location where SAS looks for autocall macros is
'prefix.test.sasautos'. The output of PROC OPTIONS shows
'prefix.test.sasautos' as the value of the SASAUTOS option.

If you want SAS to look in both locations for autocall macros, then you must use
the following INSERT option:

sasrx -insert=(sasautos='prefix.test.sasautos')

PROC OPTIONS then shows the following value for the SASAUTOS option:

('prefix.test.sasautos' 'prefix.prod.sasautos')

If the original value of system-option or inserted-value is enclosed in
parentheses, then the resulting option value is merged into one pair of parentheses.
For example,

SASAUTOS=(.a.sasautos .b.sasautos)
INSERT=(sasautos=(.c.sasautos .d.sasautos))

sets the value of the SASAUTOS option to

(.c.sasautos .d.sasautos .a.sasautos .b.sasautos)

See Also

n “Changing an Option Value By Using the INSERT and APPEND System Options”
in SAS System Options: Reference

n Appendix 3, “Encoding for z/OS Resource Names,” on page 939

System Options

n “APPEND= System Option: z/OS” on page 705

n “CMPLIB= System Option” in SAS System Options: Reference

n Appendix 3, “Encoding for z/OS Resource Names,” on page 939

ISPCAPS System Option: z/OS
Specifies whether to convert to uppercase printable ISPF parameters that are used in CALL ISPEXEC
and CALL ISPLINK.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

784 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p128h36bs9q0bon1mqwrlgxb9ucp.htm&locale=en

PROC OPTIONS
GROUP=

ISPF

Default: NOISPCAPS

z/OS specifics: All

Syntax

ISPCAPS | NOISPCAPS

Details

If ISPCAPS is in effect, then the values of variables and literals that are used as
parameters are passed to ISPF in uppercase.

If NOISPCAPS is in effect, then the caller must ensure that the parameters are in
the proper case. The names of most ISPF parameters must be in uppercase.

The following example shows two ISPLINK calls. The first turns on the ISPCAPS
option. As a result, the parameters that are specified in lowercase in the second
ISPLINK call are passed to ISPF in uppercase.

DATA _NULL_;
 CALL ISPLINK('SAS','ISPCAPS');
 CALL ISPLINK('display', 'dmiem1');
 RUN;

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPCHARF System Option: z/OS
Specifies whether the values of SAS character variables are converted using their automatically
specified informats or formats each time they are used as ISPF variables.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

ISPCHARF System Option: z/OS 785

Default: NOISPCHARF

z/OS specifics: All

Syntax

ISPCHARF | NOISPCHARF

Details

If ISPCHARF is specified, then formats and informats are used for SAS character
variables that have been defined to ISPF via the SAS VDEFINE user exit. If
NOISPCHARF is in effect, then formats and informats are not used for these SAS
character variables.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPCSR= System Option: z/OS
Tells SAS to set an ISPF variable to the name of a variable whose value is found to be invalid.

Valid in: Configuration file, SAS invocation

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: none

z/OS specifics: All

Syntax

ISPCSR=variable-name

786 Chapter 31 / System Options under z/OS

Details

The ISPF variables that are specified by both ISPCSR= and ISPMSG= are set by the
SAS VDEFINE user exit whenever the exit finds an ISPF variable that has a zero
length, or whenever the SAS informat that is associated with the variable finds the
value invalid. SAS uses the VDEFINE user exit to define variable-name as a
character variable length of eight, placing it in the pool of functions that are
automatically specified.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPEXECV= System Option: z/OS
Specifies the name of an ISPF variable that passes its value to an ISPF service.

Valid in: Configuration file, SAS invocation

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: none

z/OS specifics: All

Syntax

ISPEXECV=variable-name

Details

Assigning a value to the specified variable causes that value to be passed to ISPF
for execution. When accessed, the variable contains the return code for the service
request. SAS uses the VDEFINE user exit to define variable-name as a character
variable of length two, placing it in the pool of functions that are automatically
specified.

For example, if ISPEXECV=SASEXEC, then you could do the following from an ISPF
panel:

ISPEXECV= System Option: z/OS 787

&SASEXEC = 'DISPLAY PANEL (XXX)'

IF (&SASEXEC ¬= '00') ...

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPMISS= System Option: z/OS
Specifies the value assigned to SAS character variables defined to ISPF when the associated ISPF
variable has a length of zero.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPMISS=value

Details

When the ISPF variable has a length of zero, the value of ISPMISS= is the value that
is assigned to SAS character variables that are defined to ISPF via the SAS
VDEFINE user exit. Associated formats or informats are automatically specified.
The specified value must be one byte in length.

Note: The specified value is substituted only if the SAS system option ISPCHARF
is in effect when the variable is identified to ISPF via VDEFINE. For more
information, see “ISPCHARF System Option: z/OS” on page 785.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

788 Chapter 31 / System Options under z/OS

See Also

“SAS Interface to ISPF” on page 293

ISPMSG= System Option: z/OS
Tells SAS to set an ISPF variable to a message ID when a variable is found to be invalid.

Valid in: Configuration file, SAS invocation

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPMSG=variable-name

Details

The ISPF variables that are specified by both ISPMSG= and ISPCSR= are set by the
VDEFINE user exit whenever the exit finds an ISPF variable that has a zero length,
or whenever the SAS informat that is associated with the variable finds the value
invalid. The SAS VDEFINE user exit identifies variable-name to ISPF as a character
variable length of eight, placing it in the pool of functions that are automatically
specified.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF

See Also

“SAS Interface to ISPF” on page 293

ISPNOTES System Option: z/OS
Specifies whether ISPF error messages are to be written to the SAS log.

ISPNOTES System Option: z/OS 789

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPNOTES

z/OS specifics: All

Syntax

ISPNOTES | NOISPNOTES

Details

If ISPNOTES is specified, then ISPF error messages are written to the SAS log. If
NOISPNOTES is in effect, then ISPF error messages are not written to the SAS log.

The ISPTRACE option overrides the NOISPNOTES option, so all messages are
written to the SAS log when ISPTRACE is specified.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPNZTRC System Option: z/OS
Specifies whether nonzero ISPF service return codes are to be written to the SAS log.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPNZTRC

790 Chapter 31 / System Options under z/OS

z/OS specifics: All

Syntax

ISPNZTRC | NOISPNZTRC

Details

If ISPNZTRC is specified, nonzero ISPF service return codes are written to the SAS
log. If NOISPNZTRC is in effect, then nonzero ISPF service return codes are not
written to the SAS log.

To display all parameter lists and return codes in the SAS log, use the ISPTRACE
option instead of ISPNZTRC.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPPT System Option: z/OS
Specifies whether ISPF parameter value pointers and lengths are to be written to the SAS log.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPPT

z/OS specifics: All

Syntax

ISPPT | NOISPPT

ISPPT System Option: z/OS 791

Details

The ISPPT option is used for debugging. If ISPPT is specified, then ISPF parameter
value pointers and lengths are displayed. If NOISPPT is in effect, then ISPF
parameter value pointers and lengths are not displayed.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPTRACE System Option: z/OS
Specifies whether the parameter lists and service return codes are to be written to the SAS log.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPTRACE

z/OS specifics: All

Syntax

ISPTRACE | NOISPTRACE

Details

If ISPTRACE is specified, then all ISPF service calls and return codes are written to
the SAS log. Fixed binary parameters are written to the SAS log, converted to
decimal display. After a VDEFINE or VDELETE service request, the list of currently
defined SAS variables is written to the SAS log.

If NOISPTRACE is in effect, then ISPF service calls and return codes are not written
to the SAS log.

792 Chapter 31 / System Options under z/OS

Note: The ISPTRACE option can be set based on the value of the ISPF variable
named DMITRACE. In the following example, if the DMITRACE value is YES, then
ISPTRACE is in effect. If the DMITRACE value is NO, then NOISPTRACE is in effect.

CALL ISPLINK('DMI','*ISPTRACE');

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVDEFA System Option: z/OS
Specifies whether all current SAS variables are to be identified to ISPF via the SAS VDEFINE user
exit.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: NOISPVDEFA

z/OS specifics: All

Syntax

ISPVDEFA | NOISPVDEFA

Details

If ISPVDEFA is specified, then all current SAS variables are identified to ISPF via
the SAS VDEFINE user exit. If a VDEFINE service request is issued that has a value
that is specified automatically, then any variables that it specifies are defined
twice.

If NOISPVDEFA is in effect, then only those variables that are passed automatically
to the VDEFINE user exit are defined.

To display information about ISPF options, use PROC OPTIONS GROUP=ISPF.

ISPVDEFA System Option: z/OS 793

See Also

“SAS Interface to ISPF” on page 293

ISPVDLT System Option: z/OS
Specifies whether VDELETE is executed before each SAS variable is identified to ISPF via VDEFINE.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: NOISPVDLT

z/OS specifics: All

Syntax

ISPVDLT | NOISPVDLT

Details

If ISPVDLT is specified, then each SAS variable is deleted from ISPF with the
VDELETE user exit before it is identified to ISPF with VDEFINE. This specification
prevents a SAS variable from being identified to ISPF more than once in any SAS
DATA step.

If NOISPVDLT is in effect, then SAS variables are not deleted from ISPF before they
are defined. This specification can cause SAS variables to be defined to ISPF more
than once in a SAS DATA step.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

794 Chapter 31 / System Options under z/OS

ISPVDTRC System Option: z/OS
Specifies whether to trace every VDEFINE for SAS variables.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPVDTRC

z/OS specifics: All

Syntax

ISPVDTRC | NOISPVDTRC

Details

Tracing means that, as each SAS variable is identified to ISPF with the SAS
VDEFINE user exit, its name, its VDEFINE length, and any nonzero ISPF return
codes are written to the SAS log.

If NOISPVDTRC is in effect, then no information is written to the SAS log when a
SAS variable is identified to ISPF via VDEFINE. The NOISPVDTRC setting is useful
when many variables are defined with one service request because SAS actually
issues multiple VDEFINE requests (one for each variable).

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVDTRC System Option: z/OS 795

ISPVIMSG= System Option: z/OS
Specifies the ISPF message ID that is to be set by the SAS VDEFINE user exit when the informat for
a variable returns a nonzero return code.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPVIMSG=message-ID

Details

The message ID is stored in the ISPF variable that is specified by the ISPMSG=
option.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVRMSG= System Option: z/OS
Specifies the ISPF message ID that is to be set by the SAS VDEFINE user exit when a variable has a
null value.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

796 Chapter 31 / System Options under z/OS

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPVRMSG=message-ID

Details

The message ID is stored in the ISPF variable that is specified by the ISPMSG=
option.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVTMSG= System Option: z/OS
Specifies the ISPF message ID that is to be displayed by the SAS VDEFINE user exit when the
ISPVTRAP option is in effect.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPVTMSG=message-ID

ISPVTMSG= System Option: z/OS 797

Details

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVTNAM= System Option: z/OS
Restricts the information that is displayed by the ISPVTRAP option to the specified variable only.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPVTNAM=variable-name

Details

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

798 Chapter 31 / System Options under z/OS

ISPVTPNL= System Option: z/OS
Specifies the name of the ISPF panel that is to be displayed by the SAS VDEFINE user exit when the
ISPVTRAP option is in effect.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

Default: None

z/OS specifics: All

Syntax

ISPVTPNL=panel

Details

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

Note: The panel specified by ISPVTPNL should not reference any variables that
are defined by the ISPF VDEFINE service as the result of a call to the ISPEXEC or
ISPLINK CALL routine. In particular, if the application defines the ZCMD variable in
this way, the ISPVTPNL panel must not reference this variable.

See Also

“SAS Interface to ISPF” on page 293

ISPVTRAP System Option: z/OS
Specifies whether the SAS VDEFINE user exit writes information to the SAS log (for debugging
purposes) each time it is entered.

ISPVTRAP System Option: z/OS 799

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Host Interfaces: ISPF
Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

ISPF
LOGCONTROL

Default: NOISPVTRAP

z/OS specifics: All

Syntax

ISPVTRAP | NOISPVTRAP

Details

If ISPVTRAP is specified, the SAS VDEFINE user exit writes a message to the SAS
log each time it is entered. If the parameters for the ISPVTPNL, ISPVTVARS, and
ISPVTMSG options are set, it sets the ISPVTVARS variables and displays the
ISPVTPNL panel with the ISPVTMSG message on it. If you press the End key on the
information display, the option is set to NOISPVTRAP.

If NOISPVTRAP is in effect, the SAS VDEFINE user exit does not write information
to the SAS log each time it is entered.

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

ISPVTVARS= System Option: z/OS
Specifies the prefix for the ISPF variables to be set by the SAS VDEFINE user exit when the
ISPVTRAP option is in effect.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: ISPF

PROC OPTIONS
GROUP=

ISPF

800 Chapter 31 / System Options under z/OS

Default: None

z/OS specifics: All

Syntax

ISPVTVARS=prefix

Details

The numbers 0 through 5 are appended to this prefix to generate the ISPF variable
names. These variables contain the following information:

prefix0 whether the variable is being read or written

prefix1 the name of the variable that is being updated

prefix2 the address of the parameter list for the VDEFINE user exit

prefix3 the address of the variable that is being updated

prefix4 the length of the variable that is being updated

prefix5 the value of the variable that is being updated.

For example, if ISPVTVARS=SASVT, then the variables SASVT0 - SASVT5 would
be created. Possible values for these variables could be as follows:

SASVT0 READ (or WRITE)

SASVT1 MYVAR

SASVT2 083C1240

SASVT3 00450138

SASVT4 7

SASVT5 MYVALUE

To display the current settings of your ISPF options, use PROC OPTIONS
GROUP=ISPF.

See Also

“SAS Interface to ISPF” on page 293

JREOPTIONS= System Option: z/OS
Identifies the Java Runtime Environment (JRE) options for SAS.

JREOPTIONS= System Option: z/OS 801

Valid in: Configuration file, SAS invocation

PROC OPTIONS
GROUP=

EXECMODES

Default: None

z/OS specifics: All

CAUTION: Changing Java options that affect SAS might cause SAS to fail. Before you change
the settings for the JREOPTIONS option, contact SAS Technical Support to ensure that the
Java setting that you want to change does not affect SAS. A best practice is to change only
the Java properties for your own Java code.

Syntax

JREOPTIONS=(-JRE-option-1 <-JRE-option-2 …>)

Required Argument
-JRE-option

specifies one or more Java Runtime Environment options. JRE options must
begin with a hyphen. Use a space to separate multiple JRE options. Valid values
for JRE-option depend on your installation's Java Runtime Environment. For
information about JRE options, see your installation's Java documentation.

Details

If you specify the JREOPTIONS system option more than once, SAS appends each
set of JRE options to the JRE options that you previously defined. For example, the
JREOPTIONS specifications on the first two lines of the following example are
equivalent to the single JREOPTIONS specification that appears on the last line of
the example.

jreoptions=(-jreoption1 -jreoption2)
jreoptions=(-jreoption3 -jreoption4)

jreoptions=(-jreoption1 -jreoption2 -jreoption3 -jreoption4)

If a JRE option is specified more than once, the last specification is the one that is
used. Invalid JRE options are ignored.

Example: Specifying a JRE Option

jreoptions=(-Xmx128m -Xms128m)

802 Chapter 31 / System Options under z/OS

LINESIZE= System Option: z/OS
Specifies the line size for the SAS Log and SAS procedure output.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Default: The terminal's width setting for interactive modes; 132 characters for noninteractive
modes

z/OS specifics: Default value

See: “LINESIZE= System Option” in SAS System Options: Reference

Syntax

LINESIZE=n | hexX | MIN | MAX

Required Arguments
n

specifies the line size in characters.

hexX
specifies the line size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 characters.

MIN
sets the line size of the SAS procedure output to 64 characters.

MAX
sets the line size of the SAS procedure output to 256 characters.

Details

Under z/OS, the default for the windowing environment is the display's width
setting. For interactive line mode, the default is 78 characters. For noninteractive
mode and batch mode, the default is 132 characters. The minimum value of n is 64
characters; the maximum is 256 characters.

LINESIZE= System Option: z/OS 803

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en

See Also

“The SAS Log” in SAS Programmer’s Guide: Essentials

LOG= System Option: z/OS
Specifies a destination for a copy of the SAS log when running in batch mode.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES
LOGCONTROL

Default: SASLOG

z/OS specifics: file-specification

Syntax

LOG=<file-specification>

NOLOG

Optional Argument
file-specification

identifies an external file. Under z/OS, it can be a valid ddname, a physical
filename, or the name of a file stored in the directory structure of the UNIX file
system. The ddname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

Details

When SAS is started with the OBJECTSERVER and NOTERMINAL system options
and no log is specified, SAS discards all log and alternate log messages.

NOLOG suppresses the creation of the SAS log. Do not use this value unless your
SAS program is thoroughly debugged.

Using directives in the value of the LOG system option enables you to control when
logs are opened and closed and how they are named, based on real-time events,
such as time, month, day of week, and so on. For a list of directives, see the
“LOGPARM= System Option: z/OS” on page 805.

If you start SAS in batch mode or server mode and the LOGCONFIGLOC= option is
specified, logging is done by the SAS logging facility. The traditional SAS log option

804 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en

LOGPARM= is ignored. The traditional SAS log option LOG= is honored only when
the %S{App.Log} conversion character is specified in the logging configuration file.
For more information, see “The SAS Logging Facility” in SAS Logging: Configuration
and Programming Reference.

See Also

n “Copying Output to an External File” on page 147

n “The SAS Log” in SAS Programmer’s Guide: Essentials

System Options

n “ALTLOG= System Option: z/OS” on page 703

n “LOGPARM= System Option: z/OS” on page 805

LOGPARM= System Option: z/OS
Controls when SAS log files are opened, closed, and, in conjunction with the LOG= system option,
how they are named.

Valid in: Configuration file, SAS invocation

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL

z/OS specifics: Restrictions on the OPEN argument and the length of log filename

See: “LOGPARM= System Option” in SAS System Options: Reference

Syntax

LOGPARM=

“<OPEN=APPEND | REPLACE | REPLACEOLD>

<ROLLOVER=AUTO | NONE | SESSION | n | nK | nM | nG>

<WRITE=BUFFERED | IMMEDIATE> ”

Optional Arguments
OPEN=

when a log file already exists, controls how the contents of the existing file are
treated.

LOGPARM= System Option: z/OS 805

http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=p1ux9lxccgetcgn1hmkhm64m3ud0.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=p1ux9lxccgetcgn1hmkhm64m3ud0.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

APPEND
appends the log when opening an existing file. If the file does not already
exist, a new file is created. This option cannot be used if the LOG= system
option specifies a member of a PDS or PDSE.

REPLACE
overwrites the current contents when opening an existing file. If the file does
not already exist, a new file is created.

REPLACEOLD
appends the log when opening an existing file. If the file does not already
exist, a new file is created. This option can be used if the LOG= system
option specifies a UFS file, but it cannot be used if a member of a PDS or
PDSE is specified.

Default REPLACE

ROLLOVER=AUTO | NONE | SESSION | n | nK | nM | nG
controls when or if the SAS log rolls over (that is, when the current log is closed
and a new one is opened). If you use ROLLOVER=n to roll over your files, the
OPEN= parameter is ignored, and the initial log file is opened with
OPEN=APPEND.

AUTO
causes an automatic rollover of the log when the directives in the value of
the LOG= option change (that is the current log is closed and a new log file is
opened).

Interaction The name of the new log file is determined by the value of the
LOG= system option. If LOG= does not contain a directive,
however, the name would never change, so the log would never
roll over, even when the ROLLOVER=AUTO value is used.

NONE
specifies that rollover does not occur, even when a change occurs in the
name that is specified with the LOG= option.

Interaction If the LOG= value contains any directives, they do not resolve.
For example, if Log="#b.log" is specified, the directive “#” does
not resolve, and the name of the log file remains "#b.log".

SESSION
at the beginning of each SAS session, opens the log file, resolves directives
that are specified in the LOG= system option, and uses its resolved value to
name the new log file. During the course of the session, no rollover is
performed.

n
nK
nM
nG

causes the log to roll over when the log reaches a specific size, stated in
multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes); or
1,073,741,824 (gigabytes). When the log reaches the specified size, it is
closed and renamed by appending “old” to the log filename, and if it exists,

806 Chapter 31 / System Options under z/OS

the lock file for a server log. For example, a filename of 2012Dec01.log is
renamed 2012Dec01old.log. A new log file is opened using the name
specified in the LOG= option.

Note: ROLLOVER=n is not supported for data sets. It is supported for UFS
files.

Restriction The minimum log file size is 10K.

See “Examples: Rolling Over the SAS Log” in SAS Programmer’s
Guide: Essentials

CAUTION Old log files can be overwritten. SAS maintains only one old log
file with the same name as the open log file. If rollover occurs more than
once, the old log file is overwritten.

Default NONE

Restriction Rollover does not occur more often than once a minute.

Interaction Rollover is triggered by a change in the value of the LOG= option.

See “LOG= System Option: z/OS” on page 804

WRITE=
specifies when content is written to the SAS log.

BUFFERED
writes content to the SAS log only when a buffer is full in order to increase
efficiency.

IMMEDIATE
writes to the SAS log each time that statements are submitted that produce
content for the SAS log.

Default BUFFERED

Details

The LOGPARM= system option controls the opening and closing of SAS log files.
This option also controls the naming of new log files in conjunction with the LOG=
system option and the use of directives in the value of LOG=. If the LOG= option
specifies a ddname rather than a physical data set name or UFS filename, then only
the WRITE argument of the LOGPARM option is recognized. The ROLLOVER and
OPEN arguments are ignored.

Native z/OS filenames that contain more than eight characters are truncated to
eight characters. The character count begins with the first character of the
filename. If a period is encountered, the character count begins again. For example,

testFeb1234.Wednesday

LOGPARM= System Option: z/OS 807

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p18fv9h2x9s8fmn1uze2587mmm2l.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p18fv9h2x9s8fmn1uze2587mmm2l.htm&locale=en

is truncated to the following

testFeb1.Wednesda

Note that testFeb1234 is truncated to testFeb1, and that Wednesday is truncated
to Wednesda.

If a directive is specified in a PDS member name, the directive is fully expanded.
The PDS member name might then exceed eight-characters, which is the maximum
length for a PDS member name, and an error occurs.

Directives are fully expanded for the UNIX file system.

Using directives in the value of the LOG= system option enables you to control
when logs are open and closed and how they are named, based on real-time events,
such as time, month, day of week, and so on. The following table contains a list of
directives that are valid in LOG= values:

The z/OS directives begin with #. Specifying a % directive instead of a # directive is
not supported on z/OS.

Table 31.2 Directives for Controlling the Name of SAS Log Files

Directive Description Range

#a Locale's abbreviated
day of week

Sun–Sat

#A Locale's full day of
week

Sunday–Saturday

#b Local's abbreviated
month

Jan–Dec

#B Locale's full month January–December

#C Century number 00–99

#d Day of the month 01–31

#H Hour 00–23

#j Julian day 001–366

#l * User ID Identifies a user to the system. The
user ID consists of 1 through 8
alphanumeric or national ($, #, @)
characters. The first character must
be an alphabetic character or a
national character ($, #, @).

#M Minutes 00–59

808 Chapter 31 / System Options under z/OS

Directive Description Range

#m Month number 01–12

#n Current system node
name (without
domain name)

none

#p * Process ID Returns your user ID in TSO, the name
on the JOB card in the JCL, or the
start command or procedure name for
a started task (STC).

#s Seconds 00–59

#u Day of week 1= Monday–7=Sunday

#v * Unique identifier Alphanumeric expression that creates
a log filename that does not currently
exist.

#w Day of week 0=Sunday–6=Saturday

#W Week number
(Monday as first day;
all days in new year
preceding first
Monday are in week
00)

00–53

#y Year without century 00–99

#Y Full year 1970–9999

Pound escape writes a
single number sign in
the log filename.

#

* Because #v, #l, and #p are not a time-based format, the log filename never changes
after it has been generated. Therefore, the log never rolls over. In these
situations,specifying ROLLOVER=AUTO is equivalent to specifying
ROLLOVER=SESSION.

Example: Specifying the LOGPARM Option

n Rolling over the log at a certain time and using directives to name the log
according to the time: If this command is submitted at 9:43 AM, this example

LOGPARM= System Option: z/OS 809

creates a log file called test0943.log, and the log rolls over each time the log
filename changes. In this example, at 9:44 AM, the test0943.log file is closed,
and the test0944.log file is opened.

sasrx -log "test#H#M.log" -logparm "rollover=auto"

n Preventing log rollover but using directives to name the log: For a SAS session
that begins at 9:34 AM, this example creates a log file that is named
test0934.log, and prevents the log file from rolling over:

sasrx -log "test#H#M.log" -logparm "rollover=session"

n Preventing log rollover and preventing the resolution of directives: This example
creates a log file that is named test#H#M.log, ignores the directives, and
prevents the log file from rolling over during the session:

sasrx -log "test#H#M.log" -logparm "rollover=none"

n Creating log files with unique identifiers: This example uses a unique identifier to
create a log file with a unique name:

sasrx –log “#v.log” –logparm “rollover=session”

SAS creates a log file called useridv1.log, if useridv1.log does not already exist. If
useridv1.log exists, then SAS creates a log file called useridv2.log, and so on.
Because of the native z/OS filename restriction to eight characters, truncation
might occur and this feature might not behave as expected.

Because #v is not a time-based format, the log filename never changes after it
has been generated. Therefore, the log never rolls over. In this situation,
specifying ROLLOVER=SESSION is equivalent to specifying ROLLOVER=AUTO.

See Also

“LOG= System Option: z/OS” on page 804

LRECL= System Option: z/OS
Specifies the default logical record length to use for reading and writing external files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: 256 if you are using RECFM=F to specify fixed length records. Otherwise, it is
32,767.

z/OS specifics: The LRECL= system option applies only to UFS files. It does not apply to native
files.

See: “LRECL= System Option” in SAS System Options: Reference

810 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1li19l98i6929n1981oqr3wq46u.htm&locale=en

Syntax

LRECL=n | nK | nM | nG | nT | hexX | MIN | MAX

Required Arguments
n

specifies the logical record length in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776
(terabytes). For example, a value of 32 specifies 32 bytes, and a value of 32k
specifies 32,768 bytes, which exceeds the allowed maximum value.

Default 256

Range 1 - 32,767

hexX
specifies the logical record length as a hexadecimal number followed by an X.
The first hexadecimal character must be in the range 0-9. For example, the value
0A0X sets the logical record length to 160.

MIN
specifies a logical record length of 1.

MAX
specifies a logical record length of 32,767.

Details

The logical record length for reading or writing external files is first determined by
the LRECL= option on the access method statement, function, or command that is
used to read or write an individual file, or the DDName value in the z/OS operating
environment. If the logical record length is not specified by any of these methods,
SAS uses the value specified by the LRECL= system option.

Use a value for the LRECL= system option that is not an arbitrarily large value.
Large values for this option can result in excessive use of memory, which can
degrade performance.

MEMLEAVE= System Option: z/OS
Specifies the amount of memory in the user's region that is reserved exclusively for the use of the
operating environment.

Valid in: Configuration file, SAS invocation

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

MEMLEAVE= System Option: z/OS 811

Default: 512K

z/OS specifics: All

Syntax

MEMLEAVE=n | nK | nM | MIN | hexX

Required Arguments
n | nK | nM

specifies the amount of memory reserved in multiples of 1 (bytes); 1,024
(kilobytes); or 1,048,576 (megabytes). You can specify decimal values for the
number of kilobytes or megabytes. For example, a value of 8 specifies 8 bytes, a
value of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

MIN
specifies the amount of memory reserved as the minimum value, 0 bytes.

hexX
specifies the amount of memory reserved as a hexadecimal number of bytes.

Details

MEMLEAVE= reserves memory in your region that SAS does not use. A minimum
memory reservation is required so that the operating environment can perform
cleanup activities in the event of an abnormal termination of SAS. You might need
to reserve additional memory based on the amount of processing that is taking
place in your region outside of SAS.

The value of MEMLEAVE= has no bearing on the values of the PROCLEAVE= and
SYSLEAVE= system options. MEMLEAVE= reserves memory that is never used by
SAS. This memory is used exclusively by the operating environment. PROCLEAVE=
and SYSLEAVE= reserve SAS memory only.

Setting MEMLEAVE= to 0 is not recommended. The optimal setting depends on the
application and the system resources that are available at your site.

Note: To adjust the size of your memory region, see the JCL documentation for
your operating environment.

See Also

n “MEMSIZE= System Option: z/OS” on page 814

n “PROCLEAVE= System Option: z/OS” on page 829

n “SYSLEAVE= System Option: z/OS” on page 872

812 Chapter 31 / System Options under z/OS

MEMRPT System Option: z/OS
Specifies whether memory usage statistics are to be written to the SAS log for each step.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY
LOGCONTROL

Default: MEMRPT

z/OS specifics: All

Syntax

MEMRPT | NOMEMRPT

Required Arguments
MEMRPT

if the STATS option is in effect, MEMRPT specifies that memory usage statistics
are to be written to the SAS log.

NOMEMRPT
specifies that memory usage statistics are not to be written to the SAS log.

Details

The STATS system option specifies that statistics are to be written to the SAS log.
If STATS is in effect and MEMRPT is in effect, then the total memory used by the
SAS session is written to the SAS log for each step.

Additional memory statistics can be written to the SAS log by specifying the
FULLSTATS system option.

Note that the program memory statistics reported by FULLSTATS reflect the size
of respective program images or load modules; they do not include the size of the
DATA step programs or other code that is generated dynamically by SAS software.

See Also

n “Collecting Performance Statistics” on page 904

MEMRPT System Option: z/OS 813

n “The SAS Log” in SAS Programmer’s Guide: Essentials

System Options

n “FULLSTATS System Option: z/OS” on page 771

n “STATS System Option: z/OS” on page 865

n “STIMER System Option: z/OS” on page 868

MEMSIZE= System Option: z/OS
Specifies the limit on the total amount of memory that can be used by a SAS session.

Valid in: Configuration file, SAS invocation

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

Default: Varies, see the following Details section

z/OS specifics: All

Syntax

MEMSIZE=n | nK | nM | nG | hexX | MIN | MAX

Note: You can also use the KB, MB, and GB syntax notation.

Required Arguments
n | n K | n M | n G

specifies total memory size in bytes (0–2,147,483,647), kilobytes (0–2,097,151),
megabytes (0–2047), or gigabytes (0–2). You can specify decimal values for the
number of kilobytes, megabytes, or gigabytes. For example, to specify
33,554,432 bytes, you can use 32M, 32768K, or 33554432.

hexX
specifies the memory size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hexadecimal characters (0–9, A–F),
and then followed by an X. For example, the value 2000000x sets the memory
size to 32M and a value of 4000000x sets the memory size to 64M.

MIN
causes SAS to calculate the value of MEMSIZE= using the formula in the
following Details section.

MAX
causes SAS to calculate the value of MEMSIZE= using the formula in the
following Details section.

814 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en

Details

SAS always calculates the value of the MEMSIZE option. The user-specified value
is no longer used. The calculated value is the amount of available REGION space
(both above and below the 16M line) minus the value of the MEMLEAVE option.
You can display the value of the MEMSIZE option to determine the calculated
value.

See Also

n “Managing Memory ” on page 917

System Options

n “MEMLEAVE= System Option: z/OS” on page 811

n “REALMEMSIZE= System Option: z/OS” on page 830

METAPROFILE= System Option: z/OS
Identifies the file that contains the SAS Metadata Server user profiles.

Valid in: Configuration file, SAS invocation

Category: Communications: Metadata

PROC OPTIONS
GROUP=

META

See: “METAPROFILE System Option” in SAS Language Interfaces to Metadata

Syntax

METAPROFILE="XML-document"

Required Argument
"XML–document"

is the UNIX file system pathname or MVS DDNAME of the XML document that
contains metadata user profiles for logging on to the SAS Metadata Server. The
pathname is the physical location that is recognized by the operating
environment. An example referencing a UNIX pathname is
metaprofile="/usr/lpp/SAS/metaprofile.xml". An example referencing a
DDNAME is metaprofile=METACFG. The maximum length is 1024 characters.

METAPROFILE= System Option: z/OS 815

http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=n0ob6nf4dj3gv9n1c3czyytlpc8u.htm&locale=en

Details

This system option is one of a group of system options that defines the default
metadata information to use for the SAS session. Usually, these values are set at
installation time in the SAS configuration file.

The XML document defines a list of named connections that contain server
connection properties for logging in to the SAS Metadata Server, such as the
following properties:

n the name of the host computer on which the server is invoked

n the TCP port

n the user ID and password of the requesting user.

The METACONNECT= system option then specifies which named connection in the
user profiles to use.

On z/OS, SAS does not automatically attempt to open metaprofile.xml as it does
on other platforms. You must always specify the METAPROFILE option to access a
metadata profile configuration.

If you specify a filename on z/OS for the METADATA option that is not more than
eight characters long, SAS first checks whether the name refers to a DDNAME. If
the name is for a DDNAME, SAS uses the file. If the name is not for a DDNAME,
SAS accesses the file as if it is a UNIX file.

To create or edit a metadata user profile, use the Metadata Server Connections
dialog box, which you can open by executing the SAS windowing command
METACON. For more information about the dialog box, open SAS Help and
Documentation from the SAS windowing environment. For information about the
SAS Metadata Server, see the SAS Intelligence Platform: System Administration
Guide

MINSTG System Option: z/OS
Tells SAS whether to minimize its use of storage.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

Default: NOMINSTG

z/OS specifics: All

816 Chapter 31 / System Options under z/OS

Syntax

MINSTG | NOMINSTG

Required Arguments
MINSTG

tells SAS to minimize storage in use.

NOMINSTG
tells SAS not to minimize storage in use.

Details

The MINSTG system option tells SAS to minimize its use of storage by returning
unused storage and deleting unused load modules at the termination of steps and
pop-up windows. This option should be used on memory-constrained systems or
when sharing the address space with other applications, such as ISPF split-screen
or multisession products. If MINSTG is in effect, then CATCACHE= is set to 0.

MSG= System Option: z/OS
Specifies the library that contains the SAS messages.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Alias: SASMSG=

Default: SASMSG

z/OS specifics: All

Syntax

MSG=file-specification-1 | (file-specification-1 file-specification-2 …)

Required Argument
file-specification

identifies an external file. Under z/OS, it can be a valid ddname or a physical
filename. The ddname must have been previously associated with an external
file using either a TSO ALLOCATE command or a JCL DD statement.

MSG= System Option: z/OS 817

You can specify one or more files. They are searched in the order in which they
are listed.

Details

Under z/OS, the MSG= system option specifies the file that contains error, warning,
and informational messages that are issued during a SAS session.

You can use the APPEND and INSERT system options to add additional file
specifications. For more information, see the APPEND and INSERT system options.

See Also

n “APPEND= System Option: z/OS” on page 705

n “INSERT= System Option: z/OS” on page 783

n “MSGCASE System Option: z/OS” on page 818

n “MSGSIZE= System Option: z/OS” on page 819

MSGCASE System Option: z/OS
Specifies whether notes, warnings, and error messages that are generated by SAS are displayed in
uppercase characters.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: NOMSGCASE

z/OS specifics: All

Syntax

MSGCASE | NOMSGCASE

Details

MSGCASE specifies that text taken from the message file is translated to
uppercase for display.

818 Chapter 31 / System Options under z/OS

MSGCASE is supported in the national language support (NLS) formats. For
information about the NLS formats, see the SAS National Language Support (NLS):
Reference Guide.

See Also

n “MSG= System Option: z/OS” on page 817

n “MSGSIZE= System Option: z/OS” on page 819

MSGSIZE= System Option: z/OS
Specifies the size of the message cache.

Valid in: Configuration file, SAS invocation

Categories: System Administration: Memory
Environment Control: Files

PROC OPTIONS
GROUP=

MEMORY
ENVFILES

Default: 196,608

z/OS specifics: All

Syntax

MSGSIZE=n | nK | nM | nG | MIN | MAX | hexX

Required Arguments
n | nK | nM | nG

specifies the size of the message cache in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can
specify decimal values for the number of kilobytes, megabytes, or gigabytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and
a value of 3m specifies 3,145,728 bytes.

MIN
sets message cache size to 0 and tells SAS to use the default value.

MAX
sets message cache size to 2,147,483,647.

hexX
specifies message cache size as a hexadecimal number of bytes.

MSGSIZE= System Option: z/OS 819

Details

The MSGSIZE= option is set during the installation process and normally is not
changed after installation.

See Also

n “MSG= System Option: z/OS” on page 817

n “MSGCASE System Option: z/OS” on page 818

MSYMTABMAX= System Option: z/OS
Specifies the maximum amount of memory available to the macro variable symbol tables.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Macro: SAS Macro

PROC OPTIONS
GROUP=

MACRO

Default: 2,097,152 bytes (2MB)

z/OS specifics: Default value

See: SAS Macro Language: Reference

Syntax

MSYMTABMAX=n | nK | nM | nG | hexX | MIN | MAX

Note: You can also use the KB, MB, and GB syntax notation.

Required Arguments
n | nK | nM | nG

specifies the maximum amount of memory that is available for the macro
symbol table in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes);
or 1,073,741,824 (gigabytes). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, to specify 1,048,576 bytes, you
can use 1M, 1024K, or 1048576.

hexX
specifies the symbol table size as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, the value 0c000x sets the

820 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

symbol table size to 49,152 and a value of 180000x sets the symbol table size to
1,572,864.

MIN
sets symbol table size to 0 and requires SAS to use the default value.

MAX
sets symbol table size to 2,147,483,647.

Details

The portable default value for MSYMTABMAX is 24,576. Under z/OS, the default
value is 1,048,576 bytes.

MVARSIZE= System Option: z/OS
Specifies the maximum size for macro variables that are stored in memory.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Macro: SAS Macro

PROC OPTIONS
GROUP=

MACRO

Default: 65,534 bytes

z/OS specifics: Default values

See: SAS Macro Language: Reference

Syntax

MVARSIZE=n | nK | hexX | MIN | MAX

Note: You can also use the KB syntax notation.

Required Arguments
n | nK

specifies the maximum macro variable size in multiples of 1 (bytes) and 1,024
(kilobytes). You can specify decimal values for the number of kilobytes. For
example, a value of 8 specifies 8 bytes, and a value of 0.782k specifies 801
bytes.

hexX
specifies the maximum macro variable size as a hexadecimal value. You must
specify the value beginning with a number (0–9), followed by hexadecimal
characters (0-9, A-F), and then followed by an X. For example, the value 2dx

MVARSIZE= System Option: z/OS 821

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

sets the maximum macro variable size to 45 bytes and a value of 0a0x sets the
maximum macro variable size to 160 bytes.

MIN
sets maximum macro variable size to 0 and requires SAS to use the default
value.

MAX
sets maximum macro variable size to 65,534.

OPLIST System Option: z/OS
Specifies whether the settings of the SAS system options are written to the SAS log.

Valid in: Configuration file, SAS invocation

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL

Default: NOOPLIST

z/OS specifics: Information logged

Syntax

OPLIST | NOOPLIST

Details

Under z/OS, the OPLIST system option writes to the SAS log the settings of all
options that were specified on the command line. It does not list the settings of
system options that were specified in the configuration file.

See Also

“VERBOSE System Option: z/OS” on page 886

PAGEBREAKINITIAL System Option: z/OS
Inserts an initial page break in SAS log and procedure output files.

Valid in: Configuration file, SAS invocation

822 Chapter 31 / System Options under z/OS

Category: Log and Procedure Output Control: SAS Log and Procedure Output

PROC OPTIONS
GROUP=

LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Default: PAGEBREAKINITIAL

z/OS specifics: Default value

See: “PAGEBREAKINITIAL System Option” in SAS System Options: Reference

Syntax

PAGEBREAKINITIAL | NOPAGEBREAKINITIAL

Required Arguments
PAGEBREAKINITIAL

begins the SAS log and listing files on a new page.

NOPAGEBREAKINITIAL
does not begin the SAS log and listing files on a new page.

Details

The PAGEBREAKINITIAL option inserts a page break at the start of the SAS log and
listing files. The default behavior is to begin the SAS log and listing files on a new
page. Specify NOPAGEBREAKINITIAL to eliminate the page break.

See Also

“The SAS Log” in SAS Programmer’s Guide: Essentials

PAGESIZE= System Option: z/OS
Specifies the number of lines that compose a page of SAS output.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: SAS Log and Procedure Output

PROC OPTIONS
GROUP=

LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

PAGESIZE= System Option: z/OS 823

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n042c35kwrf23un1aofxpi8ba05g.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en

Default: Terminal screen size for the windowing environment; 21 for interactive line mode;
60 for noninteractive modes

z/OS specifics: Default value, range of available values

See: “PAGESIZE= System Option” in SAS System Options: Reference

Syntax

PAGESIZE=n | nK | hexX | MIN | MAX

Required Arguments
n | nK

specifies the number of lines that compose a page in multiples of 1 (bytes) or
1,024 (kilobytes). You can specify decimal values for the number of kilobytes.
For example, a value of 8 specifies 8 bytes, and a value of .782k specifies 801
bytes.

hexX
specifies the maximum number of lines that compose a page as a hexadecimal
value. You must specify the value beginning with a number (0–9), followed by
hexadecimal characters (0–9, A–F), and then followed by an X. For example, the
value 2dx sets the maximum number of lines that compose a page to 45 lines.

MIN
sets the number of lines that compose a page to the minimum setting, which is
15.

MAX
sets the maximum number of lines that compose a page, which is 32,767.

Details

Under z/OS, the windowing environment uses the terminal screen size to determine
page size.

See Also

“The SAS Log” in SAS Programmer’s Guide: Essentials

PARMCARDS= System Option: z/OS
Specifies the file reference to use as the PARMCARDS file.

824 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

PROC OPTIONS
GROUP=

ENVFILES

Default: SASPARM

z/OS specifics: Valid values for fileref

See: “PARMCARDS= System Option” in SAS System Options: Reference

Syntax

PARMCARDS=fileref

Required Argument
fileref

specifies the file reference of the file to be opened.

Details

The PARMCARDS= system option specifies the file reference of a file that SAS
opens when it encounters a PARMCARDS statement in a procedure.

PFKEY= System Option: z/OS
Specifies which set of function keys to designate as the primary set of function keys.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: PRIMARY

z/OS specifics: All

Syntax

PFKEY=pfkey-set

PFKEY= System Option: z/OS 825

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0bwycx4em8cron1fmuza802n0e9.htm&locale=en

Required Argument
pfkey-set

specifies which set of 12 function keys is to be considered the primary set.
Acceptable values include the following:

PRIMARY
specifies that the primary set be F13 through F24. Thus, F13 through F24
would have the basic settings; F1 through F12 would have the extended
settings. You can use PRI as an alias for PRIMARY.

ALTERNATE
specifies that the primary set be F1 through F12. Thus, F1 through F12 would
have the basic settings; F13 through F24 would have the extended settings.
You can use ALT as an alias for ALTERNATE.

12
specifies that F1 through F12 exactly match F13 through F24. Thus, both F1
through F12 and F13 through F24 would have the basic settings. As a result,
the Keys window displays only F1 through F12.

Details

The PFKEY= option enables you to specify which set of 12 programmed function
keys is to be considered primary.

The following values are displayed in the KEYS window when you specify
PFKEY=PRIMARY. F1 through F12 are the extended settings; F13 through F24 are
the basic settings.

Extended Set Basic Set

Key Definition Key Definition

F1 mark F13 help

F2 smark F14 zoom

F3 unmark F15 zoom off; submit

F4 cut F16 pgm; recall

F5 paste F17 rfind

F6 store F18 rchange

F7 prevwind F19 backward

F8 next F20 forward

F9 pmenu F21 output

826 Chapter 31 / System Options under z/OS

Extended Set Basic Set

Key Definition Key Definition

F10 command F22 left

F11 keys F23 right

F12 undo F24 home

PGMPARM= System Option: z/OS
Specifies the parameter that is passed to the external program specified by the SYSINP= option.

Valid in: Configuration file, SAS invocation

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: None

z/OS specifics: All

Syntax

PGMPARM='string'

Required Argument
string

can be up to 255 characters long. The quotation marks are optional unless the
string contains blanks or special characters.

Details

The PGMPARM= option specifies the parameter that is passed to the external
program specified by the SYSINP= option. For more information about using the
PGMPARM= and SYSINP= options, contact your on-site SAS support personnel.

PGMPARM= System Option: z/OS 827

PRINT= System Option: z/OS
Specifies a destination for SAS output when running in batch mode.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: SASLIST

z/OS specifics: file-specification

Syntax

PRINT=<file-specification>

NOPRINT

Optional Arguments
file-specification

identifies an external file. Under z/OS, it can be a valid ddname, a physical
filename, or the name of a file stored in the directory structure of the UNIX file
system. The ddname must have been previously associated with an external file
using either a TSO ALLOCATE command or a JCL DD statement.

NOPRINT
suppresses the creation of the SAS output file.

See Also

n “Directing Output to a Printer” on page 150

System Options

n “ALTPRINT= System Option: z/OS” on page 704

PRINTINIT System Option: z/OS
Initializes the procedure output file.

Valid in: Configuration file, SAS invocation

828 Chapter 31 / System Options under z/OS

Category: Log and Procedure Output Control: Procedure Output

PROC OPTIONS
GROUP=

LISTCONTROL

Default: NOPRINTINIT

z/OS specifics: System response to PRINTINIT

See: “PRINTINIT System Option” in SAS System Options: Reference

Syntax

PRINTINIT | NOPRINTINIT

Required Arguments
PRINTINIT

empties the SAS output file and resets the file attributes upon initialization.

NOPRINTINIT
preserves the existing output file if no new output is generated. NOPRINTINIT is
the default value.

Details

Under z/OS, specifying PRINTINIT causes the procedure output file to be emptied
before SAS writes output to it. It also forces the file attributes to be correct for a
print file. Specify NOPRINTINIT if a previous program or job step has already
written output to the same file and you want to preserve that output.

PROCLEAVE= System Option: z/OS
Specifies an amount of memory that is to be held in reserve, and that is to be made available only
when memory allocation would otherwise fail.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

Default: (0,153600)

z/OS specifics: All

PROCLEAVE= System Option: z/OS 829

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0os0c1skwoz9nn1dyrnlz7m3qwd.htm&locale=en

Syntax

PROCLEAVE=n | nK | nM | (n | nK | nM, | n | nK) | nM)

Required Arguments
n | nK | nM

specifies in bytes, kilobytes, or megabytes how much memory to leave
unallocated above the 16-megabyte line. The amount of unallocated memory
below the 16-megabyte line is set to the default value. Valid values are any
integer from 0 to the maximum amount of available memory.

(n | nK | nM, n | nK | nM)
specifies in bytes, kilobytes, or megabytes how much memory to leave
unallocated below the 16-megabyte line, followed by the amount of memory to
leave unallocated above the line. Valid values are any integer from 0 to the
maximum amount of available memory.

See Also

“Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions” on
page 918

REALMEMSIZE= System Option: z/OS
Specifies the amount of real memory SAS can expect to allocate.

Valid in: SAS invocation, configuration file

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

Default: 0

z/OS specifics: All

Syntax

REALMEMSIZE=n | nK | nM | nG | hexX

Note: You can also use the KB, MB, and GB syntax notation.

830 Chapter 31 / System Options under z/OS

Required Arguments
n | nK | nM | nG

specifies the amount of memory that can be used in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can
specify decimal values for the number of kilobytes, megabytes, or gigabytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and
a value of 3m specifies 3,145,728 bytes.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by an X. For example, the value
2dx sets the amount of memory to 45 bytes and a value of 0a0x sets the
amount of memory to 160 bytes.

Details

The REALMEMSIZE option is accepted to provide compatibility with SAS code that
is written on other platforms. The option is designed for use on platforms that do
not have the concept of REGION, and it is not an effective tuning tool on z/OS.
Although SAS on z/OS accepts the REALMEMSIZE option, it does not use any
value that is specified for the option.

The value of REALMEMSIZE should not be changed from the default. Use the
MEMLEAVE option for tuning memory use on z/OS.

See Also

“MEMSIZE= System Option: z/OS” on page 814

REXXLOC= System Option: z/OS
Specifies the ddname of the REXX library to be searched when the REXXMAC option is in effect.

Valid in: Configuration file, SAS invocation

Category: Host Interfaces: REXX

PROC OPTIONS
GROUP=

REXX

Default: SASREXX

z/OS specifics: All

REXXLOC= System Option: z/OS 831

Syntax

REXXLOC=ddname

Details

The REXXLOC= option specifies the ddname of the REXX library to be searched for
any SAS REXX EXEC files, if the REXXMAC option is in effect.

See Also

n “SAS Interface to REXX” on page 313

System Options

n “REXXMAC System Option: z/OS” on page 832

REXXMAC System Option: z/OS
Enables or disables the REXX interface.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Host Interfaces: REXX

PROC OPTIONS
GROUP=

REXX

Default: NOREXXMAC

z/OS specifics: All

Syntax

REXXMAC | NOREXXMAC

Required Arguments
REXXMAC

enables the REXX interface. When the REXX interface is enabled, if SAS
encounters an unrecognized statement, then it searches for a REXX EXEC file
whose name matches the first word of the unrecognized statement. The

832 Chapter 31 / System Options under z/OS

REXXLOC= system option specifies the ddname of the REXX library to be
searched.

NOREXXMAC
disables the REXX interface. When the REXX interface is disabled, if SAS
encounters an unrecognized statement, then a "statement is not valid" error
occurs.

Details

Setting the NOXCMD option automatically sets NOREXXMAC and prevents
REXXMAC from being set.

See Also

n “SAS Interface to REXX” on page 313

System Options

n “REXXLOC= System Option: z/OS” on page 831

n “XCMD System Option: z/OS” on page 892

SASAUTOS= System Option: z/OS
Specifies the location of the autocall library.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Environment Control: Files
Macro: SAS Macro

PROC OPTIONS
GROUP=

ENVFILES
MACRO

Default: SASAUTOS

z/OS specifics: file-specification

See: SAS Macro Language: Reference
“Autocall Libraries” on page 515

Syntax

SASAUTOS=file-specification | (file-specification-1, file-specification-2 …)

SASAUTOS= System Option: z/OS 833

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Required Argument
file-specification

identifies the name of an external autocall library. Under z/OS, it can be any
valid SAS fileref or a physical filename of a PDS, PDSE, or UFS directory.

You can specify one or more autocall libraries. They are searched in the order in
which they are listed.

Details

SAS looks for autocall members in autocall libraries specified by SASAUTOS=. By
default, SAS looks in the library that is associated with the SASAUTOS fileref. Once
you specify the SASAUTOS= system option, that specification replaces the default.

The SASAUTOS= system option enables the concatenation of autocall libraries
that have different encodings. For example, the following statements concatenate
two libraries where one library has the open_ed-1047 encoding and one library has
the open_ed-1143 encoding.

FILENAME XYG1 'SASPROD.XYG1.AUTOCALL.SAS' ENCODING='open_ed-1047';
FILENAME mymacro 'USERID.AUTOCALL.SAS' ENCODING='open_ed-1143';
OPTIONS SASAUTOS=(mymacro, XYG1, SASAUTOS);

You can use the APPEND= and INSERT= system options to add additional file
specifications. For more information, see the APPEND= and INSERT= system
options.

If the LOCKDOWN SAS system option is specified, then all SAS autocall libraries
that are defined at SAS initialization are automatically added to the list of
accessible files. SAS displays a list of accessible files if a LOCKDOWN LIST
statement is issued in the autoexec file. For more information, see “LOCKDOWN
Statement” and “LOCKDOWN System Option” in SAS Intelligence Platform:
Application Server Administration Guide.

Note: SAS issues an error message if the specified autocall library does not exist.

See Also

n “Changing an Option Value By Using the INSERT and APPEND System Options”
in SAS System Options: Reference

System Options

n “APPEND= System Option: z/OS” on page 705 for the correct syntax to use
when starting SAS

n “APPEND= System Option” in SAS System Options: Reference for the correct
syntax to use after starting SAS

834 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en

n “INSERT= System Option: z/OS” on page 783 for the correct syntax to use when
starting SAS

n “INSERT= System Option” in SAS System Options: Reference for the correct
syntax to use after starting SAS

SASHELP= System Option: z/OS
Specifies the location of the Sashelp SAS library.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: SASHELP

z/OS specifics: library-specification

See: “SASHELP= System Option” in SAS System Options: Reference

Syntax

SASHELP=library-specification | (library-specification-1 library-specification-2 …)

Required Argument
library-specification

is the same as the library-specification described for the LIBNAME statement
for z/OS.

You can specify one or more libraries. They are searched in the order in which
they are listed.

Details

If the SASHELP= option is not specified, then the value SASHELP is used.

Note: If a ddname is supplied as a library-specification, then the ddname must
refer to a single z/OS data set or UFS directory. It cannot refer to an externally
allocated concatenation of data sets.

The following example shows one way to assign a list of library specifications to
SASHELP:

SASHELP=(UPDATE 'MVS:ORIGINAL.SASHELP')

SASHELP= System Option: z/OS 835

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10dxfd522hpvin181z2zftbk8h2.htm&locale=en

The first library specification UPDATE refers to a ddname that must be allocated
external to SAS. The second library specification refers to the z/OS data set
ORIGINAL.SASHELP. The file system prefix 'MVS:' is specified to distinguish this
specification from a UFS path. If the system option FILESYSTEM=HFS is in effect,
then SAS assumes that ORIGINAL.SASHELP refers to a UFS directory in the current
USS working directory.

See Also

n “Changing an Option Value By Using the INSERT and APPEND System Options”
in SAS System Options: Reference

System Options

n “APPEND= System Option: z/OS” on page 705 for the correct syntax to use
when starting SAS

n “APPEND= System Option” in SAS System Options: Reference for the correct
syntax to use after starting SAS

n “INSERT= System Option: z/OS” on page 783 for the correct syntax to use when
starting SAS

n “INSERT= System Option” in SAS System Options: Reference for the correct
syntax to use after starting SAS

SASLIB= System Option: z/OS
Specifies the ddname for an alternate load library.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: SASLIB

z/OS specifics: All

Syntax

SASLIB=ddname

836 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=p1hn00zv1qkiivn1wd8ajmwa6b1l&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

Required Argument
ddname

is the ddname of a single load library or a concatenation of load libraries that
SAS is to search before it searches the standard libraries. The ddname must be
allocated before SAS is invoked.

Details

The SASLIB= option can be used to specify a load library that contains alternate
formats, informats, and functions.

SASSCRIPT System Option: z/OS
Specifies one or more storage locations of SAS/CONNECT script files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Networking and Encryption

PROC OPTIONS
GROUP=

COMMUNICATIONS

Default: None

z/OS specifics: Location of directories

See: “SASSCRIPT=” in SAS/CONNECT User’s Guide

Syntax

SASSCRIPT='dir-name' | ('dir-name-1','dir-name-2, …')

Details

For z/OS, the dir-name must be a UFS directory.

You can use the APPEND= and INSERT= system options to add additional file
specifications. For more information, see the APPEND= and INSERT= system
options.

SASSCRIPT System Option: z/OS 837

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0l4punb9ymnd8n1jg1pcajcnj2p.htm&locale=en

See Also

n “APPEND= System Option: z/OS” on page 705

n “INSERT= System Option: z/OS” on page 783

SASUSER= System Option: z/OS
Specifies the location of an external SAS library that contains the user Profile catalog.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: SASUSER

z/OS specifics: library-specification

See: “SASUSER= System Option” in SAS System Options: Reference

Syntax

SASUSER=library-specification

Required Argument
library-specification

can be any valid ddname, the name of the physical file that comprises a SAS
library, or a UNIX file system directory; the ddname must have been previously
associated with the Sasuser SAS library using either a TSO ALLOCATE
command or a JCL DD statement.

Details

If a UNIX file system directory is to be specified, it must already exist.

See Also

“Sasuser Library” on page 16

838 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ekml3zuuv87bn1ktbbr9x19ybz.htm&locale=en

SEQENGINE= System Option: z/OS
Specifies the default engine to use when assigning sequential access SAS libraries.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: TAPE

z/OS specifics: All

Syntax

SEQENGINE=engine-name

Required Argument
engine-name

can have the following values:

TAPE
specifies the engine for accessing sequential SAS libraries in the latest tape
format.

V9TAPE
V9SEQ
V8TAPE
V8SEQ
V7TAPE
V7SEQ

specifies the engine for accessing sequential SAS libraries in SAS 9.2,
Version 8, or Version 7 tape format. The SAS 9.2, Version 8, and Version 7
engines are identical.

V6TAPE
V6SEQ

specifies the engine for accessing sequential SAS libraries in Version 6 tape
format.

Details

When you assign a SAS library that is not currently assigned within the SAS
session, if the engine is not specified on the assignment request, then SAS has to

SEQENGINE= System Option: z/OS 839

determine which engine to use to process the library. If the library already exists,
and if its engine format can be determined, then SAS uses the newest engine that is
compatible with the format of the library. Otherwise, if the engine format of the
library cannot be determined, then SAS selects an engine to use by default. If the
assignment request specifies a device or type of library that supports only
sequential access, then SAS uses the engine that is specified by the SEQENGINE
system option. Otherwise, SAS uses the engine that is specified by the ENGINE
option.

The SEQENGINE option supplies the default value when the library assignment
specification refers to one of the following conditions:

n a new tape data set

n an empty tape data set

n an empty disk data set with RECFM=U specified

n a library that is processed by the IBM product, BatchPipes

See Also

n “How SAS Assigns an Engine” on page 81

System Options

n “ENGINE= System Option: z/OS” on page 737

SET= System Option: z/OS
Defines an environment variable.

Valid in: Configuration file, SAS invocation, Options statement, SAS System Options
window

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: All

Syntax

SET=variable-name=value

SET='variable-name=value'

SET=variable-name='value'

840 Chapter 31 / System Options under z/OS

Required Arguments
variable-name

specifies the name of the environment variable to define.

value
specifies the value to assign to the environment variable.

Details

An equal sign between variable-name and value is optional, but it is recommended
for readability. Quotation marks or parentheses around the entire variable-
name=value expression, or around value, are required if value contains spaces or
other special characters.

SORT= System Option: z/OS
Specifies the minimum size of all allocated sort work data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: 0

z/OS specifics: All

Syntax

SORT=n | nK

Required Argument
n | nK

specifies the minimum size of sort work files that SAS allocates in the units
specified by the SORTUNIT option.

Details

The SORT= option specifies the minimum size of all sort work files that SAS
allocates. The units are specified by the SORTUNIT= option. If the DYNALLOC

SORT= System Option: z/OS 841

system option is specified, then any value that you specify for the SORT= option is
ignored.

The host sort is used if the number of observations that are to be sorted is
unknown.

Example: Specifying the SORT Option

The following example, which includes descriptions of the options in the code,
allocates three sort work data sets and specifies a primary space of two cylinders
for each data set.

NODYNALLOC /*Host sort does not support doing DYNALLOC for SORTWKxx*/
SORTPGM=HOST /*Always use HOST sort utility*/
SORT=4 /*Unadjusted minimum primary space for DYNALLOC*/
SORTWKNO=3 /*Allocate 3 sort work datasets*/
SORTUNIT=CYLS /*Allocation will be in cylinders*/
SORTDEV=3390 /*Device to allocate space on*/
SORTWKDD=SASS /*DDname prefix for allocation*/

Each of the three sort work data sets are created with a minimum amount of
primary space. SAS calculates the minimum space by dividing the value specified
for the SORT= option by the number of sort files, and rounding up to the next whole
number. Therefore, the three allocations are similar to the following JCL allocation:

//SASSWK01 DD SPACE=(CYL,(2)),UNIT=SYSDA
//SASSWK02 DD SPACE=(CYL,(2)),UNIT=SYSDA
//SASSWK03 DD SPACE=(CYL,(2)),UNIT=SYSDA

See Also

n “Specify the Minimum Space for Sort Work Data Sets ” on page 914

System Options

n “DYNALLOC System Option: z/OS” on page 734

n “SORTUNIT= System Option: z/OS” on page 861

SORTALTMSGF System Option: z/OS
Enables sorting with alternate message flags.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

842 Chapter 31 / System Options under z/OS

PROC OPTIONS
GROUP=

SORT

Default: NOSORTALTMSGF

z/OS specifics: All

Syntax

SORTALTMSGF | NOSORTALTMSGF

Details

Specify SORTALTMSGF if the sort utility on your host requires nonstandard flags
for the message parameter. For information about specifying the appropriate
setting for the SORTALTMSGF option, see the documentation for your sort utility.

SORTBLKMODE System Option: z/OS
Enables block mode sorting.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTBLKMODE

z/OS specifics: All

Syntax

SORTBLKMODE | NOSORTBLKMODE

Details

If SORTBLKMODE is in effect, block mode sorting is used if the sort utility supports
it. Specify NOSORTBLKMODE to disable block mode sorting, even if the sort utility
supports it.

SORTBLKMODE System Option: z/OS 843

SORTBLKREC System Option: z/OS
Enables control of SORTBLKMODE buffers.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTBLKREC

z/OS specifics: All

See: “SORTBLKMODE System Option: z/OS” on page 843

Syntax

SORTBLKREC=n

Details

SORTBLKREC can be used to control the size for the SORTBLKMODE buffers. The
default SORTBLKMODE buffer size is based on the size of the data set that is being
sorted. Specifying a memory buffer that is too large can have adverse effects.

Note: The suggested optimal setting is SORTBLKREC=5000. However, you might
need to adjust the value, depending on the data that you are sorting.

SORTBUFMOD System Option: z/OS
Enables modification of the sort utility output buffer.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTBUFMOD

844 Chapter 31 / System Options under z/OS

z/OS specifics: All

Syntax

SORTBUFMOD | NOSORTBUFMOD

Details

Specify NOSORTBUFMOD if the sort utility on your host does not support
modification of its sort buffer. For information about specifying the appropriate
setting for the SORTBUFMOD option, see the documentation for your sort utility.

SORTCUT= System Option: z/OS
Specifies the size of the data in observations above which the host sort is likely to perform more
efficiently than the internal sort.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: 51200

z/OS specifics: All

Syntax

SORTCUT=n | nK | nM | nG | MIN | MAX | hexX

Note: You can also use the KB, MB, and GB syntax notation.

Required Arguments
n | nK | nM | nG

specifies the number of observations in multiples of 1 (n); 1,024 (nK); 1,048,576
(nM); or 1,073,741,824 (nG). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, a value of 800 specifies 800
observations, a value of .782k specifies 801 observations, and a value of 3m
specifies 3,145,728 observations.

MIN
specifies 0 observations.

SORTCUT= System Option: z/OS 845

MAX
specifies 9,007,199,254,740,992 observations.

hexX
specifies the number of observations as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hexadecimal characters
(0–9, A–F), and then followed by an X. For example, the value 2ffx specifies 767
observations.

Details

If SORTPGM=BEST is specified, then SAS uses the host sort if the size of the data
exceeds the specified value for SORTCUT. If SORTPGM is set to anything other
than BEST, then SAS uses the specified program. SAS might issue a message to the
log if it would have selected a different sort.

If the values of both SORTCUT and SORTCUTP are specified as 0, then the host
sort is used. SORTCUTP is used only when SORTCUT=0 is specified. If the
specified value of SORTCUT is greater than 0, then that value is used and the
specified value of SORTCUTP is ignored. If the size of the data to be sorted is
unknown, such as when a WHERE statement or data set option might be filtering
the data, then the host sort is used.

Note: The number of observations in a data set is a better predictor of sort
performance than is the number of bytes in the data set. Therefore, SAS
recommends that you use SORTCUT instead of SORTCUTP so that SAS chooses
the optimum sort program. SORTCUTP is still available for compatibility with
previous SAS releases.

See Also

n “Consider Changing the Values of SORTPGM= and SORTCUTP=” on page 913

n “Efficient Sorting ” on page 913

System Options

n “SORTCUTP= System Option: z/OS” on page 846

n “SORTPGM= System Option: z/OS” on page 856

SORTCUTP= System Option: z/OS
Specifies the size of the data in bytes above which the host sort is likely to perform more efficiently
than the internal sort. SORTCUTP is used only when SORTCUT=0.

846 Chapter 31 / System Options under z/OS

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: 4M

z/OS specifics: All

Syntax

SORTCUTP=n | nK | nM | nG | MIN | MAX | hexX

Note: You can also use the KB, MB, and GB syntax notation.

Required Arguments
n | nK | nM | nG

specifies the value of SORTCUTP= in bytes, kilobytes, megabytes, or gigabytes,
respectively.

The value of SORTCUTP= can be specified in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can
specify decimal values for the number of kilobytes, megabytes, or gigabytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and
a value of 3m specifies 3,145,728 bytes.

MIN
sets SORTCUTP= to 0.

MAX
sets SORTCUTP= to 2,147,483,647 bytes.

hexX
specifies SORTCUTP= as a hexadecimal number of bytes.

Details

The SORTCUTP= option specifies the number of bytes above which the external
host sort utility is used instead of the SAS sort program, if SORTPGM=BEST is in
effect.

If SORTPGM=BEST is specified, then SAS uses the host sort if the size of the data
exceeds the specified amount for SORTCUT. If SORTPGM is set to anything other
than BEST, then SAS uses the specified program. SAS might issue a message to the
log if it would have selected a different sort.

The host sort is used if the number of observations that are to be sorted is
unknown.

SORTCUTP= System Option: z/OS 847

Note: SAS recommends that you use the SORTCUT system option instead of
SORTCUTP.

The following equation computes the number of bytes to be sorted:

number-of-bytes=((length-of-obs)+(length-of-all-keys))*number-of-obs

See Also

n “Consider Changing the Values of SORTPGM= and SORTCUTP=” on page 913

n “Efficient Sorting ” on page 913

System Options

n “SORTCUT= System Option: z/OS” on page 845

n “SORTPGM= System Option: z/OS” on page 856

SORTDEV= System Option: z/OS
Specifies the unit device name if SAS dynamically allocates the sort work file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SYSDA

z/OS specifics: All

Syntax

SORTDEV=unit-device-name

Details

To specify a device name, use a generic device type unit name, such as 3390, rather
than a group name, such as SYSDA.

To determine the disk space requirements, SAS must look up the device
characteristics for the specified unit name. A group name might represent multiple

848 Chapter 31 / System Options under z/OS

device types, which makes it impossible to predict on which device type the sort
work files are allocated and what the memory requirements are.

For group names, the device characteristics of the Work library are used. Use of
these characteristics can result in a warning message, unless NOSORTDEVWARN
is in effect.

See Also

n “Specify the Minimum Space for Sort Work Data Sets ” on page 914

System Options

n “DYNALLOC System Option: z/OS” on page 734

n “SORTDEVWARN System Option: z/OS” on page 849

SORTDEVWARN System Option: z/OS
Enables device type warnings.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTDEVWARN

z/OS specifics: All

Syntax

SORTDEVWARN | NOSORTDEVWARN

Details

Specify NOSORTDEVWARN to disable warning messages sent when SORTDEV=
specifies a group or esoteric device type.

SORTDEVWARN System Option: z/OS 849

SORTEQOP System Option: z/OS
Specifies whether the host sort utility supports the EQUALS option.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTEQOP

z/OS specifics: All

Syntax

SORTEQOP | NOSORTEQOP

Details

The SORTEQOP option specifies whether the host sort utility accepts the EQUALS
option. (The EQUALS option sorts observations that have duplicate keys in the
original order.) If the utility does accept the EQUALS option, then SORTEQOP
causes the EQUALS option to be passed to it unless you specify NOEQUALS in the
PROC SORT statement. If NOSORTEQOP is in effect, then the EQUALS option is
not passed to the host sort utility unless you specify the EQUALS option in the
PROC SORT statement.

Note that equals processing is the default for PROC SORT. Therefore, if
NOSORTEQOP is in effect, and if you did not specify the EQUALS option in the
PROC SORT statement, then the host sort interface must do additional processing
to ensure that observations with identical keys remain in their original order. This
requirement of the host system might adversely affect performance.

For information about specifying the appropriate setting for the SORTEQOP option,
see the documentation for your sort utility.

SORTLIB= System Option: z/OS
Specifies the name of the sort library.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

850 Chapter 31 / System Options under z/OS

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SYS1.SORTLIB

z/OS specifics: All

Syntax

SORTLIB=physical-filename

Required Argument
physical-filename

specifies the name of a partitioned data set.

Details

The SORTLIB= option specifies the name of the partitioned data set (load library)
that contains the host sort utility (other than the main module that is specified by
the SORTPGM= or SORTNAME= option). This library is dynamically allocated to
the ddname SORTLIB. If the host sort utility resides in a link list library or if the sort
library is part of the JOBLIB, STEPLIB, or TASKLIB libraries, then this option is
unnecessary and should not be specified.

Note: If the SORTLIB ddname is already allocated, then changing the SORTLIB
specification does not have any effect. It does not matter whether the original
allocation was made by SAS or an application external to SAS.

SORTLIST System Option: z/OS
Enables passing of the LIST parameter to the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: NOSORTLIST

z/OS specifics: All

SORTLIST System Option: z/OS 851

Syntax

SORTLIST | NOSORTLIST

Required Arguments
SORTLIST

tells SAS to pass the LIST parameter to the host sort utility when the SORT
procedure is invoked. The host sort utility uses the LIST parameter to determine
whether to list control statements.

NOSORTLIST
tells SAS not to pass the LIST parameter to the host sort utility.

Details

The SORTLIST option controls whether the LIST parameter is passed to the host
sort utility.

Note: If the default for your sort utility is to print messages, then NOSORTLIST
has no effect.

SORTMSG System Option: z/OS
Controls the class of messages to be written by the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: NOSORTMSG

z/OS specifics: All

Syntax

SORTMSG | NOSORTMSG

852 Chapter 31 / System Options under z/OS

Required Arguments
SORTMSG

tells SAS to pass the MSG=AP parameter to the host sort utility.

NOSORTMSG
tells SAS to pass the MSG=CP parameter to the host sort utility, which means
that only critical messages are written.

SORTMSG= System Option: z/OS
Specifies the ddname to be dynamically allocated for the message print file of the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SYSOUT

z/OS specifics: All

Syntax

SORTMSG=ddname

Required Argument
ddname

can be any valid ddname or a null string. The ddname is dynamically allocated to
either a SYSOUT data set (with class *) under batch or a terminal under TSO,
and the ddname is passed to the host sort utility.

SORTNAME= System Option: z/OS
Specifies the name of the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORT

SORTNAME= System Option: z/OS 853

z/OS specifics: All

Syntax

SORTNAME=host-sort-utility-name

Required Argument
host-sort-utility-name

is any valid operating environment name. A valid operating environment name
can be up to eight characters, the first of which must be a letter or special
character ($, #, or @). The remaining characters, following the first, can be any
of the above, or digits.

Details

The SORTNAME= option specifies the name of the host sort utility to be invoked if
SORTPGM=HOST or if SORTPGM=BEST and the host sort utility is chosen instead
of the SAS sort utility. For information about sort utility selection, see “SORTPGM=
System Option: z/OS” on page 856.

SORTOPTS System Option: z/OS
Specifies whether the host sort utility supports the OPTIONS statement.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTOPTS

z/OS specifics: All

Syntax

SORTOPTS | NOSORTOPTS

854 Chapter 31 / System Options under z/OS

Details

The SORTOPTS option specifies whether the host sort utility accepts the
OPTIONS statement. The OPTIONS statement is generated by the host sort
interface only if the 31-bit extended parameter list is requested via the SORT31PL
option.

If the SORT31PL and NOSORTOPTS options are both specified, then not all of the
available sort options can be passed to the host sort utility. The sort might fail if all
of the options cannot be passed to the utility. In particular, the sort work areas
cannot be used because the SORT option cannot be passed the value of the
SORTWKDD= option.

You should therefore specify the DYNALLOC option, even though this specification
can cause problems with multiple sorts within a single job. Older releases of some
vendors' sort utilities dynamically allocate sort work files only if they are not
already allocated. As a result, subsequent sorts might fail if they require more sort
work space than the first sort.

SORTPARM= System Option: z/OS
Specifies parameters for the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: None

z/OS specifics: All

Syntax

SORTPARM='string'

Required Argument
string

is a string of parameters. It can contain up to 255 characters. Single quotation
marks are required if the string contains blanks or special characters.

SORTPARM= System Option: z/OS 855

Details

The parameters that you specify are appended to the OPTIONS statement that is
generated by the SAS host sort interface. This capacity enables you to specify
options that are unique to the particular sort utility that you are using. The sort
utility must accept a 31-bit parameter list and an OPTIONS statement. Otherwise,
this option is ignored.

Note: Options that you specify with the SORTPARM option are not passed to the
sort program as parameters.

SORTPGM= System Option: z/OS
Specifies which sort utility SAS uses, the SAS sort utility or the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: BEST

z/OS specifics: All

Syntax

SORTPGM=utility | BEST | HOST | SAS

Required Arguments
utility

can be any valid operating environment name that specifies the name of an
accessible utility, except one of the three keywords for this option.

BEST
The choice is made based on the value of the SORTCUT option, or the
SORTCUTP option when SORTCUT=0.

HOST
specifies to use the host sort utility.

SAS
specifies to the SAS sort utility.

856 Chapter 31 / System Options under z/OS

Details

The host sort utility might be more suitable for large SAS data sets than the sort
utility that is supplied by SAS.

If SORTPGM=BEST is specified, then SAS uses the host sort if the size of the data
exceeds the specified amount for SORTCUT. Or, it uses the specified value of
SORTCUTP if SORTCUT=0. If SORTPGM is set to anything other than BEST, then
SAS uses the specified program. SAS might issue a message to the log if it would
have selected a different sort.

The name of the host sort utility is also specified with the SORTNAME= system
option.

The host sort is used if the number of observations that are to be sorted is
unknown.

See Also

n “Consider Changing the Values of SORTPGM= and SORTCUTP=” on page 913

n “Efficient Sorting ” on page 913

n “Specify the Minimum Space for Sort Work Data Sets ” on page 914

System Options

n “SORTCUT= System Option: z/OS” on page 845

n “SORTCUTP= System Option: z/OS” on page 846

n “SORTNAME= System Option: z/OS” on page 853

SORTSHRB System Option: z/OS
Specifies whether the host sort interface can modify data in buffers.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTSHRB for all modes except batch; NOSORTSHRB for batch mode

z/OS specifics: All

SORTSHRB System Option: z/OS 857

Syntax

SORTSHRB | NOSORTSHRB

Required Arguments
SORTSHRB

specifies that two or more tasks are likely to be sharing the data in buffers. If
SORTSHRB is in effect, the host sort interface cannot modify data in buffers but
must move the data first. Moving the data before modifying it could have a
severe performance impact, especially for large sorts.

SORTSHRB is the default value for the windowing environment, interactive line
mode, and noninteractive mode, where it is more likely that multiple tasks use
the same data.

NOSORTSHRB
specifies that no tasks share the data in buffers. If NOSORTSHRB is in effect,
the host sort interface can modify data in buffers. NOSORTSHRB is the default
value for batch mode because it is unlikely that buffers are shared during batch
jobs, where larger sorts are usually run. If not sharing buffers between tasks is
not suitable for your batch environment, be sure to specify SORTSHRB.

Details

SAS data sets can be opened for input by more than one SAS task (or window).
When this happens, the buffers into which the data is read can be shared between
the tasks. Because the host sort interface might need to modify the data before
passing it to the host sort utility, and by default does this directly to the data in the
buffers, data can be corrupted if more than one task is using the data in the buffers.

SORTSIZE= System Option: z/OS
Specifies the SIZE parameter that SAS is to pass to the sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Sort: Procedure Options
System Administration: Memory

PROC OPTIONS
GROUP=

SORT
MEMORY

Default: MAX

z/OS specifics: Valid values

See: “SORTSIZE= System Option” in SAS System Options: Reference

858 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0ipa8xt1ma3h7n1wqjqr99679pg.htm&locale=en

Syntax

SORTSIZE=n | nK | nM | nG | MAX | SIZE

Required Arguments
n

specifies a number of bytes of memory to be used by the sort utility. If n is 0, the
sort uses the default that was defined when it was installed.

nK
specifies a number of kilobytes of memory to be used by the sort utility.

nM
specifies a number of megabytes of memory to be used by the sort utility.

nG
specifies a number of gigabytes of memory to be used by the sort utility.

MAX
specifies that the characters MAX are to be passed to the system sort utility.
This specification causes the sort utility to size itself. Not all sort utilities
support this feature.

SIZE
specifies that the sort is to use the total amount of free space in the virtual
machine minus the amount that is specified by the LEAVE= option in the PROC
SORT statement.

See Also

“Consider Changing the Values of SORTPGM= and SORTCUTP=” on page 913

SORTSUMF System Option: z/OS
Specifies whether the host sort utility supports the SUM FIELDS=NONE control statement.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTSUMF

z/OS specifics: All

SORTSUMF System Option: z/OS 859

Syntax

SORTSUMF | NOSORTSUMF

Required Arguments
SORTSUMF

specifies that the host sort utility supports the SUM FIELDS=NONE control
card.

NOSORTSUMF
specifies that the host sort utility does not support the SUM FIELDS=NONE
control card. If NOSORTSUMF is in effect and the NODUPKEY option was
specified when PROC SORT was invoked, then records that have duplicate keys
are eliminated.

Details

If the NODUPKEY procedure option is specified when the SORT procedure is
invoked, the SORTSUMF system option can be used to specify whether the host
sort utility supports the SUM FIELDS=NONE statement.

Note that duplicate keys are not the same as duplicate records. Duplicate keys can
be eliminated with the NODUPKEY option in the PROC SORT statement.

For information about specifying the appropriate setting for the SORTSUMF option,
see the documentation for your sort utility.

SORTUADCON System Option: z/OS
Specifies whether the host sort utility supports passing a user address constant to the E15/E35 exits.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORTUADCON

z/OS specifics: All

Syntax

SORTUADCON | NOSORTUADCON

860 Chapter 31 / System Options under z/OS

Required Arguments
SORTUADCON

specifies that the host utility supports passing a user address constant to the
E15/E35 exits.

NOSORTUADCON
specifies that the host sort utility does not support passing a user address
constant to the E15/E35 exits.

Details

For information about specifying the appropriate setting for the SORTUADCON
option, see the documentation for your sort utility.

SORTUNIT= System Option: z/OS
Specifies the unit of allocation for sort work files.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: CYLS

z/OS specifics: All

Syntax

SORTUNIT=CYL<S> | TRK<S> | BLK<S> | n

Required Arguments
CYL<S>

specifies that the units be cylinders. The space calculation for cylinder
allocations requires that the characteristics of the device on which the
allocations are made need to be known. The device type is specified with the
SORTDEV= option. The device type should be specified as generic, such as
3390, rather than esoteric, such as DISK. When an esoteric name is specified, it
is impossible to predict what device type is used. Therefore, the device
characteristics are also unknown.

SORTUNIT= System Option: z/OS 861

TRK<S>
specifies that the units be tracks. The space calculation for track allocations
requires that the characteristics of the device on which the allocations are made
need to be known. The device type is specified with the SORTDEV= option. The
device type should be specified as generic, such as 3390, rather than esoteric,
such as DISK. When an esoteric name is specified, it is impossible to predict
what device type is used. Therefore, the device characteristics are also
unknown.

BLK<S>
specifies that the files are allocated with an average block size equal to the
record length rounded up to approximately 6K (6144). Therefore, if the input
record length was 136, the average block size used for the allocation would be
6120.

n
is an integer that specifies the average block size.

Details

The SORTUNIT= option specifies the unit of allocation to be used if SAS
dynamically allocates the sort work files. For more information, see the
“DYNALLOC System Option: z/OS” on page 734.

See Also

“Specify the Minimum Space for Sort Work Data Sets ” on page 914

SORTWKDD= System Option: z/OS
Specifies the prefix of sort work data sets.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SASS

z/OS specifics: All

862 Chapter 31 / System Options under z/OS

Syntax

SORTWKDD=prefix

Required Argument
prefix

is a four-character, valid operating environment name, which must begin with a
letter or a national character ($, #, or @), followed by letters, national
characters, or digits. SORT is not a valid value for SORTWKDD. SAS issues an
error message if you specify SORTWKDD=SORT.

Details

The SORTWKDD= option specifies the prefix to be used to generate the ddnames
for the sort work files if SAS or the host sort utility dynamically allocates them. For
more information, see “DYNALLOC System Option: z/OS” on page 734. The
ddnames are of the form prefixWKnn, where nn can be in the range of 01 to the
value of the SORTWKNO= option, which has a default value of 3 and a range of
0-99.

See Also

n “Reserved z/OS Ddnames” on page 40

n “Specify the Minimum Space for Sort Work Data Sets ” on page 914

SORTWKNO= System Option: z/OS
Specifies how many sort work data sets to allocate.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: 3

z/OS specifics: All

SORTWKNO= System Option: z/OS 863

Syntax

SORTWKNO=n

Required Argument
n

can be 0-99. If SORTWKNO=0 is specified, any existing sort work files are freed
and none are allocated.

Details

The SORTWKNO= option specifies how many sort work files are to be allocated
dynamically by either SAS or the SORT utility.

See Also

n “Specify the Minimum Space for Sort Work Data Sets ” on page 914

System Options

n “DYNALLOC System Option: z/OS” on page 734

SORT31PL System Option: z/OS
Controls what type of parameter list is used to invoke the host sort utility.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Sort: Procedure Options

PROC OPTIONS
GROUP=

SORT

Default: SORT31PL

z/OS specifics: All

Syntax

SORT31PL | NOSORT31PL

864 Chapter 31 / System Options under z/OS

Details

If SORT31PL is in effect, a 31-bit extended parameter list is used to invoke the host
sort utility. If NOSORT31PL is in effect, a 24-bit parameter list is used.

If SORT31PL is specified, then the SORTOPTS system option should also be
specified. Also, because sorts that currently support a 31-bit parameter list also
support the EQUALS option, the SORTEQOP system option should be specified in
order to maximize performance.

For information about specifying the appropriate setting for the SORT31PL option,
see the documentation for your sort utility.

STAE System Option: z/OS
Enables or disables a system abend exit.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Error Handling

PROC OPTIONS
GROUP=

ERRORHANDLING

Default: STAE

z/OS specifics: All

Syntax

STAE | NOSTAE

Details

The STAE option causes SAS error trapping and handling to be activated by an
ESTAE macro in the host supervisor.

STATS System Option: z/OS
Specifies whether statistics are to be written to the SAS log.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: System Administration: Performance

STATS System Option: z/OS 865

Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL
PERFORMANCE

Default: STATS

z/OS specifics: All

Syntax

STATS | NOSTATS

Required Arguments
STATS

tells SAS to write selected statistics to the SAS log.

NOSTATS
tells SAS not to write any statistics to the SAS log.

Details

The STATS system option specifies whether performance statistics are to be
written to the SAS log. The statistics that are written to the log are determined by
the MEMRPT, STIMER, and FULLSTATS system options.

See Also

n “Collecting Performance Statistics” on page 904

System Options

n “FULLSTATS System Option: z/OS” on page 771

n “MEMRPT System Option: z/OS” on page 813

n “STIMER System Option: z/OS” on page 868

STAX System Option: z/OS
Specifies whether to enable attention handling.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Error Handling

866 Chapter 31 / System Options under z/OS

PROC OPTIONS
GROUP=

ERRORHANDLING

Default: STAX

z/OS specifics: All

Syntax

STAX | NOSTAX

Required Arguments
STAX

causes attention handling to be activated by a STAX macro in the host
supervisor.

NOSTAX
causes the SAS session to end when the attention key is pressed.

STEPCHKPTLIB= System Option: z/OS
Specifies the libref of the library where checkpoint-restart data is saved.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Error Handling

PROC OPTIONS
GROUP=

ERRORHANDLING

Default: WORK

Requirement: Can be used only in batch mode

Syntax

STEPCHKPTLIB=libref

Required Argument
libref

specifies the libref that identifies the library where the checkpoint-restart data
is saved. The LIBNAME statement that identifies the checkpoint-restart library
must use the BASE engine and be the first statement in the batch program.

STEPCHKPTLIB= System Option: z/OS 867

Details

Overview of the STEPCHKPTLIB= System Option
When the STEPCHKPT system option is specified, checkpoint-restart data for
batch programs is saved in the libref that is specified in the STEPCHKPTLIB=
system option. If no libref is specified, SAS uses the Work library to save
checkpoint data. The LIBNAME statement that defines the libref must be the first
statement in the batch program.

If the Work library is used to save checkpoint data, then the NOWORKTERM and
NOWORKINIT system options must be specified so that the checkpoint-restart
data is available when the batch program is resubmitted. These two options ensure
that the Work library is saved when SAS ends and is restored when SAS starts. If
the NOWORKTERM option is not specified, the Work library is deleted at the end
of the SAS session and the checkpoint-restart data is lost. If the NOWORKINIT
option is not specified, a new Work library is created when SAS starts, and again
the checkpoint-restart data is lost.

The STEPCHKPTLIB= option must be specified for any SAS session that accesses
checkpoint-restart data that is not saved to the Work library.

Setting Up and Executing Checkpoint Mode and Restart Mode
To set up checkpoint mode and restart mode, make the following modification to
your batch program:

n Add the CHECKPOINT EXECUTE_ALWAYS statement before any DATA and
PROC steps that you want to execute each time the batch program is
submitted.

n Add the LIBNAME statement that defines the checkpoint-restart libref as the
first statement in the batch program if your checkpoint-restart library is a user-
defined library. If you use the Work library as your checkpoint library, no
LIBNAME statement is necessary.

Note: You can use a ddname instead of a libref.

STIMER System Option: z/OS
Specifies whether to write a subset of system performance statistics to the SAS log.

Valid in: Configuration file, SAS invocation

Category: System Administration: Performance

PROC OPTIONS
GROUP=

PERFORMANCE, SMF

Default: STIMER

868 Chapter 31 / System Options under z/OS

z/OS specifics: All

Syntax

STIMER | NOSTIMER

Required Arguments
STIMER

writes only the CPU time and memory that are used to the SAS log. When the
STATS option is also in effect, SAS writes the CPU time statistic to the SAS log.

NOSTIMER
does not write any statistics to the SAS log.

Details

Additional statistics can be written to the SAS log by specifying the FULLSTATS or
MEMRPT system options.

See Also

n “Collecting Performance Statistics” on page 904

System Options

n “FULLSTATS System Option: z/OS” on page 771

n “MEMRPT System Option: z/OS” on page 813

n “STATS System Option: z/OS” on page 865

SVC11SCREEN System Option: z/OS
Specifies whether to enable SVC 11 screening to obtain host date and time information.

Valid in: Configuration file, SAS invocation

Category: System Administration: Performance

PROC OPTIONS
GROUP=

EXECMODES

Default: NOSVC11SCREEN

z/OS specifics: All

SVC11SCREEN System Option: z/OS 869

Syntax

SVC11SCREEN | NOSVC11SCREEN

Required Arguments
SVC11SCREEN

causes SAS to issue SVC 11 to obtain the datetime value.

NOSVC11SCREEN
causes SAS to use the STCK instruction to obtain the datetime value.

SYNCHIO System Option: z/OS
Specifies whether synchronous I/O is enabled.

Valid in: Configuration file, SAS invocation

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: NOSYNCHIO

z/OS specifics: Default value

Syntax

SYNCHIO | NOSYNCHIO

Required Arguments
SYNCHIO

causes data set I/O to wait for completion.

NOSYNCHIO
allows other logical SAS tasks to execute (if any are ready) while the I/O is
being done.

Details

The SYNCHIO system option is a mirror alias of the system option NOASYNCHIO.
NOSYNCHIO is equivalent to ASYNCHIO.

870 Chapter 31 / System Options under z/OS

See Also

“ASYNCHIO System Option: z/OS” on page 709

SYSIN= System Option: z/OS
Specifies the location of the primary SAS input data stream.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Defaults: none (interactive)
SYSIN (batch)

z/OS specifics: All

Syntax

SYSIN=file-specification | NOSYSIN

Required Arguments
file-specification

identifies an external file. Under z/OS, it can be a valid ddname, a physical
filename, or the name of a file stored in the directory structure of UNIX System
Services. The ddname must have been previously associated with an external
file using either a TSO ALLOCATE command or a JCL DD statement.

NOSYSIN
disables SYSIN, as if the file-specification were blank. This option is useful for
testing your autoexec file. It invokes SAS in batch mode and processes your
autoexec file. SAS exits after your autoexec file is processed.

Details

This option is applicable when you run SAS programs in noninteractive or batch
mode. SYSIN= is overridden by SYSINP= if a value for SYSINP= has been specified.

SYSIN= System Option: z/OS 871

SYSINP= System Option: z/OS
Specifies the name of an external program that provides SAS input statements.

Valid in: Configuration file, SAS invocation

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Default: None

z/OS specifics: All

Syntax

SYSINP=external-program-name

Required Argument
external-program-name

identifies an external program, using eight characters or less.

Details

SAS calls this external program every time it needs a new SAS input statement.
The PGMPARM= option enables you to pass a parameter to the program that you
specify with the SYSINP= option. For more information about the PGMPARM
option, see “PGMPARM= System Option: z/OS” on page 827.

The SYSINP= option overrides the SYSIN= system option.

SYSLEAVE= System Option: z/OS
Specifies how much memory to leave unallocated to ensure that SAS software tasks are able to
terminate successfully.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: System Administration: Memory

PROC OPTIONS
GROUP=

MEMORY

872 Chapter 31 / System Options under z/OS

Default: (0,153600)

z/OS specifics: All

Syntax

SYSLEAVE= n | nK | nM | (n | nK | nM, | n | nK | nM)

Required Arguments
n | nK | nM

specifies in bytes, kilobytes, or megabytes how much memory to leave
unallocated above the 16-megabyte line. The amount of unallocated memory
below the 16-megabyte line is set to the default value. Valid values are any
integer from 0 to the maximum amount of available memory.

(n | nK | nM, n | nK | nM)
specifies in bytes, kilobytes, or megabytes how much memory to leave
unallocated below the 16-megabyte line, followed by the amount of memory to
leave unallocated above the line. Valid values are any integer from 0 to the
maximum amount of available memory.

See Also

“Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions” on
page 918

SYSPREF= System Option: z/OS
Specifies a prefix for partially qualified physical filenames.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: External Files

PROC OPTIONS
GROUP=

EXTFILES

Defaults: User profile prefix (interactive)
user ID (batch)

z/OS specifics: All

SYSPREF= System Option: z/OS 873

Syntax

SYSPREF=prefix

Details

The SYSPREF= option specifies a prefix to be used in constructing a fully qualified
physical filename from a partially qualified name. Wherever a physical name must
be entered in quotation marks in SAS statements or in SAS windowing environment
commands, you can enter a data set name in the form '.rest-of-name', and SAS
inserts the value of the SYSPREF= option in front of the first period.

Unlike the user profile prefix, the SYSPREF= option can have more than one
qualifier in its name. For example, if you specify SYSPREF=SAS.TEST, then
'.SASDATA' is interpreted as 'SAS.TEST.SASDATA'. The maximum length of prefix is
42 characters.

If no value is specified for SYSPREF=, then SAS uses the user profile prefix (in the
interactive environment) or the user ID (in batch).

SYSPRINT= System Option: z/OS
Specifies the handling of output that is directed to the default print file.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and Procedure Output Control: ODS Printing

PROC OPTIONS
GROUP=

LISTCONTROL

Default: None

z/OS specifics: All

Syntax

SYSPRINT=* | DUMMY | ddname

Required Arguments
*

terminates redirection of output.

DUMMY
suppresses output to the default print file.

874 Chapter 31 / System Options under z/OS

ddname
causes output to the default print file to be redirected to the specified ddname.

S99NOMIG System Option: z/OS
Tells SAS whether to recall a migrated data set.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Categories: Files: SAS Files
Files: External Files

PROC OPTIONS
GROUP=

SASFILES
EXTFILES

Default: NOS99NOMIG

z/OS specifics: All

Syntax

S99NOMIG | NOS99NOMIG

Details

The S99NOMIG option tells SAS what to do when a physical file that you reference
(in a FILENAME statement, for example) has been migrated. If S99NOMIG is in
effect, then the data set is not recalled and the allocation fails. If NOS99NOMIG is
in effect, the data set is recalled, and allocation proceeds as it would have if the
data set had not been migrated.

TAPECLOSE= System Option: z/OS
Specifies how sequential access bound libraries on tape are handled when SAS closes the library
data set.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: REREAD

TAPECLOSE= System Option: z/OS 875

z/OS specifics: Default value, valid values

Syntax

TAPECLOSE=REREAD | LEAVE | REWIND | DISP | FREE

Required Arguments
REREAD

specifies that the operating system rewind the tape volume to the start of the
SAS library when SAS closes the library data set. Specifying
TAPECLOSE=REREAD is recommended if the library is to be processed by
multiple SAS procedures or DATA steps in the same SAS session.

LEAVE
specifies that the operating system leave the tape volume positioned
immediately following the end of the data set on the current volume when SAS
closes the library data set. Specifying TAPECLOSE=LEAVE is recommended if
the subsequent data set on the tape volume is the next data set from that
volume that SAS processes. For more information about the LEAVE parameter,
see the example in “Optimizing Performance” on page 60.

REWIND
specifies that the operating system rewind the tape volume to the beginning of
the tape when SAS closes the library data set.

DISP
specifies that the operating system position the tape volume in accordance with
the termination disposition specified via the DISP parameter when the library
data set was allocated. If the disposition is PASS, the action described for
TAPECLOSE=LEAVE is performed. For other dispositions, the action described
for TAPECLOSE=REWIND is performed, and in some cases, the tape volume can
be unloaded if necessary.

FREE
specifies that the operating system deallocate the tape volume when SAS
closes the library data set. Specifying this option makes the tape volume
available for use by other jobs in the system as soon as SAS has closed the
library, rather than at the end of the SAS session. Do not specify
TAPECLOSE=FREE if the library data set is used in multiple SAS procedures or
DATA steps in the same SAS session.

Details

In general, SAS closes the library data set at the conclusion of the SAS procedure
or DATA step that is processing the library. The TAPECLOSE option has no effect
on processing direct bound libraries or UFS libraries. Specifying FREE=CLOSE on
the JCL DD statement for a library is honored only if TAPECLOSE has a value of
REWIND, DISP, or FREE. If TAPECLOSE has a value of REREAD or LEAVE, then the

876 Chapter 31 / System Options under z/OS

FREE=CLOSE specification is ignored. For more information about FREE=CLOSE,
see the IBM JCL Reference for the version of z/OS that your site is using.

Note: If the FILECLOSE data set option is specified, then it overrides the
TAPECLOSE system option.

See Also

“FILECLOSE= Data Set Option: z/OS” on page 439

USER= System Option: z/OS
Specifies the location of the default SAS library.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: None

z/OS specifics: library-specification

See: “USER= System Option” in SAS System Options: Reference

Syntax

USER=library-specification

Required Argument
library-specification

can be a ddname that was previously associated with a SAS library, the name of
a physical file that comprises a SAS library, or a UNIX System Services
directory.

UTILLOC= System Option: z/OS
Specifies location of certain types of temporary utility files.

Valid in: Configuration file, SAS invocation

UTILLOC= System Option: z/OS 877

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Default: WORK

z/OS specifics: Valid values

See: “UTILLOC= System Option” in SAS System Options: Reference

Syntax

UTILLOC = "location" (| "location-1", "location-2", "…")

Required Argument
location

can be one of the following:

n a UFS directory in the UNIX file system.

n an ALLOC command that specifies the amount of space to be used for each
utility file. For information about the syntax of the ALLOC command, see
“ALLOC Command Details” on page 879.

n the Work library. The effect of specifying UTILLOC=WORK depends on
whether the Work library resides in a UFS directory or in a direct access
bound library. If the Work library resides in UFS, then UTILLOC=WORK
causes certain temporary utility files to reside within temporary
subdirectories of the Work library directory. If the Work library resides in a
direct access bound library, then UTILLOC=WORK is equivalent to
specifying an ALLOC command that provides the same maximum amount of
space as that to which the current Work library can be extended on its first
(or only) volume. This default provides an adequate amount of space for
most applications.

Details

Overview of the UTILLOC= System Option
The UTILLOC option specifies one or more locations for a new type of utility file
that is introduced as part of the SAS 9 architecture. These utility files are
comparable to SAS files with a type of UTILITY, but they are not members of the
Work library or any other SAS library. UTILLOC utility files are primarily used by
applications that are enabled for multiple threads of execution.

Each location that is specified for the UTILLOC option identifies a single place at
which utility files can be created. If multiple locations are specified, then the
locations are used on a rotating basis by SAS applications as utility files are
required. A location can be specified as a UFS directory or as an ALLOC command.
An ALLOC command is not a location in the usual sense. Instead, it describes the

878 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1texr4rxo0ipyn1ovajj11raccx.htm&locale=en

operands that are used to create a temporary z/OS data set that is to contain the
utility file. Single quotation marks can be used in place of the double quotation
marks that are shown in the syntax diagram.

When SAS uses a UFS location for a utility file, it first creates a temporary
subdirectory that is subordinate to the specified location. It then creates the utility
file in the temporary subdirectory. This temporary subdirectory and its contents are
automatically deleted before the SAS session ends, provided that SAS ends
normally. For information about removing temporary subdirectories that remain
after a SAS session terminates abnormally, see Appendix 7, “The cleanwork Utility,”
on page 975.

Each time SAS uses an ALLOC command for a utility file, SAS uses the operands
that are specified as part of the ALLOC command to allocate a new temporary
z/OS data set. This temporary data set receives a unique system-generated name,
which allows multiple distinct utility files to be used at the same time. It is not
possible to specify the data set name that is to be used for these temporary data
sets.

For applications that use multiple utility files at the same time, specifying multiple
locations that correspond to separate physical I/O devices might improve
performance by reducing competition for device resources.

ALLOC Command Details
All of the following operands must be specified on the ALLOC command:

n UNIT(device type)

n TRACKS, CYL, or BLOCK(block length)

n SPACE(primary<,secondary>)

One or more of the following operands can be also specified on the ALLOC
command:

n UCOUNT(number of devices)

n VOL(volser [,volser...])

n STORCLAS(storage class)

n MGMTCLAS(management class)

n DATACLAS(data class)

n DSNTYPE(LARGE)

The ALLOC command operands that are listed have the same syntax and meaning
as when they are specified on the TSO ALLOCATE command. For more information,
see the IBM documentation about the ALLOCATE command. An ALLOC command
can be specified as a UTILLOC file location even in the batch environment. It is not
necessary to have SAS running under TSO when you specify an ALLOC command
as a utility file location. When you use an ALLOC command as a UTILLOC location,
SAS recommends that you specify the UTILLOC command with a configuration file.

Certain SAS procedures can create a large number of separate utility files that are
to be used at the same time. When a UTILLOC location is specified as an ALLOC
command, each utility file resides in a separate, temporary z/OS data set. The
primary space amount is allocated on disk for each utility file even if SAS needs to

UTILLOC= System Option: z/OS 879

write only a small amount of data. SAS recommends that you specify a primary
allocation amount that is modest in size. To increase the maximum amount of data
that the utility files can contain, increase the secondary allocation amount or allow
the utility files to extend to multiple volumes. SAS does not recommend specifying
a large amount of primary allocation space.

To allow utility files to extend to multiple volumes, specify UCOUNT(n), where n is
the maximum number of volumes, or use the DATACLAS operand to specify an
SMS data class that designates a volume count greater than one. Specifying a list
of volumes with the VOL operand is supported, but it is not recommended.

When you use multiple ALLOC command utility locations, the same space
operands should be specified for each location because the UTILLOC locations are
used on a rotating basis. The location that is used for each utility file cannot be
predicted in general, so it is best to specify the same maximum size for all utility
files. Also, you can reduce competition for device resources by specifying multiple
UTILLOC locations that include UNIT or STORCLAS operands that refer to
different sets of disk devices. Contact the system programmer at your site for
information about selecting the appropriate UNIT and STORCLAS operands to
achieve the objective of reducing competition for device resources.

The temporary data sets that are created for utility files must be regular-format
sequential data sets. Extended-format sequential data sets are not supported.
Therefore, for the DATACLAS operand, do not specify a data class with a Data Set
Name Type of extended.

Diagnosing ALLOC Command Problems
Problems that occur when processing utility files that are specified by an ALLOC
command can be grouped into the following categories:

n errors in the syntax of the ALLOC command. These problems include errors
such as misspelling the name of an operand, failing to supply the required
operands, and so on.

n failure of the system to perform the dynamic allocation requested by the
ALLOC command. These problems can occur because the requested resources
are not available or because names that are not defined on the system are
specified.

n insufficient space in the utility file. These problems occur when SAS is writing
data to the utility file and the utility file becomes full, but the system is not able
to allocate additional space to the utility file data set. The failure to allocate
additional space can occur because no secondary space amount was specified,
because the maximum number of extents have been allocated, or because no
more disk space is available on the disk volume or volumes allocated to the
utility file.

SAS does not detect problems with UTILLOC location specifications until an
attempt is made to create a utility file.

The following example shows the type of message that is issued if the ALLOC
command has a syntax error. In this case, the block length is omitted from the
BLOCK operand. BLOCK(block length) should have been specified instead:

 Dynalloc syntax error: Unknown, or unsupported parm.
 Invalid syntax for data set dynamic allocation specification.

880 Chapter 31 / System Options under z/OS

 Data set dynamic allocation specification: ALLOC UNIT(DISK)
UCOUNT(2) BLOCK SPACE(500,500) NEW DELETE
ERROR: Utility file open failed.
ERROR: Object creation failure.
ERROR: Sort initialization failure.

In the following example the ALLOC command has valid syntax, but it refers to a
unit name, BADUNIT, that is not defined on the system:

 SVC 99 could not process data set dynamic allocation
specification. R15: 0X4, Reason: 0X21C, Info: 0
 Data set dynamic allocation specification: ALLOC UNIT(BADUNIT)
CYL SPACE(20,100) NEW DELETE
ERROR: Utility file open failed.
ERROR: Object creation failure.
ERROR: Sort initialization failure.

In the following example no secondary space was specified, so SAS could not
extend the utility file after the primary space amount was consumed:

 Data set SYS10321.T171203.RA000.USERID.R0106386 could not be extended.
 Data set dynamic allocation specification: ALLOC UNIT(DISK)
UCOUNT(2) TRACKS SPACE(1,1) NEW DELETE
 Space used on volume SCRAT2 = 16 tracks and 16 extents.
 Space used on volume SCRAT1 = 16 tracks and 16 extents.
 Total space used = 32 tracks and 32 extents.
ERROR: Unexpected error Filename = SYS10321.T171203.RA000.USERID.R0106386.
ERROR: No disk space is available for the write operation. Filename =
 SYS10321.T171203.RA000.USERID.R0106386.
ERROR: Failure while attempting to write page 17 of sorted run 1.
ERROR: Failure while attempting to write page 17 to utility file 1.

Note: The operands NEW and DELETE are shown as part of the dynamic allocation
requests. These operands should not be specified as part of the ALLOC command
because they are added automatically by SAS.

You can also use the debug_utilloc command to determine whether the syntax of
your UTILLOC option is valid. Submit the command from a line in the SAS Program
Editor window, and SAS writes the ALLOC command and any errors to the SAS log.

You can specify the TKMVSENV environment file option
TKOPT_TKIOP_DIAG_SPACE to request the production of diagnostic messages for
an output utility file when the file is closed. These messages detail the space
allocation that is associated with the utility file allocation, and the amount of space
that the utility file actually used. The diagnostic messages are written to the SAS
log as shown in the following example:

NOTE: Data set SYS12311.T140918.RA000.user01.R0101080 usage diagnostics:

 Data set dynamic allocation specification: ALLOC UNIT(3390)

 SPACE(5,5) CYL NEW DELETE

 Space used on volume SCRD02 = 75 tracks and 1 extents.

 Total space used = 75 tracks and 1 extents.

UTILLOC= System Option: z/OS 881

Example: Specifying the UTILLOC= System Option

Here are some examples of the different arguments that you can specify with the
UTILLOC= system option:

n UTILLOC='ALLOC UNIT(DISK) UCOUNT(2) CYL SPACE(20,100)'

n UTILLOC='/tmp'

n UTILLOC=('ALLOC UNIT(DISK) STORCLAS(POOL1) CYL SPACE(20,100)',
'ALLOC UNIT(DISK) STORCLAS(POOL2) CYL SPACE(20,100)')

n UTILLOC=("/dept/prod/utility1", "/dept/prod/utility2")

V6GUIMODE System Option: z/OS
Specifies whether SAS uses SAS 6 style SCL selection list windows.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Display

PROC OPTIONS
GROUP=

ENVDISPLAY

Default: NOV6GUIMODE

z/OS specifics: All

Syntax

V6GUIMODE | NOV6GUIMODE

Details

The V6GUIMODE option specifies whether SAS uses SAS 6 style SCL selection list
windows such as the selection list windows displayed with the following SAS
Component Language functions: CATLIST, DATALISTC, DATALISTN, DIRLIST,
FILELIST, LIBLIST, LISTC, LISTN, SHOWLIST, and VARLIST. This specification also
applies to the POPMENU function when the list of items is displayed in a scrollable
list box. The V6GUIMODE option also displays the SAS 6 directory window for the
BUILD and FSLETTER procedures instead of using the SAS Explorer window.

If you specify the V6GUIMODE option when you invoke SAS, then your SAS session
might hang if you invoke a fullscreen procedure such as FSEDIT, FSVIEW, or BUILD
with a PROC statement and also issue the VAR command from within the
fullscreen window. You might also see this problem if you invoke a SAS/AF
application with the DM statement. This condition does not occur if you invoke the
fullscreen window with a command or SCL routine.

882 Chapter 31 / System Options under z/OS

VALIDMEMNAME= System Option: z/OS
Specifies the rules for naming SAS data sets, data views, and item stores.

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS
GROUP=

SASFILES

Applies to: Base SAS engine and SPDS engine

Restriction: The VALIDMEMNAME= option is not supported by the tape engines V9TAPE,
V8TAPE, V7TAPE, and V6TAPE

Note: For more information, see “Restricted Options” in SAS System Options: Reference.

Syntax

VALIDMEMNAME=COMPATIBLE | EXTEND

Required Arguments
COMPATIBLE

specifies that a SAS data set name, a view name, or an item store must follow
these rules:

n The length of the names can be up to 32 characters.

n Names must begin with a letter of the Latin alphabet (A-Z, a-z) or the
underscore. Subsequent characters can be letters of the Latin alphabet,
numerals, or underscores.

n Names cannot contain blanks or special characters except for the
underscore.

n Names can contain mixed-case letters. SAS internally converts the member
name to uppercase. Therefore, you cannot use the same member name with
a different combination of uppercase and lowercase letters to represent
different variables. For example, customer, Customer, and CUSTOMER all
represent the same member name. How the name is saved on disk is
determined by the operating environment.

This is the default.

Alias COMPAT

EXTEND
specifies that a SAS data set name, a SAS view name, or an item store must
follow these rules:

VALIDMEMNAME= System Option: z/OS 883

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

n Names can include national characters.

n The name can include special characters, except for the characters / \ * ? " <
> |: -.

Note: The SPD Engine does not allow ‘.’ (the period) anywhere in the
member name.

n The name must contain at least one character.

n The length of the name can be up to 32 bytes.

n Null bytes are not allowed.

n Names cannot begin with a blank or a ‘.’ (the period).

Note: The SPD Engine does not allow ‘$’ as the first character of the
member name.

n Leading and trailing blanks are deleted when the member is created.

n Names can contain mixed-case letters. SAS internally converts the member
name to uppercase. Therefore, you cannot use the same member name with
a different combination of uppercase and lowercase letters to represent
different variables. For example, customer, Customer, and CUSTOMER all
represent the same member name. How the name appears is determined by
the operating environment.

Restriction The windowing environment supports the extended rules in the
Editor, Log, and Output windows when
VALIDMEMNAME=EXTEND is set. In most SAS windows, these
extended rules are not supported. For example, these rules are not
supported in the VIEWTABLE window and windows that you open
using the Solutions menu.

Requirement When VALIDMEMNAME=EXTEND, SAS data set names, view
names, and item store names must be written as a SAS name
literal. If you use either the percent sign (%) or the ampersand (&),
then you must use single quotation marks in the name literal in
order to avoid interaction with the SAS Macro Facility.For more
information, see “SAS Name Literals” in SAS Programmer’s Guide:
Essentials.

Tip The name is displayed in uppercase letters.

See “SAS Names” in SAS Programmer’s Guide: Essentials

Examples data “August Purchases”n;

data ‘Años de empleo’n.;

CAUTION Throughout SAS, using the name literal syntax with SAS member
names that exceed the 32-byte limit or have excessive embedded
quotation marks might cause unexpected results. The intent of the
VALIDMEMNAME=EXTEND system option is to enable compatibility

884 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0z9rbr2w2vtd1n1q8lty9b13iv3.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&locale=en

with other DBMS member naming conventions, such as allowing
embedded blanks and national characters.

CAUTION Using the special character # when VALIDMEMNAME=EXTEND
could cause a SAS data set to be overwritten by a generation
data set. When VALIDMEMNAME= is set to EXTEND, it is possible to
name a SAS data set name that uses the naming conventions for
generation data sets, which append the special character # and a three-
digit number to its member name. To avoid conflict, do not name SAS
data sets similar to archived SAS data sets. For example, for a data set
named A, generation data sets would automatically be named A#001,
A#002, and so on. If you name a SAS data set A#003, the SAS data set
could be deleted by SAS in the process of adding to a generation group.

CAUTION When VALIDMEMNAME is set to EXTEND, the use of '(' and ')'
individually or in reverse order can have unpredictable results.
Parentheses should be used only to indicate a member of a partitioned data
set.

CAUTION In the z/OS operating environment, if the session encoding is not
the default EBCDIC 1047 (U.S. English), the representation of the
special character # can cause incompatibility between releases.
For SAS 9.3, the special character # is represented by the specified session
encoding. For SAS releases prior to SAS 9.3, the # special character is
represented in EBCDIC 1047.

Details

Overview of VALIDMEMNAME
When VALIDMEMNAME= EXTEND valid characters that are allowed in a SAS data
set name, view name, and item store name are extended to these characters:

n international characters

n characters supported by third-party databases

n characters that are commonly used in a filename

Only the DATA, VIEW, and ITEMSTOR SAS member types support the extension of
characters. The other member types, such as CATALOG and PROGRAM do not
support the extended characters. INDEX and AUDIT types that exist only with the
associated DATA member do support extended characters.

Handling File Extension Delimiters
If you reference a SAS file directly by its physical name, the final embedded period
is assumed to be an extension delimiter, regardless of the VALIDMEMNAME
setting. Consequently, if you use the EXTEND option for VALIDMEMNAME=, and
the member name itself contains a period, then the full extension should be
specified as part of the reference.

VALIDMEMNAME= System Option: z/OS 885

The following example illustrates this concept. The comments in the example are
from the SAS log:

Example Code 31.1 SAS Log Contents from Using VALIDMEMNAME=EXTEND

1 options validmemname=extend;
NOTE: Windowing environment support for VALIDMEMNAME=EXTEND is limited
 to Editor, Log, and Output windows.
2 libname ufs "./saslib";
NOTE: Libref UFS was successfully assigned as follows:
 Engine: V9
 Physical Name: /u/userid/saslib
3 data ufs."my.member"n; x=1; run;
NOTE: The data set UFS.'MY.MEMBER'n has 1 observations and 1 variables.
4 data _null_; set "./saslib/my.member"; run;
NOTE: There were 1 observations read from the data set ./saslib/my.member.
5 data _null_; set "./saslib/my.member.sas7bdat"; run;
NOTE: There were 1 observations read from the data set
 ./saslib/my.member.sas7bdat.

See Also

n “Words and Names” in SAS Programmer’s Guide: Essentials

System Option:

n “VALIDVARNAME= System Option” in SAS System Options: Reference

VERBOSE System Option: z/OS
Specifies whether SAS writes the start-up system option settings to the SAS log.

Valid in: Configuration file, SAS invocation

Category: Log and Procedure Output Control: SAS Log

PROC OPTIONS
GROUP=

LOGCONTROL

Default: NOVERBOSE

z/OS specifics: Data written and where it is written

Syntax

VERBOSE | NOVERBOSE

886 Chapter 31 / System Options under z/OS

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0691yyhwyeg0in19g0nmfd4cgtd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

Details

If you specify the VERBOSE system option at SAS invocation, then the settings of
all SAS system options that were set at SAS invocation are displayed in the SAS
log. They are displayed in the sequence in which they were processed.

The settings are written to your SAS log. If SAS fails to initialize (for example,
because of an unrecognized option specification), the VERBOSE output is written
to the SASCLOG file (normally the terminal when SAS is run interactively).

See Also

“OPLIST System Option: z/OS” on page 822

WORK= System Option: z/OS
Specifies the location of the SAS Work library.

Valid in: Configuration file, SAS invocation

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

Default: WORK

z/OS specifics: library-specification

See: “WORK= System Option” in SAS System Options: Reference

Syntax

WORK=library-specification

Required Argument
library-specification

can be a ddname that was previously associated with a SAS library or the name
of a physical file that comprises a SAS library.

Note: If the specified location is a WORK directory that is in UFS path, then the
WORK directory is not in the /tmp directory. Instead, it is in a subdirectory
of /tmp such as this.

/tmp/SASutilxxxxxxxxxxx

WORK= System Option: z/OS 887

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1er6tm8fay8u2n1fhktmeoy2be4.htm&locale=en

See Also

“Work Library and Other Utility Files” on page 26

WORKTERM System Option: z/OS
Specifies whether SAS erases WORK files at the termination of a SAS session.

Valid in: Configuration file, SAS invocation, Option statement, SAS System Options window

Category: Environment Control: Files

PROC OPTIONS
GROUP=

ENVFILES

z/OS specifics: Default setting

Syntax

WORKTERM | NOWORKTERM

Details

WORKTERM is the most appropriate setting when the Work library resides in a UFS
directory because reusing a UFS Work library from a previous session is not
practical. However, NOWORKTERM is the appropriate setting when the Work
library resides in a direct access bound library because of one of the following
conditions:

n the library resides in a temporary z/OS data set that is deleted by the system
anyway

n the library resides in a permanent data set that might be reused.

SAS recommends that you specify NOWORKTERM in the default options table and
not specify it in a configuration file or in the SAS invocation options. If you follow
this recommendation, SAS automatically selects the appropriate setting during
SAS initialization, based on the type of Work library.

WTOUSERDESC= System Option: z/OS
Specifies a WTO DATA step function descriptor code.

Valid in: Configuration file, SAS invocation

Category: DATA Step: WTO Function

888 Chapter 31 / System Options under z/OS

PROC OPTIONS
GROUP=

INSTALL

Default: 0

z/OS specifics: All

Syntax

WTOUSERDESC= n

Required Argument
n

specifies the message descriptor code. The valid values for n are from 0 to 16.

Details

The message descriptor code is assigned to any message that is sent using the
WTO DATA step function or CALL routine. See the IBM documentation for
supported DESCRIPTOR code values and their meanings.

Note: Unlike z/OS, SAS does not support multiple descriptor codes.

See Also

CALL Routines

n “CALL WTO Routine: z/OS” on page 462

Functions

n “WTO Function: z/OS” on page 498

System Options

n “WTOUSERMCSF= System Option: z/OS” on page 889

n “WTOUSERROUT= System Option: z/OS” on page 891

WTOUSERMCSF= System Option: z/OS
Specifies WTO DATA step function MCS flags.

WTOUSERMCSF= System Option: z/OS 889

Valid in: Configuration file, SAS invocation

Category: DATA Step: WTO Function

PROC OPTIONS
GROUP=

INSTALL

Default: NULL

z/OS specifics: All

Syntax

WTOUSERMCSF=(BRDCST | HRDCPY | NOTIME | BUSYEXIT)

Required Arguments
BRDCAST

tells SAS to broadcast the message to all active consoles.

HRDCPY
tells SAS to queue the message for hard copy only.

NOTIME
tells SAS not to append time to the message.

BUSYEXIT
tells SAS, in case of a WTO buffer shortage, to return rather than wait for an
available buffer.

Details

If you supply a value for WTOUSERMCSF=, it is included in the MCSFLAG field for
every write-to-operator message that is sent with the WTO DATA step function or
CALL routine.

You can supply one or more of the valid values. If you supply more than one value,
the values must be enclosed in parentheses. The parentheses are optional if you
specify only one value.

See Also

CALL Routines

n “CALL WTO Routine: z/OS” on page 462

Functions

n “WTO Function: z/OS” on page 498

890 Chapter 31 / System Options under z/OS

System Options

n “WTOUSERDESC= System Option: z/OS” on page 888

n “WTOUSERMCSF= System Option: z/OS” on page 889

WTOUSERROUT= System Option: z/OS
Specifies a WTO DATA step function routing code.

Valid in: Configuration file, SAS invocation

Category: DATA Step: WTO Function

PROC OPTIONS
GROUP=

INSTALL

Default: 0

z/OS specifics: All

Syntax

WTOUSERROUT=n

Required Argument
n

specifies the routing code. The valid values of n are from 0 to 16. Specifying a
value of 0 for the WTOUSERROUT= system option disables the WTO function.

Details

The routing code is assigned to any message that is sent with the WTO DATA step
function or CALL routine. See the IBM documentation for supported routing code
values and their meaning.

Note: Unlike z/OS, SAS does not support multiple descriptor codes.

See Also

CALL Routines

n “CALL WTO Routine: z/OS” on page 462

WTOUSERROUT= System Option: z/OS 891

Functions

n “WTO Function: z/OS” on page 498

System Options

n “WTOUSERMCSF= System Option: z/OS” on page 889

XCMD System Option: z/OS
Specifies whether the X command is valid in the SAS session.

Valid in: Configuration file, SAS invocation

Category: Input Control: Data Processing

PROC OPTIONS
GROUP=

INPUTCONTROL

Default: XCMD

z/OS specifics: All

Syntax

XCMD | NOXCMD

Details

If XCMD is in effect, you can issue operating environment commands through any
of the available SAS interfaces, including the X command or the X statement; TSO
command, statement, function, or CALL routine; SYSTEM function or CALL routine;
%TSO macro; or %SYSEXEC macro.

If NOXCMD is in effect, then all of the above interfaces are disabled. In addition,
the following interfaces are disabled:

n PIPE and NAMEPIPE device types in the FILENAME statement

n FILENAME function

n REXX macro interface

n ISPF interface

n the capability to invoke an external program as a SAS procedure

892 Chapter 31 / System Options under z/OS

See Also

“REXXMAC System Option: z/OS” on page 832

XCMD System Option: z/OS 893

894 Chapter 31 / System Options under z/OS

32
TKMVSENV Options under z/OS

TKMVSENV Options in the z/OS Environment . 895

Dictionary . 896
set _BPXK_SETIBMOPT_TRANSPORT=“stack-name” Environment Variable 896
set DISABLESASIPV6= Environment Variable . 896
set TCPIPMCH=stack-name Environment Variable . 897
set TCPRSLV=IBM | SASC Environment Variable . 897
set TKOPT_CWD=path Environment Variable . 897
set TKOPT_ECHOENV Environment Variable . 898
set TKOPT_ENV_UTILLOC=<path> Environment Variable . 898
set TKOPT_LPANAME=xxxxxxxx Environment Variable . 899
set TKOPT_SVCNO=nnn, set TKOPT_SVCR15=nn Environment Variables 899
set TKOPT_TKIOP_DIAG_SPACE= Environment Variable . 899
set TKOPT_UMASK=nnn Environment Variable . 900

TKMVSENV Options in the z/OS
Environment

This chapter provides information about environment options that are specific to
z/OS. For more information, see “TKMVSENV File” on page 35.

For more information about the environment variables that are supported and their
recommended values, see the following sources.

Table 32.1 SAS References

Type of Environment Variables Reference

SAS Installation Installation instructions for SAS
Foundation for z/OS on support.sas.com

895

Type of Environment Variables Reference

SAS Troubleshooting SAS Technical Support

Configuring for the Java Platform Configuration Guide for SAS Foundation
for z/OS on support.sas.com

Dictionary

set _BPXK_SETIBMOPT_TRANSPORT=“stack-
name” Environment Variable
Specifies for 64-bit SAS the IBM TCP/IP stack name to set the stack affinity for z/OS systems that
are running more than one TCP/IP stack.

Details

For 64-bit SAS, this option specifies the IBM TCP/IP stack name to set the stack
affinity for z/OS systems that are running more than one TCP/IP stack. See set
TCPIPMCH=stack-name for the equivalent TKMVSENV option for 31-bit SAS.

set DISABLESASIPV6= Environment Variable
Disables support for TCP/IP IPv6 on z/OS.

Details

This Boolean variable disables support for TCP/IP IPv6 on z/OS.

896 Chapter 32 / TKMVSENV Options under z/OS

set TCPIPMCH=stack-name Environment Variable
Specifies for 31-bit SAS the IBM TCP/IP stack name to set the stack affinity for z/OS systems that
are running more than one TCP/IP stack.

Details

For 31-bit SAS, this option specifies the IBM TCP/IP stack name to set the stack
affinity for z/OS systems that are running more than one TCP/IP stack. See set
_BPXK_SETIBMOPT_TRANSPORT=“<stack-name>” for the equivalent TKMVSENV
option for 64-bit SAS.

set TCPRSLV=IBM | SASC Environment Variable
Sets the TCP/IP DNS resolver to either the IBM DNS Resolver or to the SAS/C DNS Resolver.

Details

This option sets the TCP/IP DNS resolver to either the IBM DNS Resolver or to the
SAS/C DNS Resolver. By default, SAS uses the IBM DNS Resolver unless the
DISABLESASIPV6 option has been set.

set TKOPT_CWD=path Environment Variable
Causes the current working directory to be set to path for the SAS session.

Details

This option causes the current working directory to be set to path for the SAS
session. If the pathname is nonexistent or invalid, no action is taken. The path can
be absolute or relative.

set TKOPT_CWD=path Environment Variable 897

set TKOPT_ECHOENV Environment Variable
Displays all environment variables before SAS starts.

Details

The TKOPT_ECHOENV option provides information that can help you debug
problems when you are running SAS in z/OS server spaces. To display all of the
environment variables before SAS starts, specify set 'TKOPT_ECHOENV=Y' in the
TKMVSENV file or -set 'TKOPT_ECHOENV=Y' on the command line.

The TKOPT_ECHOENV option does not require that you specify a value after the =
sign. For example, specifying set 'TKOPT_ECHOENV=Y' returns the same
information that specifying set 'TKOPT_ECHOENV=' returns. Specifying
TKOPT_ECHOENV=DISABLE does not disable the option. You must remove the
option from the TKMVSENV file or comment out the option to disable it.

Note: The option name is case sensitive. Tkopt_echoenv is not the same as
TKOPT_ECHOENV. The specification of the option initiates the display of the
environment variables. The option value can be any value.

set TKOPT_ENV_UTILLOC=<path> Environment
Variable
Specifies the fully qualified pathname of a UFS directory to contain temporary files that are created
by SAS before the completion of SAS initialization, or by the spawner.

Details

When specified in the TKMVSENV file for a SAS session or a SAS server, this
option specifies the fully qualified pathname of a UFS directory. The directory
contains temporary files that are created by SAS before the completion of SAS
initialization. When specified for a SAS object spawner, this option specifies the
fully qualified pathname of a UFS directory to contain any temporary files that are
created by the spawner.

898 Chapter 32 / TKMVSENV Options under z/OS

set TKOPT_LPANAME=xxxxxxxx Environment
Variable
Specifies the name of the SAS application entry point invoked by the SASLPA main entry point.

Details

This option specifies the name of the SAS application entry point invoked by the
SASLPA main entry point. If you placed the LPA resident module in LPA with a
name other than SASXAL, you must specify the same name for the
TKOPT_LPANAME option value.

set TKOPT_SVCNO=nnn, set TKOPT_SVCR15=nn
Environment Variables
Specifies how the SAS SVC is installed at the user site.

Details

These variables specify how the SAS SVC is installed at the user site. This
information is necessary because the threaded kernel might need to use some of
the SVC services independently of the SAS application. These variables should be
specified with the same values as the SVC0SVC and SVC0R15 SAS options.

set TKOPT_TKIOP_DIAG_SPACE= Environment
Variable
Results in the production of diagnostic messages when a utility file is closed.

set TKOPT_TKIOP_DIAG_SPACE= Environment Variable 899

Details

This option results in the production of diagnostic messages when a utility file is
closed. These messages detail the space allocation that is associated with the
utility file allocation and the amount of space that the utility file actually used.

set TKOPT_UMASK=nnn Environment Variable
Specifies the UNIX umask to apply to this session.

Details

This option specifies the UNIX umask to apply to this session. This mask is applied
to any UFS files created and operates as a standard UNIX umask. nnn must be
exactly three octal digits between 0 and 7.

900 Chapter 32 / TKMVSENV Options under z/OS

PART 7

Appendixes

Appendix 1
Optimizing Performance . 903

Appendix 2
Using EBCDIC Data on ASCII Systems . 923

Appendix 3
Encoding for z/OS Resource Names . 939

Appendix 4
Starting SAS with SASRX . 943

Appendix 5
64–Bit SAS Metadata Server . 965

Appendix 6
Accessing BMDP, SPSS, and OSIRIS Files . 967

Appendix 7
The cleanwork Utility . 975

Appendix 8
Host-System Subgroup Error Messages . 979

Appendix 9
ICU License . 987

901

902

Appendix 1
Optimizing Performance

Introduction to Optimizing Performance . 904

Collecting Performance Statistics . 904
Overview of Collecting Performance Statistics . 904
Logging SMF Statistics . 905

Optimizing SAS I/O . 905
Process SAS Files or Data Libraries in Memory . 905
Optimize I/O for Direct Access Bound Libraries . 909
Optimize I/O for Sequential Access Bound Libraries . 911
Determine Whether You Should Compress Your Data . 911

Efficient Sorting . 913
Consider Changing the Values of SORTPGM= and SORTCUTP= 913
Take Advantage of the DFSORT Performance Booster . 914
Specify the Minimum Space for Sort Work Data Sets . 914
Concurrent Sorting . 916

Some SAS System Options That Can Affect Performance . 916
MAUTOSOURCE and IMPLMAC . 916
REXXMAC . 917
SPOOL and NOSPOOL . 917

Managing Memory . 917
Overview of Managing Memory . 917
Specify a Value for MEMLEAVE= When You Invoke SAS . 918
Consider Using Superblocking Options to Control Memory Fragmentation 918
Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions 918
Specify a Larger Region Size . 919
Memory Cheat Sheet for z/OS . 919

Loading SAS Modules Efficiently . 920

Other Considerations for Improving Performance . 921
Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows 921
Use the EM3179 Device Driver When Appropriate . 921

903

Introduction to Optimizing Performance
SAS software includes many features that can help you manage CPU, memory, and
I/O resources effectively. The following sections describe features that are either
specific to z/OS or that have characteristics that are specific to z/OS. The
information is applicable to your site whether you run SAS interactively or in batch
mode.

For additional information about optimizing SAS performance under z/OS, see
Tuning SAS(R) Applications in the OS/390 and z/OS Environments, by Michael
Raithel (available from SAS Press).

For information about optimizing SAS performance on any host operating system,
see “Optimizing System Performance” in SAS Programmer’s Guide: Essentials.

Collecting Performance Statistics

Overview of Collecting Performance Statistics
Several SAS system options provide information that can help you optimize your
SAS programs. The STATS system option writes statistics to the SAS log. The
FULLSTATS, MEMRPT, and STIMER system options can be specified in
combination to select the statistics that are written to the SAS log.

STATS
specifies that statistics are to be written to the SAS log. NOSTATS specifies
that no statistics are to be written to the SAS log, regardless of the values of
STIMER, MEMRPT, and FULLSTATS. STATS and NOSTATS can be specified at
any time during a SAS session. For more information, see “STATS System
Option: z/OS” on page 865.

STIMER
specifies that the CPU time statistic is to be collected and maintained
throughout the SAS session. If STATS and STIMER are in effect, then the CPU
time statistic is written into the SAS log for each task. If FULLSTATS, STATS,
and STIMER are in effect, the statistics listed under FULLSTATS in the following
list are written to the SAS log. STIMER must be specified at SAS invocation. For
more information, see “STIMER System Option: z/OS” on page 868.

MEMRPT
specifies that memory usage statistics are to be written to the SAS log. If STATS
and MEMRPT are in effect, then the amount of memory used by each task and

904 Appendix 1 / Optimizing Performance

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1c7iu5f048fdtn1v3g8ba2j3p6i.htm&locale=en

the total amount of memory used for the SAS session is written into the SAS
log. If FULLSTATS, STATS, and MEMRPT are in effect, then additional statistics
are written into the SAS log, as specified in the following list item for
FULLSTATS. MEMRPT and NOMEMRPT can be specified at any time during a
SAS session. For more information, see “MEMRPT System Option: z/OS” on
page 813.

FULLSTATS
specifies that additional statistics are to be written to the SAS log. The actual
statistics added are determined by the values of STIMER and MEMRPT. If
STIMER is in effect, then elapsed time is displayed. RSM hiperspace time and
EXCP count are also displayed if their values are nonzero. If MEMRPT is in
effect, then for each task, both task and total memory are displayed, including
the amount of memory used for data and amount of memory used for program.
FULLSTATS and NOFULLSTATS can be specified at any time during a SAS
session. For more information, see “FULLSTATS System Option: z/OS” on page
771.

Logging SMF Statistics
SMF statistics are generated by IBMs System Management Facility. If your system
is configured to enter the SMF exit, and if the SAS system options SMF and
SMFEXIT= are in effect, up to 20 SMF statistics can be written to the SAS SMF
records that are written for each procedure or DATA step.

The SMFEXIT option is optional. The SMF and STIMER options are required. You
must specify SMF and STIMER to create SMF records from SAS, and you must also
have the SAS Supervisor Call (SVC) installed and the SVC0SVC option set
correctly.

For more information about SMF statistics, see the Configuration Guide for SAS
Foundation for z/OS.

Optimizing SAS I/O

Process SAS Files or Data Libraries in Memory

Overview of Processing in Memory

The volume of data that SAS applications must process has steadily increased, and
the processing time has remained the same or has decreased. The increased speed

Optimizing SAS I/O 905

of z/Series processors and the ability of some SAS procedures to perform some
processing in parallel has accelerated many applications. However, these
improvements cannot completely address the time required to transfer data
between a file on an I/O device and central storage of the processor. Since the
amount of real storage available to z/Series processors has continued to grow
exponentially, processing SAS files or libraries in memory is an increasingly
attractive strategy for reducing the elapsed time of SAS jobs. This topic describes
three techniques that avoid I/O by storing SAS files or libraries in memory for some
part of their processing.

Use the SASFILE Statement to Load a Frequently
Used SAS Data Set into Memory

By default, any SAS data set that is processed by a SAS procedure or DATA step is
closed at the conclusion of the procedure or step. This action causes the buffers to
be released and any updated pages to be written to disk. If a subsequent procedure
or step needs to read or update the SAS data set again, the same pages that were
already in buffers might need to be read back from disk again. Such extra I/O can be
avoided by specifying two SASFILE statements:

n one statement to open or load the SAS data set before the procedures or DATA
steps in which the data set is used

Note: The SASFILE statement loads the entire member into memory. That is, it
ignores any previous setting of the OBS option.

n a second statement to close the data set after its last use within the SAS
session

The SASFILE statement can provide benefits whenever some pages of a SAS data
set are accessed repeatedly. For example, suppose a SAS data set is read by two
separate DATA steps. If the SASFILE statement is used to load the file into memory
before the first step, each page of the data set is read only once, as part of
processing the SASFILE statement. Then the DATA steps access the pages of the
data set directly from memory without requiring any I/O. In this case, the amount of
I/O that is required is reduced by half.

If any of the procedures or steps access every page in the SAS data set, the best
strategy is to specify the SASFILE LOAD option. If only some of the pages are to be
accessed, then specify the SASFILE OPEN option. This option causes the actual I/O
to be deferred until the page is first referenced, thus avoiding I/O for any pages that
are not referenced.

Obtaining the full performance benefit of SASFILE can require a sufficiently large
REGION size, so contact your z/OS systems administrator if necessary. For more
information, see “SASFILE Statement: z/OS” on page 675 and “SASFILE Statement”
in SAS Global Statements: Reference.

906 Appendix 1 / Optimizing Performance

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en

Use the Hiperspace Access Method for Temporary
Libraries

SAS files processed by a Base SAS engine can be placed in hiperspace libraries, if
their contents do not need to be retained after the conclusion of the SAS session. A
z/OS hiperspace is a virtual storage area that is separate from the virtual storage
address space in which SAS runs. Hiperspaces reside in central storage, although
their contents can be paged out to auxiliary storage if it is required by the demand
for central storage frames.

Storing members in, or retrieving members from, a hiperspace library requires no
DASD I/O (except for paging activity, if required). Member pages are accessed via
direct memory-to-memory transfers. These transfers are much faster than transfers
to and from disk and require negligible CPU overhead.

The HIPERSPACE access method can be used in two ways. First, the Work library
can be placed in a hiperspace by specifying the HSWORK option. In this case SAS
ignores any external allocation of the Work library (for example, via the ddname
WORK). Second, specifying the LIBNAME option HIPERSPACE causes SAS to
create a new temporary library in hiperspace. For more information, see
“Hiperspace Libraries” on page 66.

Allocate Temporary Libraries to VIO

Libraries whose contents do not need to be retained after the conclusion of the
SAS session can also be allocated to virtual input/ouput (VIO). VIO is a system
facility that simulates an actual disk device, but stores the data in memory, or if
necessary due to central storage constraints, in auxiliary storage (paging data sets).
Using VIO can often eliminate all DASD I/O (and associated elapsed time delays)
associated with SAS library processing.

Any SAS bound library that resides in a DSORG=PS data set can be allocated to
VIO. This includes both direct access and sequential access bound libraries. The
Work library is an ideal candidate for VIO. To allocate a library in VIO, specify a
value for the UNIT parameter that corresponds to VIO at your installation. UNIT is
a parameter of the JCL DD statement and the TSO ALLOCATE command. UNIT is
also an option of the LIBNAME statement. Typically, UNIT=VIO causes the system
to use VIO, but a different value for the UNIT parameter might be required at your
z/OS installation. Contact your z/OS systems administrator for a recommended
value.

Despite the simplicity and convenience of using VIO, it has the following
limitations:

n The maximum size of a VIO library is 65535 tracks, and the library data set
cannot be extended to an additional volume.

n At some z/OS installations, VIO allocations can be automatically converted to
DASD if the size of the allocation exceeds a certain number of tracks.

Optimizing SAS I/O 907

n Testing at the SAS facilities indicated that the CPU costs associated with VIO
processing, although low enough to be negligible for most workloads, are still
about twice the CPU cost of hiperspace library processing for sequential access
patterns. For random access patterns, VIO requires significantly more CPU than
hiperspace, and the amount can be sufficient to merit consideration in deciding
which technique to use.

Comparison of Techniques for Processing SAS Files
or Data Libraries in Memory

The following table provides a brief comparison of the methods that you can use to
process SAS files or data libraries in memory.

Point of
Consideration SASFILE Hiperspace VIO

Can library
members be saved
permanently?

Yes, the SASFILE
CLOSE statement
automatically saves
changes to the library,
which can reside on
disk.

No, hiperspace
libraries are
temporary.

No, VIO libraries
are temporary.
However, unlike
hiperspace
libraries, they
can be passed to
subsequent
steps of a batch
job if they are
allocated
externally in the
JCL.

Might require
assistance from
z/OS systems
programmer?

Yes, to set appropriate
REGION size.

Yes, to determine
what limits might
exist on use of
hiperspace pages.

No.

Maximum Size Total concurrent data
use for entire SAS
session is limited by
private region size
(< 2G).

(installation
dependent) Can
exceed 2G per
library or in
aggregate.

Limited to 3.4G
per library.

Implementation
Effort

Must analyze SAS
program to identify
SAS data sets that are
repeatedly accessed
across multiple
procedures or DATA
steps. SASFILE
statements must be

Must add
HIPERSPACE
option to the
LIBNAME
statement and set
the SAS system
options
HSLXTNTS,

Must specify
UNIT=VIO and
possibly adjust
SPACE
parameter on
library allocation.

908 Appendix 1 / Optimizing Performance

Point of
Consideration SASFILE Hiperspace VIO

inserted at the
appropriate places to
load or open and close
the member.

HSMAXPGS, and
HSMAXSPC
appropriately.

Can be used with
Work Library?

Yes. Specify HSWORK
option.

Modify SAS
start-up (JCL,
clist, exec) to
allocate WORK
to VIO.

Eligible Engines BASE engines. BASE engines. BASE or TAPE
engines.

Other Limitations Can be used only with
SAS data sets that are
being read or updated.
Cannot be used when
creating or replacing
SAS data sets.

Optimize I/O for Direct Access Bound Libraries

Overview of Optimize I/O for Direct Access Bound
Libraries

Determining whether the primary access pattern that you want to use is sequential
or random, and then selecting an appropriate page size based on your
determination, helps you optimize the performance of your SAS session. Based on
the primary access pattern that you are using, select an appropriate page size
according to the guidelines in “Sequential Processing Pattern” on page 910 and
“Random Processing Pattern” on page 910.

The BUFSIZE data set option enables you to establish a non-default page size for a
new SAS data set, but there are some limitations. When it is determined, the page
size becomes a permanent attribute of the SAS data set and influences the
efficiency of both the output operation that creates the data set as well as that of
subsequent Read or Update operations.

The minimum page size that can be specified for a SAS data set is the block size of
the library that contains it. Because the library block size is fixed when the library is
created, achieving optimal performance might require creating new libraries with

Optimizing SAS I/O 909

special block sizes. You might also have to divide into separate libraries those
members that you access sequentially and those members that you access
randomly.

Sequential Processing Pattern

Sequential processing describes operations in which the pages of a library are read
or written in the order in which they exist in the member from first to last. For
example, using a data set to write a new member or to replace an existing member
of a SAS data set is a sequential operation. Likewise, reading all the observations of
a SAS data set in the order in which they appear is also a sequential operation.
Sequential processing can be optimized by following these recommendations:

n If practical, place the member in a library that has a block size that corresponds
to the optimum half-track value. The optimum half-track value for libraries that
reside on 3390 devices is 27K.

n Evaluate the effect of specifying BUFNO=10 for operations that process a
member sequentially. In tests run at the SAS facilities, increasing the BUFNO
value from 3 (the default) to 10 reduced the elapsed time for sequential write
processing by 25% to 30% and the elapsed time for sequential read processing
by 50%. Note that the actual percentage of improvement depends on the
characteristics of your system’s hardware and software configuration. BUFNO
values between 10 and 100 might also provide further reductions in elapsed
time, but that benefit can be outweighed by the increase in- memory
requirements.

Random Processing Pattern

Random processing refers to operations in which the pages of a library member are
read or rewritten in a nonconsecutive order. For example, updating a SAS data set
by using a transaction file is typically a random access operation. The following list
contains techniques that might improve the performance of random processing:

n SAS must read an entire page to retrieve each individual observation. When you
create library members that are to be accessed randomly, establish the smallest
possible page size by setting the member BUFSIZE equal to the library block
size.

n Placing the member in a library with a smaller block size such as 6K might
provide a small increase in the I/O throughput rate for random processing.
However, the smaller block size typically impairs the performance of sequential
processing by a larger amount on current DASD controllers. Therefore, if the
library members are to be processed both sequentially and randomly, half-track
blocking (27K on a 3390 device) is recommended.

n Specifying a BUFNO value greater than the default provides a performance
benefit only if there is a set of pages that are being repeatedly accessed by
some part of the operation, and the BUFNO value is set larger than the number

910 Appendix 1 / Optimizing Performance

of pages in that set. Otherwise, increasing the BUFNO value beyond the default
can slightly degrade performance for random processing.

Optimize I/O for Sequential Access Bound Libraries
Sequential access bound libraries are processed by the TAPE engine and can reside
on disk or tape.

n Beginning with SAS 9.4M2, specify the DLLBI SAS system option or the
DLLBI=YES LIBNAME statement option when you create sequential access
bound libraries on tape devices. DLLBI=YES enables block size (BLKSIZE)
values to exceed 32760. Unless overridden on the allocation, SAS selects the
optimum block size for the device, typically 224K-256K. Setting the optimum
BLKSIZE value results in significant improvements in the I/O rate (bytes per
elapsed second) relative to BLKSIZE=32760, and might improve tape utilization
as well.

n Use the default BUFSIZE when you access sequential format bound libraries.
The default BUFSIZE is always the most appropriate choice.

n For libraries on tape, structure your SAS job to write all library members as part
of a single PROC COPY operation. Using one PROC COPY operation avoids the
I/O delays that result when SAS repositions back to the beginning of the tape
data set between every SAS procedure or DATA step.

n For libraries on tape that are assigned internally, specify the engine in the
LIBNAME statement. This specification avoids an extra tape mount.

Determine Whether You Should Compress Your
Data

Overview of Compressing Data

Compressing data reduces I/O and disk space but increases CPU time. Therefore,
whether data compression is worthwhile to you depends on the resource cost-
allocation policy in your data center. Often your decision must be based on which
resource is more valuable or more limited, DASD space or CPU time.

You can use the portable SAS system option COMPRESS= to compress all data
sets that are created during a SAS session. Or, use the SAS data set option
COMPRESS= to compress an individual data set. Data sets that contain many long
character variables generally are excellent candidates for compression.

The following tables illustrate the results of compressing SAS data sets under
z/OS. In both cases, PROC COPY was used to copy data from an uncompressed

Optimizing SAS I/O 911

source data set into uncompressed and compressed result data sets. PROC COPY
uses the system option values COMPRESS=NO and COMPRESS=CHAR,
respectively.

Note: When you use PROC COPY to compress a data set, you must include the
NOCLONE option in your PROC statement. Otherwise, PROC COPY propagates all
the attributes of the source data set, including its compression status.

In the following tables, the CPU row shows how much time was used by an IBM
3090-400S to copy the data. The SPACE values show how much storage (in
megabytes) was used.

For the first table, the source data set was a problem-tracking data set. This data
set contained mostly long, character data values, which often contained many
trailing blanks.

Table A13.1 Compressed Data Comparison 1

Resource Uncompressed Compressed Change

CPU 4.27 sec 27.46 sec +23.19 sec

Space 235 MB 54 MB -181 MB

For the preceding table, the CPU cost per megabyte is 0.1 seconds.

For the next table, the source data set contained mostly numeric data from an
MICS performance database. The results were again good, although not as good as
when mostly character data was compressed.

Table A13.2 Compressed Data Comparison 2

Resource Uncompressed Compressed Change

CPU 1.17 sec 14.68 sec +13.51 sec

Space 52 MB 39 MB -13 MB

For the preceding table, the CPU cost per megabyte is 1 second.

For more information about compressing SAS data, see SAS(R) Programming Tips:
A Guide to Efficient SAS(R) Processing.

Consider Using SAS Software Compression in
Addition to Hardware Compression

Some storage devices perform hardware data compression dynamically. Because
this hardware compression is always performed, you might decide not to enable the

912 Appendix 1 / Optimizing Performance

SAS COMPRESS option when you are using these devices. However, if DASD space
charges are a significant portion of your total bill for information services, you
might benefit by using SAS software compression in addition to hardware
compression. The hardware compression is transparent to the operating
environment. If you use hardware compression only, then space charges are
assessed for uncompressed storage.

Efficient Sorting

Consider Changing the Values of SORTPGM= and
SORTCUTP=

SAS software includes an internal sort program that is often more efficient than
host sort programs for sorting small volumes of data. Host sort programs are
generally more efficient when the data volume is too high to perform the sort
entirely in memory.

Under z/OS, the default value of the SAS system option SORTPGM= is BEST. This
value causes SAS to use the SAS sort program for smaller SAS data sets. For larger
SAS data sets, SAS uses the host sort program if the size of the data exceeds the
specified value for SORTCUT. If SORTPGM is set to anything other than BEST, then
SAS uses the specified program. You use the SORTNAME= system option to
specify the name of the host sort program.

You might want to change the default value of the SORTCUT option to optimize
sorting for your particular applications. The older SORTCUTP option is no longer
recommended. However, for backward compatibility, setting the value of the
SORTCUT option to zero can affect your decision about which sort to use.

Note:

n Host sorts perform best when the number of observations to be sorted is
known. In some circumstances, SAS does not know how many observations are
in a data source. In these situations, SAS does not pass either the FILSZ= or
SIZE= option to the host sort. The action that the host sort takes when one of
these conditions occurs depends on the particular host sort that is being used.

n The host sort is used if the number of observations that are to be sorted is
unknown, such as when sorting with a WHERE= filter, or when sorting a SAS
data set that is on tape.

Efficient Sorting 913

Take Advantage of the DFSORT Performance
Booster

If your installation uses Release 13 or later of IBMs DFSORT as its host sort utility
for large sorts, then you can take advantage of a DFSORT "performance booster."
To do so, specify SORTBLKMODE in an OPTIONS statement, in the OPTIONS
parameter list of the SAS cataloged procedure, or in a configuration file.

SORTBLKMODE causes SAS to work in conjunction with DFSORT to process your
SAS sorting applications faster.

SORTBLKREC can improve the performance of SAS software by controlling the
amount of memory used for the SORTBLKMODE buffers when you specify
DFSORT and SORTBLKMODE. You can specify SORTBLKREC in an OPTIONS
statement, in the OPTIONS parameter list of the SAS cataloged procedure, or in a
configuration file.

See Also

n “SORTBLKMODE System Option: z/OS” on page 843

n “SORTBLKREC System Option: z/OS” on page 844

Specify the Minimum Space for Sort Work Data
Sets

Allocate the Minimum Space for Multiple Sorts

SAS uses the DYNALLOC system option to specify whether SAS or the host sort
utility dynamically allocates the sort work data sets. If you specify the
NODYNALLOC option, then SAS allocates the sort work data sets. If you specify
the DYNALLOC option, then the host sort utility allocates the data sets.
NODYNALLOC is the default setting for the DYNALLOC option.

When SAS allocates the sort work data sets, you need to ensure that adequate
space is allocated for your data sets. SAS attempts to allocate enough space for
each sort work data set. If adequate space is not available, SAS issues a system
error message.

The SORT= option specifies the minimum size of all allocated sort work data sets.
You can use this option to ensure that you have enough allocated space to perform

914 Appendix 1 / Optimizing Performance

several sorts, especially if one or more of the sorts requires more space than the
first sort. For example, you want SAS to allocate the space for the following sorts:

SORT 1:
20 cylinders

SORT 2:
50 cylinders

SORT 3:
25 cylinders

SORT 4:
200 cylinders

SAS uses the following process to allocate the space for each sort:

1 Allocate 20 cylinders for the first sort.

2 Free the space that it allocated for the previous sort because it needs more
allocated space to perform the next allocation.

3 Allocate 50 cylinders for the second sort.

4 Reuse the allocated space for the third sort.

5 Free the space that it allocated for the previous sort because it needs more
allocated space to perform the next allocation.

6 Allocate 200 cylinders to perform the fourth sort.

This process works, and you are not informed that it is happening, but it is not
efficient.

It is more efficient to use the SORT= option to specify that SAS should allocate
200 cylinders for the first sort so that SAS can reuse the same space for all of the
sorts. If you use the SORT= option, SAS does not have to free the allocated space
before it allocates more space for the next sort.

Specify the SAS SORT Options

SAS uses the SORT= option to specify the minimum size of the sort work data sets
if you specify the NODYNALLOC option, and you are using the host sort interface.
You can also specify other options with the SORT= option to specify the type of
unit, device, and so on, to use with the sort work data sets. The following list
describes the function of each of the SAS system options that you can use when
you specify the NODYNALLOC option:

SORT=
specifies the minimum total size for all the data sets that are allocated
dynamically. To calculate the primary space for each individual data set, SAS
divides the value specified for the SORT= option by the number of sort files.
SAS then rounds up to the next whole number.

SORTUNIT=
specifies the unit of allocation as cylinders, tracks, or blocks.

Efficient Sorting 915

SORTDEV=
specifies the name of the unit device for the sort work file.

SORTPGM=
specifies which sort utility SAS uses.

SORTWKDD=
specifies the prefix of the sort work data sets.

SORTWKNO=
specifies how many sort work data sets to allocate.

Note: You should not set the SAS system option SORTWKDD to a value of SORT
(SORTWKDD=SORT), and you should not use ddnames prefixed with
SORTWKDD=value to pre-allocate libraries or files in your JCL file. These two
actions can result in subsequent PROC SORT failures in your SAS programs.

Concurrent Sorting
SAS does not support concurrent host sorts. Attempting to invoke a host sort while
one is already running causes SAS to revert to the internal sort, which might have
an adverse effect on performance. Attempts to run concurrent sorts usually occur
in a server environment, but running sorts in a server environment is not
recommended.

Some SAS System Options That Can
Affect Performance

MAUTOSOURCE and IMPLMAC
The MAUTOSOURCE and IMPLMAC SAS system options affect the operation of
the SAS autocall macro facility, and they interact in a way that you should be aware
of.

Specifying IMPLMAC enables you to use statement-style macros in your SAS
programs. With IMPLMAC in effect, each SAS statement is potentially a macro, and
the first word (token) in each statement must be checked to determine whether it
is a macro call.

When IMPLMAC is in effect without MAUTOSOURCE, no special checking takes
place until the first statement-style macro is compiled. When both IMPLMAC and
MAUTOSOURCE are in effect, however, this checking is done unconditionally. The

916 Appendix 1 / Optimizing Performance

initial occurrence of a word as the first token of a SAS statement results in a search
of the autocall library. A significant number of directory searches can occur,
especially when a large DATA step is compiled. The CPU time that is consumed by
maintaining and searching the symbol table also degrades performance.

The combination of MAUTOSOURCE and IMPLMAC can add 20% to CPU time and
5% to I/O for a non-trivial job. Therefore, for best performance, leave NOIMPLMAC
as the installation default.

REXXMAC
When SAS encounters an apparent SAS statement that it does not recognize, it
typically generates a "statement is not valid" error message in the SAS log.
However, when the REXXMAC system option is in effect, SAS passes the first word
in the apparent statement to the z/OS REXX processor, which looks for a member
by that name in the SASREXX library. Hence, a mistyped statement could have
unintended results and could have a negative impact on performance. For more
information, see “REXXMAC System Option: z/OS” on page 832 and “REXXLOC=
System Option: z/OS” on page 831.

SPOOL and NOSPOOL
The SPOOL system option is appropriate when you are running SAS interactively,
without using the windowing environment. When SPOOL is in effect, SAS input
statements are stored in a Work library utility file; they are retrieved later by
%INCLUDE and %LIST commands. SAS is shipped with SPOOL as the default
setting for interactive sessions, but you might want to consider resetting it to
NOSPOOL for batch jobs. In a batch job that has a large number of input lines,
NOSPOOL can reduce I/O by as much as 9%.

Managing Memory

Overview of Managing Memory
When the amount of available memory is not sufficient, increase the REGION size.
If you want to limit SAS from using the entire REGION, use the MEMLEAVE option.
SAS automatically sets the value of the MEMSIZE option to the amount of
available storage in the REGION less the value of MEMLEAVE. MEMSIZE is the
amount of memory available to SAS.

Managing Memory 917

The following sections provide details about available memory management
techniques.

Specify a Value for MEMLEAVE= When You Invoke
SAS

MEMLEAVE= specifies a value that is subtracted from the total amount of memory
available in the user's REGION. The amount of memory specified by MEMLEAVE=
is reserved for the use of the operating environment. The remainder of the user's
REGION remains available to SAS. MEMLEAVE= applies equally well to all SAS
sessions, regardless of the size of the REGION.

The default value of MEMLEAVE= is 512K. You might need to increase this value
depending on memory demands expected for host programs that are running in the
same REGION. Increasing the value prevents SAS from using too much of that
REGION. For example, you might want to increase the value of MEMLEAVE= if you
plan to run a memory-intensive host sort routine while also running a large SAS
session.

Consider Using Superblocking Options to Control
Memory Fragmentation

Superblocking options are SAS system options that set aside large blocks of
memory for different classes of use. In most cases, the default values for these
options are appropriate and should not be altered. However, if you receive a
superblock-overflow warning message in the SAS log, you might want to use these
options to adjust the memory allocation for your job.

For complete information about superblocking system options, see the installation
instructions for SAS software in the z/OS environment. You can also submit the
following SAS statement to list the superblocking system options:

proc options group=memory;
run;

Use SYSLEAVE= and PROCLEAVE= to Handle Out-
of-Memory Conditions

To help ensure that a job ends "gracefully" when out of memory, you might want to
increase the values of the SAS system options SYSLEAVE= and PROCLEAVE=.

918 Appendix 1 / Optimizing Performance

n The SYSLEAVE= option reserves a specified amount of memory to ensure that,
when a SAS task ends, enough memory is available to close data sets and to
"clean up" other resources. For more information, including the SAS default
value, see “SYSLEAVE= System Option: z/OS” on page 872.

n The PROCLEAVE= option specifies an amount of memory that is to be held in
reserve, and that is to be made available only when memory allocation would
otherwise fail. For more information, including the SAS default value, see
“PROCLEAVE= System Option: z/OS” on page 829.

Specify a Larger Region Size
If you submit large jobs, such as a JAVA GRAPH job, to one of the following z/OS
servers in the SAS Intelligence Platform, then adequate space might not be
allocated for the task. Here is a list of the types of servers that might require an
allocation of more space.

n standard (nonpooled) workspace server

n server-side pooled workspace server

n stored process server

If this situation occurs, then you might have to change your RACF profile to run
larger jobs. SAS recommends that you increase your RACF OMVS maximum region
size by specifying a value for MAXASSIZE of 600MB.

MAXASSIZE is a parameter of the IBM ALTUSER command that sets a maximum
region size for an address space. ASSIZEMAX is a parameter of the IBM ADDUSER
and ALTUSER commands that specifies a maximum region size for a specific user.
ASSIZEMAX can be used to override the value specified by MAXASSIZE.

CAUTION
Contact your system programmer for information about how to increase your
OMVS maximum region size.

Memory Cheat Sheet for z/OS
Use the following questions to diagnose memory problems with SAS:

1 What is the error message in the SAS log or JES messages log?

2 How much available memory is reported at the beginning of the SAS log?

3 Does your site have any known restrictions on the amount of memory that is
available to a particular job (for example, for an IEFUSI exit)?

4 Did you specify the size of the memory region anywhere? If so, what value was
specified? How and where was the value specified?

Managing Memory 919

Loading SAS Modules Efficiently
SAS software has three possible program configurations:

n unbundled

n bundled (LPA/ELPA version)

n bundled (non-LPA version).

In an unbundled configuration, all modules are loaded individually from the SAS
software load library. Running in this manner is not generally recommended
because it significantly increases library-directory searches and I/O. However, SAS
is shipped with this setting by default because some of the installation tasks must
invoke SAS before the installer has had the opportunity to select a bundled version.

In the two bundled configurations of SAS, many individual modules are combined
into one large executable file. Invoking a bundled version of SAS eliminates both
wasted space between modules and the overhead of loading each module
individually. Performance is also improved slightly.

In a multiuser SAS environment, the most effective way to reduce memory
requirements is to use the LPA/ELPA bundled configuration. This configuration
dramatically reduces each user's working-set size.

Note: Working-set size is the amount of real system memory that is required to
contain a) the programs that consume most of the system execution time, and b)
the data areas that these programs reference.

The non-LPA bundled configuration is intended for sites that do not want to place
SAS modules in the Link Pack Area. In this configuration, the bundle is loaded into
each user's address space. Although this decreases library-directory searches and
I/O, it has the unfortunate side-effect of increasing individual working-set sizes.
Therefore, this method is not recommended if you have many SAS users at your
site.

For detailed information about the bundled configurations and how to install them,
see the installation instructions for SAS software in the z/OS environment.

920 Appendix 1 / Optimizing Performance

Other Considerations for Improving
Performance

Leave AUTOSCROLL 0 in Effect for the LOG and
OUTPUT Windows

The AUTOSCROLL command controls how information is scrolled as it is written to
the Log and Output windows. Specifying small scrolling increments is very
expensive in terms of response time, network data traffic, and CPU time.

Under z/OS, AUTOSCROLL is preset to 0 for the Log window. AUTOSCROLL 0
suppresses automatic scrolling and positions the Log window at the bottom of the
most recent output when a DATA step or procedure is completed. At that time, of
course, you can scroll up to view the contents of the log.

To see the effect of this command, enter AUTOSCROLL 1 on the command line of
the Log window and then run PROC OPTIONS. Then enter AUTOSCROLL 0 and run
PROC OPTIONS again. The CPU time ratio is more than 30 to 1.

Use the EM3179 Device Driver When Appropriate
If you are running Attachmate or any other full-functioned 3270 emulator over a
slow connection, specify the SAS system option FSDEVICE=EM3179 when you
invoke SAS. Menus in applications such as SAS/ASSIST are then displayed as text
menus instead of icon menus. The text menus require much less network data
transfer and are considerably faster across slow lines.

Other Considerations for Improving Performance 921

922 Appendix 1 / Optimizing Performance

Appendix 2
Using EBCDIC Data on ASCII
Systems

About EBCDIC and ASCII Data . 923
Overview of EBCDIC and ASCII Data Representation . 923
EBCDIC File Structures . 924
ASCII File Structure . 925
Numeric Values . 926

Moving Data from EBCDIC to ASCII Systems . 926
Overview of Accessing EBCDIC Data on ASCII Systems . 926
Example of Incorrect Conversion of Packed-Decimal Numeric Data 927
Convert EBCDIC Files with Fixed-Length Records . 928
Convert EBCDIC Files with Variable-Length Records . 929
Read EBCDIC Data from Structured COBOL Files . 933

Moving Data from ASCII to EBCDIC Systems . 934
Overview . 934
Using FTP to Write Files Directly . 934
Using the dd Command to Convert and Copy a File . 935
Using the iconv Command to Convert a Text File . 937

About EBCDIC and ASCII Data

Overview of EBCDIC and ASCII Data
Representation

Extended Binary Coded Decimal Interchange Code (EBCDIC) is an 8-bit character
encoding method for IBM mainframe machines. American Standard Code for

923

Information Interchange (ASCII) is a 7-bit character encoding method for most other
machines, including Windows, UNIX, and Macintosh machines.

Hexadecimal characters are used to represent one byte or eight bits of data. In a
binary system, each bit can have the value 0 or 1. An aggregation of four bits can
therefore take on 16 (24) possible values. This means that two hexadecimal
characters can be used to represent one byte of data. In the EBCDIC and ASCII
encoding methods, each character is represented by two hexadecimal characters.
(This pertains primarily to Western language, single-byte encoding methods. There
are other encoding methods that store a single character in two bytes of storage,
such as encoding methods that are used for Japanese or Korean data.)

Each encoding method represents the same data differently, as shown in the
following examples:

n On an EBCDIC system, the digit 4 is represented by the hexadecimal value 'F4'x.
On an ASCII system, the digit 4 is represented by the hexadecimal value '34'x.

n On an EBCDIC system, the hexadecimal value '50'x represents the symbol &. On
an ASCII system, the same hexadecimal value represents the letter P.

When SAS reads a file, it expects the data in the file to be in the encoding that
matches the ENCODING= option for the SAS session. For example, on a Windows
machine, the default encoding for a single-byte SAS session with a US English
locale is LATIN1. SAS expects the data in a file on that Windows machine to use a
LATIN1 encoding. However, if a file originates on an EBCDIC machine and it is
stored on a Windows machine, then SAS would misinterpret the data from this file
if no other encoding information is provided. For this reason, specific steps must be
performed to convert data that originates on an EBCDIC system before it can be
used on an ASCII system (for example, the Windows machine). Here are the two
main methods to make EBCDIC data available on an ASCII system:

n On the ASCII system, read the data directly from the EBCDIC system.

n Use an FTP program to move the data, with or without any conversion of the
data.

EBCDIC File Structures
When you decide how to move data from an EBCDIC system to an ASCII system,
consider the structure of the EBCDIC source file. On EBCDIC systems, you might
have files with fixed-length records or files with variable-length records. Either
type of file contains a header with information about the file. The header includes a
Record Format attribute that indicates whether the records are fixed length or
variable length. The header for a file with fixed-length records includes a Logical
Record Length attribute that indicates the length of each record in bytes.

In SAS, the Record Format attribute corresponds to the RECFM= option in a
FILENAME statement. To access a file with fixed-length records, specify RECFM=F.
To access a file with variable-length records, specify RECFM=V. Similarly, the
Logical Record Length attribute corresponds to the LRECL= option.

924 Appendix 2 / Using EBCDIC Data on ASCII Systems

The Logical Record Length attribute in the header for a file with variable-length
records indicates the maximum record length. Each record in a file with variable-
length records begins with a record descriptor word (RDW). The RDW is a 4-byte
binary integer field. The first two bytes of the RDW indicate the length of the
current record. The last two bytes of the RDW contain information that is used by
the operating system. The length of the record includes the four bytes of the RDW
at the beginning of the record. Because the length of each record is specified in an
EBCDIC file (either in the header or in the RDW), there are no end-of-record
indicators in EBCDIC files.

A file with variable-length records also contains block descriptor words (BDWs).
Like the RDW, the BDW is a 4-byte, binary integer field. The first two bytes indicate
the block size, and the last two bytes are used by the operating system. Each block
can contain multiple records. If the block size is not specified when the file is
created, the default block size is the logical record length plus 4. Otherwise, the
size of a block is the number of bytes that are contained in the block. This value is
the sum of the record lengths in the block (obtained from the RDWs) plus 4 (the
length of the BDW).

ASCII File Structure
On ASCII systems, a file does not contain a header with information about the file,
such as record format or lengths. The RECFM attribute for ASCII files is variable
(RECFM=V), and the record length (LRECL) is unlimited. Instead of defining record
lengths like EBCDIC files do, ASCII files use end-of-record indicators to flag the end
of a record. On a Windows machine, the end-of-record indicators are the carriage
return (CR) and line feed (LF) characters. On a UNIX machine, an LF indicates the
end of a record. On a Macintosh machine, a CR indicates the end of a record. Other
types of machines use different combinations of characters to identify the end of
record. For all ASCII machines, the hexadecimal value for CR is '0D'x, and the
hexadecimal value for LF is '0A'x.

When SAS reads a file from disk on an ASCII machine, default values for some file
attributes must be used because these attributes are not defined. The default
RECFM value is V (variable-length record), and the default LRECL value is 32767.
This means that SAS scans the input from an ASCII file, parses the data into
variable values based on the INPUT statement, and looks for an end-of-record
indicator. If the end of a record is not found within the specified number of
characters (based on LRECL), then SAS truncates the record and prints a message
in the log. For example, suppose LRECL is set to 256, and there is a record that is
300 characters. SAS reads the first 256 characters based on the INPUT statement,
and then discards the last 44 characters. A message in the log states that “One or
more lines have been truncated.” You can override the current LRECL value using
the LRECL= option in the INFILE statement.

About EBCDIC and ASCII Data 925

Numeric Values
When stored as character data, the decimal digits 0 through 9 each occupy one
byte of storage. One 8-bit byte includes two 4-bit nibbles. Each nibble can have 16
(24) possible values. The first nibble is the high-order nibble, and the second is the
low-order nibble. In EBCDIC and ASCII systems, the high-order nibble has a
standard value. Decimal digits are represented in EBCDIC with a high-order nibble
of F. Decimal digits are represented in ASCII with a high-order nibble of 3. This
means that in an EBCDIC system, the digits 0 through 9 are represented by the
hexadecimal values 'F0'x through 'F9'x. In an ASCII system, the digits 0 through 9
are represented by the hexadecimal values '30'x through '39'x. This encoding
method treats decimal digits as characters.

As an alternative to storing decimal digits as characters, there are other encoding
methods that can be used on an EBCDIC system. For example, a packed-decimal
encoding method represents two decimal digits in one byte of storage. A zoned-
decimal encoding method represents one decimal digit in one byte of storage, and
the sign of the entire value is included within one byte of storage. (The byte that
stores the decimal digit and the sign of the entire value can be either the first byte
or the last byte, depending on the type of machine.)

You must know the numeric encoding that is used on the source EBCDIC system so
that the source data is interpreted correctly on the ASCII system. For SAS, this
means that you must specify the correct informats to use for numeric data.

Moving Data from EBCDIC to ASCII
Systems

Overview of Accessing EBCDIC Data on ASCII
Systems

There are several ways to access EBCDIC data on an ASCII system. For example,
some ASCII machines have peripheral devices that can read 3480 or 3490 cartridge
tapes that are created on an EBCDIC system. These devices can read the data
directly from a tape into an application on an ASCII machine. Alternatively, these
devices can copy data from a tape and store it on the ASCII machine’s hard drive.

A more common method of moving and converting data is to use an FTP program to
transfer the data. By default, most FTP programs convert EBCDIC data into ASCII
when transferring data. If the source data contains only character data (including

926 Appendix 2 / Using EBCDIC Data on ASCII Systems

digits that are encoded as characters), this is the recommended method. During the
conversion process, the FTP program creates the appropriate end-of-record
indicators for the ASCII system. After conversion, you can use an INFILE statement
to access the newly created file on the ASCII system. Use an INPUT statement to
specify the correct informat values to use when reading the data in the file.

Note: Even when all of the EBCDIC source data is encoded as character data, there
might be some characters that are not interpreted correctly during conversion. The
correct interpretation of these characters depends on the encoding method that is
used on the EBCDIC machine. As a best practice, verify that your data was
converted correctly by viewing the data that SAS reads from a converted file.

When an EBCDIC file contains numeric data that is not encoded as character data,
such as when a packed-decimal or zoned-decimal encoding method is used, the
default FTP conversion does not work correctly. Some numeric data can resemble
standard character data. In this case, FTP conversion incorrectly assigns ASCII
characters to EBCDIC numeric data. For more information, see “Example of
Incorrect Conversion of Packed-Decimal Numeric Data”.

Note: There is no way to correctly convert packed-decimal encoded data from
EBCDIC into ASCII. Other methods to convert the data must be used if a packed-
decimal, zoned-decimal, or other numeric encoding method is used on the EBCDIC
system. For more information, see “Convert EBCDIC Files with Variable-Length
Records” on page 929.

In some instances, a byte of EBCDIC data might be interpreted in ASCII as an end-
of-line flag or end-of-file flag. If SAS is reading a file with variable-length records
when one of these hexadecimal values is encountered, then you might observe
unintended results. Depending on the expected data values based on specified
informats, you might observe anything from invalid data errors to unexpected
termination of the DATA step.

Example of Incorrect Conversion of Packed-
Decimal Numeric Data

This example demonstrates the problems that can result when you convert packed-
decimal numeric data as if it were encoded as character data. Suppose an EBCDIC
data file contains the numeric value 505, stored as a packed-decimal value
('505C'x). If you looked at the file with an EBCDIC file browser or editor, you would
see the characters ‘&*’. This is because '50'x corresponds to ‘&’ and '5C'x
corresponds to ‘*’. The FTP program interprets the ‘&’ character and converts it to
the ASCII value '26'x. The FTP program converts the ‘*’ character to the ASCII value
'2A'x, and the resulting converted value is '262A'x. The correct packed-decimal
value in ASCII should be '000505'x. Because the input data does not conform to
the expected packed-decimal informat, SAS prints an error to the log that states
that the data is invalid. Each time invalid data is encountered, SAS writes an error

Moving Data from EBCDIC to ASCII Systems 927

to the log, and prints the contents of the input buffer and the corresponding DATA
step variables.

Table A14.1 Incorrect Conversion of Packed-Decimal Numeric Data

Step Action Value

1 FTP program reads the EBCDIC
packed-decimal numeric value
‘505’.

'505C'x

2 FTP program interprets the
value as standard EBCDIC
characters.

&*

3 FTP program converts to
standard ASCII hexadecimal
characters.

'262A'x

4 SAS flags the data as invalid
because packed-decimal
numeric data is expected (based
on the specified informat value).

???

Convert EBCDIC Files with Fixed-Length Records

FTP the File in Binary

When you convert an EBCDIC file with fixed-length records, use FTP to transfer the
file in binary. Then, with a FILENAME or INFILE statement, specify RECFM=F, and
assign the same value to LRECL that the file has in the EBCDIC system. Use the
formatted input style with the following informats:

n $EBCDICw. for character input data

n S370Fxxxw.d for numeric input data

Note: There are many S370Fxxxw.d informats. Select those informats that
match the type of data that you have. For more information, see SAS Formats
and Informats: Reference for SAS 9.3 and higher.

Because you are transferring the source file in binary, there is no processing to add
end-of-record indicators. For this reason, you must specify the exact number of
bytes that are specified for the source file in the EBCDIC system. If there are bytes

928 Appendix 2 / Using EBCDIC Data on ASCII Systems

in the source file that would be interpreted as end-of-record indicators or end-of-
file indicators in an ASCII context, SAS treats those bytes simply as data.

Example: Convert an EBCDIC File with Fixed-
Length Records into an ASCII File

The following code reads a file, fixed.txt, that was previously transferred via FTP in
binary from an EBCDIC system to an ASCII system. The source file has fixed-length
records that are 60 bytes long. Based on the informat in this example, the last three
bytes in each record contain numeric data that was stored using the packed-
decimal encoding method.

filename test1 'c:\fixed.txt' recfm=f lrecl=60;
data one;
infile test1;
input @1 name $ebcdic20.
 @21 addr $ebcdic20.
 @41 city $ebcdic15.
 @56 state $ebcdic2.
 @58 zip $s370fpd3.;
run;

Convert EBCDIC Files with Variable-Length
Records

Overview of Converting EBCDIC Files with
Variable-Length Records

When you convert an EBCDIC file with variable-length records, you can use an FTP
program. The FTP program removes BDWs and RDWs and adds end-of-record
indicators that are expected by the ASCII system. The data in the file is converted
from EBCDIC to ASCII. If all of the data in the EBCDIC file is encoded as characters,
then this process typically works correctly.

Note: Even when all of the EBCDIC source data is encoded as character data, there
might be some characters that are not interpreted correctly during conversion. The
correct interpretation of these characters depends on the encoding method that is
used on the EBCDIC machine. As a best practice, verify that your data was
converted correctly by viewing the data that SAS reads from a converted file.

When an EBCDIC file contains numeric data that is not encoded as character data,
such as when a packed-decimal or zoned-decimal encoding method is used, the
default FTP conversion does not work correctly. For more information, see

Moving Data from EBCDIC to ASCII Systems 929

“Overview of Accessing EBCDIC Data on ASCII Systems” on page 926. To prevent
misinterpretation of data during conversion, transfer the file in binary via FTP
without converting the data to an ASCII encoding. When the data is transferred in
binary and is not converted, be aware that the BDW and RDW information is
removed automatically. This removes information that SAS needs to read the data
successfully.

Read Files Directly from the EBCDIC System

If you have direct access between the ASCII machine and the EBCDIC machine,
then the best practice is to read the file directly. Direct access is enabled via a
peripheral device on the ASCII machine that can read an EBCDIC tape. You can
access the file via the FTP access method in a FILENAME statement. There are
several advantages to this method of accessing EBCDIC data:

n file preprocessing is not required

n copying the source file is not required

n FTP access method works for fixed-length and variable-length records

n DATA step processing works as expected

The main disadvantage is that this method requires more time for processing
because you are accessing the data remotely.

This method of accessing EBCDIC data applies if you have a 3480 or 3490
cartridge tape reader attached to your ASCII machine. In this case, you do not need
to preprocess the file on an EBCDIC machine. You can read it directly from the tape
by setting RECFM=S370VB and using the $EBCDICw. and S370Fxxxw.d informats.

In a FILENAME statement, specify the FTP access method and the source filename,
and provide values for the HOST=, USER=, and PASS= options. The HOST= option
specifies the name of the EBCDIC machine, USER= specifies the user account that
you use to log on, and PASS= specifies the password that you use to log on. The
FTP access method uses an FTP program on the ASCII machine to open a
connection between the ASCII machine and the EBCDIC machine. The SAS system
connects to and logs on to the mainframe machine with the specified user account
and password. The FTP program transfers the file.

Note: If you specify the PASS= option, the password is saved as text in your SAS
program. The password is not visible in the SAS log. As an alternative to the PASS=
option, you can specify the PROMPT option and provide a password at the prompt
when you execute the SAS program.

For EBCDIC files with variable-length records, you must also specify the S370V
and RCMD= options. The S370V option indicates that the records in the source file
have variable lengths. For the RCMD= option, specify RCMD="SITE RDW" to
indicate that the FTP process should keep the RDW information during the file
transfer.

930 Appendix 2 / Using EBCDIC Data on ASCII Systems

If you experience connection problems to the EBCDIC machine, you can add the
DEBUG option to see the informational messages that are sent to and from the FTP
server.

Example: Read an EBCDIC Source File Directly with
the FTP Access Method

This example shows how to read an EBCDIC file with variable-length records
directly from an EBCDIC machine using the FTP access method. The user is
prompted for her MVS logon password. The ZIP code is entered as a 5-digit EBCDIC
number, represented by one digit per byte. The comments section is varying in
length up to 200 characters. After the data is read, it is printed to verify the
contents of the data set.

filename test1 ftp "'SASEBCDIC.VB.TEST1'" host='MVS' user='SASEBCDIC'
PROMPT
 s370v rcmd='site rdw';
data one;
infile test1;
input @1 name $ebcdic20.
 @21 addr $ebcdic20.
 @41 city $ebcdic10.
 @51 state $ebcdic2.
 @54 zip s370ff5.
 @60 comments :$ebcdic200.;
run;

proc print;
run;

Reformat an EBCDIC File with Variable-Length
Records with IEBGENER

Suppose that you do not have direct access between the ASCII machine and the
EBCDIC machine. That is, you do not have a peripheral device that reads EBCDIC
data on the ASCII machine. In this situation, you can convert the data by
reformatting the file on the mainframe machine. By changing the format of the file,
you prevent the FTP program from removing the RDW information that SAS
requires to read the data correctly. After you reformat the file, you can transfer the
file in binary to the ASCII machine.

To reformat the source file, use the IEBGENER program on the EBCDIC machine.
Use this program to make an exact copy of the file with altered header information.
Specifically, use IEBGENER to change the RECFM value from V (variable-length
records in blocks) to U (undefined record length and unblocked). After making this
change, the FTP program no longer removes the RDW information during the file
transfer.

Moving Data from EBCDIC to ASCII Systems 931

When you run the IEBGENER program, in addition to the required arguments,
specify the following overrides:

SYSUT1 DCB=(RECFM=U,BLKSIZE=32760)
SYSUT2 DCB=(RECFM=U,BLKSIZE=32760) DISP=(NEW,CATLG)

Note: Do not use the original values of RECFM and BLKSIZE for SYSUT1.

Transfer the new version of the file in binary using an FTP program on the ASCII
machine. In SAS, use a FILENAME or INFILE statement to read the transferred file.
Set the options appropriately.

n Set the RECFM= option to S370V if the record format for the original file was
variable (RECFM=V). Set the RECFM= option to S370VB if the record format for
the original file was variable and blocked (RECFM=VB). By specifying the
RECFM= option as S370V or S370VB, you tell SAS to process the RDW
information for each record and enter the correct number of bytes for each
record.

n Specify the same value for the LRECL= option that is in the original file. If you
do not specify a value for the LRECL= option, SAS uses the default LRECL value
(32767). Using the default value could cause SAS to truncate data records if
they are longer than the default LRECL value.

Use the formatted input style with the informats that are described in “FTP the File
in Binary” on page 928.

Example: Read a File with Modified Header Data

This example reads a file that was generated from an EBCDIC file with a header
that was modified to change the file format. The modified file was transferred to an
ASCII machine for SAS processing. For more information, see “Reformat an EBCDIC
File with Variable-Length Records with IEBGENER” on page 931.

The TRUNCOVER option is included in the INFILE statement because the
Comment variable can be up to 60 characters (but it is likely shorter). Without the
TRUNCOVER option, the INPUT statement could attempt to read past the end of
the record. Data from the next record would continue to be assigned to the
Comment variable until the variable was full. The LRECL= option is not specified
because the default value is sufficient to handle the longest record in the file. After
the data is read, it is printed to output for verification.

filename test1 'c:\vbtest.xfr' recfm=s370vb;
data one;
infile test1 truncover;
input @1 name $ebcdic14.
 @15 addr $ebcdic18.
 @33 zip s370ff5.
 @38 comment $ebcdic60.;
run;

proc print;
run;

932 Appendix 2 / Using EBCDIC Data on ASCII Systems

Read EBCDIC Data from Structured COBOL Files

About Structured COBOL Files

A structured COBOL file is generated using an OCCURS DEPENDING ON clause.
This type of file has variable-length records. And, when the file is transferred via
FTP in binary, there is no BDW or RDW information. Each record is divided into
three parts: a record header (a fixed-length portion of the record), an index variable,
and one or more data segments. The documentation for the file provides the length
of the record header, the index variable, and a data segment. The record header is
the same length for each record. It contains information that pertains to all of the
data segments that follow. The index variable provides the number of data
segments for the current record. The remainder of the record contains the data
segments.

Because of the structure of the records, SAS is able to read the data in these files.
The length of a record is the sum of the header length, the index length, and the
product of the index value and the size of each data segment. For each data
segment, SAS reads the segment, and then writes a copy of the header and the
current data segment to a new observation in a SAS data set.

When you read a structured COBOL file, specify RECFM=N in your FILENAME
statement. This tells SAS that you are reading a stream of data that does not
conform to a typical file structure. Any restrictions to record length are ignored
when SAS reads a data stream because SAS does not attempt to buffer the input.
SAS writes a statement to the SAS log to notify you that SAS reads a data stream
as unbuffered when RECFM=N.

SAS reads an entire structured COBOL file as a single, long record. Therefore, if you
need to skip some data or move past a space, you must use relative column
pointers in your INPUT statement. Line holders are ignored because the contents of
the file are treated as a single input record. The @column pointers do not work for
these files.

CAUTION
Do not use @column pointers when you specify RECFM=N. Using @column
pointers initiates an infinite loop in which SAS reads and writes the same data
repeatedly until you halt the program or until no more disk space is available.

Example: Read Data from a Structured COBOL File

In this example, an EBCDIC file was transferred via FTP in binary without first
processing the file using IEBGENER. The record header (fixed-length) portion of
each record is 59 bytes in length and contains a combination of character and

Moving Data from EBCDIC to ASCII Systems 933

numeric data. The index variable is two bytes. There is another space (one byte) to
separate the index variable from the remainder of the record. The data segment
portion of the record consists of one or more repeats of 13 bytes in length. Each
repeat contains a combination of character and numeric data.

filename test1 'c:\VB.TEST' recfm=n;

data one;
infile test1;
input name $ebcdic20. addr $ebcdic20. city $ebcdic10. st $ebcdic2. +1
 zip s370ff5. +1 idx s370ff2. +1;
do i = 1 to idx;
 input cars $ebcdic10. +1 years s370ff2. ;
 output;
 if i lt idx then input +1 ;
end;
run;

Moving Data from ASCII to EBCDIC
Systems

Overview
There are several ways to transcode ASCII data to EBCDIC:

n Use FTP to write files (data) directly.

n Use the dd command.

n Use the iconv command.

Using FTP to Write Files Directly

Overview of Using FTP to Write Files Directly

FTP automatically performs the conversion when the type of file is specified as
text (instead of binary). When you have direct access between the ASCII machine
and EBCDIC machine, the best practice is to read the file directly. Direct access is
enabled via a peripheral device on the ASCII machine that can read an EBCDIC
tape. You can access the file via the FTP access method in a FILENAME statement.
There are several advantages to this method of accessing EBCDIC data:

934 Appendix 2 / Using EBCDIC Data on ASCII Systems

n No file preprocessing is required.

n You do not need to copy the source file.

n The FTP access method works for fixed-length and variable-length records.

n DATA step processing works as expected.

This method of accessing EBCDIC data applies if you have a 3480 or 3490
cartridge tape reader attached to your ASCII machine. In this case, you do not need
to preprocess the file on an EBCDIC machine. You can read it directly from the tape
by setting RECFM=S370VB and using the $EBCDICw. and S370Fxxxw.d informats.

In a FILENAME statement, specify the FTP access method and the source filename,
and provide values for the HOST=, USER=, and PASS= options. The HOST= option
specifies the name of the EBCDIC machine, USER= specifies the user account that
you use to log on, and PASS= specifies the password that you use to log on. The
FTP access method uses an FTP program on the ASCII machine to open a
connection between the ASCII machine and the EBCDIC machine. The SAS system
connects to and logs on to the mainframe machine with the specified user account
and password. The FTP program transfers the file.

Example: Reading an ASCII File from SAS on z/OS

1 filename unixin '/net/bin/u/<user>/sample.txt' encoding=latin1;
2 data _null_;
3 infile unixin;
4 input;
5 put _infile_;
6
run;

NOTE: The infile UNIXIN is:
 File Name=/net/bin/u/<user>/sample.txt,
 Access Permission=-rwxr-xr-x,Number of Links=1,
 Owner Name=<user>,Group Name=R@D,File Size=45,
 Last Modified=Jan 19 2000

This is a test.
Another line.
End of file.

Using the dd Command to Convert and Copy a File

About the dd Command

The dd command reads the InFile parameter or standard input, performs the
specified conversion, and then copies the converted data to the OutFile parameter

Moving Data from ASCII to EBCDIC Systems 935

or standard output. The input block size and output block size can be specified to
take advantage of raw physical I/O.

Use the cbs parameter value if you are specifying the block, unblock, ascii,
ebcdic, or ibm conversion value. If an unblock or ascii value is specified, then the
dd command performs a fixed-length to varying-length conversion. Otherwise, it
performs a varying-length to fixed-length conversion. The cbs parameter value
determines the fixed length.

CAUTION
If the specified cbs parameter value is smaller than the smallest input block,
the converted block is truncated.

After it finishes, the dd command reports the number of whole and partial input and
output blocks. For more information about the dd command, see the dd manual
page on your system.

dd Command Exit Status

The dd command returns the following exit values:

Table A14.2 Exit Status Values for the dd Command

Item Description

0 The input file was copied successfully.

>0 An error occurred.

Examples: dd Command Conversion

Here are two simple examples:

n To convert an ASCII text file to EBCDIC, enter the following:

dd if=text.ascii of=text.ebcdic conv=ebcdic

This command converts the text.ascii file to EBCDIC representation and stores
the EBCDIC version in the text.ebcdic file.

When you specify the conv=ebcdic parameter, the dd command converts the
ASCII ^ (circumflex) character to an unused EBCDIC character (9A
hexadecimal) and the ASCII ~ (tilde) character to the EBCDIC ^ character (NOT
symbol).

n To use the dd command as a filter, enter the following:

ls -l | dd conv=ucase

936 Appendix 2 / Using EBCDIC Data on ASCII Systems

This command displays a long listing of the current directory in uppercase.

The performance of the dd command and cpio command in the IBM 9348
Magnetic Tape Unit Model 12 can be improved by changing the default block
size. To change the block size, use the chdev command as follows:

chdev -l Device_name -a block_size=32k

Using the iconv Command to Convert a Text File

About the iconv Command

Use the iconv command to convert the encoding of a text file. Use one the
following examples of syntax:

iconv –f FromCode –t ToCode FileName

iconv –l

For more information about the syntax and parameters for the iconv command, see
the iconv manual page on your system.

iconv Command Exit Status

The iconv command returns the following exit values:

Table A14.3 Exit Status Values for the iconv Command

Item Description

0 Input data was successfully converted.

1 The specified conversions are not supported, the input file cannot be opened
or read, or there is a usage-syntax error.

2 An unusable character was encountered in the input stream.

Examples: iconv Command Conversion

Here are two simple examples:

n To convert the contents of the mail.x400 file from code set IBM-850 and store
the results in the mail.local folder, enter the following:

Moving Data from ASCII to EBCDIC Systems 937

iconv –f IBM-850 –t ISO8859-1 mail.x400 > mail.local

n To convert the contents of a local file to the mail interchange format and send
mail, enter the following:

iconv –f IBM-943 –t fold7 mail.local > mail.fxrojas

938 Appendix 2 / Using EBCDIC Data on ASCII Systems

Appendix 3
Encoding for z/OS Resource
Names

Overview of Encoding for z/OS Resource Names . 939

z/OS Resource Names and Encoding . 939

Reverting to SAS 9.2 Behavior . 942

Overview of Encoding for z/OS Resource
Names

Beginning with SAS 9.3, z/OS resource names such as z/OS data set names, UNIX
File System (UFS) paths, and so on, are processed without being converted to a
different encoding. This appendix describes z/OS resource names and the contexts
in which they might be specified or displayed by SAS.

Each encoding can associate the same code point with a different character. Some
encodings might not associate a code point with any character, even though other
encodings associate that code point with a character. For more information about
encoding, see the SAS National Language Support (NLS): Reference Guide.

z/OS Resource Names and Encoding
The SAS language and various SAS user interfaces enable the user to specify the
names associated with operating system (OS) resources such as z/OS data set

939

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

names and UFS paths. SAS also displays OS resource names as part of SAS output,
in messages to the SAS log, in various windows of the SAS windowing environment,
and so on.

The z/OS resource names are maintained by z/OS as a sequence of binary code
points, rather than as characters. In other words, on z/OS, the application
programming interfaces do not associate a character encoding with z/OS resource
names. The same is true for the user interfaces associated with z/OS components
such as JES (JCL), ISPF, the UNIX System Services (USS) shell, and so on. When a
z/OS resource name is created, the encoding used to specify the name is not stored
or saved with the name itself. The following z/OS data set name illustrates how
some code points are associated with different characters by different EBCDIC
code pages:

PROD.ACCT#104.RAWDATA 1

PROD.ACCTÄ104.RAWDATA 2

DDDC4CCCE7FFF4DCECCEC 3

7964B1333B104B9164131 4

1 the data set name as it is represented in EBCDIC 1047

2 the data set name as it is represented in EBCDIC 1143

3 the first hexadecimal character of the code points for the data set name

4 the second hexadecimal character of the code points for the data set name

The 10th code point in the data set name is X’7B’. This code point corresponds to
the # character in the U. S. English code page (EBCDIC 1047). However, the code
page associated with the Finnish code page (EBCDIC 1143) maps the character Ä to
the code point X’7B’. Therefore, the sequence of characters required to identify
this OS resource is different for the EBCDIC 1047 and EBCDIC 1143 encodings.

The difference in the sequence of characters is illustrated in the following example,
which reads the external file residing in the z/OS data set. A portion of the SAS log
is shown for functionally equivalent programs that were run with SAS 9.3 in the
EBCDIC 1047 and EBCDIC 1143 encodings.

The following SAS log excerpt shows the EBCDIC 1047 encoding:

5 proc options option=encoding; run;

ENCODING=OPEN_ED-1047
 Specifies default encoding for internal processing of data

6 filename rawdata 'prod.acct#104.rawdata'; 1

7 data acct;
8 account = 104;
9 infile rawdata;
10 attrib transdate format=date9. informat=date9.;
11 input transdate category $ amount; 2

12 run;

NOTE: The infile RAWDATA is:
 Dsname=PROD.ACCT#104.RAWDATA, 3

 Unit=3390,Volume=SDS012,Disp=SHR,Blksize=27920,
 Lrecl=80,Recfm=FB,Creation=2011/06/09

940 Appendix 3 / Encoding for z/OS Resource Names

1 The highlighted character # in the data set name is associated with the code
point X’7B’ in the OPEN_ED-1047 encoding.

2 The highlighted character $ in the INPUT statement is part of SAS syntax.
Syntactical meaning is based on the character instead of the code point.

3 The highlighted character # in the data set name is associated with the code
point X’7B’ in the OPEN_ED-1047 encoding.

The following SAS log excerpt shows the EBCDIC 1143 encoding:

5 proc options option=encoding; run;

ENCODING=OPEN_ED-1143
 Specifies default encoding for internal processing of data

6 filename rawdata 'prod.acctÄ104.rawdata'; 1

7 data acct;
8 account = 104;
9 infile rawdata;
10 attrib transdate format=date9. informat=date9.;
11 input transdate category $ amount; 2

12 run;

NOTE: The infile RAWDATA is:
 Dsname=PROD.ACCTÄ104.RAWDATA, 3

 Unit=3390,Volume=SDS012,Disp=SHR,Blksize=27920,
 Lrecl=80,Recfm=FB,Creation=2011/06/09

1 The highlighted character Ä in the data set name is associated with the code
point X’7B’ in the OPEN_ED-1143 encoding.

2 The highlighted character $ in the INPUT statement is part of SAS syntax.
Syntactical meaning is based on the character instead of the code point.

3 The highlighted character Ä in the data set name is associated with the code
point X’7B’ in the OPEN_ED-1143 encoding.

In the preceding log excerpts, the same code point, X’7B’, is specified in the SAS
program for the 10th character of the z/OS data set name. In addition, the same
code point, X’7B’, is used by SAS in the NOTE message to represent the name of
the data set that was read. However, different characters are displayed for this
code point in the two log excerpts because the terminal emulation for the first log
excerpt used a different encoding than the second log excerpt.

Note that SAS processes z/OS resource names differently than it does SAS syntax.
When the NONLSCOMPATMODE option is in effect, SAS syntax is interpreted
according to the value of the ENCODING option. NONLSCOMPATMODE allows the
same character to be specified in SAS syntax regardless of the SAS session
encoding that is in effect. For example, in the first log excerpt, the $ syntax
character in the INPUT statement is encoded as X’5B’ because it is in EBCDIC
1047. In the second log excerpt, the $ syntax character is encoded as X’67’ because
it is in EBCDIC 1143. However, both SAS sessions properly recognized these code
points as corresponding to the same character, $, because the ENCODING option
informed SAS how to interpret the code points. In NONLSCOMPATMODE,
syntactical meaning is associated with the character, not a particular code point.
NONLSCOMPATMODE is the default value of the NLSCOMPATMODE system
option.

z/OS Resource Names and Encoding 941

In contrast, because z/OS resource names have no inherent encoding, it is the string
of code points that identifies the resource to the system, not the associated
characters. The associated characters might vary depending on the encoding in
which the SAS program is prepared.

Reverting to SAS 9.2 Behavior
Prior to SAS 9.3, if the NONLSCOMPATMODE option was in effect, SAS, in most
cases, transcoded z/OS resource names from SAS session encoding to EBCDIC
1047 before supplying those names to the operating system. Conversely, when
displaying the names of z/OS resources, SAS treated the names as if they were
encoded in EBCDIC 1047. Therefore, SAS transcoded the names to SAS session
encoding in SAS messages and other SAS output. This approach had two
drawbacks:

n This behavior was at variance with all z/OS program products and utilities that
were supplied by IBM, none of which performed transcoding in this manner.

n UFS paths were limited to the character set that could be represented in
EBCDIC 1047.

For the purposes of compatibility, it is possible to preserve the SAS 9.2 behavior
described by specifying the following TKMVSENV option when executing SAS:

set TKOPT_ENV_ENCODING_PATH=open_ed-1047

Note: This option is relevant only if you are using a session encoding other than
open_ed-1047.

942 Appendix 3 / Encoding for z/OS Resource Names

Appendix 4
Starting SAS with SASRX

Overview of SASRX . 944

Option Syntax . 944
Overview of Option Syntax . 944
Option Categories . 944
Option Types . 945
Option Specification Styles . 945
Additional Syntax Considerations . 946

SASRX Options . 946
SASRX Data Set Options . 946
How the WORK Option Controls the Size of the WORK Data Set 949
Miscellaneous SASRX Value Options . 950
SASRX Load Module Library Options . 952
SASRX Configuration File Options . 952
SASRX Environment Variable Options . 954
SASRX Switch Options . 954
Alternate Ddname SASRX Options . 956
Examples of Option Types and Specification Styles . 956
Option Classification When UNIX Style and CLIST Style Are Mixed 957
Examples of Option Classification When UNIX Style and CLIST

Style Are Mixed . 958
Quoting Option Specifications . 958
Additional Examples of Quoting . 959
Option Priority . 961
Option Priority Example . 961

Site Customizations . 962
Overview of Site Customizations . 962
User Exit . 962

943

Overview of SASRX
SASRX is a REXX exec that you can use to invoke SAS. It is provided as an
alternative to the SAS CLIST. SASRX supports the same command-line syntax as
the SAS CLIST. It also supports these additional features:

n mixed-case option values

n additional options

n option specifications written in a UNIX style

n direct specification of SAS system options

n UNIX file system (UFS) file and directory names as option values

At your installation, the SASRX exec might have been renamed or modified by your
on-site SAS support personnel. Ask your support personnel for site-specific
information about the SASRX exec.

Option Syntax

Overview of Option Syntax
You can specify options on the SASRX command line. As described in the next
topic, there are two categories of options and two types of options, and there are
two styles of option specification.

Option Categories
SASRX supports two categories of options, SASRX options and SAS system
options.

SASRX options
SASRX options are defined internally to SASRX. SASRX options control what
SASRX does in preparing to invoke SAS. The effect of these options occurs
before SAS begins executing, such as through the allocation of data sets. For
information about SASRX options, see the tables in “SASRX Options” on page
946.

944 Appendix 4 / Starting SAS with SASRX

SAS system options
All other options that SASRX does not recognize are assumed to be SAS system
options. SASRX does not validate or act on options that it does not recognize; it
only passes them to SAS. For information about SAS system options, see
“System Options in the z/OS Environment” on page 689.

Option Types
SASRX options and SAS system options are further classified as either switch
options or value options. Switch options are specified by a keyword that is not
followed by any value. Value options are specified as a keyword that is followed by
a value.

Option Specification Styles
SASRX supports two different styles of option specifications, CLIST style and
UNIX style. For a CLIST style specification of a switch option, specify only the
keyword. For a CLIST style specification of a value option, follow the keyword with
optional blank spaces and a value in parentheses [for example, linesize(72)].

The distinguishing feature of an option specification written in a UNIX style is that
the keyword is prefixed with a hyphen. For a specification of a switch option that is
written in a UNIX style, specify the keyword prefixed with a hyphen. Use the
following guidelines and examples to write specifications of value options in a
UNIX style:

n The value follows after a blank space or an equal sign.

-linesize 72
-linesize=72

n For SASRX options, any value can be enclosed in parentheses, even if the
parentheses are not required. For options that accept a list of values, the list is
required to be enclosed in parentheses or quotation marks if it contains more
than one value.

-input=('my.input.one' 'my.input.two')
-input=" 'my.input.one' 'my.input.two' "

n For SAS system options, parentheses can be used only with options that require
them for enclosing a list of values. Quotation marks cannot be used instead of
parentheses.

Option Syntax 945

Additional Syntax Considerations
If you specify more than one option, separate the option specifications by one or
more blank spaces. When using CLIST style specification, you can also separate
option specifications with a comma instead of a blank space.

CLIST style and option specifications written in a UNIX style can be intermixed on
the command line, with a special caution that is discussed in “Option Classification
When UNIX Style and CLIST Style Are Mixed” on page 957. Because the two
option specification styles can be intermixed, and because SAS system options are
accepted, SASRX does not support the UNIX convention that an argument that
does not begin with a hyphen is an input filename. You must specify -input
explicitly to identify a SAS program input file, even if option specification written in
a UNIX style is used exclusively.

SASRX option names can be truncated to the minimum unique abbreviation. For
example, O is the minimum abbreviation for the OPTIONS option because no other
SASRX option begins with the letter “O.” SASU is the minimum unique abbreviation
for the SASUSER option because other options begin with the letters “SAS.” As a
general rule, SAS system options cannot be abbreviated.

SASRX Options

SASRX Data Set Options
The SASRX options in the following table specify either z/OS data sets or UFS files
or directories that are to be allocated for SAS. For each option, the name of a z/OS
data set is a valid value.

n Options with file in the UFS column accept either a z/OS data set name or a
UFS filename as a value.

n Options with dir in the UFS column accept either a z/OS data set name or a
UFS directory name as a value, as in -work /tmp.

n A value is recognized as a UFS file or directory name only if it includes at least
one slash (/).

n Options pertaining to input files accept multiple data sets to be concatenated.

n Options pertaining to output files accept a size specification as an alternative to
a data set name. For example, the default value for the WORK option is
'200,200'. This means that a temporary WORK data set is allocated with the
ALLOCATE option value of SPACE(200,200).

946 Appendix 4 / Starting SAS with SASRX

Note:

n The MVS: and HFS: device type prefixes are supported for these options.

n Options that are marked “Set by installation procedure” in the following tables
should not be changed.

Table A16.1 SASRX Data Set Options

Option Name Default Value Description UFS

AUTOEXEC Name of the AUTOEXEC file. file

CLOG * Specifications for the SAS console log file. If the
value is numeric, it specifies the value for the
SPACE operand for the allocation of the file.
Space units are as specified by the UNITS option.
If the value is a single letter, it specifies the
SYSOUT class for the file. If SASRX is running in
the background and the CLOG value is *, then the
file is allocated to DUMMY. In all other cases,
the value specifies the data set name or UFS
filename for the file.

CONFIG Name of the user configuration file to
concatenate with system configuration files.

GDEVICEn Name of the device catalog library; n can be any
number from 0 to 9.

IMSLOG Name of the IMS LOG file that is to be allocated
to ddname IEFRDER. Used only with
SAS/ACCESS Interface to IMS-DL/I.

INPUT Name of the primary input file. file

LOG * Specifications for the SAS log file. If the value is
numeric, it specifies the value for the SPACE
operand for the allocation of the file. Space units
are as specified by the UNITS option. If the value
is a single letter, it specifies the SYSOUT class
for the file. If SASRX is running in the
background and the LOG value is *, then the file
is allocated to DUMMY. In all other cases, the
value specifies the data set name or UFS
filename for the file.

file

MAUTS Set by installation
procedure

Name of the system macro autocall library.

SASRX Options 947

Option Name Default Value Description UFS

MTKMVS Set by installation
procedure

Name of the system TKMVSENV file. file

PRINT * Specifications for the SAS procedure output file.
If the value is numeric, it specifies the value for
the SPACE operand for the allocation of the
PRINT output file. If the value is a single letter, it
specifies the SYSOUT class for the PRINT
output. If SASRX is running in the background
and the PRINT value is *, then the PRINT output
file is allocated to DUMMY. In all other cases,
the value specifies the data set name or UFS
filename for the PRINT output file.

file

SAMPSIO Set by installation
procedure

Name of the SAS sample library.

SASAUTOS Name of the user macro autocall library to
concatenate with the system macro autocall
library.

SASHELP Set by installation
procedure

Name of the Sashelp library.

SASMSG Set by installation
procedure

Name of the SAS message library.

SASUSER &syspref.SAS9.SASUS
ER

Name of the Sasuser library. The name can
contain symbolic strings for which values are
substituted. The string &syspref is replaced with
the current prefix. If the current prefix is null,
then it is replaced with the user ID. The string
&sysuid is replaced with the user ID. The string
&sysprefuid is replaced with the user ID if the
current prefix and the user ID are the same, or
the current prefix is null. Otherwise,
&sysprefuid is replaced with the current prefix
and user ID, separated by a period.

dir

SYSIN SYSIN is an alias for the INPUT option.

SYSTEMCONFIG Set by installation
procedure

Name of the system configuration file. file

SYSTCPD Name of the SYSTCPD file.

TKMVSENV Name of the user TKMVSENV file to
concatenate with the system TKMVSENV file

948 Appendix 4 / Starting SAS with SASRX

Option Name Default Value Description UFS

WORK '200,200' Size of the temporary Work library data set that
is to be created. The size value is specified as an
initial quantity and an increment quantity that
are separated by a comma. This value can also
be enclosed in single quotation marks. The size
value can be prefixed with CYL, TRACKS,
BLOCKS, or a block size value to indicate the
unit of space to be used for the initial and
increment quantities.

The WORK value can also be the name of an
existing data set or the name of a UFS directory,
instead of a size specification.

For specific details about the WORK option, see
“How the WORK Option Controls the Size of the
WORK Data Set”.

dir

How the WORK Option Controls the Size of the
WORK Data Set

The WORK library data set is allocated by a TSO ALLOCATE command before SAS
starts. The SASRX WORK option value usually specifies values that are to be used
in certain operands of an ALLOCATE command that creates a temporary WORK
data set. The following discussion describes how to specify these size values.
Alternatively, the WORK option can specify the name of an existing permanent
data set or UFS directory that is to be allocated as WORK. For more information
about the TSO ALLOCATE command, see the TSO/E Command Reference from IBM.

When the WORK option is used to specify the size of a temporary data set, its
value has one of the following forms:

CYL, ‘n1, n2’
specifies the size value as a number of cylinders. For example, -work cyl,'5,5'
yields an ALLOCATE command with CYL SPACE(5,5) operands.

TRACKS, ‘n1, n2’
specifies the size value as a number of tracks. For example,
-work tracks,75,75 yields an ALLOCATE command with
TRACKS SPACE(75,75) operands.

BLOCKS, ‘n1, n2’
specifies the size value as a number of blocks of length 8K. BLOCKS is the
default if nothing is specified before the numbers. For example,
-work blocks,400,400 or –work 400,400 yields an ALLOCATE command with
a SPACE(400,400) operand.

SASRX Options 949

n, ‘n1, n2’
specifies that the size value is the number of blocks of length n. For example,
-work 27648,'150,150' yields an ALLOCATE command with
BLOCK(27648) BLKSIZE(0) SPACE(150,150) operands. Note that the specified
block size is used only for size computation. The allocation actually uses
BLKSIZE(0).

In all cases, the block size is determined by SAS according to the value of the
BLKSIZE or BLKSIZE(device-type) system option. For more information, see
“Controlling Library Block Size” on page 56.

If the size value is specified in units of blocks, then the ALLOCATE command uses
the ROUND operand, which rounds the library size up to an amount that
corresponds to a whole number of cylinders. Therefore, the actual library size might
be larger than the specified number of blocks implies.

There are some constraints on block size. Regardless of how the block size is
specified, SAS might adjust it slightly to a valid value. If SAS changes the block
size, it might slightly change the effective size of the library. For more information
about these issues, see “Direct Access Bound Libraries” on page 51.

For suggestions about how to determine the amount of space required for the Work
library, see “Work Library and Other Utility Files” on page 26.

Miscellaneous SASRX Value Options
Table A16.2 Miscellaneous SASRX Value Options

Option Name Default Value Description

DBMSCONCAT LAST Specifies the DBMSLIB concatenation
order; the value can be FIRST or LAST.

ENTRY Set by
installation
procedure

Specifies the SAS entry point name: SAS,
SASB, or SASLPA.

INITTSO A single TSO command to be executed just
before SAS starts (and just after the
TSOCOMMANDS, if any, are executed).
The command must be enclosed within
quotation marks or parentheses. Unlike
other options, INITTSO is cumulative. You
can specify it multiple times with different
commands, and each command is
executed.

OPTIONS Specifies one or more SAS system options.
If more than one option is specified, the list
must be enclosed in parentheses or

950 Appendix 4 / Starting SAS with SASRX

Option Name Default Value Description

quotation marks. This option is provided
for compatibility with the SAS CLIST. SAS
system options can be specified on their
own with SASRX.

PARMCARD 1 Specifies the PARMCARD file size

PRINTBLOCKSIZE 264 Specifies the blocksize for the SAS
procedure output file (PRINT file).

PRINTLRECL 260 Specifies the LRECL for the SAS procedure
output file (PRINT file).

SORTLINK * Specifies whether to put the system sort
library in TASKLIB. An asterisk (*) indicates
No. A null value ("") indicates Yes.

TERMTSO A single TSO command to be executed just
after SAS terminates. The command must
be enclosed within quotation marks or
parentheses. Unlike other options,
TERMTSO is cumulative. You can specify it
multiple times with different commands,
and each command is executed.

TSOCOMMANDS A list of one or more TSO commands (for
example, ALLOCATE commands) that are
to be executed just before SAS starts. The
list of commands must be enclosed in
quotation marks or parentheses, and the
commands must be separated by
semicolons.

Note: This option is now deprecated. Use
the INITTSO option instead.

UNITS CYL Specifies the allocation unit for LOG,
CLOG, PRINT, and PARMCARD.

USEREXIT The name of a REXX user exit. For more
information, see “User Exit” on page 962.

WORKDEV SYSDA Specifies the value of the UNIT operand
for the allocation of WORK.

WORKDEVCOUNT 1 Specifies the value of the UCOUNT
operand for the allocation of WORK.

SASRX Options 951

SASRX Load Module Library Options
The following SASRX options specify load module libraries that are to be
concatenated in the TASKLIB. Each option accepts one or more library names.

Table A16.3 SASRX Load Module Library Options

Option Name Default Value Description

DBMSLIBS Name of the database load library to
concatenate with SASLOAD.

LOAD Name of the user or test fix load library to
concatenate with SASLOAD.

SASLOAD Set by installation
procedure

Name of the SAS load library.

SORTLDSN SYS1.SORT.LINKLIB Name of the system sort library. This
option is concatenated with SASLOAD
only if SORTLINK has a null value.

SASRX Configuration File Options
SASRX configuration files contain option specifications. Each option specification
must be in the same format that is valid for the SASRX command line, and the
specifications can be on separate lines in the configuration files.

The configuration files can be either UFS files or MVS data sets. If the files are MVS
data sets with fixed length 80-byte records, sequence numbers are ignored if they
are present in columns 73–80. Otherwise, you can use all of the character positions.
The files can include comments that begin with a slash followed by an asterisk (/*)
and end with an asterisk followed by a slash (*/).

When SASRX configuration file options are specified on the SASRX command line,
they follow the option priority rules for all command line options as described in
“Option Priority” on page 961. If the same SASRX configuration file option is
specified more than once, only the last specification is accepted, even if different
configuration files are named.

SASRX configuration files can be nested by specifying a SASRX configuration file
option within a SASRX configuration file. SASRX configuration file option
specifications that are nested are handled differently from those that are entered
on the command line. For each configuration file option specification, the contents

952 Appendix 4 / Starting SAS with SASRX

of the named configuration file are logically inserted in place of the option and
parsed in sequence before the rest of the configuration file is parsed (if the
specified file has not been parsed previously). Therefore, each unique nested
occurrence of a SASRX configuration file option is fully accepted.

Option specifications in SASRX configuration files can contain symbolic references
that are resolved from values that are specified with the SASRXSYSCFGPARMS or
SASRXCFGPARMS options. These options are set by the installation procedure. For
example, instead of hardcoding the names of the SASLOAD data sets, you can use a
symbolic reference to code them as follows:

-SASLOAD('&hlq..LIBRARY'
 '&hlq..LIBE')

&hlq. is resolved from the following option:

–sasrxsyscfgparms(–hlq <your high-level qualifier>)

This specification reduces the number of configuration changes that you need to
make if you change your high-level qualifier.

Symbolic references in SASRX configuration files can also be resolved from the
value of a SASRX option that you previously specified. For example, to concatenate
a system TKMVSENV file that is site–specific without modifying the shipped
configuration, you could leave unchanged the shipped –MTKMVS value of the
following statement:

-MTKMVS '&hlq..TKMVSENV(TKMVSENV)'

and add the following statement in the REXXSITE member:

-MTKMVS (&mtkmvs '&hlq..MVS.TEMVSENV(CUSTOM)')

The &mtkmvs symbolic reference is resolved from the value of the MTKMVS option
that you previously specified, so the option specification that is finally resolved is
the following:

-MTKMVS ('<high-level qualifier>.TKMVSENV(TKMVSENV)'
 '<high-level qualifier>.MVS.TKMVSENV(CUSTOM)')

The following table shows the SASRX configuration file options:

Table A16.4 SASRX Configuration File Options

Option Name Default Value Description

SASRXSYSCONFIG Set by the installation
procedure

List of the names of the
SASRX system
configuration files.

SASRXCONFIG Name or names of the
SASRX user configuration
file or files.

SASRXSYSCFGPARMS Set by the installation
procedure

Parameters for the SASRX
configuration files.

SASRX Options 953

Option Name Default Value Description

SASRXCFGPARMS Parameters for the SASRX
configuration files.

SASRX Environment Variable Options
The SASRX environment variable options set the values of environment variables
that are used internally by SAS.

The NETENCRALG option is a special case because SAS can use it as an
environment variable and as a SAS system option. When NETENCRALG is specified
as a SASRX option, both the NETENCRALG environment variable and the SAS
system option are set.

The following list shows the SASRX environment variable options:

n INHERIT

n NETENCRALG

n SASCLIENTPORT

n SASDAEMONPORT

SASRX Switch Options
The following table shows the SASRX switch options. SASRX switch options for
which only one option name is listed are off by default. SASRX switch options for
which two option names are listed are on by default. Specify the option name
prefixed with “NO” to turn the option off. For example, the STAE option is on by
default, but the NOSTAE option overrides the default.

The SASRX switch options NOSTAE, NOSTAI, and NOSTAX are for problem
diagnosis and should be used only at the direction of SAS Technical Support.

Table A16.5 SASRX Switch Options

Option Name Description

FLUSH

NOFLUSH

Flush input stack if error.

GO Continue previous SAS session. When
GO is specified, SASRX sets the
NOWORKINIT SAS system option and

954 Appendix 4 / Starting SAS with SASRX

Option Name Description

takes no action on either specified or
default values for the WORK allocation.
In other words, the WORK data set that
was allocated in a previous SAS session
remains allocated.

LOGGER

NOLOGGER

Use the UNIX logger command to write
error messages and output of the TRACE
option to the system console. This option
is useful for problem diagnosis when you
are running SAS under the UNIX tso
command in a spawned process. LOGGER
is the default when you are running under
the UNIX tso command. Otherwise,
NOLOGGER is the default. If LOGGER is
on by default, the logged output of
TRACE does not include the command
line options because they might include
passwords. Specify -logger explicitly if
you need to log command line options.

NOSASUSER Do not allocate SASUSER data set.

SHARE

NOSHARE

Share subpool 78.

STACK

NOSTACK

Create new input stack.

STAE

NOSTAE

Trap main task abends.

STAI

NOSTAI

Trap subtask abends.

STAX

NOSTAX

Trap attentions.

SYSMDUMP Allocate SYSMDUMP.

TRACE Trace TSO commands issued by SASRX.

WORKLARGE Allocate the WORK library with
DSNTYPE(LARGE).

SASRX Options 955

Alternate Ddname SASRX Options
The following SASRX options enable you to use ddnames other than the default
ddnames. Use of these options is discouraged, and they are available only for
compatibility with the SAS CLIST.

Table A16.6 Alternate Ddname SASRX Options

Option Name Default Value Description

DDAUTOEX SASEXEC AUTOEXEC=ddname

DDCONFIG CONFIG CONFIG=ddname

DDLOG SASLOG LOG=ddname

DDPARMCD SASPARM PARMCARDS=ddname

DDPRINT SASLIST PRINT=ddname

DDSASAUT SASAUTOS SASAUTOS=ddname

DDSASHLP SASHELP SASHELP=ddname

DDSASMSG SASMSG SASMSG=ddname

DDSASUSR SASUSER SASUSER=ddname

DDSYSIN SYSIN SYSIN=ddname

DDWORK WORK WORK=ddname

Examples of Option Types and Specification Styles

Example of Recognizing a SAS Switch Option

The SAS system option DMS is not a SASRX option. When you specify the DMS
system option, SASRX assumes that it is a SAS system option. The following two
examples are functionally equivalent:

sasrx o(dms)

956 Appendix 4 / Starting SAS with SASRX

sasrx dms

In the first example, o is recognized as a SASRX value option (abbreviation of
OPTION), and dms is its value. In the second example, dms is not recognized as a
SASRX option and is therefore assumed to be a SAS system option.

Example Comparison of UNIX Style and CLIST Style
Option Specification

The following SASRX examples are functionally equivalent. The first two examples
illustrate new functionality in SASRX, and the third example illustrates
compatibility with the SAS CLIST.

sasrx -linesize 72
is a specification of the SAS system option LINESIZE with a value of 72 that is
written in a UNIX style.

sasrx linesize(72)
is a CLIST style specification of the previous option.

sasrx o(linesize=72)
is a CLIST style specification of the SASRX option OPTION with a value of
linesize=72.

The specification sasrx -linesize(72) is not valid because a specification of a
SAS system option that is written in a UNIX style does not accept a value in
parentheses.

Option Classification When UNIX Style and CLIST
Style Are Mixed

Mixing options specifications that are written in UNIX and CLIST styles can result
in errors. Therefore, you should use one style or the other exclusively. If you do mix
styles, you need to understand how SASRX classifies options.

SASRX parses the command line from left to right. For each option keyword that
SASRX encounters, it first classifies the option as either a SASRX option or a SAS
system option. SASRX then classifies the option as either a value option or a switch
option. Because definitions of SAS system options are not built into SASRX,
classifying whether a SAS system option is a switch option or a value option is
based on the context. If the next part of the command line is syntactically valid as
an option value, the option is classified as a value option. Otherwise, the option is
classified as a switch option.

SASRX Options 957

Examples of Option Classification When UNIX
Style and CLIST Style Are Mixed

The following examples illustrate how parsing a command line from left to right can
lead to misclassification when a specification for a switch SAS system option that
is written in UNIX style is followed by any CLIST style option specification.

sasrx dms -memrpt
is parsed correctly. dms is classified as a SAS system option because it is not a
SASRX option. It is also classified as a switch option because it is followed by a
keyword that is prefixed with a hyphen. The hyphen indicates the start of
another option and not a value.

sasrx -dms memrpt
is not parsed correctly. Again, dms is classified as a SAS system option, but it is
misclassified as a value option because memrpt appears to be its value, rather
than another option. The command is parsed as sasrx -dms=memrpt.

sasrx -nosasuser memrpt
is parsed correctly because nosasuser is classified as a SASRX switch option
rather than as a SAS system option. Therefore, SASRX uses its internal
definition of this option to recognize it as a switch option, and it parses memrpt
as a separate option and not as a value for nosasuser.

Quoting Option Specifications
An option value must be enclosed within quotation marks if blank spaces or
punctuation marks are contained within the value. For example, in the option
specification -sysparm="A B C", the option value A B C includes blank spaces, so
it must be enclosed within quotation marks.

For SASRX options, a value that is a fully qualified data set name must be enclosed
within single quotation marks. A data set name that is not enclosed in quotation
marks is assumed to be unqualified. For SAS system options, quotation marks are
optional for a single data set name, but they are required for data set names in a
concatenated list.

For both SASRX options and SAS system options, quotation marks are optional for
a single UFS filename. However, they are required for UFS filenames in a
concatenated list, as in this example:

-autoexec=('~/tests/a1.sas' '~/tests/a2.sas')

When quotation marks are nested, each quotation mark at an inner level must
either be doubled (for example, by replacing single quotation marks with two single
quotation marks), or be replaced with a quotation mark of the opposite type (for

958 Appendix 4 / Starting SAS with SASRX

example, by replacing single quotation marks with double quotation marks). The
following examples show both of these methods:

-options 'news=(''sas.news(news)'' ''.my.sas(news)'')'
-options 'news=("sas.news(news)" ". my.sas(news)")'

Any SASRX option value can be enclosed in quotation marks even if the quotation
marks are not required. Some SAS system options do not accept values that are
enclosed in quotation marks.

For option specifications written in a UNIX style, there are no requirements for
quotation marks other than those described previously.

For CLIST style option specifications, to meet backward-compatibility
requirements, SASRX requires the same rules for quotation marks as the SAS
CLIST. The following rules for quotation marks apply in addition to the
requirements described:

n CLIST style option specifications require that the single quotation marks that
indicate a fully qualified data set name must be doubled.

In the following example, to indicate that prefix.my.sas is fully qualified, it
must be enclosed in single quotation marks (for example, 'prefix.my.sas').
The quoting rule requires these quotation marks to be doubled (for example,
''prefix.my.sas''). Because the option value contains quotation marks, the
entire value must then be enclosed in single quotation marks:

input('''prefix.my.sas''')

The following example illustrates that the first two levels of quoting are for the
fully qualified data set names, and that the third level of quoting is for the entire
option value:

 input(' ''prefix.prog1.sas'' ''prefix.prog2.sas'' ')

The following example is not valid because single quotation marks indicate an
unqualified data set name in a CLIST style specification:

input('prefix.my.sas')

n In a CLIST style specification of the OPTIONS option, quotation marks that are
doubled because of nesting must be doubled a second time. The following
example is correct:

options('news=''''sas.news(news)'''' nodms')

The following example is not correct:

options('news=''sas.news(news)'' nodms')

Additional Examples of Quoting

Example 1

The following two option specifications that are written in a UNIX style:

SASRX Options 959

sasrx -input 'prefix.my.sas'
sasrx -input=('prefix.my1.sas' 'prefix.my2.sas')

are equivalent to the following two CLIST style option specifications:

sasrx input('''prefix.my.sas''')
sasrx input('''prefix.my1.sas'' ''prefix.my2.sas''')

The following option specifications are equivalent, and illustrate that no quotation
marks are required for a data set name that is not fully qualified:

sasrx -input my.sas
sasrx input(my.sas)

Example 2

All of the following option specifications are equivalent. The first example
illustrates that SAS system options do not require a data set name to be enclosed
in quotation marks. The second example illustrates that SAS system options allow
data set names to be enclosed in quotation marks. It also illustrates that
alternating single and double quotation marks makes a nested quoted string more
readable. The third example illustrates that when quotation marks of the same type
are nested, the inner level of quotation marks must be doubled. The fourth example
illustrates that internal single quotation marks must be doubled twice in a CLIST
style specification of the OPTIONS option.

sasrx -options "news=sas.news(news) nodms"
sasrx -options "news='sas.news(news)' nodms"
sasrx -options 'news=''sas.news(news)'' nodms'
sasrx options('news=''''sas.news(news)'''' nodms')

Example 3

All of the following option specifications are equivalent:

sasrx -sysparm "Don't use too many quotes"
sasrx -options (sysparm="Don't use too many quotes")
sasrx -options "sysparm='Don''t use too many quotes'"
sasrx o('sysparm="Don''''t use too many quotes"')

Example 4

When you use the explicit mode of invoking the REXX exec, the entire parameter
string must be enclosed in single quotation marks. Any internal single quotation
marks must be doubled one more time than would be required otherwise.

exec rexx.exec(sasrx) '-autoexec ''prefix.my.sas(auto)'' -nodms' exec
exec rexx.exec(sasrx) 'o(''autoexec=''''''''prefix.my.sas(auto)''''''''
 nodms'')' exec

960 Appendix 4 / Starting SAS with SASRX

Option Priority
The order in which options are passed to SAS is not necessarily the same as the
order in which they are specified on the SASRX command line. When an option is
specified more than once, the effective specification of the option is the last one
that is passed to SAS. The options string that is passed to SAS contains, in the
following order:

n option values generated by SASRX

n the list of directly specified SAS system options in the order in which they were
specified

n the value of the OPTIONS option

Options specified in SASRX configuration files are ordered following the same
rules. However, the entire set of options from SASRX configuration files has lower
priority than any option from the command line. The entire set of options from the
system SASRX configuration file has lower priority than the set of options from the
user SASRX configuration file.

Option Priority Example
The following SASRX command:

sasrx o(nodms) dms input(my.sas)

yields the following options parameter that is passed to SAS:

SYSIN=SYSIN DMS nodms

In the previous options parameter:

SYSIN=SYSIN
is generated internally from the INPUT option.

DMS
is a directly specified SAS system option.

nodms
is the value of the OPTIONS option.

In this example, the effective option is nodms instead of dms, even though dms is
specified last in the SASRX command.

SASRX Options 961

Site Customizations

Overview of Site Customizations
A site can customize the SASRX exec to meet local requirements. SASRX is
designed so that it is possible to make most or all of your customizations in a
system configuration file, and not in the REXX code. Default option values can be
changed by specifying the preferred value in the configuration file. More extensive
customization can be accomplished through a user exit, which is described in the
next topic.

User Exit
The main functions of a SASRX exec (such as REXXENW0) are to prepare the TSO
environment and to construct and execute the SASCP command that runs SAS. You
can use the -USEREXIT option to specify the name of an exec that the SASRX exec
calls as a user exit instead of executing SASCP. The parameters that were
constructed for the SASCP command are passed to the user exit. The user exit can
then examine the parameters and modify option values, add or remove options, or
recognize custom options. The user exit is responsible for executing the SASCP
command with its revised parameters. If you want your user exit to be used by
default for all TSO SAS invocations at your site, then the -USEREXIT option should
be specified in the REXXSITE member of your site's <hlq>.SASRXCFG data set.

A sample user exit named SASRXXIT is provided as a starting point from which you
can write your own user exit. SASRXXIT implements the following five options to
demonstrate the capabilities of the user exit interface.

LINESIZE=
illustrates how the user exit can intercept a SAS option value, and also how it
can add an option to the SASCP command. If the LINESIZE= option has been
specified, SASRXXIT passes the value unchanged on the SASCP command. If
the option has not been specified, SASRXXIT determines the terminal width and
adds a LINESIZE option to the SASCP command. The value is set equal to the
terminal width. This functionality enables you to automatically adjust your line
size to the terminal window that you are using.

NOEXECUTE
illustrates how the user exit can implement its own option that it does not pass
on to SAS. When NOEXECUTE is specified, the user exit does not actually
execute the SASCP command. Instead, it only prints it to the terminal. This
option is useful for debugging the user exit.

962 Appendix 4 / Starting SAS with SASRX

IMSALLOC
illustrates how the user exit can implement its own option that it does not pass
on to SAS. When the IMSALLOC option is specified, data sets that are required
by IMS are allocated. To implement this option, replace the sample data set
names in the user exit code with the correct names for your site. You can add
additional options for selecting data set names if necessary.

CLISTDEMO
runs a demonstration of a simple example that shows how the CLIST option
works with REXX.

ENV=
propagates the values of any ENV= options from the SASRX exec. These are
variables that the user wants to retrieve via the SYSGET or GETEXEC functions.
Because these functions can access only the current generation of REXX
variables, ENV settings must be propagated into the user exit. Therefore, all
user exits must support the ENV option.

Site Customizations 963

964 Appendix 4 / Starting SAS with SASRX

Appendix 5
64–Bit SAS Metadata Server

Overview of the SAS Metadata Server . 965

Advantages of 64-Bit SAS Metadata Server . 966
See Also . 966

Special Considerations for the 64-Bit SAS Metadata Server . 966

Overview of the SAS Metadata Server
The SAS Metadata Server is a multi-user server that serves metadata from one or
more SAS Metadata Repositories to all of the SAS Intelligence Platform client
applications in your environment. The SAS Metadata Server enables centralized
control so that all users access consistent and accurate data.

The functionality of the SAS Metadata Server is provided through the SAS Open
Metadata Architecture, which is a metadata management facility that provides
common metadata services to applications. One metadata server supports all of
the applications in your environment and can support hundreds of concurrent users.

The SAS Metadata Server can also run in a multi-server clustered environment to
provide failure recovery for high availability, and to provide scalable performance
for large deployments.

965

Advantages of 64-Bit SAS Metadata
Server

The 31-bit SAS 9.3 Metadata Server provided the ability to address 2 gigabytes of
memory. SAS 9.4 supports running the Metadata Server for z/OS in 64-bit
addressing mode, which provides the ability to address memory with a potential
limit of 16 exabytes. The execution JCL for the 64-bit SAS Metadata Server is
shipped with MEMLIMIT=8G (gigabytes). You can change this value to
accommodate your work load or limits set by your system programmer.

The 64-Bit SAS Metadata Server is implemented with the IBM Language
Environment (LE) run-time library, which enables SAS to call third-party DLLs in a
native manner. LE run-time options can be used with SAS to configure jobs that
have different requirements.

SAS 9.4 supports only the 64-bit Metadata Server for z/OS.

See Also
Configuration Guide for SAS Foundation for z/OS and the installation instructions for the
type of installation that you have selected.

Special Considerations for the 64-Bit
SAS Metadata Server

Applications such as the 64-bit metadata server use two types of memory: 31-bit
addressable memory and 64-bit addressable memory. The 64-bit metadata server
uses 31-bit addressable memory primarily for executables, and stores its data in 64-
bit addressable memory. This is important, because z/OS limits these two sorts of
memory with two different JCL keywords: REGION and MEMLIMIT. SAS provides
default REGION and MEMLIMIT specifications for the 64-bit metadata server.
These specifications should be adequate for most users. However, if the server fails
because of lack of memory, then increasing the REGION setting does not solve the
problem. Because the metadata is stored in 64-bit addressable memory, you must
increase the MEMLIMIT value.

966 Appendix 5 / 64–Bit SAS Metadata Server

Appendix 6
Accessing BMDP, SPSS, and
OSIRIS Files

The BMDP, SPSS, and OSIRIS Engines . 968
Introduction to the BMDP, SPSS, and OSIRIS Engines . 968
Restrictions on the Use of These Engines . 968

Accessing BMDP Files . 969
Overview of BMDP Files . 969
Assigning a Libref to a BMDP File . 969
Referencing BMDP Files . 969
Examples of Accessing BMDP Files . 970

Accessing OSIRIS Files . 970
Overview of OSIRIS Files . 970
Assigning a Libref to an OSIRIS File . 970
Referencing OSIRIS Files . 971
Examples of Accessing OSIRIS Files . 971

Accessing SPSS Files . 972
Overview of SPSS Files . 972
Assigning a Libref to an SPSS File . 973
Referencing SPSS Files . 973
Reformatting SPSS Files . 973
Examples of Accessing SPSS Files . 974

967

The BMDP, SPSS, and OSIRIS Engines

Introduction to the BMDP, SPSS, and OSIRIS
Engines

The following read-only engines enable you to access files that were created with
other vendors' software as if those files were written by SAS software:

BMDP
accesses system files that were created with BMDP Statistical Software.

SPSS
accesses SPSS files that were created under Release 9 of SPSS as well as SPSS-
X system files and portable export files that are created by using the SPSS
EXPORT command.

OSIRIS
accesses OSIRIS files.

You can use these engines in any SAS applications or procedures that do not
require random access. For example, by using one of the engines with the
CONTENTS procedure and its _ALL_ option, you can determine the contents of an
entire SPSS file.

Restrictions on the Use of These Engines
Because these are sequential engines, they cannot be used with the POINT= option
of the SET statement nor with the FSBROWSE, FSEDIT, or FSVIEW procedures in
SAS/FSP software. However, you can use the COPY procedure or a DATA step to
copy a BMDP, SPSS, or OSIRIS file to a SAS data set. You can then either use
POINT= or use SAS/FSP to browse or edit the file.

968 Appendix 6 / Accessing BMDP, SPSS, and OSIRIS Files

Accessing BMDP Files

Overview of BMDP Files
The BMDP engine can read only BMDP save files that were created on the same
operating environment. For example, the BMDP engine under z/OS cannot read
BMDP files that were created under the UNIX operating environment.

Assigning a Libref to a BMDP File
In order to access a BMDP file, you must use the LIBNAME statement or LIBNAME
function to assign a libref to the file.

You do not need to use a LIBNAME statement or function before running PROC
CONVERT if you are using PROC CONVERT to convert a BMDP file to a SAS data
file. For more information, see “CONVERT Procedure Statement: z/OS” on page
537.

Note that the LIBNAME statement has no options for the BMDP engine.

If you previously used a TSO ALLOC command or a JCL DD statement to assign a
ddname to the BMDP file, then you can omit the physical-filename (a physical
filename in the z/OS operating environment) in the LIBNAME statement or
LIBNAME function and use the ddname as the libref. See “Accessing BMDP Files”
on page 969.

For information about the LIBNAME statement, see . For“LIBNAME Statement:
z/OS” on page 656. information about the LIBNAME function, see “LIBNAME
Function” in the SAS Functions and CALL Routines: Reference.

Referencing BMDP Files
Because there can be multiple save files in a single physical BMDP file, you use the
value of the BMDP CODE= argument as the name of the SAS data file. For example,
if the BMDP save file contains CODE=ABC and CODE=DEF, and if the libref is XXX,
you reference the files as XXX.ABC and XXX.DEF. All BMDP CONTENT types are
treated the same, so even if file DEF has CONTENT=CORR under BMDP, SAS treats
it as CONTENT=DATA.

Accessing BMDP Files 969

In your SAS program, if you want to access the first BMDP save file in the physical
file, or if there is only one save file, then you can refer to the file as _FIRST_. This
approach is convenient if you do not know the BMDP CODE= value.

Examples of Accessing BMDP Files
Suppose the physical file MY.BMDP.FILE contains the save file ABC. The following
statements assign a libref to the data set and then run PROC CONTENTS and
PROC PRINT on the BMDP file:

libname xxx bmdp 'my.bmdp.file';
proc contents data=xxx.abc;
proc print data=xxx.abc;
run;

In the next example, the TSO ALLOC command associates a ddname with the name
of the physical file that comprises the BMDP physical-filename. The physical
filename is omitted in the LIBNAME statement and LIBNAME function, because the
libref that is used is the same as the ddname in the TSO statement. The PROC
PRINT statement prints the data for the first save file in the physical file.

tso alloc f(xxx) da('my.bmdp.file') shr reu;
libname xxx bmdp;
proc print data=xxx._first_;
run;

Accessing OSIRIS Files

Overview of OSIRIS Files
Although OSIRIS runs only under z/OS, the SAS OSIRIS engine accepts a z/OS data
dictionary from any other operating environment that is running SAS software. The
layout of an OSIRIS data dictionary is the same on all operating environments. The
data dictionary and data files should not be converted between EBCDIC and ASCII,
however, because the OSIRIS engine expects EBCDIC data.

Assigning a Libref to an OSIRIS File
In order to access an OSIRIS file, you must use the LIBNAME statement or
LIBNAME function to assign a libref to the file. Specify the OSIRIS engine in the
LIBNAME statement as follows:

970 Appendix 6 / Accessing BMDP, SPSS, and OSIRIS Files

LIBNAME libref OSIRIS 'physical-filename' DICT='dictionary-filename';

libref
is a SAS libref.

OSIRIS
is the OSIRIS engine.

physical-filename
is the physical filename of the data file.

dictionary-filename
is the physical filename of the dictionary file. The dictionary-filename can also
be a ddname. However, if you use a ddname for the dictionary-filename, do not
use quotation marks.

Specify the OSIRIS engine in the LIBNAME function as follows:

LIBNAME(libref, 'physical-filename ', 'OSIRIS', “DICT='dictionary-filename'”)

You do not need to use a LIBNAME statement or function before running PROC
CONVERT if you are using PROC CONVERT to convert an OSIRIS file to a SAS data
file. For more information, see “CONVERT Procedure Statement: z/OS” on page
537.

If you previously used a TSO ALLOC command or a JCL DD statement to assign a
ddname to the OSIRIS file, you can omit the physical-filename in the LIBNAME
statement or function. However, you must still use the DICT= option, because the
engine requires both files.

Referencing OSIRIS Files
OSIRIS data files do not have individual names. Therefore, you can use a member
name of your choice in SAS programs for these files. You can also use the member
name _FIRST_ for an OSIRIS file.

Under OSIRIS, the contents of the dictionary file determine the file layout of the
data file. A data file has no other specific layout.

You can use a dictionary file with an OSIRIS data file only if the data file conforms
to the format that the dictionary file describes. Generally, each data file should
have its own DICT file.

Examples of Accessing OSIRIS Files
Suppose you want to read the data file MY.OSIRIS.DATA, and the data dictionary is
MY.OSIRIS.DICT. The following statements assign a libref to the data file and then
run PROC CONTENTS and PROC PRINT on the file:

libname xxx osiris 'my.osiris.data'
 dict='my.osiris.dict';
proc contents data=xxx._first_;

Accessing OSIRIS Files 971

proc print data=xxx._first_;
run;

The next example uses JCL. In this example, the DD statements can be omitted if
the physical names are referenced in the LIBNAME statement.

//JOBNAME JOB
//STEP1 EXEC SAS
//OSIR DD DSN=MY.OSIRIS.DATA,DISP=SHR
//DICT DD DSN=MY.OSIRIS.DICT,DISP=SHR
//SYSIN DD *
 /* Any one of the following libname */
 /* statements can be used. */
libname osir osiris dict=dict;
libname xxx osiris 'my.osiris.data' dict=dict;
libname osir osiris dict='my.osiris.dict';
 /* Use this if the osir libref is used */
proc print data=osir._first_;
 /* Use this if the xxx libref is used */
proc print data=xxx._first_;
//

Accessing SPSS Files

Overview of SPSS Files
The SPSS engine supports native and portable file formats for both SPSS and
SPSS-X files. The engine automatically determines which type of SPSS file it is
reading and reads the file accordingly. The SPSS engine supports character variable
lengths up to 32K.

Note: The SPSS engine supports SPSS save files for SPSS Release 9 and earlier
releases. It also supports SPSS-X and the SPSS portable file format that is created
by using the SPSS EXPORT command. If you create a system file in a later version
of SPSS, you need to use SPSS to resave the data in the export format.

This engine can read only SPSS data files that were created under the same
operating environment. For example, the SPSS engine under z/OS cannot read
SPSS files that were created under the UNIX operating environment. The only
exception is an SPSS portable file, which can originate from any operating
environment.

972 Appendix 6 / Accessing BMDP, SPSS, and OSIRIS Files

Assigning a Libref to an SPSS File
In order to access an SPSS file, you must use the LIBNAME statement or LIBNAME
function to assign a libref to the file. Specify the SPSS engine in the LIBNAME
statement as follows:

LIBNAME libref SPSS 'physical-filename';

libref
is a SAS libref.

SPSS
is the SPSS engine.

physical-filename
is the physical filename of the SPSS file.

The syntax of the LIBNAME function for SPSS is as follows:

LIBNAME(libref, 'physical-filename', 'SPSS')

You do not need to use a LIBNAME statement or function before running PROC
CONVERT if you are using PROC CONVERT to convert an SPSS file to a SAS data
file. For more information, see “CONVERT Procedure Statement: z/OS” on page
537.

Note that the LIBNAME statement and function have no options for the SPSS
engine.

If you previously used a TSO ALLOC command or a JCL DD statement to assign a
ddname to the SPSS file, then you can omit the physical-filename in the LIBNAME
statement or function and use the ddname as the libref. For more information, see
the second example in “Examples of Accessing SPSS Files” on page 974.

Referencing SPSS Files
SPSS data files do not have names. For these files, use a member name of your
choice in SAS programs.

SPSS data files have only one logical member per file. Therefore, you can use
FIRST in your SAS programs to refer to the first data file.

Reformatting SPSS Files
SAS cannot use SPSS files that contain variables with numeric formats that have a
larger number of decimal places than the width of the entire variable. For example,
if you have a variable that has a width of 17 and also has 35 decimal places, then

Accessing SPSS Files 973

SAS returns errors when you try to run a DATA step on the file or view it with the
table viewer. To use the SPSS file with SAS, you have to reformat the variables.

You can reformat the variables by reducing the number of decimal spaces to a value
that fits within the width of the variable. In the following code example the
statement revision=cat(format,formatl,'.2'); converts the number of decimal
spaces to 2. This value reduces the number of decimal spaces so that it is not
greater than the width of the variable.

libname abc spss 'FILENAME.POR';
proc contents data=abc._all_ out=new; run;
filename sascode temp;
data _null_; set new; file sascode;
 if formatd > formatl then do;
 revision=cat(format,formatl,'.2');
 put 'format' +1 name +1 revision ';' ;
 end;
 run;
data temp; set abc._all_;
 %inc sascode/source2;
 run;

Note: The OPTIONS NOFMTERR statement does not allow SAS to use the data
set with a DATA step or the table viewer. You have to reformat numeric variables
that have a larger decimal value than their width before you can use a DATA step or
the table viewer.

Examples of Accessing SPSS Files
Suppose you want to read the physical file MY.SPSSX.FILE. The following
statements assign a libref to the data set and then run PROC CONTENTS and
PROC PRINT on the SPSS file:

libname xxx spss 'my.spssx.file';
proc contents data=xxx._first_;
proc print data=xxx._first_;
run;

In the next example, the TSO ALLOC command associates a ddname with the name
of the physical file that comprises the SPSS physical-filename. The physical
filename is omitted in the LIBNAME statement, because the libref that is used is
the same as the ddname in the TSO command. The PROC PRINT statement prints
the data in the first member of the SPSS data file.

tso alloc f(xxx) da('my.spssx.file') shr reu;
libname xxx spss;
proc print data=xxx._first_;
run;

974 Appendix 6 / Accessing BMDP, SPSS, and OSIRIS Files

Appendix 7
The cleanwork Utility

Overview of the cleanwork Utility . 975

Installing the cleanwork Utility . 976

Configuring the cleanwork Utility . 976
Syntax . 976
How cleanwork Selects Directories for Deletion . 977
Running cleanwork with a crontab . 977

See Also . 978

Overview of the cleanwork Utility
SAS might create temporary UFS directories that contain the Work library or
certain types of utility files. SAS normally deletes these directories at the
conclusion of the SAS session or job. However, if SAS is canceled or if SAS
terminates abnormally, these directories are not removed. For more information
about the creation of temporary directories, see Chapter 3, “SAS Software Files,” on
page 25.

The SAS cleanwork utility program performs the following functions:

n automatically locate these temporary UFS directories

n verify that the SAS session that is associated with each directory is no longer
running

n remove the directory and all of its contents.

For information about the processes to install and configure cleanwork, see
“Installing the cleanwork Utility” on page 976 and “Configuring the cleanwork
Utility” on page 976.

975

Note: Installing and configuring cleanwork typically require special system
administrator privileges.

The WORK and UTILLOC options can specify a UFS path as the location in which
SAS creates temporary UFS directories. It is recommended that the specified UFS
path correspond to a directory, such as /tmp, for which its sticky bit turned on.
When the sticky bit is on for a directory, directories that are contained within that
directory can be removed only by one of the following users:

n the owner of the directory

n the owner of the directory that is being deleted

n a superuser.

This setting allows multiple SAS users to place temporary directories in the same
location without the risk of accidentally deleting each other's files. However,
identifying which temporary directories in that location correspond to SAS sessions
that have ended can be difficult. The cleanwork utility, which typically runs under
a superuser account, automates and simplifies this process.

Installing the cleanwork Utility
The cleanwork utility is not installed as part of the process for installing Base SAS.
You have to create cleanwork as an executable in a UNIX file system after you
install SAS. Sample JCL for creating the executable can be found in the LINKCLNW
member of the BAMISC library that is created as part of the SAS installation
process. Before submitting this job, edit the JCL to specify the following
information:

n the appropriate JOB statement information

n the name of the SAS load library data set

n the fully qualified pathname for the directory into which the executable should
be placed.

Configuring the cleanwork Utility

Syntax
cleanwork directory-1 <directory-2 …>

976 Appendix 7 / The cleanwork Utility

directory
names the UFS directory or directories that might contain the temporary
directories that were created by SAS. The directory name must match the
specified value in the WORK system option or the specified value in the
UTILLOC system option.

How cleanwork Selects Directories for Deletion
The temporary directories that are created by SAS for the Work library and utility
files are named according to the following pattern:

SAS_util_<serial><pid>_<lpar>

<serial>
is a four-digit to six-digit hexadecimal serial number that is unique for any given
SAS session.

<pid>
is the USS process ID number of the SAS session, represented as an eight-digit
hexadecimal number.

<lpar>
is the name of the LPAR (logical partition) on which SAS session is running.

The cleanwork utility deletes any directories with a name that matches the
preceding pattern, provided that both of the following conditions are true:

n <lpar> matches the name of the LPAR on which the cleanwork utility is
running.

n No process with an ID of <pid> is currently active on the LPAR on which the
cleanwork utility is running.

In other words, cleanwork removes only the directories that are not associated
with an active SAS session. Because it can make that determination only on the
current system, cleanwork can remove only the directories that were created by
SAS sessions that ran on the same system on which cleanwork is currently running.
If SAS sessions on multiple z/OS system images (LPARs) place temporary
directories under the same directory location, you need to run cleanwork on each
system (LPAR).

Running cleanwork with a crontab
After the cleanwork utility has been installed, the cleanwork command can be
executed as needed by a superuser or the owner of the directory. It is often useful
to automatically execute the command at regular intervals with a crontab.

Configuring the cleanwork Utility 977

See Also
n Chapter 3, “SAS Software Files,” on page 25

n “Work Library and Other Utility Files” on page 26

n “UTILLOC= System Option: z/OS” on page 877

978 Appendix 7 / The cleanwork Utility

Appendix 8
Host-System Subgroup Error
Messages

Host-System Subgroup Error Messages in the z/OS Environment . 979

Messages from the SASCP Command Processor . 980

Messages from the TSO Command Executor . 982

Messages from the Internal CALL Command Processor . 984

Host-System Subgroup Error Messages
in the z/OS Environment

This appendix provides brief explanations of many of the host-system subgroup
error messages that you might encounter during a SAS session. The explanation for
each message includes where the message comes from, a short explanation of its
meaning, and information about what you can do to correct the problem.

For information about the steps to take if SAS does not start when you issue the
start-up command, see “What If SAS Does Not Start?” on page 6.

979

Messages from the SASCP Command
Processor

To help you identify and remedy problems when running under TSO, SAS software
provides the following list of messages from the SASCP command processor.
SASCP is involved in processing SAS software tasks and is invoked by the terminal
monitor program as a standard TSO command processor.

SAST001I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n IKJPARS RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
begin execution, or the system failed while it was parsing the command line.
This message should not occur under normal conditions; inform your on-site
SAS support personnel.

SAST002I DATA SET dsn NOT IN CATALOG or SAST002I DYNAMIC ALLOCATION
ERROR, IKJDAIR RETURN CODE rc DARC drc CTRC crc

The SAS command processor was unable to locate a data set that was specified
by the TASKLIB operand. This message usually indicates that a data set name
was misspelled.

SAST003I MORE THAN 15 TASKLIB DATA SETS SPECIFIED
You have specified more than 15 task-library data sets with the TASKLIB
operand. Reduce the number of task-library data sets.

SAST004I dsn IS NOT A PARTITIONED DATA SET
For the value of the TASKLIB operand, you have specified a task-library data set
that is not a partitioned data set. This message usually indicates a misspelled
data set name or a reference to the wrong data set.

SAST005I TASKLIB CANNOT BE OPENED
The SAS command processor was unable to open the task library. You have
probably specified an invalid load library as a task-library data set in the
TASKLIB operand.

SAST006I SAS ENTRY POINT NAME NOT SPECIFIED
You have not specified a member name for the SAS entry point. Use the ENTRY
operand to specify an entry-point name for SAS software .

SAST007I SAS ENTRY POINT NAME entry-name NOT FOUND
The SAS command processor was unable to locate the member name that was
specified as the SAS entry point. This message usually indicates that an entry-
point name was misspelled. Use the ENTRY operand to specify a valid entry-
point name.

980 Appendix 8 / Host-System Subgroup Error Messages

SAST007I BLDL I/O ERROR ON TASKLIB
An error occurred during BLDL processing of TASKLIB.

SAST009I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO INVOKE SAS SUBTASK

n ATTACH RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
invoke SAS software , or the system was unable to create the SAS subtask. This
message should not normally occur; inform your on-site SAS support personnel.

SAST010I entry-name ENDED DUE TO ERROR +
This message indicates that the SAS session has terminated abnormally
(abended). Entering a question mark in the line following this message produces
one of these additional messages:

n USER ABEND CODE uac

n SYSTEM ABEND CODE sac REASON CODE rc

A user abend code, such as 999 ('3E7'x), indicates an error condition. You can
specify other user abend codes in the SAS ABORT statement. User abend codes
are displayed as hexadecimal values. For example, '3E7'x is the hexadecimal
expression of 999. If a system abend code occurs, inform your on-site SAS
support personnel.

SAST011I entry-name TERMINATED DUE TO ATTENTION
The SAS session has ended because you pressed the BREAK or ATTN key and
then entered the word END in response to the message SAST013D.

SAST012I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n STAE RETURN CODE rc

Either the SAS command processor was unable to allocate enough memory to
invoke SAS software , or an error occurred during execution of the SASCP
command. This message should not normally occur; inform your on-site SAS
support personnel.

SAST013D ENTER "END" TO TERMINATE SAS, OR A NULL LINE TO CONTINUE
SAS software displays this prompt when the SAS command processor detects
that the BREAK or ATTN key has been pressed. Enter the word END to leave the
SAS session, or enter a null line to resume SAS processing.

SAST014I INVALID RESPONSE, MUST BE "END" OR A NULL LINE
You have entered a response other than the word END or a null line after
receiving message SAST013D. Enter either the word END or a null line.

Messages from the SASCP Command Processor 981

SAST015I SASCP INVOKED IN A NON-TSO ENVIRONMENT OR PASSED INVALID
PARAMETERSUSE SASCP AS A TSO COMMAND TO INVOKE SAS IN THE
FOREGROUNDUSE PGM=SAS TO INVOKE SAS IN THE BACKGROUND

SASCP was not invoked as a TSO command, and it could not locate the
appropriate TSO control blocks to reconstruct a TSO command environment,
either because it was invoked as a background program or because the TSO
environment is nonstandard. If you were running under TSO, contact your on-
site SAS support personnel.

SAST017I INVALID PARAMETER LIST PASSED TO IKJDAIR
An invalid parameter list was passed to the TSO service routine IKJDAIR. This
message should not normally occur; inform your on-site SAS support personnel.

SAST018I SASCP INVOKED IN A NON-TSO ENVIRONMENT USE PGM=SAS TO
INVOKE SAS IN THE BACKGROUND

SASCP was not invoked under TSO.

Messages from the TSO Command
Executor

The TSO command executor is involved with TSO command processors for the X
and TSO commands, the X and TSO statements, and the TSO function.

SAST101I ERROR IN PUTGET SERVICE ROUTINE
An error occurred while the TSO command executor was attempting to read a
line from the terminal or from the TSO input stack using the TSO service routine
IKJPTGT. This message should not normally occur; inform your on-site SAS
support personnel.

SAST102I INVALID COMMAND NAME SYNTAX
You have specified an invalid command name in one of the following:

n a TSO or X command

n a TSO or X statement

n a TSO or SYSTEM function

n a TSO or SYSTEM CALL routine.

This message usually indicates that a TSO command name was misspelled.

SAST103I COMMAND cmd NOT SUPPORTED
You have entered a TSO command that cannot be issued from within a SAS
session. To issue the command, end the session, issue the command, and then
start a new session.

SAST104I COMMAND cmd NOT FOUND
The TSO command executor could not locate the TSO command name that was
specified. This message usually indicates that a TSO command name was
misspelled.

982 Appendix 8 / Host-System Subgroup Error Messages

SAST105I cmd ENDED DUE TO ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n SYSTEM ABEND CODE sac REASON CODE rc

n USER ABEND CODE uac

A TSO command that was invoked in one of the following ways ended
abnormally with the indicated abend code:

n a TSO or X command

n a TSO or X statement

n a TSO or SYSTEM function

n a TSO or SYSTEM CALL routine.

SAST106I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n ATTACH RETURN CODE rc

Either the TSO command executor was unable to allocate enough memory to
execute the requested command, or an error occurred during execution of the
command executor. This message should not normally occur; inform your on-
site SAS support personnel.

SAST107I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n STAE RETURN CODE rc

Either the system was unable to allocate enough memory to execute the
requested command, or an abend occurred during execution of the command.
This message should not normally occur; inform your on-site SAS support
personnel.

SAST108I SEVERE COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n SYSTEM ABEND CODE sac REASON CODE rc

n USER ABEND CODE uac

The TSO command executor encountered severe internal failure. This message
should not normally occur; inform your on-site SAS support personnel.

SAST109I TSO SUBMODE, ENTER "RETURN" OR "END" TO RETURN TO THE SAS
SYSTEM

SAS software displays this prompt when you enter TSO submode.

Messages from the TSO Command Executor 983

SAST110I COMMAND cmd TERMINATED DUE TO ATTENTION
You have stopped the execution of the specified TSO command by pressing the
BREAK or ATTN key and entering the word END in response to message
SAST1112D.

SAST111I SPF COMMAND NOT ALLOWED, SPF ALREADY ACTIVE
You have attempted to issue the TSO ISPF/PDF or SPF command from a SAS
session that you invoked under the ISPF/PDF or SPF TSO command processor
panel (panel 6). To return to the ISPF/PDF or SPF session, end the SAS session.

SAST112D ENTER "END" TO TERMINATE COMMAND, OR A NULL LINE TO
CONTINUE

This prompt is displayed when you press the BREAK or ATTN key during the
execution of a TSO command. Enter the word END to terminate the command,
or enter a null line to resume the command.

SAST113I INVALID RESPONSE, MUST BE "END" OR A NULL LINE
You have entered a response other than the word END or a null line after
receiving message SAST112D. Enter either the word END or a null line.

SAST114I SASTSO NOT SUPPORTED IN NON-TSO ENVIRONMENT
The command that you have entered cannot be executed under the z/OS batch
TMP. The command can be executed only during an interactive TSO session.

SAST114I COMMAND cmd NOT SUPPORTED IN BACKGROUND
You have entered a TSO command that cannot be issued from a background
TSO session.

Messages from the Internal CALL
Command Processor

The internal CALL command processor implements the TSO CALL command for
use by an unauthorized caller outside of the Terminal Monitor Program.

SAST201I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n IKJPARS RETURN CODE rc

Either the CALL command was unable to allocate enough memory to begin
processing, or the system failed while it was parsing the command line. This
message should not normally occur; inform your on-site SAS support personnel.

SAST202I TEMPNAME ASSUMED AS MEMBER NAME
You have not specified a member name with a CALL command invocation, and
the CALL command processor used the member name TEMPNAME.

984 Appendix 8 / Host-System Subgroup Error Messages

SAST203I PARM FIELD TRUNCATED TO 100 CHARACTERS
The parameter string that was passed to the program by the CALL command
processor was too long and was truncated to 100 characters.

SAST204I DATA SET dsn NOT IN CATALOG
The CALL command processor was unable to locate the specified program data
set. This message usually indicates that a data set name was misspelled. You
will be prompted to enter the correct data set name.

SAST204I DATA SET NOT ALLOCATED, IKJDAIR RETURN CODE rc DARC drc
CTRC crc

An error occurred while the data set was being allocated; inform your on-site
SAS support personnel.

SAST205I MEMBER mem SPECIFIED BUT dsn NOT A PARTITIONED DATA SET
You have specified a program library in the CALL command that is not a valid
load-module library. This message usually indicates that a data set name was
misspelled.

SAST206I DATA SET dsn NOT USABLE +
Entering a question mark in the line following this message produces this
additional information: CANNOT OPEN DATA SET

The CALL command processor was unable to open the program library. This
message usually indicates an invalid load-module library or a misspelled data
set name.

SAST207I MEMBER mem NOT IN DATA SET
The CALL command processor could not locate the member name that you
specified in the CALL command. This message usually indicates that a member
name was misspelled. You will be prompted to enter the correct member name.

SAST207I BLDL I/O ERROR
An error occurred while searching for the program on the data set; inform your
on-site SAS support personnel.

SAST208I COMMAND SYSTEM ERROR +
Entering a question mark in the line following this message produces one of
these additional messages:

n NOT ENOUGH MAIN STORAGE TO EXECUTE COMMAND

n ATTACH RETURN CODE rc

Either the system was unable to allocate enough memory to invoke the
specified program, or an error occurred while it was attaching the program. This
message should not normally occur; inform your on-site SAS support personnel.

SAST209I INVALID PARAMETER LIST PASSED TO IKJDAIR
The CALL command processor passed an invalid parameter list to the TSO
service routine IKJDAIR. This message should not normally occur; inform your
on-site SAS support personnel.

Messages from the Internal CALL Command Processor 985

986 Appendix 8 / Host-System Subgroup Error Messages

Appendix 9
ICU License

ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . 987

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 988
1. Unicode Data Files and Software . 988
2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt) . 989
3. Lao Word Break Dictionary Data (laodict.txt) . 993
4. Burmese Word Break Dictionary Data (burmesedict.txt) . 993
3. Time Zone Database . 994

Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later 995

ICU Licence: ICU 1.8.1–ICU 57 and ICU4J
1.3.1–ICU4J 57

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2015 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software
and that both the above copyright notice(s) and this permission notice appear in
supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE

987

COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of
their respective owners.

Third-Party Software Licenses: ICU 1.8.1–
ICU 57 and ICU4J 1.3.1–ICU4J 57

This section contains third-party software notices and/or additional terms for
licensed third-party software components included within ICU libraries

1. Unicode Data Files and Software
COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2015 Unicode, Inc. All rights reserved. Distributed under the
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the
Unicode data files and any associated documentation (the "Data Files") or Unicode
software and any associated documentation (the "Software") to deal in the Data
Files or Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Data Files or
Software, and to permit persons to whom the Data Files or Software are furnished
to do so, provided that (a) the above copyright notice(s) and this permission notice
appear with all copies of the Data Files or Software, (b) both the above copyright
notice(s) and this permission notice appear in associated documentation, and (c)
there is clear notice in each modified Data File or in the Software as well as in the
documentation associated with the Data File(s) or Software that the data or
software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

988 Appendix 9 / ICU License

http://www.unicode.org/copyright.html

PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THE DATA FILES OR
SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in these Data
Files or Software without prior written authorization of the copyright holder.

2. Chinese/Japanese Word Break Dictionary Data
(cjdict.txt)
 # The Google Chrome software developed by Google is licensed under
 # the BSD license. Other software included in this distribution is provided
 # under other licenses, as set forth below.
 #
 # The BSD License
 # http://opensource.org/licenses/bsd-license.php
 # Copyright (C) 2006-2008, Google Inc.
 #
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer.
 # Redistributions in binary form must reproduce the above copyright notice,
 # this list of conditions and the following disclaimer in the documentation
 # and/or other materials provided with the distribution.
 # Neither the name of Google Inc. nor the names of its contributors may be
 # used to endorse or promote products derived from this software without
 # specific prior written permission.
 #
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 # THE POSSIBILITY OF SUCH DAMAGE.
 #

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 989

 #
 # The word list in cjdict.txt are generated by combining three word lists
 # listed below with further processing for compound word breaking. The
 # frequency is generated with an iterative training against Google
 # web corpora.
 #
 # * Libtabe (Chinese)
 # - https://sourceforge.net/project/?group_id=1519
 # - Its license terms and conditions are shown below.
 #
 # * IPADIC (Japanese)
 # - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 # - Its license terms and conditions are shown below.
 #
 # ---------COPYING.libtabe ---- BEGIN--------------------
 #
 # /*
 # * Copyrighy (c) 1999 TaBE Project.
 # * Copyright (c) 1999 Pai-Hsiang Hsiao.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions
 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the TaBE Project nor the names of its
 # * contributors may be used to endorse or promote products derived
 # * from this software without specific prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # /*
 # * Copyright (c) 1999 Computer Systems and Communication Lab,
 # * Institute of Information Science, Academia Sinica.
 # * All rights reserved.
 # *
 # * Redistribution and use in source and binary forms, with or without
 # * modification, are permitted provided that the following conditions

990 Appendix 9 / ICU License

 # * are met:
 # *
 # * . Redistributions of source code must retain the above copyright
 # * notice, this list of conditions and the following disclaimer.
 # * . Redistributions in binary form must reproduce the above copyright
 # * notice, this list of conditions and the following disclaimer in
 # * the documentation and/or other materials provided with the
 # * distribution.
 # * . Neither the name of the Computer Systems and Communication Lab
 # * nor the names of its contributors may be used to endorse or
 # * promote products derived from this software without specific
 # * prior written permission.
 # *
 # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 # * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 # * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 # * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 # * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 # * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 # * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 # * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 # * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 # * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 # * OF THE POSSIBILITY OF SUCH DAMAGE.
 # */
 #
 # Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois
 # c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4
 #
 # ---------------COPYING.libtabe-----END------------------------------------
 #
 #
 # ---------------COPYING.ipadic-----BEGIN------------------------------------
 #
 # Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 # and Technology. All Rights Reserved.
 #
 # Use, reproduction, and distribution of this software is permitted.
 # Any copy of this software, whether in its original form or modified,
 # must include both the above copyright notice and the following
 # paragraphs.
 #
 # Nara Institute of Science and Technology (NAIST),
 # the copyright holders, disclaims all warranties with regard to this
 # software, including all implied warranties of merchantability and
 # fitness, in no event shall NAIST be liable for
 # any special, indirect or consequential damages or any damages
 # whatsoever resulting from loss of use, data or profits, whether in an
 # action of contract, negligence or other tortuous action, arising out
 # of or in connection with the use or performance of this software.
 #
 # A large portion of the dictionary entries
 # originate from ICOT Free Software. The following conditions for ICOT
 # Free Software applies to the current dictionary as well.
 #

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 991

 # Each User may also freely distribute the Program, whether in its
 # original form or modified, to any third party or parties, PROVIDED
 # that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 # on, or be attached to, the Program, which is distributed substantially
 # in the same form as set out herein and that such intended
 # distribution, if actually made, will neither violate or otherwise
 # contravene any of the laws and regulations of the countries having
 # jurisdiction over the User or the intended distribution itself.
 #
 # NO WARRANTY
 #
 # The program was produced on an experimental basis in the course of the
 # research and development conducted during the project and is provided
 # to users as so produced on an experimental basis. Accordingly, the
 # program is provided without any warranty whatsoever, whether express,
 # implied, statutory or otherwise. The term "warranty" used herein
 # includes, but is not limited to, any warranty of the quality,
 # performance, merchantability and fitness for a particular purpose of
 # the program and the nonexistence of any infringement or violation of
 # any right of any third party.
 #
 # Each user of the program will agree and understand, and be deemed to
 # have agreed and understood, that there is no warranty whatsoever for
 # the program and, accordingly, the entire risk arising from or
 # otherwise connected with the program is assumed by the user.
 #
 # Therefore, neither ICOT, the copyright holder, or any other
 # organization that participated in or was otherwise related to the
 # development of the program and their respective officials, directors,
 # officers and other employees shall be held liable for any and all
 # damages, including, without limitation, general, special, incidental
 # and consequential damages, arising out of or otherwise in connection
 # with the use or inability to use the program or any product, material
 # or result produced or otherwise obtained by using the program,
 # regardless of whether they have been advised of, or otherwise had
 # knowledge of, the possibility of such damages at any time during the
 # project or thereafter. Each user will be deemed to have agreed to the
 # foregoing by his or her commencement of use of the program. The term
 # "use" as used herein includes, but is not limited to, the use,
 # modification, copying and distribution of the program and the
 # production of secondary products from the program.
 #
 # In the case where the program, whether in its original form or
 # modified, was distributed or delivered to or received by a user from
 # any person, organization or entity other than ICOT, unless it makes or
 # grants independently of ICOT any specific warranty to the user in
 # writing, such person, organization or entity, will also be exempted
 # from and not be held liable to the user for any such damages as noted
 # above as far as the program is concerned.
 #
 # ---------------COPYING.ipadic-----END------------------------------------

992 Appendix 9 / ICU License

3. Lao Word Break Dictionary Data (laodict.txt)
 # Copyright (c) 2013 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # Project: http://code.google.com/p/lao-dictionary/
 # Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt
 # License: http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt
 # (copied below)
 #
 # This file is derived from the above dictionary, with slight modifications.
 # --
 # Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without modification,
 # are permitted provided that the following conditions are met:
 #
 # Redistributions of source code must retain the above copyright notice, this
 # list of conditions and the following disclaimer. Redistributions in binary
 # form must reproduce the above copyright notice, this list of conditions and
 # the following disclaimer in the documentation and/or other materials
 # provided with the distribution.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 # --

4. Burmese Word Break Dictionary Data
(burmesedict.txt)
 # Copyright (c) 2014 International Business Machines Corporation
 # and others. All Rights Reserved.
 #
 # This list is part of a project hosted at:
 # github.com/kanyawtech/myanmar-karen-word-lists
 #
 # --
 # Copyright (C) 2013 LeRoy Benjamin Sharon

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 993

 # All rights reserved.
 #
 # Redistribution and use in source and binary forms, with or without
 # modification, are permitted provided that the following conditions
 # are met: Redistributions of source code must retain the above
 # copyright notice, this list of conditions and the following
 # disclaimer. Redistributions in binary form must reproduce the
 # above copyright notice, this list of conditions and the following
 # disclaimer in the documentation and/or other materials provided
 # with the distribution
 #
 # Neither the name Myanmar Karen Word Lists, nor the names of its
 # contributors may be used to endorse or promote products derived
 # from this software without specific prior written permission.
 #
 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 # --

3. Time Zone Database
ICU uses the public domain data and code derived from Time Zone Database for its
time zone support. The ownership of the TZ database is explained in BCP 175:
Procedure for Maintaining the Time Zone Database section 7.

7. Database Ownership

 The TZ database itself is not an IETF Contribution or an IETF
 document. Rather it is a pre-existing and regularly updated work
 that is in the public domain, and is intended to remain in the
public
 domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply
 to the TZ Database or contributions that individuals make to it.
 Should any claims be made and substantiated against the TZ Database,
 the organization that is providing the IANA Considerations defined
in
 this RFC, under the memorandum of understanding with the IETF,
 currently ICANN, may act in accordance with all competent court
 orders. No ownership claims will be made by ICANN or the IETF Trust
 on the database or the code. Any person making a contribution to
the
 database or code waives all rights to future claims in that
 contribution or in the TZ Database.

994 Appendix 9 / ICU License

http://www.iana.org/time-zones
https://datatracker.ietf.org/doc/html/rfc6557
https://datatracker.ietf.org/doc/html/rfc6557

Unicode, Inc. License Agreement - Data
Files and Software: ICU 58 and Later

See Terms of Use for definitions of Unicode Inc.'s Data Files and Software.

NOTICE TO USER: Carefully read the following legal agreement. BY
DOWNLOADING, INSTALLING, COPYING OR OTHERWISE USING UNICODE
INC.'S DATA FILES ("DATA FILES"), AND/OR SOFTWARE ("SOFTWARE"), YOU
UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY, ALL OF THE TERMS
AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO NOT
DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR
SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2019 Unicode, Inc. All rights reserved. Distributed under the
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the
Unicode data files and any associated documentation (the "Data Files") or Unicode
software and any associated documentation (the "Software") to deal in the Data
Files or Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Data Files or
Software, and to permit persons to whom the Data Files or Software are furnished
to do so, provided that (a) the above copyright notice(s) and this permission notice
appear with all copies of the Data Files or Software, or (b) this copyright and
permission notice appear in associated Documentation.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THE DATA FILES OR
SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in these Data
Files or Software without prior written authorization of the copyright holder.

Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later 995

https://www.unicode.org/copyright.html
https://www.unicode.org/copyright.html

996 Appendix 9 / ICU License

	Contents
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in SAS 9.4 Companion for z/OS
	Overview
	SAS Software Enhancements
	Enhanced SAS Procedures
	Enhanced SAS Functions
	New SAS Functions
	Enhanced SAS Statements
	Enhanced SAS System Options
	New SAS System Options
	Deprecated SAS System Options
	New SASRX Switch Option
	New Threaded Kernel Option
	Documentation Enhancements

	Initializing and Configuring SAS Software
	Invoking SAS in the z/OS
 Environment
	Invocation Methods
	Invoking SAS under TSO: the SAS CLIST
	Invoking SAS under TSO: the SASRX exec
	Commands for Invoking SAS
	Invoking SAS in Batch Mode: the SAS Cataloged Procedure
	What If SAS Does Not Start?
	Connecting to SAS under z/OS
	HFS, UFS, and zFS Terminology
	Support for Longer TSO User IDs

	Customizing Your SAS Session
	Overview of Customizing Your SAS Session
	Customizing Your SAS Session at Start Up
	Configuration Files
	Overview of Configuration Files
	Creating a User Configuration File
	Format of a Configuration File's Contents
	Specifying a User Configuration File

	Autoexec Files
	Overview of Autoexec Files
	Displaying Autoexec Statements in the SAS Log
	Using an Autoexec File under TSO
	Using an Autoexec File in Batch Mode
	Concatenating Autoexec Files

	Sasuser Library
	Overview of the Sasuser Library
	Creating Your Own Sasuser Libraries
	Specifying Your Own Sasuser Library

	SAS System Options
	Overview of SAS System Options
	Specifying or Changing System Option Settings
	Determining How an Option Was Set
	Default Options Table and Restricted Options Table
	Displaying System Option Settings
	OPTIONS Procedure
	OPTIONS Window
	Precedence for Option Specifications

	The SAS Registry File

	SAS Software Files
	Overview of SAS Software Files
	Work Library and Other Utility Files
	Overview of the Work Library
	Direct Access Bound Library (DSORG=PS)
	UFS Library
	Hiperspace Library
	User Library
	Utility Files That Do Not Reside in Work

	SAS Log File
	Overview of the SAS Log File
	Changing the Contents of the SAS Log
	Changing the Appearance of the SAS Log

	SAS Procedure Output File
	Overview of the SAS Procedure Output File
	Changing the Appearance of Procedure Output

	Console Log File
	Parmcards File
	TKMVSENV File
	Summary Table of SAS Software Files
	Transporting SAS Data Sets between Operating Environments
	Accessing SAS Files in Other Operating Environments
	Using Input/Output Features
	Reserved z/OS Ddnames

	Running SAS Software under z/OS
	Using SAS Libraries
	Introduction
	SAS Library Engines
	Overview of SAS Library Engines
	The V9 Engine
	The V9TAPE Engine
	Compatibility Engines
	Overview of Compatibility Engines
	Long Format Names
	SAS 6.06 Format Data Sets
	V5 and V5TAPE Engines
	Other SAS Engines

	SAS View Engines
	Library Implementation Types for Base and Sequential Engines
	Overview of Library Implementation Types
	Direct Access Bound Libraries
	Overview of Direct Access Bound Libraries
	Creating Direct Access Bound Libraries
	General Usage Notes
	Controlling Library Block Size

	Sequential Access Bound Libraries
	Overview of Sequential Access Bound Libraries
	Definitions
	Creating Sequential Access Bound Libraries
	General Usage Notes
	Optimizing Performance
	Controlling Library Block Size

	UFS Libraries
	Overview of UFS Libraries
	Creating UFS Libraries
	General Usage Notes

	Hiperspace Libraries
	Overview of Hiperspace Libraries
	Creating Hiperspace Libraries
	General Usage Notes

	Pipe Libraries
	Overview of Pipe Libraries
	General Usage Notes
	Allocating a SAS Library to a Pipe
	Sample JCL

	Assigning SAS Libraries
	Overview of Assigning SAS Libraries
	Allocating the Library Data Set
	Assigning SAS Libraries Internally
	Overview of Assigning SAS Libraries Internally
	Advantages of Allocating SAS Libraries Internally
	Accessing SAS Data Sets without a Libref Using Quoted References
	Members of Direct Access and Sequential Access Bound Libraries
	Members of UFS Libraries

	Assigning SAS Libraries Externally
	Overview of Assigning SAS Libraries Externally
	JCL DD Statement Examples
	Using Environment Variables to Externally Assign a SAS Library
	TSO ALLOCATE Command Examples
	Using a Ddname as a Libref
	Specifying an Engine for Externally Allocated SAS Libraries

	How SAS Assigns an Engine
	Assigning Multiple Librefs to a Single SAS Library
	Listing Your Current Librefs
	Deassigning SAS Libraries
	Allocating Disk Space for SAS Libraries
	Overview of Allocating Disk Space for SAS Libraries
	z/OS Disk Space Allocation
	Recommendations for Allocating Libraries Efficiently
	Examples

	Allocating a Multivolume Generation Data Group

	Specifying Physical Files
	Overview of Physical Files
	Specifying Physical Files with the INCLUDE Command
	Handling of Nonstandard Member Names

	Assigning External Files
	Introduction to External Files
	Ways of Assigning External Files
	Overview of Assigning External Files
	Assigning a File for a Single Use
	Assigning a File for Multiple Uses

	Using the FILENAME Statement or Function to Assign External
Files
	Overview of Using the FILENAME Statement or Function to Assign
External Files
	FILENAME Statement Syntax
	FILENAME Statement Examples
	Assigning Filerefs to Files on Other Systems (FTP and SOCKET
Access Types)

	Using the JCL DD Statement to Assign External Files
	Using the TSO Assign Command to Assign External Files
	Assigning External Files on Tape
	Assigning External Files to a Pipe
	Assigning Generation Data Sets
	Overview of Generation Data Sets
	Assigning a New Generation of a Generation Data Group
	Assigning an Existing Generation of a Generation Data Group

	Assigning Other Types of External Files
	Assigning UNIX System Services Files
	Assigning PDSEs

	Concatenating External Files
	Displaying Information about External Files
	Deassigning External Files

	Accessing External Files
	Referring to External Files
	How SAS Determines the File System
	Writing to External Files
	Overview of Writing to External Files
	FILE Statement
	About the FILE Statement
	FILE Statement Syntax
	FILE Statement Examples

	Writing to Sequential Data Sets
	Writing to Members of PDS or PDSE Data Sets
	Writing to a Printer
	Writing to the Internal Reader
	Writing to a Temporary Data Set
	Using the FILE Statement to Specify Data Set Attributes
	Using the Data Set Attributes of an Input File
	Using the FILE Statement to Specify Data Set Disposition
	Appending Data with the MOD Option
	Appending Data with the MOD Disposition

	Writing to Print Data Sets
	Overview of Print Data Sets
	Designating a Print Data Set
	Designating a Nonprint Data Set as a Print Data Set
	Designating a Print Data Set as a Nonprint Data Set

	Reading from External Files
	Overview of Reading from External Files
	INFILE Statement
	Overview of the INFILE Statement
	INFILE Statement Syntax
	INFILE Statement Examples

	Reading from a Sequential File
	Reading from a Member of a PDS or PDSE
	Using SAS to Read a PDS or PDSE Directory Sequentially
	Reading from the Terminal
	Reading Concatenated Data Sets
	Reading from Multiple External Files
	Overview of Reading from Multiple External Files
	Reading from Multiple External Files in Sequential Order
	 Reading from Multiple External Files in Random Order

	Reading from Print Data Sets
	Getting Information about an Input Data Set

	Accessing Other File Types
	Accessing BSAM Files in Random Access Mode
	Accessing IMS and CA-IDMS Databases
	Accessing VSAM Data Sets
	Accessing the Volume Table of Contents (VTOC)

	Accessing UNIX System Services Files
	Overview of UNIX System Services
	Allocating UNIX System Services Files
	Allocating a UNIX System Services Directory
	Specifying File-Access Permissions and Attributes
	Overview of Specifying File-Access Permissions and Attributes
	Using SAS
	Using Operating System Facilities

	Using UNIX System Services Filenames in SAS Statements and
Commands
	Overview of Using UNIX System Services Filenames in SAS Statements
and Commands
	Concatenating UNIX System Services Pathnames
	Using the Asterisk Wildcard
	Using the Question Mark Wildcard
	Using the Square Brackets Wildcard
	Using the Backslash as an Escape Character

	Accessing a Particular File in a UNIX System Services Directory
	Piping Data between SAS and UNIX System Services Commands
	Overview of Piping Data between SAS and UNIX System Services
Commands
	Piping Data from a UNIX System Services Command to SAS
	Piping Data from SAS to a UNIX System Services Command

	Writing Your Own I/O Access Methods
	Accessing SAS Statements from a Program
	Using the INFILE/FILE User Exit Facility

	Directing SAS Log and SAS Procedure
 Output
	Types of SAS Output
	Overview of Types of SAS Output
	SAS Log File
	SAS Procedure Output File
	SAS Console Log File
	Destinations of SAS Output Files

	Directing Output to External Files with the PRINTTO Procedure
	Directing Output to External Files with System Options
	Overview of Directing Output to External Files with System
Options
	Directing Output to an External File at SAS Invocation
	Copying Output to an External File
	Directing Output to External Files Using the Configuration
File

	Directing Output to External Files with the DMPRINT Command
	Directing Output to External Files with the FILE Command
	Directing Output to External Files with DD Statements
	Directing Output to a Printer
	Overview of Directing Output to a Printer
	Using the PRINTTO Procedure and Universal Printing
	Overview of the PRINTTO Procedure and Universal Printing
	Example

	Using the PRINTTO Procedure and the FORM Subsystem
	Overview of the PRINTTO Procedure and the FORM Subsystem
	Example

	Using the PRINT Command and Universal Printing
	Overview of the PRINT Command and Universal Printing
	Selecting a Printer
	Modifying Printer Properties
	Creating a New Printer Definition
	Printing a Graphics Window
	Previewing a Print Job

	Using the PRINT Command and the FORM Subsystem
	Overview of the PRINT Command and the FORM Subsystem
	Specifying a Form
	Modifying Your Default Form
	Adding a Form
	Examples

	Using the PRTFILE and PRINT Commands
	Overview of the PRTFILE and PRINT Commands
	Example

	SAS System Options That Relate to Printing When Using Universal
Printing
	SAS System Options That Relate to Printing When Using the FORM
Subsystem

	Directing Output to a Remote Destination
	Directing Procedure Output: ODS Examples
	Overview of ODS Output
	Line-Feed Characters and Transferring Data between EBCDIC and
ASCII
	Overview of Transferring Data between EBCDIC and ASCII
	Details of Transferring Data

	Viewing ODS Output on an External Browser
	Storing ODS HTML Output in a Sequential File, and FTPing It
from UNIX
	Storing ODS HTML Output in a z/OS PDSE, and FTPing It from
UNIX
	Writing ODS HTML Output Directly to UNIX
	Writing ODS XML Output to ASCII, and Binary FTP to UNIX
	Writing ODS XML Output to EBCDIC, and ASCII Transfer to UNIX
	Directing ODS XML Output to UFS
	Directing Procedure Output to a High-Quality Printer via ODS

	Sending Email from within SAS Software
	Overview of SAS Support for Email
	Using CSSMTP to Send Email in SAS
	PUT Statement Syntax for Email
	Example: Sending Email from the DATA Step
	Sending Procedure Output as Email
	Overview of Sending Procedure Output as Email
	Examples: Sending Procedure Output via Email

	Example: Directing Output as an Email Attachment with Universal
Printing
	Example: Sending Email By Using SCL Code

	Using the SAS Logging Facility to Direct Output

	Universal Printing
	Introduction to Universal Printing
	Using Universal Printing in the Windowing Environment
	Setting the Default Printer
	Defining a New Printer Interactively
	Changing the Default Printer
	Setting Printer Properties
	Changing the Default Font
	Setting Page Properties
	Testing Printer Properties
	Setting a Page Range Value
	Previewing a Print Job
	Printing Selected Text
	Printing the Contents of a SAS Window
	Directing the Contents of a SAS Window to a File
	Printing the Contents of a Graphics Window
	Creating Printer Definitions When Universal Printing Is Turned
Off
	Universal Printing and the SAS Registry

	Using Universal Printing in a Batch Environment
	 Setting the Default Printer
	Directing Output to a Universal Printer
	Sending Output to a UPRINTER Device
	The PRINTERPATH SAS Option
	Changing the Default Font

	Setting Up a Universal Printer with PROC PRTDEF
	Overview of Setting Up a Universal Printer with PROC PRTDEF
	Required Variables
	Optional Variables

	Example PROC PRTDEF Jobs in z/OS
	Example 1: Defining PostScript, PCL, and PDF Universal Printers
	Example 2: Defining a Universal Printer for an Email Message
with a PostScript Attachment

	Setting Up Printers in Your Environment
	Introduction to Output Variables
	z/OS PostScript
	z/OS PCL
	z/OS PDF

	Using FTP with Universal Printing
	Overview of Using FTP with Universal Printing
	Sending Output to a Printer
	Sending Output to a File

	Example Programs and Summary
	Overview of Example Programs and Summary
	Example 1: ODS and a Default Universal Printer
	Example 2: ODS and the PRINTERPATH System Option
	Example 3: ODS and the PRINTERPATH System Option (with FILEREF)
	Example 4: PRINTERPATH and FILENAME UPRINTER Statement
	Example 5: SAS/GRAPH: ODS and PRINTERPATH System Option
	Example 6: SAS/GRAPH: No ODS or PRINTERPATH System Option

	The SASLIB.HOUSES Data Set
	Contents of the SASLIB.HOUSES Data Set
	Summary of Printing Examples

	SAS Processing Restrictions for Servers in
 a Locked-Down State
	Overview of SAS Processing Restrictions for Servers in a Locked-down
State
	Restricted Features
	Disabled Features
	Specifying Functions in the Lockdown Path List

	Using the SAS Remote Browser
	What Is the Remote Browsing System?
	Starting the Remote Browser Server
	Setting Up the Remote Browser
	Overview of Setting Up the Remote Browser
	Example 1: Setting Up the Remote Browser at SAS Invocation
	Example 2: Setting Up the Remote Browser during a SAS Session

	Remote Browsing and Firewalls
	For General Users
	For System Administrators

	Using Remote Browsing with ODS Output

	Using Item Store Help Files
	Accessing SAS Item Store Help Files
	Using User-Defined Item Store Help Files
	Creating User-Defined Item Store Help Files
	Converting Item Store Help to HTML Help
	Overview of Converting Item Store Help
	Creating a Common Directory
	Converting Your Files to HTML
	Adding HELPLOC Path Values
	Accessing Your HTML Help Files

	Creating User-Defined Help Files in HTML

	Exiting or Terminating Your SAS Session in
 the z/OS
 Environment
	Preferred Methods for Exiting SAS
	Additional Methods for Terminating SAS

	Troubleshooting SAS under z/OS
	Solving Problems under z/OS
	Overview of Solving Problems under z/OS
	Problems Associated with the z/OS Operating Environment
	Solving Problems with Scroll Bars, Borders, Buttons, and Text
	Solving Problems within SAS Software
	Overview of Solving Problems within SAS Software
	Examining the SAS Log
	Checking the Condition Code
	DATA Step Debugger
	Using SAS Statements, Procedures, and System Options to Identify
Problems
	Host-System Subgroup Error Messages
	z/OS System Log

	Support for SAS Software
	Overview of Support for SAS Software
	Working with Your On-Site SAS Support Personnel
	SAS Technical Support
	Generating a System Dump for SAS Technical Support

	SAS Windows and Commands in z/OS Environments
	Windows in z/OS Environments
	Overview of Windows in the z/OS Environment
	Using the Graphical Interface
	Overview of Using the Graphical Interface
	Window Controls and General Navigation
	Selection-Field Commands

	Terminal Support in the z/OS Environment
	Overview of Terminal Support in the z/OS Environment
	Text Device Drivers
	Graphics Device Drivers
	Using a Mouse in the SAS Windowing Environment under z/OS
	Overview of z/OS Terminals
	Using a Three-Button Mouse
	Using a Two-Button Mouse

	Appearance of Window Borders, Scroll Bars, and Widgets
	Improving Screen Resolution on an IBM 3290 Terminal

	SAS System Options That Affect the z/OS Windowing Environment
	Host-Specific Windows in the z/OS Environment
	Dictionary
	DSINFO Window Command
	Explorer Window
	DSLIST Window Command
	My Favorite Folders Window Command
	FILENAME Window Command
	FNAME Window Command
	LIBASSIGN Window Command
	LIBNAME Window Command
	MEMLIST Window Command

	Host-Specific Windows of the FORM
 Subsystem
	Host-Specific Windows of the FORM Subsystem
	Overview of Host-Specific Windows of the FORM Subsystem
	TSO Print-File Parameter Frame
	IBM 3800 Print-File Parameter Frame

	SAS Window Commands under z/OS
	Overview of Window Commands in the z/OS Environment
	Dictionary
	CLOCK Command: z/OS
	DFLTACTION Command: z/OS
	DLGENDR Command: z/OS
	EXPLODE Command: z/OS
	FILE Command: z/OS
	GCURSOR Command: z/OS
	HOSTEDIT Command: z/OS
	INCLUDE Command: z/OS
	NULLS Command: z/OS
	TSO Command: z/OS
	WBROWSE Command: z/OS
	WIDGNEXT Command: z/OS
	WIDGPREV Command: z/OS
	X Command: z/OS

	Application Considerations
	SAS Interfaces to ISPF and REXX
	SAS Interface to ISPF
	Overview of SAS Interface to ISPF
	Software Requirements
	Enabling the Interface
	Invoking ISPF Services
	Overview of ISPF Services
	Using the ISPEXEC CALL Routine
	Using the ISPLINK CALL Routine
	Testing ISPEXEC and ISPLINK Return Codes
	Using ISPF Dialog Development Models

	Using Special SAS System Options with the Interface
	Overview of Special SAS System Options
	Changing the Status of ISPF Interface Options during Execution
of a DATA Step

	Using the ISPF Editor from Your SAS Session
	Selecting the Editor to Use
	Copying ISPF EDIT Models to Your SAS Session

	Using Special Facilities for Passing Parameters to ISPF
	Overview of the Special Facilities
	Variable-Naming Conventions
	Specifying Fixed Binary Parameters
	Passing Parameters That Are Longer Than 200 Bytes
	Bypassing SAS Parameter Processing

	Accessing SAS Variables from ISPF
	Introduction to Accessing SAS Variables from ISPF
	VDEFINE, VDELETE, and VRESET Services
	Handling Numeric Variables
	Handling Character Variables
	Examples of Defining Variables

	Tips and Common Problems
	Checking for Invalid Values in SAS Variables
	Checking for Null Values in ISPF Variables
	Truncated Values for Numeric Variables
	Uninitialized Variables
	Character Values Passed for Numeric Variables

	Testing ISPF Applications
	Sample Application
	Introduction to the Sample Application
	Employee Records Application
	Contents of Member SASEMPLA in ISPPLIB
	First Employee Record Application Panel
	Contents of Member SASEMPLB in ISPPLIB
	Second Employee Record Application Panel
	Contents of Member SASX21 in ISPMLIB

	SAS Interface to REXX
	Overview of the SAS Interface to REXX
	Enabling the Interface
	Invoking a REXX Exec
	Interacting with the SAS Session from a REXX Exec
	The REXX Interface
	Routing Messages from REXX Execs to the SAS Log
	GETEXEC and PUTEXEC Require a Batch TMP
	The GETEXEC DATA Step Function
	The PUTEXEC DATA Step Routine
	Checking Return Codes in REXX Execs

	Changing the Host Command Environment
	Comparing the REXX Interface to the X Statement
	Comparing SAS REXX Execs to ISPF Edit Macros
	Examples of REXX Execs
	A Simple REXX Exec
	Using the GETEXEC DATA Step Function
	Using the PUTEXEC DATA Step Routine
	Checking the SAS Return Code in a REXX Exec

	Using the INFILE/FILE User Exit
 Facility
	Introduction
	Writing a User Exit Module
	Overview of Writing a User Exit Module
	Function Request Control Block
	User Exit BAG Control Block

	Function Descriptions
	Introduction to Function Descriptions
	Initialization Function
	Parse Options Function
	Open Function
	Read Function
	Concatenation Function
	Write Function
	Close Function

	SAS Service Routines
	Building Your User Exit Module
	Activating an INFILE/FILE User Exit
	Sample Program

	SAS Data Location Assist for z/OS
	Overview of SAS Data Location Assist for z/OS
	A Simple zDLA Application
	Sample Invocations of zDLA Functions
	Dictionary
	ZVOLLIST Function: z/OS
	ZDSLIST Function: z/OS
	ZDSNUM Function: z/OS
	ZDSIDNM Function: z/OS
	ZDSATTR Function: z/OS
	ZDSRATT Function: z/OS
	ZDSXATT Function: z/OS
	ZDSYATT Function: z/OS

	Data Representation
	Representation of Numeric Variables
	Floating-Point Representation
	Representation of Integers

	Using the LENGTH Statement to Save Storage Space
	How Character Values Are Stored

	The SASCBTBL Attribute Table and SAS
 MODULEx CALL Routines
	Overview of Load Libraries in SAS
	What Is a Load Library?
	Invoking Load Libraries from within SAS
	Accessing an External Load Library

	SASCBTBL Attribute Table
	Introduction to the SASCBTBL Attribute Table
	What Is the SASCBTBL Attribute Table?
	Syntax of the Attribute Table
	Overview of the Attribute Table
	ROUTINE Statement
	ARG Statement

	Importance of the Attribute Table

	Grouping SAS Variables as Structure Arguments
	Passing an Argument to a Structure

	Invoking the CALL MODULE Routine
	Calling Conventions for the CALL MODULE Routine
	The Control String

	Using Constants and Expressions as Arguments to the CALL MODULE
Function
	Specifying Formats and Informats to Use with MODULE Arguments
	Using the FORMAT Attribute in the ARG Statement
	C Language Formats
	Fortran Language Formats
	PL/I Language Formats
	COBOL Language Formats
	$CSTRw. Format
	$BYVALw. Format and Informat

	Understanding MODULE Log Messages
	Examples of Accessing Load Executable Libraries
	COBOL Example
	Assembler Example
	SAS Example
	Output

	Host-Specific Features of the SAS Language
	Data Set Options under z/OS
	Data Set Options in the z/OS Environment
	Summary of SAS Data Set Options in the z/OS Environment
	Dictionary
	ALTER= Data Set Option: z/OS
	BUFSIZE= Data Set Option: z/OS
	FILECLOSE= Data Set Option: z/OS
	FILEDISP= Data Set Option: z/OS

	Formats under z/OS
	Formats in the z/OS Environment
	Considerations for Using Formats in the z/OS Environment
	EBCDIC and Character Data
	Floating-Point Number Format and Portability
	Writing Binary Data

	Dictionary
	IBw.d Format: z/OS
	PDw.d Format: z/OS
	RBw.d Format: z/OS
	ZDw.d Format: z/OS

	Functions and CALL Routines under z/OS
	Functions and CALL Routines under z/OS
	Dictionary
	ANYPUNCT Function: z/OS
	CALL MODULE Routine: z/OS
	CALL SLEEP Routine: z/OS
	CALL SYSTEM Routine: z/OS
	CALL TSO Routine: z/OS
	CALL WTO Routine: z/OS
	DINFO Function: z/OS
	DOPEN Function: z/OS
	DOPTNAME Function: z/OS
	DOPTNUM Function: z/OS
	DSNCATLGD Function: z/OS
	FCLOSE Function: z/OS
	FDELETE Function: z/OS
	FEXIST Function: z/OS
	FILEEXIST Function: z/OS
	FILENAME Function: z/OS
	FILEREF Function: z/OS
	FINFO Function: z/OS
	FOPEN Function: z/OS
	FOPTNAME Function: z/OS
	FOPTNUM Function: z/OS
	KTRANSLATE Function: z/OS
	MODULE Function: z/OS
	MOPEN Function: z/OS
	PATHNAME Function: z/OS
	PEEKCLONG Function: z/OS
	PEEKLONG Function: z/OS
	SYSGET Function: z/OS
	SYSTEM Function: z/OS
	TRANSLATE Function: z/OS
	TSO Function: z/OS
	WTO Function: z/OS

	Informats under z/OS
	Informats in the z/OS Environment
	Considerations for Using Informats under z/OS
	EBCDIC and Character Data
	Floating-Point Number Format and Portability
	Reading Binary Data
	Date and Time Informats

	Dictionary
	HEXw. Informat: z/OS
	IBw.d Informat: z/OS
	PDw.d Informat: z/OS
	RBw.d Informat: z/OS
	ZDw.d Informat: z/OS
	ZDBw.d Informat: z/OS

	Macros under z/OS
	Macros in the z/OS Environment
	Macro Variables
	Automatic Macro Variables That Have Host-Specific Values
	z/OS Global Macro Variables
	Names to Avoid When Defining Macro Variables

	Macro Statements
	Macro Functions
	Autocall Libraries
	Overview of Autocall Libraries
	Specifying a User Autocall Library
	Overview of Specifying a User Autocall Library
	Example: Specifying an Autocall Library in Batch Mode
	Example: Specifying an Autocall Library under TSO

	Creating an Autocall Macro

	Stored Compiled Macro Facility
	Overview of the Stored Compiled Macro Facility
	Accessing Stored Compiled Macros

	Other Host-Specific Aspects of the Macro Facility
	Character Encoding for Evaluating Macro Characters
	SAS System Options Used by the Macro Facility

	Dictionary
	%ISHCONV Macro Macro Statement: z/OS

	Procedures under z/OS
	Procedures in the z/OS Environment
	Dictionary
	CATALOG Procedure Statement: z/OS
	CIMPORT Procedure Statement: z/OS
	CONTENTS Procedure Statement: z/OS
	CONVERT Procedure Statement: z/OS
	CPORT Procedure Statement: z/OS
	DATASETS Procedure Statement: z/OS
	DBF Procedure Statement: z/OS
	FONTREG Procedure Statement: z/OS
	FORMAT Procedure Statement: z/OS
	ITEMS Procedure Statement: z/OS
	OPTIONS Procedure Statement: z/OS
	PDS Procedure Statement: z/OS
	PDSCOPY Procedure Statement: z/OS
	PMENU Procedure Statement: z/OS
	PRINT Procedure Statement: z/OS
	PRINTTO Procedure Statement: z/OS
	RELEASE Procedure Statement: z/OS
	SORT Procedure Statement: z/OS
	SOURCE Procedure Statement: z/OS
	TAPECOPY Procedure Statement: z/OS
	TAPELABEL Procedure Statement: z/OS

	Statements under z/OS
	Statements in the z/OS Environment
	Dictionary
	ABORT Statement: z/OS
	ATTRIB Statement: z/OS
	CARDS Statement: z/OS
	DSNEXST Statement: z/OS
	FILE Statement: z/OS
	FILENAME Statement: z/OS
	FILENAME Statement: EMAIL (CSSMTP and SMTP) Access Method
	FOOTNOTE Statement: z/OS
	%INCLUDE Statement: z/OS
	INFILE Statement: z/OS
	LENGTH Statement: z/OS
	LIBNAME Statement: z/OS
	OPTIONS Statement: z/OS
	SASFILE Statement: z/OS
	SYSTASK LIST Statement: z/OS
	TITLE Statement: z/OS
	TSO Statement: z/OS
	WAITFOR Statement: z/OS
	X Statement: z/OS

	System Options under z/OS
	System Options in the z/OS Environment
	Definition of System Options
	SAS System Options for z/OS by Category
	Dictionary
	ALIGNSASIOFILES System Option: z/OS
	ALTLOG= System Option: z/OS
	ALTPRINT= System Option: z/OS
	APPEND= System Option: z/OS
	APPLETLOC= System Option: z/OS
	ARMAGENT= System Option: z/OS
	ASYNCHIO System Option: z/OS
	AUTOEXEC= System Option: z/OS
	BLKALLOC System Option: z/OS
	BLKSIZE= System Option: z/OS
	BLKSIZE(device-type)= System Option: z/OS
	CAPSOUT System Option: z/OS
	CARDIMAGE System Option: z/OS
	CATCACHE= System Option: z/OS
	CHARTYPE= System Option: z/OS
	CLIENTWORK System Option: z/OS
	CLIST System Option: z/OS
	CONFIG= System Option: z/OS
	DEVICE= System Option: z/OS
	DLCREATEDIR System Option: z/OS
	DLDISPCHG System Option: z/OS
	DLDSNTYPE System Option: z/OS
	DLDSKEYLBL= System Option
	DLEXCPCOUNT System Option: z/OS
	DLLBI System Option: z/OS
	DLMSGLEVEL= System Option: z/OS
	DLSEQDSNTYPE System Option: z/OS
	DLTRUNCHK System Option: z/OS
	DSRESV System Option: z/OS
	DYNALLOC System Option: z/OS
	ECHO= System Option: z/OS
	EMAILSYS= System Option: z/OS
	ENGINE= System Option: z/OS
	ERRORABEND System Option: z/OS
	FILEAUTHDEFER System Option: z/OS
	FILEBLKSIZE(device-type)= System Option: z/OS
	FILEBUFNO= System Option: z/OS
	FILECC System Option: z/OS
	FILEDEST= System Option: z/OS
	FILEDEV= System Option: z/OS
	FILEDIRBLK= System Option: z/OS
	FILEEXT= System Option: z/OS
	FILEFORMS= System Option: z/OS
	FILELBI System Option: z/OS
	FILELOCKS= System Option: z/OS
	FILEMOUNT System Option: z/OS
	FILEMSGS System Option: z/OS
	FILENULL System Option: z/OS
	FILEPROMPT System Option: z/OS
	FILEREUSE System Option: z/OS
	FILESEQDSNTYPE System Option: z/OS
	FILESPPRI= System Option: z/OS
	FILESPSEC= System Option: z/OS
	FILESTAT System Option: z/OS
	FILESYNC= System Option: z/OS
	FILESYSOUT= System Option: z/OS
	FILESYSTEM= System Option: z/OS
	FILETEMPDIR System Option: z/OS
	FILEUNIT= System Option: z/OS
	FILEVOL= System Option: z/OS
	FILSZ System Option: z/OS
	FONTRENDERING= System Option: z/OS
	FONTSLOC= System Option: z/OS
	FSBCOLOR System Option: z/OS
	FSBORDER= System Option: z/OS
	FSDEVICE= System Option: z/OS
	FSMODE= System Option: z/OS
	FULLSTATS System Option: z/OS
	GHFONT= System Option: z/OS
	HELPHOST System Option: z/OS
	HELPLOC= System Option: z/OS
	HELPTOC System Option: z/OS
	HOSTINFOLONG System Option: z/OS
	HSLXTNTS= System Option: z/OS
	HSMAXPGS= System Option: z/OS
	HSMAXSPC= System Option: z/OS
	HSWORK System Option: z/OS
	INSERT= System Option: z/OS
	ISPCAPS System Option: z/OS
	ISPCHARF System Option: z/OS
	ISPCSR= System Option: z/OS
	ISPEXECV= System Option: z/OS
	ISPMISS= System Option: z/OS
	ISPMSG= System Option: z/OS
	ISPNOTES System Option: z/OS
	ISPNZTRC System Option: z/OS
	ISPPT System Option: z/OS
	ISPTRACE System Option: z/OS
	ISPVDEFA System Option: z/OS
	ISPVDLT System Option: z/OS
	ISPVDTRC System Option: z/OS
	ISPVIMSG= System Option: z/OS
	ISPVRMSG= System Option: z/OS
	ISPVTMSG= System Option: z/OS
	ISPVTNAM= System Option: z/OS
	ISPVTPNL= System Option: z/OS
	ISPVTRAP System Option: z/OS
	ISPVTVARS= System Option: z/OS
	JREOPTIONS= System Option: z/OS
	LINESIZE= System Option: z/OS
	LOG= System Option: z/OS
	LOGPARM= System Option: z/OS
	LRECL= System Option: z/OS
	MEMLEAVE= System Option: z/OS
	MEMRPT System Option: z/OS
	MEMSIZE= System Option: z/OS
	METAPROFILE= System Option: z/OS
	MINSTG System Option: z/OS
	MSG= System Option: z/OS
	MSGCASE System Option: z/OS
	MSGSIZE= System Option: z/OS
	MSYMTABMAX= System Option: z/OS
	MVARSIZE= System Option: z/OS
	OPLIST System Option: z/OS
	PAGEBREAKINITIAL System Option: z/OS
	PAGESIZE= System Option: z/OS
	PARMCARDS= System Option: z/OS
	PFKEY= System Option: z/OS
	PGMPARM= System Option: z/OS
	PRINT= System Option: z/OS
	PRINTINIT System Option: z/OS
	PROCLEAVE= System Option: z/OS
	REALMEMSIZE= System Option: z/OS
	REXXLOC= System Option: z/OS
	REXXMAC System Option: z/OS
	SASAUTOS= System Option: z/OS
	SASHELP= System Option: z/OS
	SASLIB= System Option: z/OS
	SASSCRIPT System Option: z/OS
	SASUSER= System Option: z/OS
	SEQENGINE= System Option: z/OS
	SET= System Option: z/OS
	SORT= System Option: z/OS
	SORTALTMSGF System Option: z/OS
	SORTBLKMODE System Option: z/OS
	SORTBLKREC System Option: z/OS
	SORTBUFMOD System Option: z/OS
	SORTCUT= System Option: z/OS
	SORTCUTP= System Option: z/OS
	SORTDEV= System Option: z/OS
	SORTDEVWARN System Option: z/OS
	SORTEQOP System Option: z/OS
	SORTLIB= System Option: z/OS
	SORTLIST System Option: z/OS
	SORTMSG System Option: z/OS
	SORTMSG= System Option: z/OS
	SORTNAME= System Option: z/OS
	SORTOPTS System Option: z/OS
	SORTPARM= System Option: z/OS
	SORTPGM= System Option: z/OS
	SORTSHRB System Option: z/OS
	SORTSIZE= System Option: z/OS
	SORTSUMF System Option: z/OS
	SORTUADCON System Option: z/OS
	SORTUNIT= System Option: z/OS
	SORTWKDD= System Option: z/OS
	SORTWKNO= System Option: z/OS
	SORT31PL System Option: z/OS
	STAE System Option: z/OS
	STATS System Option: z/OS
	STAX System Option: z/OS
	STEPCHKPTLIB= System Option: z/OS
	STIMER System Option: z/OS
	SVC11SCREEN System Option: z/OS
	SYNCHIO System Option: z/OS
	SYSIN= System Option: z/OS
	SYSINP= System Option: z/OS
	SYSLEAVE= System Option: z/OS
	SYSPREF= System Option: z/OS
	SYSPRINT= System Option: z/OS
	S99NOMIG System Option: z/OS
	TAPECLOSE= System Option: z/OS
	USER= System Option: z/OS
	UTILLOC= System Option: z/OS
	V6GUIMODE System Option: z/OS
	VALIDMEMNAME= System Option: z/OS
	VERBOSE System Option: z/OS
	WORK= System Option: z/OS
	WORKTERM System Option: z/OS
	WTOUSERDESC= System Option: z/OS
	WTOUSERMCSF= System Option: z/OS
	WTOUSERROUT= System Option: z/OS
	XCMD System Option: z/OS

	TKMVSENV Options under z/OS
	TKMVSENV Options in the z/OS Environment
	Dictionary
	set _BPXK_SETIBMOPT_TRANSPORT=“stack-name” Environment Variable
	set DISABLESASIPV6= Environment Variable
	set TCPIPMCH=stack-name Environment Variable
	set TCPRSLV=IBM | SASC Environment Variable
	set TKOPT_CWD=path Environment Variable
	set TKOPT_ECHOENV Environment Variable
	set TKOPT_ENV_UTILLOC=<path> Environment Variable
	set TKOPT_LPANAME=xxxxxxxx Environment Variable
	set TKOPT_SVCNO=nnn, set TKOPT_SVCR15=nn Environment Variables
	set TKOPT_TKIOP_DIAG_SPACE= Environment Variable
	set TKOPT_UMASK=nnn Environment Variable

	Appendixes
	Optimizing Performance
	Introduction to Optimizing Performance
	Collecting Performance Statistics
	Overview of Collecting Performance Statistics
	Logging SMF Statistics

	Optimizing SAS I/O
	Process SAS Files or Data Libraries in Memory
	Overview of Processing in Memory
	Use the SASFILE Statement to Load a Frequently Used SAS Data
Set into Memory
	Use the Hiperspace Access Method for Temporary Libraries
	Allocate Temporary Libraries to VIO
	Comparison of Techniques for Processing SAS Files or Data Libraries
in Memory

	Optimize I/O for Direct Access Bound Libraries
	Overview of Optimize I/O for Direct Access Bound Libraries
	Sequential Processing Pattern
	Random Processing Pattern

	Optimize I/O for Sequential Access Bound Libraries
	Determine Whether You Should Compress Your Data
	Overview of Compressing Data
	Consider Using SAS Software Compression in Addition to Hardware
Compression

	Efficient Sorting
	Consider Changing the Values of SORTPGM= and SORTCUTP=
	Take Advantage of the DFSORT Performance Booster
	Specify the Minimum Space for Sort Work Data Sets
	Allocate the Minimum Space for Multiple Sorts
	Specify the SAS SORT Options

	Concurrent Sorting

	Some SAS System Options That Can Affect Performance
	MAUTOSOURCE and IMPLMAC
	REXXMAC
	SPOOL and NOSPOOL

	Managing Memory
	Overview of Managing Memory
	Specify a Value for MEMLEAVE= When You Invoke SAS
	Consider Using Superblocking Options to Control Memory Fragmentation
	Use SYSLEAVE= and PROCLEAVE= to Handle Out-of-Memory Conditions
	Specify a Larger Region Size
	Memory Cheat Sheet for z/OS

	Loading SAS Modules Efficiently
	Other Considerations for Improving Performance
	Leave AUTOSCROLL 0 in Effect for the LOG and OUTPUT Windows
	Use the EM3179 Device Driver When Appropriate

	Using EBCDIC Data on ASCII Systems
	About EBCDIC and ASCII Data
	Overview of EBCDIC and ASCII Data Representation
	EBCDIC File Structures
	ASCII File Structure
	Numeric Values

	Moving Data from EBCDIC to ASCII Systems
	Overview of Accessing EBCDIC Data on ASCII Systems
	Example of Incorrect Conversion of Packed-Decimal Numeric Data
	Convert EBCDIC Files with Fixed-Length Records
	FTP the File in Binary
	Example: Convert an EBCDIC File with Fixed-Length Records into
an ASCII File

	Convert EBCDIC Files with Variable-Length Records
	Overview of Converting EBCDIC Files with Variable-Length Records
	Read Files Directly from the EBCDIC System
	Example: Read an EBCDIC Source File Directly with the FTP Access
Method
	Reformat an EBCDIC File with Variable-Length Records with IEBGENER
	Example: Read a File with Modified Header Data

	Read EBCDIC Data from Structured COBOL Files
	About Structured COBOL Files
	Example: Read Data from a Structured COBOL File

	Moving Data from ASCII to EBCDIC Systems
	Overview
	Using FTP to Write Files Directly
	Overview of Using FTP to Write Files Directly
	Example: Reading an ASCII File from SAS on z/OS

	Using the dd Command to Convert and Copy a File
	About the dd Command
	dd Command Exit Status
	Examples: dd Command Conversion

	Using the iconv Command to Convert a Text File
	About the iconv Command
	iconv Command Exit Status
	Examples: iconv Command Conversion

	Encoding for z/OS Resource Names
	Overview of Encoding for z/OS Resource Names
	z/OS Resource Names and Encoding
	Reverting to SAS 9.2 Behavior

	Starting SAS with SASRX
	Overview of SASRX
	Option Syntax
	Overview of Option Syntax
	Option Categories
	Option Types
	Option Specification Styles
	Additional Syntax Considerations

	SASRX Options
	SASRX Data Set Options
	How the WORK Option Controls the Size of the WORK Data Set
	Miscellaneous SASRX Value Options
	SASRX Load Module Library Options
	SASRX Configuration File Options
	SASRX Environment Variable Options
	SASRX Switch Options
	Alternate Ddname SASRX Options
	Examples of Option Types and Specification Styles
	Example of Recognizing a SAS Switch Option
	Example Comparison of UNIX Style and CLIST Style Option Specification

	Option Classification When UNIX Style and CLIST Style Are Mixed
	Examples of Option Classification When UNIX Style and CLIST
Style Are Mixed
	Quoting Option Specifications
	Additional Examples of Quoting
	Example 1
	Example 2
	Example 3
	Example 4

	Option Priority
	Option Priority Example

	Site Customizations
	Overview of Site Customizations
	User Exit

	64–Bit SAS Metadata Server
	Overview of the SAS Metadata Server
	Advantages of 64-Bit SAS Metadata Server
	Special Considerations for the 64-Bit SAS Metadata Server

	Accessing BMDP, SPSS, and OSIRIS
 Files
	The BMDP, SPSS, and OSIRIS Engines
	Introduction to the BMDP, SPSS, and OSIRIS Engines
	Restrictions on the Use of These Engines

	Accessing BMDP Files
	Overview of BMDP Files
	Assigning a Libref to a BMDP File
	Referencing BMDP Files
	Examples of Accessing BMDP Files

	Accessing OSIRIS Files
	Overview of OSIRIS Files
	Assigning a Libref to an OSIRIS File
	Referencing OSIRIS Files
	Examples of Accessing OSIRIS Files

	Accessing SPSS Files
	Overview of SPSS Files
	Assigning a Libref to an SPSS File
	Referencing SPSS Files
	Reformatting SPSS Files
	Examples of Accessing SPSS Files

	The cleanwork Utility
	Overview of the cleanwork Utility
	Installing the cleanwork Utility
	Configuring the cleanwork Utility
	Syntax
	How cleanwork Selects Directories for Deletion
	Running cleanwork with a crontab

	See Also

	Host-System Subgroup Error Messages
	Host-System Subgroup Error Messages in the z/OS Environment
	Messages from the SASCP Command Processor
	Messages from the TSO Command Executor
	Messages from the Internal CALL Command Processor

	ICU License
	ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J
57
	Third-Party Software Licenses: ICU 1.8.1–ICU 57 and
ICU4J 1.3.1–ICU4J 57
	1. Unicode Data Files and Software
	2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)
	3. Lao Word Break Dictionary Data (laodict.txt)
	4. Burmese Word Break Dictionary Data (burmesedict.txt)
	3. Time Zone Database

	Unicode, Inc. License Agreement - Data Files and Software:
ICU 58 and Later

