
SAS® 9.4 Language
Interfaces to Metadata,
Third Edition

SAS® Documentation
October 20, 2022

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Language Interfaces to Metadata, Third
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Language Interfaces to Metadata, Third Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2023

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P8:lrmeta

Contents

What's New in SAS 9.4 Language Interfaces to Metadata . vii

PART 1 Introduction 1

Chapter 1 / What Are the Metadata Language Elements? . 3
Overview of Metadata Language Elements . 3
When to Use Metadata Language Elements . 5
What Can I Report on in a SAS Metadata Repository? . 5

Chapter 2 / Using Language Elements That Read and Write Metadata . 7
Overview of Using SAS Language Elements That Read and Write Metadata 7
Objects Included in the Dictionary . 8
What Is the SAS Type Dictionary? . 8
How the Type Dictionary Affects SAS Language Elements . 9

Chapter 3 / Metadata Object Identifiers and URIs . 13
What Is a Metadata Identifier? . 13
Obtaining Metadata Names and Identifiers . 13
What Is a URI? . 14

Chapter 4 / Examples: Using Metadata Language Elements to Create Reports 15
Overview of the Examples . 15
Example: Creating a Report with the METADATA Procedure and

the XML Engine . 16
Example: Creating a Report with the DATA Step . 21
Example: Creating Metadata for a JSON . 27

PART 2 System Options

Chapter 5 / Introduction to System Options for Metadata . 37
Overview of System Options for Metadata . 37
Connection Options . 38
Encryption Options . 42
Resource Option . 42

Chapter 6 / System Options for Metadata . 43
Dictionary . 43

PART 3 Metadata LIBNAME Engine

Chapter 7 / Introduction to the Metadata LIBNAME Engine . 61
Overview of the Metadata LIBNAME Engine . 61
Supported Features . 62
Features That Are Not Supported . 63
Advantages of Using the Metadata Engine . 64
The Metadata Engine and Authorization . 64
Permissions That Affect Data Access through the Metadata Engine 65
The Metadata Engine and Extended Attributes . 66
How the Metadata Engine Constructs a LIBNAME Statement 67

Chapter 8 / Reference for the Metadata Engine . 69
LIBNAME Statement for the Metadata Engine . 69
SAS Data Set Options for the Metadata Engine . 74

Chapter 9 / Examples for the Metadata Engine . 77
Example: Submitting the LIBNAME Statement . 77
Example: Before and After the Metadata Engine . 78

PART 4 Procedures

Chapter 10 / Introduction to Procedures for Metadata . 83
Overview of Procedures for Metadata . 83
Comparison of the METADATA Procedure and the METAOPERATE Procedure . . 84

Chapter 11 / METADATA Procedure . 87
Overview: METADATA Procedure . 88
Syntax: METADATA Procedure . 88
Usage: METADATA Procedure . 93
Results: METADATA Procedure . 100
Examples: METADATA Procedure . 101

Chapter 12 / METALIB Procedure . 123
Overview: METALIB Procedure . 124
Syntax: METALIB Procedure . 125
Usage: METALIB Procedure . 136
Results: METALIB Procedure . 139
Examples: METALIB Procedure . 140

Chapter 13 / METAOPERATE Procedure . 153
Overview: METAOPERATE Procedure . 154
Syntax: METAOPERATE Procedure . 155
Usage: METAOPERATE Procedure . 168
Examples: METAOPERATE Procedure . 176

iv Contents

PART 5 DATA Step Functions

Chapter 14 / Introduction to DATA Step Functions for Metadata . 191
Overview of DATA Step Functions for Metadata . 191
Best Practices . 192
Array Parameters . 193

Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata 195
What Are the DATA Step Functions for Reading and Writing Metadata? 195
Referencing a Metadata Object with a URI . 197
Comparison of DATA Step Functions to Metadata Procedures 198
Examples: DATA Step Functions for Reading Metadata . 198

Chapter 16 / DATA Step Functions for Reading and Writing Metadata . 217
Dictionary . 218

Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration 253
What Are the DATA Step Functions for Metadata Security Administration? 253
Transaction Contexts and URIs . 254
Using the %MDSECCON() Macro . 255
Examples: DATA Step Functions for Metadata Security Administration 256

Chapter 18 / DATA Step Functions for Metadata Security Administration . 267
Dictionary . 267

Contents v

vi Contents

What's New in SAS 9.4
Language Interfaces to Metadata

Overview
The metadata DATA step function documentation has been updated for SAS 9.4M8.

Beginning with SAS 9.4M7, the length of a table object name created with the
METALIB procedure has been extended. The documentation has been updated.

Beginning with SAS 9.4M6, the behavior of the METALIB procedure’s DBAUTH
statement has changed. The documentation has been updated.

Beginning with SAS 9.4M5, the METALIB procedure uses the SASTableName
attribute to locate SAS data sources for update processing. The change enables the
procedure to better handle a table object for which a prefix is defined. The
documentation was enhanced.

Beginning with SAS 9.4M3, the METADATA procedure has a new argument that
enables you to direct SAS Metadata Server status queries directly to the master
node in a clustered server configuration. The METADATA procedure has a new
cluster synchronization checking feature. The METALIB procedure has a new
statement: DBAUTH. The METADATA LIBNAME engine has two new LIBNAME
statement options: DBUSER= and DBPASSWORD=. The arguments supported with
the engine’s METAOUT= LIBNAME option and data set option have changed. There
is a new metadata DATA step function. There are documentation enhancements.

Beginning in SAS 9.4M2, the METADATA procedure supports new XML elements
for getting information about SAS Metadata Server alert conditions and grace
periods. The METALIB procedure was enhanced to update library ownership. There
are documentation enhancements.

In SAS 9.4, the SAS Metadata Server is available in a single SAS Metadata Server
configuration or in a clustered SAS Metadata Server configuration. The
METAOPERATE procedure, the METADATA procedure, the METACONNECT=
system option, and the METAPROFILE system option are enhanced to support the
new clustered configuration. The METAAUTORESOURCES system option and the
METADATA LIBNAME engine have new functionality. There is a new metadata
DATA step function. The documentation is enhanced. For more information, see
“SAS 9.4” on page xii.

vii

SAS 9.4M8
The following metadata DATA step function documentation has been updated for
SAS 9.4M8:

n “Best Practices” for using the DATA step functions for metadata. The example
has been modified.

n “METADATA_SETASSN Function” on page 247, to define the term “multiple
association”.

n “METASEC_GETNAUTH Function”, to better describe masks.

SAS 9.4M7
The METALIB procedure now allows the creation of a table object name that is up to
60 characters. A table object’s name includes the SAS table name and an optional
prefix text string. The prefix text string is added with the PREFIX statement.

The METALIB procedure documentation has been modified. See “How PROC
METALIB Works” on page 136 and “Considerations When Creating SASLibrary
Objects” on page 138.

A new example has been added to the documentation: “Example: Creating
Metadata for a JSON” on page 27.

SAS 9.4M6
The behavior of METALIB procedure’s DBAUTH statement has changed. The
database credentials specified in the DBAUTH statement now override any other
predefined authentication types. For more information, see “DBAUTH Statement” on
page 129.

The documentation for PROC METALIB has been enhanced to clarify how the
procedure works with folders. See “SASLibrary Objects and Folders” on page 138.

viii What's New in SAS 9.4 Language Interfaces to Metadata

SAS 9.4M5
PROC METALIB was changed to use the SASTableName attribute to locate a
physical SAS data source for update processing. In previous releases, the
procedure used the Name attribute to locate physical SAS data sources for update
processing. The change affects several processes. For more information, see “How
PROC METALIB Works” on page 136, “EXCLUDE or SELECT Statement” on page
130, and “PREFIX Statement” on page 134.

The PROC METALIB topic, “What Metadata Is Updated?” on page 137, was
updated.

The requirements for creating a pre-assigned library definition that can be updated
are documented in “library-identifier” on page 127.

SAS 9.4M3

Enhancements to PROC METADATA
Beginning with SAS 9.4M3, PROC METADATA supports an OPTIONS= argument.
The following XML element is supported in the OPTIONS= argument of a PROC
METADATA request:

<CLUSTER/>
supported in requests that also specify METHOD=STATUS only: specifies to
send the query in the IN= argument to the master node. This argument enables
you to query the master node without knowing its connection parameters. For
more information, see “Metadata Server Configurations and PROC METADATA”
on page 96 and “Example 7: Get Information about the Server Cluster with
PROC METADATA” on page 118.

Cluster synchronization checking is a new feature available in the SAS Management
Console Metadata Manager Analyze/Repair wizard and the sas-analyze-metadata
batch tool beginning with SAS 9.4M3. For more information about this feature, see
the documentation for the Analyze/Repair wizard and the sas-analyze-metadata
batch tool. The Analyze/Repair wizard and the sas-analyze-metadata batch tool are
documented in the SAS Intelligence Platform: System Administration Guide

The following IServer Status XML element is supported in the IN= parameter of a
PROC METADATA request that specifies METHOD=STATUS to get the results of
cluster synchronization check:

SAS 9.4M3 ix

<SynchCheck><Results OptionalAttribute(s)=" "/></SynchCheck>
reports the results of the last synchronization check on the slave node that
received the Status query. By default, the query returns the Id and Name values
of all repositories that were examined. In addition, the query returns a
<Container/> XML element that specifies the name of any metadata type
containers in which an error was found.

For more information about the <SynchCheck><Results/></SynchCheck> XML
element, see the documentation for the IServer Status method in the SAS Open
Metadata Interface: Reference and Usage. For more information about how this
element is used in a PROC METADATA request, see “Example 7: Get Information
about the Server Cluster with PROC METADATA” on page 118.

Enhancements to PROC METALIB
Beginning with SAS 9.4M3, the METALIB procedure has a new statement,
DBAUTH. The DBAUTH statement specifies database authentication credentials for
libraries that have an authentication type of Prompt in their server definitions. For
more information, see “DBAUTH Statement” on page 129.

Enhancements to the METADATA LIBNAME Engine
Beginning with SAS 9.4M3, the metadata engine supports DBUSER= and
DBPASSWORD= arguments. These options enable you to override database
authentication credentials that are stored in metadata. Chapter 8, “Reference for the
Metadata Engine,” on page 69.

The METAOUT=META LIBNAME option and the METAOUT=META data set option
are no longer supported. These options returned utility information about tables
defined in metadata. That is, when METAOUT=META was set, PROC CONTENTS
would return information about a table, but you could not read data in the table. See
“METAOUT= Argument” on page 73 and “METAOUT= Data Set Option” on page
74.

New Metadata DATA Step Function
Beginning with SAS 9.4M3, a new metadata DATA step function,
METADATA_GETURI, returns a URL for the application specified by the
SoftwareComponent object using information from the SAS Metadata Repository.
For more information, see “METADATA_GETURI Function” on page 235.

x What's New in SAS 9.4 Language Interfaces to Metadata

Documentation Enhancements
n We explain how tables that have user-defined formats should be used with the

metadata engine. See “Features That Are Not Supported” on page 63.

n We clarify how column permissions are applied by the metadata engine in “The
Metadata Engine and Authorization” on page 64.

n The description of the metadata LIBNAME statement’s METAOUT=DATAREG
option has been clarified. METAOUT= can be specified as a LIBNAME option or
as a data set option. See “METAOUT= Argument” on page 73 and “METAOUT=
Data Set Option” on page 74.

n We list the attributes that PROC METALIB updates for a PhysicalTable metadata
object in “What Metadata Is Updated?” on page 137.

n We have expanded the best practices for using metadata functions that get
values. For more information, see “Best Practices” on page 192.

n We describe how to use the URLENCODE function to encode table names that
have special characters before using the metadata DATA step functions.
Metadata objects are cached by URIs. When the URI is created, the metadata
DATA step logic decodes reserved URL characters, which can change the table
name when the name has special characters. For more information, see “Best
Practices” on page 192.

SAS 9.4M2

Enhancements to PROC METADATA
Beginning with SAS 9.4M2, the following XML elements from the IServer Status
method are supported in the IN= parameter of a PROC METADATA call with
METHOD=STATUS to get information about the alert condition and the grace
period:

<OMA ALERT_CONDITION_FREQUENCY=" "/>
returns the amount of time that can elapse before the initial and subsequent alert
email reminders about the alert condition are sent. The time value is returned in
seconds. The default value is 21,600 seconds (six hours).

<OMA ALERT_CONDITION_GRACE_PERIOD=" "/>
returns the amount of time that the alert condition is allowed to persist before the
SAS Metadata Server shuts itself down. The time value is returned in seconds.
The default value is 259,200 seconds (three days).

SAS 9.4M2 xi

<Scheduler><AlertConditions/></Scheduler>
reports whether an alert condition exists on the specified SAS Metadata Server.
If an alert condition exists, the <AlertConditions/> subelement returns an
<AlertCondition> XML element and an <ExpirationTime/> XML element. The
<AlertCondition/> element includes the error and a datetime value representing
the time at which the error occurred. The <ExpirationTime/> element includes
the server’s scheduled termination time.

For more information, see “Example 6: Get Information about the Server’s Alert
Email Notification Subsystem with PROC METADATA” on page 115.

Enhancements to PROC METALIB
Beginning with SAS 9.4M2, the METALIB procedure is enhanced. The procedure
checks for and updates a table object’s library ownership if the table object is using
a different library definition than the one with which it was created. This is useful
when importing and exporting data. For more information, see “How PROC
METALIB Works” on page 136.

Documentation Enhancements
n The documentation for the METAPASS= system option was updated to describe

how passwords are displayed in the log. See “METAPASS= System Option” on
page 49.

n The metadata engine documentation clarifies what support is available for utility
functionality on a third-party DBMS. See “Features That Are Not Supported” on
page 63.

n The requirements for the pathname parameter of the PROC METALIB
FOLDER= statement were clarified. See “FOLDER= or FOLDERID= Statement”
on page 131.

SAS 9.4

Enhancements to PROC METAOPERATE
Beginning in SAS 9.4, PROC METAOPERATE works in a single SAS Metadata
Server configuration or in a clustered SAS Metadata Server configuration. In a
clustered SAS Metadata Server configuration, three or more metadata servers are
available for processing metadata requests.

xii What's New in SAS 9.4 Language Interfaces to Metadata

When a clustered metadata server configuration is detected, actions that change the
availability and content of the SAS Metadata Server are executed uniformly on all
server nodes. Two new, optional arguments enable administrators to direct requests
to a specific node in the cluster:

NOCLUSTER
supported in the STOP action, enables an administrator to stop the metadata
server specified in the connection options. This enables an administrator to
temporarily remove the specified server from the cluster if it needs maintenance.

NOREDIRECT
supported in the STATUS action, enables an administrator to direct the status
query to the metadata server specified in the connection options.

Certain administrative tasks, such as metadata server restore and recovery, are
different in a clustered SAS Metadata Server configuration than they are in a single
SAS Metadata Server configuration. For more information, see “Metadata Server
Configurations and PROC METAOPERATE” on page 168 and “Recovery in a
Clustered Server Configuration” on page 173.

Enhancements to PROC METADATA
PROC METADATA has the following new features in support of the clustered
metadata server configuration.

In a clustered metadata server configuration, all requests, including server status
queries, are assigned by a load balancer to the server nodes in the cluster. This is
appropriate for requests issued through METHOD=DOREQUEST, which primarily
read and write metadata. A new argument is supported with METHOD=STATUS to
enable an administrator to direct server status queries to a specific server node:

NOREDIRECT
specifies to execute the status query on the metadata server specified in the
connection options.

The following IServer Status XML elements can be issued through PROC
METADATA when METHOD=STATUS is specified to get information about a SAS
Metadata Server cluster:

<CLUSTER attributes/>
returns values for specified cluster attributes. The valid attributes are:

CLUSTERGUID=" "
returns the cluster’s unique identifier.

DEFINED_NODES=" "
returns the number of servers defined in the cluster.

CURRENT_NODES=" "
returns the number of servers that are known to the server that received the
query.

HAS_FIRST_NODE=" "
returns a YES or NO indicating whether the server defined as Node 1 is
available to the cluster.

HAS_QUORUM=" "
returns a YES or NO indicating whether a quorum exists.

SAS 9.4 xiii

LIST=" "
returns an integer indicating the number of servers that are known to the
server that received the query, in addition to ClusterNode XML elements that
describe each server. The ClusterNode XML elements include the server
name, host name, port number, a Self attribute, and a Flags attribute for each
server. The Self attribute identifies the receiving server with a “Y” or a “N”.
The Flags attribute indicates whether the node is a slave server or the master
server.

<CLUSTERSTATE/>
returns the value STARTING, QUORUM, or LOSTQUORUM. STARTING means
that the cluster is waiting for more server nodes to start up and complete the
quorum. QUORUM means that a sufficient number of server nodes are operating
for the cluster to remain in service. LOSTQUORUM means that the cluster does
not have enough server nodes to remain in service.

<OMA MAXIMUM_CLUSTER_NODES=" "/>
returns the maximum number of server nodes that are supported in the cluster
as configured in the omaconfig.xml file.

If any of these XML elements are submitted in a single SAS Metadata Server
configuration, the elements return requested information about the single server,
where appropriate. Otherwise, they are ignored.

For more information about PROC METADATA use in a clustered metadata server
configuration, see “Metadata Server Configurations and PROC METADATA” on
page 96 and “Getting Information about Server Backups ” on page 99.

Enhancements System Options
n The METAPROFILE and METACONNECT= system options support the use of a

default server connection profile to connect to the SAS Metadata Server. The
default server connection profile is created for every installation that has a SAS
Metadata Server by SAS 9.4 configuration processes. In a clustered SAS
Metadata Server configuration, the default server connection profile can assist
with server connection and re-connection. The profile is helpful whether users
connect with the profile or use the METASERVER= and METAPORT= options to
connect. For more information, see “Specifying a Stored Connection Profile” on
page 40, “METAPROFILE System Option” on page 51, and
“METACONNECT= System Option” on page 45.

n Processing of the METAAUTORESOURCES system option has changed so that
libraries assignments stored in metadata are always applied before library
assignments in the AUTOEXEC file. For more information, see
“METAAUTORESOURCES System Option” on page 43.

Enhancements to the Metadata LIBNAME Engine
The metadata LIBNAME engine supports extended attributes on SAS data sets and
libraries when the METAOUT=DATA option is set. For more information, see “The
Metadata Engine and Extended Attributes” on page 66.

xiv What's New in SAS 9.4 Language Interfaces to Metadata

New Metadata DATA Step Function
A new metadata DATA step function, METADATA_APPPROP, gets the value of a
specified property for a specified SoftwareComponent or DeployedComponent. For
more information, see “METADATA_APPPROP Function” on page 218.

Documentation Enhancements
n Information has been added about the permissions that the metadata LIBNAME

engine enforces to control data access. For more information, see “Permissions
That Affect Data Access through the Metadata Engine” on page 65.

n The documentation explains how PROC METADATA and PROC
METAOPERATE can be used to check and change the addressees and email
server configuration in the SAS Metadata Server’s alert email notification
subsystem. For more information, see “Using Alert Email XML Elements” on
page 175 and “Example 6: Get Information about the Server’s Alert Email
Notification Subsystem with PROC METADATA” on page 115.

SAS 9.4 xv

xvi What's New in SAS 9.4 Language Interfaces to Metadata

PART 1

Introduction

Chapter 1
What Are the Metadata Language Elements? . 3

Chapter 2
Using Language Elements That Read and Write Metadata 7

Chapter 3
Metadata Object Identifiers and URIs . 13

Chapter 4
Examples: Using Metadata Language Elements to Create Reports 15

1

2

1
What Are the Metadata Language
Elements?

Overview of Metadata Language Elements . 3

When to Use Metadata Language Elements . 5

What Can I Report on in a SAS Metadata Repository? . 5

Overview of Metadata Language
Elements

SAS Open Metadata Architecture enables an administrator to define metadata
objects that are common to one or more SAS client applications. For example, you
can describe data sources and set security that supplements protections from the
host environment and other systems.

In most cases, an administrator maintains the metadata by using products like SAS
Management Console, SAS Data Integration Studio, or SAS Enterprise Guide.
However, an administrator can also maintain metadata by running a SAS program in
batch or from the SAS windowing environment. The code that can be submitted in a
SAS session uses the SAS metadata language elements.

Many of the metadata language elements enable you to maintain metadata that
defines a data source. A convention in the SAS Open Metadata Architecture is to
refer to data in terms of SAS libraries, tables, rows, and columns.

n A data source is defined in metadata as a table.

n SAS tables are organized by being stored in a library.

n In SAS documentation, a row in a table is often called an observation, and a
column is called a variable.

3

A SAS Metadata Server manages access to metadata in SAS metadata
repositories. Some of the metadata language elements can be used to monitor and
maintain the SAS Metadata Server.

This book is a reference to the metadata language elements. For information about
metadata and SAS Metadata Server administration tasks, see the SAS Intelligence
Platform: System Administration Guide.

The SAS metadata language elements described in this book include:

System options
Use the system options to set defaults for metadata access. They are organized
into three groups: connection to the SAS Metadata Server, client encryption, and
resources.

Metadata LIBNAME statement
As with other SAS engines, an administrator can assign a libref to serve as a
shorthand for users. With the metadata engine, the underlying LIBNAME
information is stored in metadata objects. The metadata engine helps implement
security across an enterprise.

Data set options for the metadata engine
You can apply these data set options to one table, rather than to an entire library.

Procedures
You can use the following procedures to perform many common maintenance
tasks on metadata and the SAS Metadata Server.

n PROC METALIB automates the creation and update of table metadata for a
specified SAS library. (The SAS library must be defined in a SAS Metadata
Repository using SAS Management Console or SAS Data Integration Studio,
first.)

n PROC METADATA enables clients to submit XML-formatted SAS Open
Metadata Interface method calls that read and write metadata objects of all
SAS Metadata Model metadata types from within SAS. It also enables you to
issue status requests that query the SAS Metadata Server’s configuration,
the server’s backup configuration and history, and the server’s availability.
PROC METADATA returns XML output that mirrors the input, except the
requested values are filled in. To process the output with SAS, you can define
an XML map that can be read with the XML LIBNAME engine.

n PROC METAOPERATE pauses, resumes, refreshes, backs up, recovers,
and stops the SAS Metadata Server.

DATA step functions
The DATA step functions cover the same metadata functionality as PROC
METADATA, and return data to the DATA step, which can then be arranged in a
SAS data set. Because the DATA step functions execute within a DATA step, you
can use the output from one function as the input to another function.

The SAS commands METABROWSE, METACON, and METAFIND are documented
in the online Help that is available from the SAS windowing environment.

4 Chapter 1 / What Are the Metadata Language Elements?

When to Use Metadata Language
Elements

Submitting a batch program can be helpful for repetitive metadata maintenance
tasks. You might want to run reports automatically overnight, when usage of the
SAS Metadata Server is low. The language elements are flexible and can be
adapted to almost any metadata maintenance task.

SAS language elements that return information about the SAS Metadata Server’s
availability and configuration can be issued from the windowing environment at any
time by users with administrative access to the server.

What Can I Report on in a SAS Metadata
Repository?

The SAS Metadata Repository stores logical data representations of items such as
the libraries, tables, information maps, and cubes that are used by SAS
applications, as well as the information assets that are created by SAS applications.
It stores information about system resources such as servers and the users who
access data and metadata, and the rules that govern who can access what. You can
create reports that track changes to all of these resources.

What Can I Report on in a SAS Metadata Repository? 5

6 Chapter 1 / What Are the Metadata Language Elements?

2
Using Language Elements That
Read and Write Metadata

Overview of Using SAS Language Elements That Read and Write Metadata 7

Objects Included in the Dictionary . 8

What Is the SAS Type Dictionary? . 8

How the Type Dictionary Affects SAS Language Elements . 9
Creating Metadata . 9
Reading Metadata . 9
Deleting Metadata . 10
Repairing Metadata Objects . 11

Overview of Using SAS Language
Elements That Read and Write Metadata

PROC METADATA, PROC METALIB, and the metadata DATA step functions can be
used to create metadata in the SAS Metadata Repository. PROC METADATA and
the metadata DATA step functions enable you to read metadata from the SAS
Metadata Repository.

PROC METALIB automates the process of creating table objects for a SAS library
that you define in the SAS Metadata Repository. Use SAS Management Console to
create the library definitions. The New Library wizards provides templates that
collect the specific information needed to connect to a particular data source.

In order to create or read any metadata object with PROC METADATA and
metadata DATA step functions, you must know the SAS Metadata Model metadata
types that represent the objects in the SAS Metadata Repository. That information is
not provided in this book. For more information, see the SAS Metadata Model:
Reference. Most resources and information assets in the SAS Metadata Repository
are described by a logical metadata definition. This logical metadata definition

7

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

includes multiple associated SAS Metadata Model metadata types, not just one. For
applications to effectively share metadata, and for SAS tools to effectively import
and export definitions, they must use common logical metadata definitions.

The SAS Intelligence Platform includes a type dictionary that SAS applications and
solutions use to standardize the usage of common and shared resources and
information assets in their applications and solutions. For resources that are
persisted in metadata, this type dictionary standardizes their logical metadata
definitions. The content of these logical metadata definitions is internalized so that
SAS can change the definitions as needed.

This chapter describes how the type dictionary affects read and write requests made
with PROC METADATA and the metadata DATA step functions.

Objects Included in the Dictionary
The type dictionary includes objects that describe common and shared resources
and information assets. The dictionary also includes objects that need to be
displayed in the SAS Management Console Folders tab and objects that need to be
imported and exported. Examples of object types that are included in the type
dictionary are: Table, Library, Information Map, SAS Report, Stored Process, Stored
Process Server, Stored Process Report, Workspace Server, Job, Cube, User, and
User Group.

Not all objects in the type dictionary can be imported and exported, and they do not
all display in the SAS Management Console Folders tab.

What Is the SAS Type Dictionary?
The SAS type dictionary consists of a set of object type definitions. The dictionary is
located in the Types subfolder of the System folder in the SAS Management
Console Folders tab. Open the folder to see a complete list of the object types that
are managed by the type dictionary.

In addition to the object’s logical metadata definition, a type definition contains the
information that is necessary to display and manage instances of an object type in a
SAS application.

A goal of the type dictionary is to hide the details of logical metadata definitions and
managing object instances from applications and users. The type definition
publishes the name of the primary metadata type used to represent the object in the
SAS Metadata Repository. However, it internalizes the information needed to
expand the logical metadata definition. In the SAS Metadata Repository, the name
of the type definition used to create any logical metadata definition is stored in the
primary metadata object’s PublicType= attribute.

8 Chapter 2 / Using Language Elements That Read and Write Metadata

How the Type Dictionary Affects SAS
Language Elements

Creating Metadata
You should use SAS wizards and procedures, such as PROC METALIB and PROC
OLAP. to automate the creation of metadata when possible. By using SAS wizards
and procedures, you can be assured that the logical metadata definitions conform to
the type dictionary. A program that uses PROC METADATA and metadata DATA
step functions must create its own logical metadata definitions, and, as a result,
these logical metadata definitions might not conform to the type dictionary.

Advantages of using logical metadata definitions that conform to the type dictionary
include:

n The metadata objects are displayed on the SAS Management Console Folders
tab. Not only are the objects visible in the GUI, but the folder container gives
context to the object in the SAS Metadata Repository.

n The metadata objects can be managed using the functionality available on the
Folders tab. You can copy, paste, delete, import a SAS package, and export a
SAS package. Importing and exporting are not available for all object types.

n The metadata objects can be searched using the functionality on the SAS
Management Console Search tab.

Reading Metadata
To retrieve object instances that conform to the type dictionary with SAS language
elements for metadata, you identify the object instance by its primary metadata type
and metadata identifier or name. To list objects that conform to the dictionary, you
specify the object’s primary metadata type and type name.

The type dictionary makes it easy to identify the primary metadata type and type
name of an object type in the dictionary. In the dictionary, open the type definition of
the object that you are interested in.

n The object’s primary metadata type is specified in the Metadata Type field on
the Advanced tab of its properties.

n The object type name is stored in the TypeName field on the Advanced tab.

For information about metadata identifiers or names, see “What Is a Metadata
Identifier?” on page 13. Also, see “Obtaining Metadata Names and Identifiers” on
page 13.

How the Type Dictionary Affects SAS Language Elements 9

PROC METADATA enables you to get information about an object type instance by
submitting the SAS Open Metadata Interface GetMetadata method. In the
GetMetadata method’s <Metadata/> parameter, specify the object’s primary
metadata type and name or identifier. In the GetMetadata method’s <Flags/>
parameter, set the OMI_FULL_OBJECT (2) flag. The OMI_FULL_OBJECT flag
specifies to return an object’s full logical metadata definition using the definition from
the type dictionary. For an example of a PROC METADATA request that sets the
OMI_FULL_OBJECT flag, see “Example 3: Request the Metadata for One Object”
on page 105. Metadata DATA step functions do not support the ability to return an
object’s full logical metadata definition.

Many type definitions use the same metadata type as their primary metadata type.
For example, Information Map and SAS Report both use the Transformation
metadata type as their primary metadata type, among others. PROC METADATA
enables you to list instances of an object type by submitting the SAS Open
Metadata Interface GetMetadataObjects method. In the GetMetadataObject
method’s <Type/> parameter, specify the primary metadata type of the object type
that you want to list. In the <Flags/> parameter, specify the OMI_XMLSELECT (128)
flag, and in the <Options/> parameter, specify the <XMLSelect/> element and a
search string. In the search string, specify to search for object instances that have
the TypeName value in their @PublicType= attribute. For an example of a PROC
METADATA request that uses the type dictionary to list objects, see “Example 4:
Request the Metadata for One Type of Object” on page 109.

Metadata DATA step functions use a uniform resource identifier (URI) to identify an
object. To list objects using the type dictionary, use this URI form:

omsobj: type?@PublicType='value'

The type is the MetadataType value, and value is the TypeName value from the
type definition. For more information about URIs, see “What Is a URI?” on page 14.
Also, see “METADATA_GETNOBJ Function” on page 229.

SAS provides the METADATA_PATHOBJ function for getting metadata objects in
folders. Specify the TypeName= value in the DefType argument. For more
information, see “METADATA_PATHOBJ Function” on page 242.

Deleting Metadata
SAS metadata interfaces automatically use the type dictionary to delete metadata
when the specified metadata object is a PrimaryType subtype in the SAS Metadata
Model and stores a value in the PublicType= attribute, unless you specify a user-
defined template in the request. When you specify to delete the primary metadata
object, the DeleteMetadata method also deletes all associated objects that are
identified internally in the object’s type definition.

Note: If the specified metadata object is a SecondaryType subtype in the SAS
Metadata Model or is a PrimaryType subtype but does not store a value in the
PublicType= attribute, then only the specified metadata object is deleted, unless you
specify a user-defined template. For more information about PrimaryType and
SecondaryType subtypes, see the SAS Metadata Model: Reference.

10 Chapter 2 / Using Language Elements That Read and Write Metadata

Repairing Metadata Objects
The SAS Management Console Analyze and Repair wizard uses type definitions
from the dictionary to repair metadata objects. For more information about the
Analyze and Repair wizard, see “Analyzing and Repairing Metadata” in SAS
Intelligence Platform: System Administration Guide.

How the Type Dictionary Affects SAS Language Elements 11

12 Chapter 2 / Using Language Elements That Read and Write Metadata

3
Metadata Object Identifiers and
URIs

What Is a Metadata Identifier? . 13

Obtaining Metadata Names and Identifiers . 13

What Is a URI? . 14

What Is a Metadata Identifier?
Every SAS Metadata Model metadata object in a SAS Metadata Repository has a
unique identifier. The 17-character identifier consists of two parts, separated by a
period. It is often represented in documentation as reposid.objectid. An example is
A52V87R9.A9000001.

n The first eight characters (A52V87R9 in the example) identify the SAS Metadata
Repository in which the object is stored.

n The ninth character is always a period.

n The second set of eight characters (A9000001 in the example) identifies the
object in the repository.

Obtaining Metadata Names and
Identifiers

Most of the metadata language elements require you to identify an object by its
name or identifier. If you need the name or identifier of a single object, and you

13

know where the object is located in SAS Management Console or in SAS Data
Integration Studio, then this task is simple. The metadata identifier is shown in the
object's Properties window. For more information, see the Online Help that is
available from the product.

Another way to locate an object is to issue the METABROWSE command to open
the Metadata Browser window, or issue the METAFIND command to open the
Metadata Find window. For more information, select Using This Window from the
Help menu in the SAS windowing environment.

To retrieve a series of metadata identifiers programmatically, you can use the
“METADATA_RESOLVE Function” on page 245 if you are processing within a DATA
step.

Another choice is to submit a GetMetadataObjects method call with PROC
METADATA, and then use the XML LIBNAME engine to import the procedure's XML
output as a SAS data set. For a PROC METADATA example that retrieves object
IDs, see “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 16.

What Is a URI?
For many of the metadata language elements, you can specify a metadata resource
by its name or identifier. Some of the language elements accept a Uniform
Resource Identifier (URI), which is a standard from SAS Open Metadata
Architecture. The following URI formats are supported:

ID
is the metadata object identifier. Some language elements support the 8-
character identifier, and some support the full 17-character identifier, which
references both the repository and the object. Examples are A9000001 and
A52V87R9.A9000001. In general, the ID format is the least efficient.

type/ID
is the metadata type name and metadata object identifier. Some language
elements support the 8-character object identifier, and some support the full 17-
character repository and object identifier. Examples are SASLibrary/A9000001
and SASLibrary/A52V87R9.A9000001. In general, the type/ID format is the most
efficient.

type?@attribute='value'
is the metadata type name, followed by a search string. For metadata language
elements, the search string is in the form of an attribute='value' pair. Examples
are SASLibrary?@libref='mylib' and Transformation?
@PublicType='Report'. The first example returns SASLibrary objects that store
the value “mylib” in the Libref= attribute. The second example returns
Transformation objects that store the value “Report” in the PublicType= attribute,
which corresponds to the SAS Report type definition in the SAS type dictionary.
For more information, see “What Is the SAS Type Dictionary?” on page 8. Some
language elements require the entire value to be enclosed in quotation marks.

See the language elements in this book for important usage details.

14 Chapter 3 / Metadata Object Identifiers and URIs

4
Examples: Using Metadata
Language Elements to Create
Reports

Overview of the Examples . 15

Example: Creating a Report with the METADATA Procedure and
the XML Engine . 16

Example: Creating a Report with the DATA Step . 21

Example: Creating Metadata for a JSON . 27

Overview of the Examples
This section contains three examples. The first two examples, “Example: Creating a
Report with the METADATA Procedure and the XML Engine” on page 16 and
“Example: Creating a Report with the DATA Step” on page 21, show reports that
can be created with metadata language elements. For information about the
concepts involved in using the metadata language elements and examples of other
ways the SAS language elements can be used, see the appropriate SAS language
section.

The third example, “Example: Creating Metadata for a JSON” on page 27, shows
how to download, read, and create metadata to control access to data that is read
with the JSON engine. The JSON engine is a read-only, write-once engine. This
topic describes the JSON engine output and concepts to be aware of when creating
metadata for JSON.

15

Example: Creating a Report with the
METADATA Procedure and the XML
Engine

This example creates a report about all the tables in a user's library, including the
tables' column names, librefs, and engines.

PROC METADATA requests the column names, and so on, from metadata, and
writes the values in an XML file. Then, the XML LIBNAME engine uses an XMLMap
to read the XML file and create SAS data sets. When the information is in SAS data
sets, an administrator can run SAS code like DATA steps and procedures. This
example uses PROC PRINT to create an HTML report.

To be clear, the files that are used in this example are described in the following list.
The XML files are temporary and exist during the session only. However, you can
also create permanent files.

Note: The XMLV2 engine accepts only permanent XML files as input.

n the user's library, which contains an unknown number of tables

n an input XML file, which is created by a DATA step to query the metadata

n an output XML file, which is created by PROC METADATA and contains
information about the user's tables

n an XMLMap, created by a DATA step

n two SAS data sets, created by the XML LIBNAME engine and an XMLMap

n a third SAS data set, created by a DATA step MERGE

n an HTML report, created by ODS (Output Delivery System) statements

The METADATA procedure is documented in this book; see METADATA Procedure
on page 87. The XML LIBNAME engine and XMLMaps are not documented in this
book; see SAS XMLV2 and XML LIBNAME Engines: User’s Guide.

The example begins by connecting to the SAS Metadata Server, updating the
metadata about the library, and creating the input XML file.

/* submit connection information to server */

options metaport=8561
 metaserver="a123.us.company.com"
 metauser="myuserid"
 metapass="mypasswd";

/* Run PROC METALIB to be sure the metadata is
current. */
/* The library must be registered already in the SAS Metadata
Server. */

16 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

/* Use the library name that is defined in the metadata, not the
libref. */

proc metalib;
 omr (library="mylib");
 report;
run;

/* Assign filerefs and libref. */
filename query temp;
filename rawdata temp;
filename map temp;
libname myxml xml xmlfileref=rawdata xmlmap=map;

/* Create temporary query file. */
/* 2309 flag plus template gets table name, column name, */
/* engine, libref, and object IDs. The template specifies */
/* attributes of the nested objects. */

data _null_;
 file query;
 input;
 put _infile_;
 datalines;
<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>PhysicalTable</Type>
 <Objects/>
 <Ns>SAS</Ns>
 <!-- OMI_ALL (1) + OMI_TEMPLATE(4) +
OMI_GET_METADATA(256) + OMI_SUCCINCT(2048) flags -->
 <Flags>2309</Flags>
 <Options>
 <Templates>
 <PhysicalTable/>
 <Column SASColumnName=""/>
 <SASLibrary Engine="" Libref=""/>
 </Templates>
 </Options>
</GetMetadataObjects>
;;
run;
proc metadata
 in=query
 out=rawdata;
run;

The next section of example code creates a temporary text file that contains the
XMLMap. The map enables the XML LIBNAME engine to process the XML returned
by the metadata query as two data sets, ColumnDetails and LibrefDetails.

In the ColumnDetails data set, the observation boundary (TABLE-PATH) is at
Column. Putting the boundary at Column is necessary because the PhysicalTable
elements have multiple Column elements. If you need to read multiple elements,
you must set the observation boundary at that element, so the XML LIBNAME
engine can create multiple observations for the element.

Example: Creating a Report with the METADATA Procedure and the XML Engine 17

Because the observation boundary is set at Column, each observation stops at
Column, and any elements that follow Column are not properly read. Therefore,
another data set is required. The LibrefDetails data set contains the SASLibrary
elements. Later in the code, the ColumnDetails and LibrefDetails data sets are
merged into a final data set.

The XMLMap is created in the following code to illustrate the process. This code
creates a version 1.2 XMLMap. You can use a graphical user interface, such as
SAS XML Mapper, to generate a current map. For more information, see SAS
XMLV2 and XML LIBNAME Engines: User’s Guide.

data _null_;
 file map;
 input;
 put _infile_;
 datalines;

<?xml version="1.0" ?>
 <SXLEMAP version="1.2">

 <TABLE name="ColumnDetails">
 <TABLE-PATH syntax="xpath">
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column
 </TABLE-PATH>

 <COLUMN name="SASTableName" retain="yes">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/@SASTableName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>14</LENGTH>
 </COLUMN>

 <COLUMN name="Columns">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column/
@SASColumnName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>12</LENGTH>
 </COLUMN>

 <COLUMN name="Column IDs">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/Columns/Column/@Id
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>17</LENGTH>
 </COLUMN>

 </TABLE>

 <TABLE name="LibrefDetails">

18 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

 <TABLE-PATH syntax="xpath">
 /GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary
 </TABLE-PATH>

 <COLUMN name="SASTableName">
 <PATH>
 /GetMetadataObjects/Objects/PhysicalTable/@SASTableName
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>14</LENGTH>
 </COLUMN>

 <COLUMN name="Libref">
 <PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/
@Libref
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>10</LENGTH>
 </COLUMN>

 <COLUMN name="Engine">
 <PATH>

/GetMetadataObjects/Objects/PhysicalTable/TablePackage/SASLibrary/
@Engine
 </PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>10</LENGTH>
 </COLUMN>

 </TABLE>

</SXLEMAP>
;

/* Optional: print XML mapped data sets before the merge. */

title 'Tables and their Columns';
proc print data=myxml.ColumnDetails;
run;

title 'Tables and their Librefs';
proc print data=myxml.LibrefDetails;
run;

/* Create data sets that contain the metadata */

libname mybase base 'c:\myxml\data';

data mybase.ColumnDetails;

Example: Creating a Report with the METADATA Procedure and the XML Engine 19

 set myxml.ColumnDetails;
run;

data mybase.LibrefDetails;
 set myxml.LibrefDetails;
run;

/* Sort by table name. */

proc sort data=mybase.ColumnDetails out=mybase.ColumnDetails;
 by SASTableName;
run;

proc sort data=mybase.LibrefDetails out=mybase.LibrefDetails;
 by SASTableName;
run;

/* Merge into one data set. */

data mybase.final;
 merge mybase.ColumnDetails mybase.LibrefDetails ;
 by SASTableName;
run;

After ColumnDetails and LibrefDetails are merged into the final data set, an ODS
step creates the HTML report:

title 'Table Metadata';
filename reports 'c:\myxml\reports\';

proc print data=mybase.final;
run;

20 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

Here is a portion of the report:

For examples of other types of information that you can obtain with PROC
METADATA, see Chapter 11, “METADATA Procedure,” on page 87.

Example: Creating a Report with the
DATA Step

This example creates an HTML report about servers that are defined in the
repository.

Example: Creating a Report with the DATA Step 21

%macro server_report (metaserver=abc.company.com,
 metaport=8561,
 usr=myuserid,
 pw=mypasswd,
 includeopt=N,
 htmlloc=c:\reports\myservers.htm
);

options metaserver="&metaserver"
 metarepository="Foundation"
 metaport=&metaport
 metauser="&usr"
 metapass="&pw";

data _null_;
 length ver $20;
 ver=left(put(metadata_version(),8.));
 put ver=;
 call symput('METAVER',ver);
run;

/* could not connect to metadata server */
%if %eval(&metaver<=0) %then
 %do;
 %put ERROR: could not connect to &metaserver &metaport. ;
 %put ERROR: check connection details, userid and password.;
 %return;
 %end;

 data
 server_connections(keep=id name vendor productname softwareversion
 hostname port con_name app_pro com_pro authdomain)
 server_options (keep=name server_opts)
 ;
 length mac_uri dom_uri con_uri urivar uri $500
 id $17 name vendor productname $50 softwareversion $10 port $4
 authdomain authdesc hostname con_name $40
 app_pro com_pro propname $20 pvalue pdesc $200 server_opts $500
 assn attr value $200;
 nobj=1;
 n=1;

 nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains '.'",n,uri);
 do i=1 to nobj;
 nobj=metadata_getnobj("omsobj:ServerComponent?@Id contains
'.'",i,uri);
 put name=;
 put '-----------------------------------';

 rc=metadata_getattr(uri,"Name",Name);
 rc=metadata_getattr(uri,"id",id);
 rc=metadata_getattr(uri,"vendor",vendor);
 rc=metadata_getattr(uri,"productname",productname);
 rc=metadata_getattr(uri,"softwareversion",softwareversion);

22 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

 hostname=' ';

 nummac=metadata_getnasn(uri,
 "AssociatedMachine",
 1,
 mac_uri);
 if nummac then

 rc=metadata_getattr(mac_uri,"name",hostname);

 numcon=metadata_getnasn(uri,
 "SourceConnections",
 1,
 con_uri);

 port=' ';
 con_name=' ';
 app_pro=' ';
 com_pro=' ';

 if numcon>0 then

 do k=1 to numcon;
 numcon=metadata_getnasn(uri,
 "SourceConnections",
 k,
 con_uri);
 /* Walk through all the notes on this machine object. */
 rc=metadata_getattr(con_uri,"port",port);
 rc=metadata_getattr(con_uri,"hostname",hostname);
 rc=metadata_getattr(con_uri,"name",con_name);
 rc=metadata_getattr(con_uri,"applicationprotocol",app_pro);

rc=metadata_getattr(con_uri,"communicationprotocol",com_pro);

 numdom=metadata_getnasn(con_uri,
 "Domain",
 1,
 dom_uri);
 put numdom=;
 if numdom >=1 then
 do;
 rc=metadata_getattr(dom_uri,"name",authdomain);
 rc=metadata_getattr(dom_uri,"desc",authdesc);
 end;
 else
 authdomain='none';

 put authdomain=;
 output server_connections;
 end;

 else
 do;

Example: Creating a Report with the DATA Step 23

 put 'Server with no connections=' name;
 if hostname ne ' ' then
 output server_connections;
 end;

 server_opts='none';
 numprop=metadata_getnasn(uri,
 "Properties",
 1,
 con_uri);
 do x=1 to numprop;
 numcon=metadata_getnasn(uri,
 "Properties",
 x,
 con_uri);
 /* Walk through all the notes on this machine object. */
 rc=metadata_getattr(con_uri,"propertyname",propname);
 rc=metadata_getattr(con_uri,"name",pdesc);
 rc=metadata_getattr(con_uri,"defaultvalue",pvalue);
 server_opts=cat(trim(pdesc),' : ',trim(pvalue));

 output server_options;

 end;

 end;

 run;

 proc sort data=server_connections;
 by name;
 run;

 proc sort data=server_options;
 by name;
 run;

 proc transpose data=server_options out=sopts prefix=opt;
 by name ;
 var server_opts;
 run;

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 data server_report;
 length server_opts $70.;
 merge server_connections server_options;
 by name;
 run;
 %end; /* include server options on the report */

 %else
 %do;
 data server_report;
 length server_opts $1.;
 set server_connections;

24 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

 run;
 %end;

 ods listing close;
 ods html body="&htmlloc";
 title "Report for Metadata Server &metaserver:&metaport,
&sysdate9";
 footnote ;

 proc report data=server_report
 nowindows headline headskip split='*' nocenter;
 column name vendor productname softwareversion hostname port
 con_name app_pro com_pro authdomain
 %if &includeopt=Y %then
 %do; /* include server options on the report */
 server_opts
 %end; /* include server options on the report */
 ;
 define name / group flow missing "Server*Name";
 define vendor / group flow missing "Vendor";
 define productname / group flow missing "Product";
 define softwareversion / group missing "Version";
 define port / group missing "Port";
 define hostname / group missing "Host Name";
 define con_name / group missing "Connection*Name";
 define authdomain / group missing "Authentication*Domain";
 define app_pro / group missing "App*Protocol";
 define com_pro / group missing "Com*Protocol";

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 define server_opts / group missing "Server Options";
 %end; /* include server options on the report */

 break after name / style=[BACKGROUND=CCC];

 %if &includeopt=Y %then
 %do; /* include server options on the report */
 compute after name ;
 line ' ';
 line server_opts $70.;
 line ' ';
 endcomp;
 %end; /* include server options on the report */

 run;

 ods html close;
 ods listing;

 /* connected to metadata server */

%mend;

%server_report (metaserver=abc.company.com,

Example: Creating a Report with the DATA Step 25

 metaport=8561,
 usr=sasadm@saspw,
 pw=xxxxxx,
 includeopt=N,
 htmlloc=c:\reports\myservers.htm
);

26 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

Here is the HTML report:

For more examples of reports that you might want to create with SAS metadata
DATA step functions, see “Examples: DATA Step Functions for Reading Metadata”
on page 198.

Example: Creating Metadata for a JSON
Many web sites offer REST APIs that enable you to download data as JSON. You
can download JSON from the web with SAS by using PROC HTTP. You can read
JSON with SAS by using the JSON LIBNAME engine. Beginning with SAS 9.4M7,
you can create metadata for a JSON by using PROC METALIB. You can also use
metadata to manipulate a JSON with the metadata LIBNAME engine.

Example: Creating Metadata for a JSON 27

This example uses a JSON obtained from openweathermap.org to illustrate the
process of downloading, reading, and creating metadata for a JSON. Then it shows
a simple way that you might you use the metadata LIBNAME engine to manipulate
the data described by the metadata. The example downloads the One Call API that
is available from the website. This API provides daily weather information based on
geographical coordinates. This example uses the coordinates for Austin, Texas. The
API is executed with settings that return temperatures as Fahrenheit and wind
speeds in miles per hour. For more information about this API, see https://
openweathermap.org/.

Before using PROC HTTP, create a download directory and submit a FILENAME
statement to assign a fileref to the location. In the FILENAME statement, specify a
name for the downloaded JSON file. The FILENAME statement in this example
assigns the fileref Response to a file named Weather.json that is created in the C:/
weather directory. PROC HTTP specifies the URL for the API request in the URL=
argument, specifies the GET method, and writes output to fileref Response.

filename response 'C:/weather/weather.json';

proc http url="https://api.openweathermap.org/data/2.5/onecall?
lat=30.266666
&lon=-97.733330&exclude=minutely&units=imperial
 &appid=a8c4f692a4f2b7a9842f7d03e54f3821"
 method= "GET"
 out=response;
run;

The following LIBNAME statement enables you to read the JSON with the JSON
engine:

libname weather JSON fileref="response";

The code assigns the libref Weather to the JSON, specifies the JSON engine, and
specifies fileref Response to supply input to the engine. When you specify no other
parameters in a JSON engine LIBNAME statement, the engine scans the target
directory for a map file. If a map file is found, the engine uses it to read the JSON. If
a map cannot be found, the automapper creates one.

To view the tables in the JSON library, use PROC DATASETS:

proc datasets lib=weather;
run;
quit;

Here is the output from the PROC DATASETS request:

28 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

https://openweathermap.org/
https://openweathermap.org/

Figure 4.1 Data Sets in JSON Library Weather

Weather.json contains nine tables that describe the ordinals in the JSON and an
ALLDATA table, which consolidates information about the ordinals in one data set.
The ALLDATA data set also includes properties that you can use to manipulate the
data. This document does not illustrate the use of those properties. For information
about the properties, see the JSON engine documentation in SAS Global
Statements: Reference.

For this example, we use JSON tables Daily and Daily_Temp. To view the properties
of the tables, use PROC CONTENTS.

proc contents data=weather.daily;
run;

proc contents data=weather.daily_temp;
run;

Here are the properties of table Weather.Daily.

Example: Creating Metadata for a JSON 29

Here are the properties of table Weather.Daily_Temp:

30 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

To view the observations in the daily data sets, use PROC PRINT.

proc print data=weather.daily;
 run;

proc print data=weather.daily_temp;
 run;

Here is the PROC PRINT output for table Weather.Daily.

Figure 4.2 PROC PRINT Output for Table Weather.Daily

Example: Creating Metadata for a JSON 31

Here is the PROC PRINT output for table Weather.Daily_Temp.

Before you can create metadata, you must create a library definition for the JSON
file in the SAS Metadata Repository. You can create a library definition in the
metadata repository by using SAS Management Console or SAS Data Integration
Studio. For instructions to create a library definition, see “Establishing Connectivity
to a JSON File” in SAS Intelligence Platform: Data Administration Guide.

After you have defined the library in the metadata repository, you can create table
metadata. To create table metadata. you can use the Register Tables feature that is
available in the products. Or, you can use the SAS METALIB procedure. This
example uses PROC METALIB. A library definition is represented in a SAS
Metadata Repository by a SASLibrary object. The METALIB procedure takes the
name or the metadata identifier of a SASLibrary object as input. In this example, the
SASLibrary object is named Weather. Then, it creates table objects, as specified, for
the specified SASLibrary object.

The following PROC METALIB code creates metadata objects for tables
Weather.Daily and Weather.Daily_Temp in the SAS Metadata Repository:

proc metalib;
 omr=(library=weather server="computer.company.com" port="8561"
user="yourid"
pw="urpassword");
 select ("daily" "daily_temp");
 folder="/User Folders/yourid/My Folder/Weather";
report;
run;

By default, PROC METALIB creates metadata in the location stored in the library
definition. This example specifies the FOLDER statement to store the metadata in a
personal folder instead.

The procedure prints output to the log, by default. The REPORT statement prints
output to Results. Here is the output of the REPORT statement:

32 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

The procedure created table objects for the tables specified in the SELECT
statement only.

After creating the table objects in the repository, examine the properties of the
objects in SAS Management Console or SAS Data Integration Studio. Only users
who have a metadata identify defined on the SAS Metadata Server can read the
table objects. You can limit the number further by defining permissions on the
objects’ Authorization tab.

The following is an example of how you manipulate metadata objects in an
application with the metadata LIBNAME engine.

libname mle meta library="weather";

data weather;
 merge mle.daily mle.daily_temp;
 by ORDINAL_daily;
run;

The LIBNAME statement specifies the metadata LIBNAME engine (META), the
name of the target SASLibrary object (Weather), and associates a libref (MLE) with
the connection. The libref MLE is used to identify the tables in the DATA step.

This particular DATA step creates a temporary SAS data set also named Weather
by merging the Daily and Daily_Temp tables. The tables are merged using the
variable ORDINAL_Daily. The JSON engine includes at least one shared ordinal in
every output table to enable you to merge the tables in the JSON.

The JSON engine is a read-only, read-once engine. The JSON tables cease to exist
at the end of the SAS session. They are re-created the next time the library is
assigned. Meanwhile, the library and table metadata persist. The SASLibrary object
reassigns the library using the map that was defined.. If you choose to create a new
or custom map file, be sure to create a new library definition and table objects in the
SAS Metadata Repository.

Example: Creating Metadata for a JSON 33

34 Chapter 4 / Examples: Using Metadata Language Elements to Create Reports

PART 2

System Options

Chapter 5
Introduction to System Options for Metadata . 37

Chapter 6
System Options for Metadata . 43

35

36

5
Introduction to System Options
for Metadata

Overview of System Options for Metadata . 37

Connection Options . 38
Introduction to Connection Options . 38
Specifying Connection Properties Directly . 39
Specifying a Stored Connection Profile . 40

Encryption Options . 42

Resource Option . 42

Overview of System Options for
Metadata

SAS provides a family of system options to define the default SAS Metadata Server.
The following table shows the system options by category.

Table 5.1 System Options by Category

Category System Options

Connection METACONNECT=

METAPASS=

METAPORT=

METAPROFILE

METAPROTOCOL=

METAREPOSITORY=

37

Category System Options

METASERVER=

METASPN=

METAUSER=

Encryption METAENCRYPTALG

METAENCRYPTLEVEL

Resource METAAUTORESOURCES

To determine what system option settings are active in your SAS session, you can
issue the OPTIONS command on the command line. Or submit the following
procedure statement:

proc options group=meta; run;

To return information about the options’ value and scope, including how they were
set, set the value option:

proc options group=meta value; run;

Usually, these system options are set in a configuration file or at invocation. Some of
the options can be changed at any time; see the options documentation. The
metadata system options affect every server that uses an Integrated Object Model
(IOM) connection to the metadata server. IOM servers include the SAS Workspace
Server, SAS Pooled Workspace Server, SAS Stored Process Server, and SAS
OLAP Server as well as any Base SAS session that connects to the metadata
server.

For general information about SAS system options, see the SAS Language
Reference: Concepts. For information about configuration files, see the SAS
Companion for your operating environment. For information about administration,
see SAS Intelligence Platform: System Administration Guide.

Connection Options

Introduction to Connection Options
The connection properties are required to establish a connection to the metadata
server. You can establish a connection in the following ways:

n Set the connection properties directly with the METASERVER=, METAPORT=,
METAUSER=, METAPASS=, and METAREPOSITORY= system options, or the
METASERVER=, METAPORT=, and METASPN= system options; see
“Specifying Connection Properties Directly” on page 39.

n Specify a stored metadata server connection profile with the METAPROFILE and
METACONNECT= options. This is the recommended way to connect to the

38 Chapter 5 / Introduction to System Options for Metadata

metadata server beginning in SAS 9.4. See “Specifying a Stored Connection
Profile” on page 40.

n Specify connection properties when you issue a metadata procedure; see
“Overview of Procedures for Metadata” on page 83.

n Specify connection properties when you issue the metadata LIBNAME
statement; see “LIBNAME Statement for the Metadata Engine ” on page 69.

n When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not
specified. Prompting also occurs when METAUSER= or METAPASS= are not
specified, and a trusted peer or Integrated Windows authentication (IWA)
connection is rejected. For information about trusted peer and IWA connections,
see SAS Intelligence Platform: Security Administration Guide.

If the connection fails, check the connection properties to be sure you have
specified or omitted quotation marks exactly as documented.

Specifying Connection Properties Directly

Connection Options
The METAPASS=, METAPORT=, METAPROTOCOL=, METAREPOSITORY=,
METASERVER=, METASPN=, and METAUSER= system options each specify a
connection property. Typically, these values are set in a configuration file.
METAPROTOCOL= is optional as there is currently only one supported value, which
is the default.

Example: Configuration File
To set the default metadata server to use the password sasuser1, port 8561,
repository Foundation, metadata server a123.us.company.com, and user ID
myuserid, you would add the following lines to the configuration file:

-METAPASS "sasuser1"
-METAPORT 8561
-METAREPOSITORY "Foundation"
-METASERVER "a123.us.company.com"
-METAUSER "myuserid"

Example: OPTIONS Statement
The following OPTIONS statement, which can be added to an autoexec file or
directly to a SAS program, has the same effect as the configuration file example:

options metapass="sasuser1"
 metaport=8561

Connection Options 39

 metarepository="Foundation"
 metaserver="a123.us.company.com"
 metauser="myuserid";

Specifying a Stored Connection Profile

Connection Options
Instead of specifying individual connection options for the metadata server, you can
use the METAPROFILE option. The METAPROFILE option invokes a connection
profile that is stored in an XML document. The stored connection profile contains
metadata server connection properties, such as the name of the host computer on
which the metadata server is invoked and the TCP port. A profile can also contain
the user ID and password of the requesting user and the default metadata
repository, although this information is not required. This information can be
supplied later with the METAUSER=, METAPASS=, and METAREPOSITORY=
system options.

METAPROFILE is configured before SAS is started or specified at SAS invocation.
SAS recommends use of a profile along with the direct connection options in
clustered SAS Metadata Server configurations.

Reasons to use METAPROFILE include:

n Beginning in SAS version 9.4, configuration processes create a default server
connection profile that can be used in METAPROFILE. This default server
connection profile contains the metadata server host name and port number of
the SAS Metadata Server or metadata server nodes at the time of initial
configuration.

n When the default server connection profile is active, the SAS session is aware of
the host and port values of all of the server nodes in the cluster, and uses the
information to assist in server connection. The connection logic first looks at any
METASERVER= and METAPORT= values that are specified and tries to
connect. If the connection fails, it consults the profile. If the profile contains a
cluster definition and that definition includes the node specified in
METASERVER= and METAPORT=, then the SAS session will try the other
nodes in the cluster. The profile provides fallback information in case of a cluster
node failure. Use of the METASERVER= and METAPORT= options without
METAPROFILE will not handle cluster node failures.

n Use of the default server connection profile does not prevent users from also
specifying direct connection options. The direct server connection options take
precedence over the properties in the stored connection profile. That is, if you
specify METAUSER= and METAPASS= options in the SAS session and the
profile contains credentials, the credentials in the profile are ignored. If you
specify a different metadata server in the METASERVER= and METAPORT=
options, the server(s) in the profile are ignored. SAS will not redirect connections
for servers that are not part of the cluster definition.

By default, the SAS system uses the first connection profile in the XML document
specified in METAPROFILE. Most XML documents contain one connection profile.
The METACONNECT= system option enables you to specify a connection profile in

40 Chapter 5 / Introduction to System Options for Metadata

XML documents that contain more than one connection profile. Setting
METACONNECT=NONE disables METAPROFILE processing. You might want to
disable METAPROFILE processing to prevent re-routing of administrative requests
that must be executed on a specific server node. For more information, see
“METACONNECT= System Option” on page 45.

In most cases, there is no need to override the default server connection profile.

Default Server Connection Profile
The default server connection profile is a shared XML document named
metadataConfig.xml that is created in the top-level configuration directory of every
computer that hosts a SAS Metadata Server and every configuration directory that
defines a SAS server. This XML document contains a single connection profile that
lists the host and port address(es) of the metadata server or metadata server nodes
at the time of configuration.

The default server connection profile does not contain user ID and password
information or a default metadata repository. If needed, you can supply these in a
configuration file, at SAS invocation, or as system options, with the METAUSER=,
METAPASS=, and METAREPOSITORY= options.

Example: Configuration File
To configure access to the default server connection profile, you would add the
following line to the configuration file:

-METAPROFILE "C:\<sas-config>\Lev1\metadataConfig.xml"

Example: SAS Invocation
Here is an example of how the default server connection profile could be specified
at SAS invocation:

<sas-cmd> -metaprofile 'C:\<sas-config>\Lev1\metadataConfig.xml'
-metauser 'myuserid' -metapass 'sasuser1'

User-Defined Connection Profiles
The METAPROFILE option supports the use of XML documents that contain user-
defined connection profiles. A user-defined connection profile is a connection profile
that is created with the Metadata Server Connections dialog box. This dialog box
enables you to save (export) one or more user-defined connection profiles to a
permanent XML document. This dialog box is opened by executing the SAS
windowing environment command METACON. For more information about the
METACON command, see the Help in the SAS windowing environment.

Connection Options 41

Note: The Metadata Server Connections dialog box currently does not support
editing user-defined connection profiles that contain a cluster definition.

User-defined connection profiles should not be created in the metadataConfig.xml
file.

Example: Configuration File
Here is a configuration file example that invokes a user-defined connection profile
named Mike's profile:

-METAPROFILE "!SASROOT\userprofiles.xml"
-METACONNECT "Mike's profile"

Encryption Options
The METAENCRYPTALG and METAENCRYPTLEVEL options are used to encrypt
communication with the metadata server. You do not have to license SAS/SECURE
software if you specify the SAS proprietary algorithm. For more information, see
“METAENCRYPTALG System Option” on page 46 and “METAENCRYPTLEVEL
System Option” on page 48.

Resource Option
The METAAUTORESOURCES option identifies resources to be assigned at SAS
start-up. The resources are defined in SAS metadata. For example, in SAS
Management Console, you can define a list of librefs (SAS library references) that
are associated with the LogicalServer, ServerComponent, or ServerContext object.
METAAUTORESOURCES points to the object and assigns the associated libraries
at start-up.

For more information, see “METAAUTORESOURCES System Option” on page 43.

42 Chapter 5 / Introduction to System Options for Metadata

6
System Options for Metadata

Dictionary . 43
METAAUTORESOURCES System Option . 43
METACONNECT= System Option . 45
METAENCRYPTALG System Option . 46
METAENCRYPTLEVEL System Option . 48
METAPASS= System Option . 49
METAPORT= System Option . 50
METAPROFILE System Option . 51
METAPROTOCOL= System Option . 52
METAREPOSITORY= System Option . 53
METASERVER= System Option . 54
METASPN= System Option . 55
METAUSER= System Option . 57

Dictionary

METAAUTORESOURCES System Option
Identifies the metadata resources that are assigned when a SAS server is started.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

43

Syntax
METAAUTORESOURCES server-object

Syntax Description
server-object

is the name or URI of a LogicalServer, ServerComponent, or ServerContext
metadata object in a repository on the SAS Metadata Server. The maximum
length is 32,000 characters. If you specify either single or double quotation
marks, they are not saved as part of the value.

METAAUTORESOURCES accepts the following name and URI formats:

name
specifies the metadata name of the object. An example is the following:

 -metaautoresources 'SASApp'

This format is supported for a ServerContext object only. For LogicalServer
and ServerComponent objects, use one of the following URI formats:

OMSOBJ:identifier.identifier
specifies the metadata identifier of the object. An example is the following:

-metaautoresources "omsobj:A5HMMB7P.AV000005"

OMSOBJ:type/ID
specifies the metadata type name and metadata identifier of the object. An
example is the following:

-metaautoresources "omsobj:ServerComponent/A5HMMB7P.AV000005"

OMSOBJ:type?@attribute='value'
specifies the metadata type name, followed by a search string, which is in the
form of an attribute='value' pair. An example is the following:

-metaautoresources "OMSOBJ:ServerComponent?@Name='My Server'"

Details
METAAUTORESOURCES identifies metadata resources that are assigned when
you start the SAS Metadata Server. In this release, the option is used to assign
libraries. In future releases, additional resources might be supported.

In SAS Management Console, when you define a library, you can assign a server.
METAAUTORESOURCES specifies the server object and assigns the associated
libraries at start-up.

The SAS Management Console Data Library Manager allows administrators to
specify the pre-assignment source in the library definition. In SAS 9.3, the
PreAssignmentType property affected METAAUTORESOURCES as follows:

n Libraries marked as pre-assigned by external configuration (for example, the
AUTOEXEC file) were ignored by METAAUTORESOURCES.

n Libraries marked as pre-assigned by the native library engine were assigned
using the native library engine defined for that library in metadata.

44 Chapter 6 / System Options for Metadata

n Libraries marked as pre-assigned by the metadata LIBNAME engine were
assigned by the metadata LIBNAME engine. The metadata LIBNAME engine is
a proxy library engine that enforces access controls placed on the library and its
tables and columns as defined in metadata.

In SAS 9.4, the METAAUTORESOURCES system option is checked first at server
start-up. Any libraries that are marked in metadata as pre-assigned by the native
library engine or by the metadata LIBNAME engine are assigned by the SAS server.
Libraries specified in the AUTOEXEC file are assigned after the
METAAUTORESOURCES assignments have completed.

The METAAUTORESOURCES option is set automatically for any SAS Workspace
Server or SAS Stored Process Server started by the object spawner. The option can
be set manually for any other batch, interactive, or server SAS session using a
command-line or configuration file option. For information about pre-assigning SAS
libraries, see the SAS Intelligence Platform: Data Administration Guide.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

METACONNECT= System Option
Identifies one named profile from the metadata connection profiles for connecting to the SAS Metadata
Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Default: Blank-value

Requirement: Valid only when METAPROFILE is set

Syntax
METACONNECT= "blank-value" | named-connection | NONE

Syntax Description
“blank-value”

specifies the first connection profile in the XML document specified in
METAPROFILE. This is the default value when the METAPROFILE option is
specified and METACONNECT= is not used.

named-connection
is the name of a connection profile in the XML document specified in
METAPROFILE. The maximum length is 256 characters. Quotation marks are
optional.

METACONNECT= System Option 45

NONE
is a special option that disables METAPROFILE processing.

Details
This system option is one of a category of system options that define a connection
to the SAS Metadata Server.

METACONNECT= specifies the name of a connection profile in the XML document
specified in METAPROFILE. Most XML documents contain only one named
connection profile, so METACONNECT= is not required.

METACONNECT=NONE is provided to turn off the re-routing of connections that
occurs when the default server connection profile is active in clustered SAS
Metadata Server configurations. This option ensures that administrative requests,
like stopping one server from the cluster, fail if they cannot be executed on the
intended server node. For an example of how METACONNECT=NONE is specified,
see “Example 8: Stop One Server in a Metadata Server Cluster” on page 185.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
n “Example: Configuration File” on page 41

System Options

n “METAPROFILE System Option” on page 51

METAENCRYPTALG System Option
Specifies the type of encryption to use when communicating with the SAS Metadata Server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Alias: METAENCRYPTALGORITHM

Default: SASPROPRIETARY

46 Chapter 6 / System Options for Metadata

Syntax
METAENCRYPTALG algorithm | NONE

Syntax Description
algorithm

specifies the algorithm that SAS clients use to communicate with the SAS
Metadata Server. The following algorithms can be used:

n RC2

n RC4

n DES

n TripleDES

n SAS Proprietary (alias SAS)

n AES

NONE
Does not specify an encryption algorithm.

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTALG and METAENCRYPTLEVEL system options to define the type
and level of encryption that SAS clients use when they communicate with the
metadata server.

If you specify an encryption algorithm other than SAS Proprietary (alias SAS), you
must have SAS/SECURE software. SAS/SECURE is a product in the SAS System.
In SAS 9.4, SAS/SECURE is included with Base SAS software. In prior releases of
SAS, SAS/SECURE was an add-on product that was licensed separately. This
change makes strong encryption available in all deployments (except where
prohibited by import restrictions).

For more information about the encryption algorithms, see the Encryption in SAS.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
System Options

n “METAENCRYPTLEVEL System Option” on page 48

METAENCRYPTALG System Option 47

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

METAENCRYPTLEVEL System Option
Specifies the level of encryption when communicating with the SAS Metadata Server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Default: CREDENTIALS

Syntax
METAENCRYPTLEVEL EVERYTHING | CREDENTIALS

Syntax Description
EVERYTHING

specifies to encrypt all communication with the metadata server.

CREDENTIALS
specifies to encrypt only login credentials. This is the default.

Details
The SAS IOM supports encrypted communication with the metadata server. Use the
METAENCRYPTLEVEL and METAENCRYPTALG system options to define the level
and type of encryption that SAS clients use when they communicate with the
metadata server.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
System Options

n “METAENCRYPTALG System Option” on page 46

48 Chapter 6 / System Options for Metadata

METAPASS= System Option
Specifies the password for the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Note: The OPTIONS procedure displays passwords in the SAS log as eight Xs, regardless of
the actual password length.

Syntax
METAPASS= "password"

Syntax Description
"password"

is the password for the user ID on the metadata server. The maximum length is
512 characters. The quotation marks are optional.

Note We recommend that you encode the password before specifying it in
METAPASS=. To encode the password, use the PWENCODE procedure.
Specify SAS005 encryption to disguise the text string. The metadata
server decodes the encoded password. For more information, see the
PWENCODE procedure in Base SAS Procedures Guide.

Details
This system option is one of a category of system options that define a connection
to the metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

METAPASS= System Option 49

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

See Also
n “Example: Configuration File” on page 39

System Options

n “METAPORT= System Option” on page 50

n “METASERVER= System Option” on page 54

n “METAUSER= System Option” on page 57

METAPORT= System Option
Specifies the TCP port for the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Range: 1–65535

Syntax
METAPORT=number

Syntax Description
number

is the TCP port that the metadata server is listening to for connections. The
default port number that is configured for the metadata server at installation is
8561. Installers are not required to use this value, so you must specify
METAPORT= to connect to the metadata server. An example is metaport=8561.
Do not quote this value.

Details
This system option is one of a category of system options that define a connection
to the metadata server.

When you are running interactively, you can be prompted for connection values.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

50 Chapter 6 / System Options for Metadata

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
n “Example: Configuration File” on page 39

System Options

n “METAPASS= System Option” on page 49

n “METASERVER= System Option” on page 54

n “METASPN= System Option” on page 55

n “METAUSER= System Option” on page 57

METAPROFILE System Option
Identifies the XML document that contains connection profiles for the SAS Metadata Server.

Valid in: configuration file, SAS invocation

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Syntax
METAPROFILE "XML-document"

Syntax Description
"XML-document"

is the pathname of the XML document that contains connection profiles for
connecting to the SAS Metadata Server. The pathname is the physical location
that is recognized by the operating environment. Quotation marks are required.

Beginning in SAS 9.4, all configurations that include a SAS Metadata Server
define a shared file named metadataConfig.xml file in the top-level configuration
directory and in every configuration directory that contains a SAS server. This
metadataConfig.xml file contains a single connection profile that lists the host
and port addresses of the metadata server or metadata server nodes at the time
of configuration. The connection profile in the metadataConfig.xml file is referred
to as the “default server connection profile”. Use of the metadataConfig.xml file is
recommended for clustered SAS Metadata Server configurations, but it is not
required.

METAPROFILE System Option 51

Details
This system option is one of a category of system options that define a connection
to the SAS Metadata Server. Instead of specifying individual connection options for
the metadata server, you can use the METAPROFILE option.

METAPROFILE must be configured before SAS is started or specified at SAS
invocation. It specifies the pathname of the XML document that contains one or
more connection profiles. A connection profile contains metadata server connection
properties, such as the name of the host computer on which the metadata server is
invoked, the TCP port, and (optionally) the user ID and password of the requesting
user.

The SAS System uses the first connection profile in the specified XML document to
establish the metadata server connection by default. The METACONNECT= system
option might be needed if there is more than one connection profile in the XML
document. METACONNECT=NONE is provided to disable METAPROFILE
processing. For more information, see METACONNECT=.

The default server connection profile in metadataConfig.xml reflects the initial
metadata server configuration. When a metadata server node is added to or
removed from the cluster, an administrator must run the sas-upgrade-metadata-
profile batch utility to update the default server connection profile. For information
about the utility, see SAS Intelligence Platform: System Administration Guide.

The default server connection profile does not contain user ID and password
information. You can provide this information with the METAUSER= and
METAPASS= options.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
n “Example: Configuration File” on page 41

System Options

n “METACONNECT= System Option” on page 45

METAPROTOCOL= System Option
Specifies the network protocol for connecting to the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Default: BRIDGE

52 Chapter 6 / System Options for Metadata

Syntax
METAPROTOCOL=BRIDGE

Syntax Description
BRIDGE

specifies that the connection to the metadata server uses the SAS Bridge
protocol. In this release, it is the only supported value and the default value, so
there is no need to specify this system option.

Details
This system option is one of a category of system options that define a connection
to the metadata server.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
“Example: Configuration File” on page 39

METAREPOSITORY= System Option
Specifies the SAS Metadata Repository to use with the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Default: Foundation

Syntax
METAREPOSITORY= "name"

METAREPOSITORY= System Option 53

Syntax Description
"name"

is the name of the repository to use. The maximum length is 32,000 characters.
The quotation marks are optional.

Details
This system option is one of a category of system options that define a connection
to the metadata server.

You can use the $METAREPOSITORY substitution variable in the input XML with
PROC METADATA. The variable resolves to the metadata identifier of the repository
that is named by this option.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
System Options

n “METAPASS= System Option” on page 49

n “METAPORT= System Option” on page 50

n “METASERVER= System Option” on page 54

n “METAUSER= System Option” on page 57

METASERVER= System Option
Specifies the host name or address of the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Syntax
METASERVER= "address"

54 Chapter 6 / System Options for Metadata

Syntax Description
"address"

is the host name or network IP address of the computer that hosts the metadata
server. An example is metaserver="a123.us.company.com". The value
localhost can be used when connecting to a metadata server on the same
computer. The maximum length is 256 characters. The quotation marks are
optional, unless there are special characters in the address.

Details
This system option is one of a category of system options that define a connection
to the metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

See Also
n “Example: Configuration File” on page 39

System Options

n “METAPASS= System Option” on page 49

n “METAPORT= System Option” on page 50

n “METASPN= System Option” on page 55

n “METAUSER= System Option” on page 57

METASPN= System Option
Specifies the service principal name (SPN) for the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Default: Generated in the form SAS/machine-name

METASPN= System Option 55

Syntax
METASPN=SPN-name

Syntax Description
SPN-name

is the SPN for the principal that runs the metadata server. The maximum length
is 256 characters. The following formats are supported for SPN-name: SAS/
machine-name or SAS/machine-name.company.com. SAS is the name of the
service and represents the service type.

Details
Integrated Windows Authentication (IWA) is enabled for a SAS session by
specifying the SAS option -SSPI in a configuration file or at SAS invocation. When
the SAS session is invoked with the -SSPI option and a user attempts to connect to
the SAS Metadata Server without specifying METAUSER= and METAPASS=, the
SAS System creates a default SPN and makes an IWA connection. For more
information about the default SPN and special requirements for using IWA on UNIX,
see SAS Intelligence Platform: Security Administration Guide. If the IWA connection
fails, the server attempts to make a trusted peer connection.

The METASPN system option is provided for the rare circumstance in which the
default SPN cannot be used by the SAS System. This can occur on Windows
systems when SAS servers are not being run under the local system account. The
local system account can register the default SPN—a domain user account cannot.
For more information about SPNs and SAS servers, see SAS Intelligence Platform:
Security Administration Guide.

METASPN= is used with METASERVER= and METAPORT=. If you specify
METAUSER= and METAPASS=, then the METASPN= value is not used.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

Example: Default Form
Here is an example that shows a METASPN= value in the default form:

-METASERVER "a123.company.com"
-METAPORT 9999
-METASPN "SAS/a123.company.com"

See Also
System Options

56 Chapter 6 / System Options for Metadata

n “METASERVER= System Option” on page 54

n “METAPORT= System Option” on page 50

METAUSER= System Option
Specifies the user ID for connecting to the SAS Metadata Server.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options window

Category: Communications: Metadata

PROC
OPTIONS
GROUP=

META

Syntax
METAUSER= "userid"

Syntax Description
"userid"

is the user ID for connecting to the metadata server. The maximum length is 256
characters. The quotation marks are optional, unless the user ID includes a
special character, such as "sasadm@saspw".

Details
This system option is one of a category of system options that define a connection
to the metadata server.

When you are running interactively, you can be prompted for connection properties.
Prompting occurs when either METASERVER= or METAPORT= are not specified.
Prompting also occurs when METAUSER= or METAPASS= are not specified, and a
trusted peer or IWA connection is rejected. For information about trusted peer and
IWA, see the SAS Intelligence Platform: Security Administration Guide.

In a network environment, METAUSER= must specify a fully qualified user ID in the
form of SERVERNAME\USERID. For information about user definitions, see the
SAS Intelligence Platform: Security Administration Guide.

Operating Environment Information: In a configuration file or at SAS invocation,
the syntax for SAS system options is specific to your operating environment. For
more information, see the SAS documentation for your operating environment.

METAUSER= System Option 57

See Also
n “Example: Configuration File” on page 39

System Options

n “METAPASS= System Option” on page 49

n “METAPORT= System Option” on page 50

n “METASERVER= System Option” on page 54

58 Chapter 6 / System Options for Metadata

PART 3

Metadata LIBNAME Engine

Chapter 7
Introduction to the Metadata LIBNAME Engine . 61

Chapter 8
Reference for the Metadata Engine . 69

Chapter 9
Examples for the Metadata Engine . 77

59

60

7
Introduction to the Metadata
LIBNAME Engine

Overview of the Metadata LIBNAME Engine . 61

Supported Features . 62

Features That Are Not Supported . 63

Advantages of Using the Metadata Engine . 64

The Metadata Engine and Authorization . 64

Permissions That Affect Data Access through the Metadata Engine 65

The Metadata Engine and Extended Attributes . 66

How the Metadata Engine Constructs a LIBNAME Statement . 67

Overview of the Metadata LIBNAME
Engine

The metadata engine is similar to other SAS engines. In a batch file or in the SAS
windowing environment, you can submit a LIBNAME statement that assigns a libref
and the metadata engine. You then use that libref throughout the SAS session
where a libref is valid.

However, unlike other librefs, the metadata engine's libref is not assigned to the
physical location of a SAS library. The metadata engine's libref is assigned to a set
of metadata objects that are registered in the SAS Metadata Server. These
metadata objects must already be defined by an administrator with a product like
SAS Management Console.

The objects contain the specifications that you would normally submit with a
LIBNAME statement. The metadata engine uses the information in the objects to

61

construct a LIBNAME statement that specifies the data source, the engine that
processes the data (referred to as the “underlying engine”), and options.

After you submit the metadata LIBNAME statement, you can reference the
metadata engine's libref in your SAS code. The metadata engine calls the
underlying engine to process the data.

In other words, the metadata LIBNAME statement takes the place of your usual
LIBNAME statement and creates the usual LIBNAME statement from information in
metadata.

The following diagram illustrates this process. In the example, an Oracle data library
is already defined in metadata. You reference the Oracle data library with the
metadata LIBNAME statement, and the metadata engine constructs a LIBNAME
statement that assigns the SAS/ACCESS interface to Oracle as the underlying
engine. Then, when you submit the PRINT procedure, the metadata engine issues a
request to the SAS Metadata Repository for the library member's metadata, and
uses the Oracle engine to run the PROC PRINT.

Figure 7.1 Metadata Engine Process

Supported Features
The metadata engine supports the following features:

n Processes tables and views from SAS and third-party DBMSs (database
management systems) by using an underlying engine. The metadata engine

62 Chapter 7 / Introduction to the Metadata LIBNAME Engine

supports only tables and views, and does not support other SAS files such as
catalogs.

n Applies library options that are set in the metadata by an administrator.

n Supports SQL implicit pass-through.

n PROC DATASETS and PROC CONTENTS process requests using the SAS
Metadata Repository instead of the underlying engine. Therefore, when you use
the DATASETS procedure to list all members in a library, the engine gets a listing
of only members that have metadata populated in the repository. When you
execute the CONTENTS procedure, the table and column attributes that are
returned are from the repository. Any formats, informats, or labels that are stored
in the metadata are applied to the underlying data.

n Enables you to bypass the engine’s metadata-only processing by setting
alternate METAOUT= values in the LIBNAME statement or as a data set option.
When certain METAOUT= values are set, the user is not restricted to tables that
have been defined in the repository. However, there is restricted functionality for
third-party DBMS tables that are not defined in metadata. For more information,
see “METAOUT= Argument” on page 73.

n Enforces authorizations that are set in the metadata by an administrator.

Features That Are Not Supported
n The metadata engine does not create or update metadata. If you use the

METAOUT= argument with a value that enables you to add, delete, or modify the
structure of tables, you must use PROC METALIB or the Register Tables feature
in SAS Management Console to create and update the metadata.

n The metadata engine does not support utility functionality on a third-party DBMS.
For example, the PROC DATASETS RENAME and MODIFY statements are not
supported on the DBMS.

n The metadata engine does not support DBMS threaded reads, even if the
underlying SAS/ACCESS engine has support for this.

n The metadata engine does not support use of the LOCK statement with
concatenated libraries.

n The metadata engine does not support format catalogs. As a result, specifying a
metadata engine libref in the FMTSEARCH= option has no effect. If you are
defining tables that rely on user-defined formats, use a different libref for the
format catalogs than you use for the input table and any output tables. The libref
for the format catalogs should not use the metadata engine. Otherwise, the user-
defined formats will not be available.

n PROC COPY cannot be used to copy DBMS views that are described by
metadata when using the metadata LIBNAME engine in its default mode. PROC
COPY creates a DBMS table as output, regardless of whether the input is a table
or a view. The metadata does not allow duplication because it preserves the
input file’s identification as a view. To copy a DBMS view, set the
METAOUT=DATA option. METAOUT=DATA allows tables to be created in the
library that are not described by metadata.

Features That Are Not Supported 63

Advantages of Using the Metadata
Engine

Using the metadata engine provides the following advantages:

n The metadata engine is a single point of access to many heterogeneous data
sources. If an administrator has registered the metadata with the metadata
server, a user or application can specify the appropriate metadata engine libref,
and omit specifications for the underlying engine. In many cases, the user can
change the data source for their SAS program by simply changing the libref. The
user can ignore the syntax, options, behavior, and tuning that are required by the
underlying engines, because the administrator has registered that information in
the metadata.

n The metadata engine, in conjunction with the metadata server's authorization
facility, enables an administrator to control access to data. The Create, Read,
Write, and Delete permissions are enforced only if the metadata engine is used
to access the data. See “The Metadata Engine and Authorization” on page 64.

n Some data sources do not store column formats, informats, labels, and other
SAS information. This information is stored by the metadata server and is
included with the data that is accessed by the metadata engine.

The Metadata Engine and Authorization
An administrator uses a product like SAS Management Console to set authorization.
This security model is a metadata-based authorization layer that supplements
security from the host environment and other systems. The metadata engine
enforces the authorizations that are set in metadata, but it does not create or update
any authorization. An advantage of this behavior is that an administrator can use the
metadata engine as a means to provide library and table security.

The administrator can use authorization in the following ways for member-level and
column-level security:

n The administrator can associate authorizations with any metadata resource in a
repository. The metadata engine enforces effective permissions (which is a
calculation of the net effect of all applicable metadata layer permission settings)
for libraries and tables.

n The administrator can associate different authorizations with individual libraries
and tables. For example, suppose a library has 20 tables defined in the
repository. The administrator restricts access to five of the tables, because the
five tables contain sensitive information. Only a few users can access all 20
tables. Most users can access only 15 tables.

64 Chapter 7 / Introduction to the Metadata LIBNAME Engine

The metadata engine differs from native engines in the way that it applies column
permissions. You must have Write access to all of the columns specified in a
request to update data with the metadata engine, even if all of the columns in the
request are not being updated. For example, an Update request that includes a
Read-only column in the WHERE clause will fail. Most native engines support the
use of a Read-only column in the WHERE clause.

The metadata authorizations that are enforced by the metadata engine control the
actions that users can perform on data that is accessed with the engine; the engine
does not prevent other SAS programs from accessing the data.

Permissions That Affect Data Access
through the Metadata Engine

The metadata engine enforces the following permissions in the metadata
authorization layer:

Read
specifies whether a user can read the data described by the metadata resource.

Write
specifies whether a user can update the data described by the metadata
resource.

Create
specifies whether a user can add data to the resource described by the
metadata object.

Delete
specifies whether a user can delete data in the resource described by the
metadata object.

The metadata engine enforces the Read, Write, Create, and Delete permissions on
SASLibrary and PhysicalTable objects. The following table summarizes how the
metadata engine enforces these permissions for these objects when a permission is
denied:

Table 7.1 Authorization Behavior of the Metadata Engine

Metadata
Object

Create
Permission
Behavior

Read
Permission
Behavior

Write
Permission
Behavior

Delete
Permission
Behavior

SASLibrary The user
cannot add
tables to the
library. A
message is
issued stating
that the user is
not authorized
to add tables to

Behavior is
not applicable
for this object.

Behavior is
not applicable
for this object.

The user
cannot delete
tables from the
library. A
message is
issued stating
that the user is
not authorized
to delete tables

Permissions That Affect Data Access through the Metadata Engine 65

Metadata
Object

Create
Permission
Behavior

Read
Permission
Behavior

Write
Permission
Behavior

Delete
Permission
Behavior

the library.
Processing
terminates.

from the library.
Processing
terminates.

PhysicalTable The user
cannot add data
to the table. A
message is
issued stating
that the user is
not authorized
to add data to
the table.
Processing
terminates.

The user
cannot read
data in the
table. A
message is
issued stating
that the user
is not
authorized to
read data in
the table.
Processing
terminates.

The user
cannot update
data in the
table. A
message is
issued stating
that the user
is not
authorized to
update data in
the table.
Processing
terminates.

The user
cannot delete
data from the
table. A
message is
issued stating
that the user is
not authorized
to delete data
from the table.
Processing
terminates.

Security on a Column object is not enforced in the metadata engine. Therefore, the
metadata engine cannot prevent a user from viewing the contents of a specific
column in a table. To hide a column in a table from a user, the user’s ReadMetadata
permission on the column must be Deny. The ReadMetadata permission is enforced
by the SAS Metadata Server.

Note: This enforcement supplements protections that are provided by the metadata
server and other authorization layers. For more information, see SAS Intelligence
Platform: Security Administration Guide.

The Metadata Engine and Extended
Attributes

The metadata engine recognizes extended attributes that are defined in SAS data
sets and libraries only when the METAOUT=DATA option is specified. When
METAOUT=DATA is specified, the metadata engine will create, read, update, and
delete extended attributes in a SAS data set. The metadata engine does not create
metadata about extended attributes in the SAS Metadata Repository. However,
security implemented through the metadata engine for folders and tables applies to
the extended attributes.

66 Chapter 7 / Introduction to the Metadata LIBNAME Engine

How the Metadata Engine Constructs a
LIBNAME Statement

As noted in “Overview of the Metadata LIBNAME Engine” on page 61, the metadata
engine uses information from metadata to construct a LIBNAME statement for a
SAS library.

When you submit a metadata LIBNAME statement, you assign a libref to a
SASLibrary metadata object. The SASLibrary object is the primary object from
which all other metadata is obtained. The metadata defines attributes of the data,
such as table and column names. The metadata identifies the underlying engine
that processes the data, and how the engine should be assigned.

How the Metadata Engine Constructs a LIBNAME Statement 67

68 Chapter 7 / Introduction to the Metadata LIBNAME Engine

8
Reference for the Metadata
Engine

LIBNAME Statement for the Metadata Engine . 69
Overview: Metadata LIBNAME Statement . 69
Syntax: Metadata LIBNAME Statement . 70

SAS Data Set Options for the Metadata Engine . 74
METAOUT= Data Set Option . 74

LIBNAME Statement for the Metadata
Engine

Overview: Metadata LIBNAME Statement
To learn how the metadata engine works, see Chapter 7, “Introduction to the
Metadata LIBNAME Engine,” on page 61.

The SAS Metadata Server must be running before you submit the metadata
LIBNAME statement. The required SAS library metadata must already exist in the
metadata server. (If you specify the “METAOUT= Argument” on page 73 with the
value "DATA", table metadata is not required.) This SASLibrary metadata can be
created with the New Library wizard in the SAS Management Console Data Library
Manager.

In the syntax, wherever quotation marks are optional, they can be single or double
quotation marks.

69

Syntax: Metadata LIBNAME Statement

Syntax
LIBNAME libref

META
LIBID=identifier | LIBRARY=name |

LIBURI="URI-format"
<server-connection-arguments>
<DBUSER=user-name DBPASSWORD=password >
<METAOUT=ALL | DATA | DATAREG>

;

Required Arguments
libref

specifies a SAS name that serves as a shortcut name to associate with
metadata in the SAS Metadata Repository on the metadata server. This name
must conform to the rules for SAS names. A libref cannot exceed eight
characters.

META
is the name of the metadata engine.

LIBID=<">identifier<"> | LIBRARY=<">name<"> | LIBURI="URI-format"
specifies a SASLibrary object, which defines a SAS library. This SAS library
contains the data that you want to process.

LIBID=<">identifier<">
specifies the 8- or 17-character metadata identifier of the SASLibrary object.
Examples are libid=AW000002 and libid="A57DQR88.AW000002". For
more information, see Chapter 3, “Metadata Object Identifiers and URIs,” on
page 13.

LIBRARY=<">name<">
specifies the value in the SASLibrary object's Name= attribute. An example is
library=mylib. The maximum length is 256 characters.

Alias LIBRNAME=

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture.
For more information, see Chapter 3, “Metadata Object Identifiers and URIs,”
on page 13. The following URI formats are supported.

LIBURI="identifier.identifier"
specifies the full 17–character metadata identifier, which references both
the repository and the object. This syntax is equivalent to specifying both
LIBID= and REPID=. An example is liburi="A57DQR88.AW000002".

70 Chapter 8 / Reference for the Metadata Engine

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17-character
metadata identifier. This syntax is equivalent to specifying both LIBID=
and REPID=. An example is liburi="SASLibrary/A57DQR88.AW000002".

LIBURI="SASLibrary?@attribute='value'"
specifies the SASLibrary object type, followed by a search string.
Examples are liburi="SASLibrary?@libref='mylib'" and liburi="
SASLibrary?@engine='base'".

Requirement You must enclose the LIBURI= value in quotation marks.

Server Connection Arguments
The following LIBNAME statement arguments for the metadata engine establish a
connection to the metadata server. For more information, see “Introduction to
Connection Options” on page 38.

METASERVER=<">host-name<">
specifies the host name or network IP address of the computer that hosts the
metadata server. The value localhost can be used if the SAS session is
connecting to the metadata server on the same computer. If you do not specify
this argument, the value of the METASERVER= system option is used. For more
information, see “METASERVER= System Option” on page 54. The maximum
length is 256 characters.

Alias HOST= or IPADDR=

PASSWORD=<">password<">
specifies the password for the user ID on the metadata server. If you do not
specify this argument, the value of the METAPASS= system option is used. For
more information, see “METAPASS= System Option” on page 49. The maximum
length is 256 characters.

Alias METAPASS= or PW=

PORT=<">number<">
specifies the TCP port that the metadata server listens to for connections. This
port number was used to start the metadata server. If you do not specify this
argument, the value of the METAPORT= system option is used. For more
information, see “METAPORT= System Option” on page 50. The range of
allowed port numbers is 1–65535. The metadata server is configured with a
default port number of 8561.

Alias METAPORT=

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you
do not specify REPID= or REPNAME=, the value of the METAREPOSITORY=
system option is used; for more information, see “METAREPOSITORY= System
Option” on page 53 . The default for the METAREPOSITORY= system option is
Foundation.

LIBNAME Statement for the Metadata Engine 71

REPID=<">identifier<">
specifies an 8-character identifier. This identifier is the first half of the
SASLibrary's 17–character identifier, and is the second half of the repository's
identifier. For more information, see Chapter 3, “Metadata Object Identifiers
and URIs,” on page 13.

REPNAME=<">name<">
specifies the value in the repository's Name= attribute. The maximum length
is 256 characters.

Alias METAREPOSITORY= or REPOS= or REPOSITORY=

USER=<">userid<">
specifies the user ID for an account that is known to the metadata server. For
information about user definitions, see the SAS Intelligence Platform: Security
Administration Guide. If you do not specify this argument, the value of the
METAUSER= system option is used; see “METAUSER= System Option” on
page 57 . The maximum length is 256 characters.

Alias ID= or METAUSER= or USERID=

Optional Database Connection Arguments
The DBUSER= and DBPASSWORD= arguments enable users to provide
credentials programmatically for libraries whose server definitions have an
authentication type of Prompt defined. These credentials override other predefined
authentication types, including credentials that are stored in AuthenticationDomains.
The credentials must be valid on the target database. These arguments are valid
beginning with SAS 9.4M3.

DBUSER=<">user-name<">
specifies the name of a database user account that can access the library on the
database.

Note A user name value is changed to uppercase text if it is not enclosed in
quotation marks. If a value is case sensitive or contains special
characters, it has to be enclosed in either single or double quotation
marks.

DBPASSWORD=<">password<">
specifies the password associated with the specified database user account.

Alias DBPASS=, DBPASSWD=

Note A password value is changed to uppercase text if it is not enclosed in
quotation marks. If a value is case sensitive or contains special
characters, it has to be enclosed in either single or double quotation
marks.

Tip You can encode the password with PROC PWENCODE. For more
information about the PWENCODE procedure, see Base SAS
Procedures Guide.

72 Chapter 8 / Reference for the Metadata Engine

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

METAOUT= Argument
METAOUT=ALL | DATA | DATAREG

specifies the metadata engine's output processing of tables in the data source.

ALL
specifies that you can read, create, update, and delete observations in an
existing physical table that is defined in metadata. You cannot create or
delete a physical table, or alter a physical table’s columns. This is the default
behavior.

Interaction The user is restricted to only the tables and columns that have
been defined in the repository.

DATA
specifies that you can read, create, alter, update, and delete physical tables.
The user can access any table, regardless of whether it has been defined in
the repository.

Restrictions You must have sufficient operating system or database
privileges in order to access the unregistered physical tables.

The metadata LIBNAME engine does not support variable
projection for tables in a third-party DBMS that are not defined
in metadata. The engine retrieves all columns for undefined
tables, regardless of the operation. If you need to select, insert
data into, update, drop, or keep specific columns, register your
DBMS tables in the SAS Metadata Repository. Variable
projection is supported in Base SAS data sets that are not
defined in metadata.

Interaction The user is not restricted to tables that have been defined in
the repository, although there is some restricted functionality for
tables that are not defined in metadata.

DATAREG
specifies that you can read, update, alter, and delete a physical table that is
defined in metadata. You can also create and delete physical tables that are
not defined in metadata, but you cannot read or update the new physical
tables until they are defined in metadata. This value is like the value for
DATA, except tables and columns that are not defined in the repository are
not visible.

Default ALL

Restriction The following descriptions refer to the physical table. Metadata is
read-only with the metadata engine. When you create, update, or
delete physical data with the metadata engine, you must perform
an additional step if you want to update the metadata. You must
use a product like SAS Management Console or the METALIB
procedure to update the metadata.

Interactions As a LIBNAME statement argument, the behavior applies to all
members in the library, and remains for the duration of the library

LIBNAME Statement for the Metadata Engine 73

assignment. To specify METAOUT= behavior for an individual
table, use the METAOUT= data set option.

If metadata for a table is defined, any authorizations for that table
are enforced, regardless of the METAOUT= value.

SAS Data Set Options for the Metadata
Engine

METAOUT= Data Set Option

Overview
The METAOUT= data set option for the metadata engine specifies access to an
individual table in the data source.

Note: You can use the METAOUT= argument for the LIBNAME statement to
specify behavior for an entire library. When the option is specified for a library, the
behavior applies to all members in the library, and remains for the duration of the
library assignment.

Note: For library procedures such as PROC DATASETS, you must specify
METAOUT= as an argument in the LIBNAME statement. You cannot specify it as a
data set option.

Syntax
METAOUT=ALL | DATA | DATAREG

specifies the metadata engine's output processing of tables in the data source.

ALL
specifies that you can read, create, update, and delete observations in an
existing physical table that is defined in metadata. You cannot create or
delete a physical table, or alter a physical table’s columns. This is the default
behavior.

Interaction The user is restricted to only the tables and columns that have
been defined in the repository.

74 Chapter 8 / Reference for the Metadata Engine

DATA
specifies that you can read, create, alter, update, and delete a physical table.
The user can access any table, regardless of whether it has been defined in
the repository.

Restrictions You must have sufficient operating system or database
privileges in order to access the unregistered physical tables.

The metadata LIBNAME engine does not support variable
projection for tables in a third-party DBMS that are not defined
in metadata. The engine retrieves all columns for undefined
tables, regardless of the operation. If you need to select, insert
data into, update, drop, or keep specific columns, register your
DBMS tables in the SAS Metadata Repository. Variable
projection is supported in Base SAS data sets that are not
defined in metadata.

Interaction The user is not restricted to tables that are defined in metadata,
although there is some restricted functionality for tables that
are not defined in metadata.

DATAREG
specifies that you can read, update, alter, and delete a physical table that is
defined in metadata. You can also create and delete physical tables that are
not defined in metadata, but you cannot read or update the new physical
tables until they are defined in metadata. This value is like the value for
DATA, except tables and columns that are not defined in the repository are
not visible.

Default ALL

Restriction The preceding descriptions refer to the physical table. Metadata is
read-only with the metadata engine. When you create, update, or
delete physical data with the metadata engine, you must perform an
additional step if you want to update the metadata. You must use a
product like SAS Management Console or the METALIB procedure
to update the metadata.

Interaction If metadata for a table is defined, any authorizations are enforced
for that table, regardless of the METAOUT= value.

SAS Data Set Options for the Metadata Engine 75

76 Chapter 8 / Reference for the Metadata Engine

9
Examples for the Metadata
Engine

Example: Submitting the LIBNAME Statement . 77

Example: Before and After the Metadata Engine . 78
Overview . 78
Using the SAS/ACCESS Interface to Oracle Engine Directly . 78
Using the Metadata Engine . 79

Example: Submitting the LIBNAME
Statement

This example shows three metadata LIBNAME statements. One statement uses
defaults, one specifies metadata server connection parameters in the LIBNAME
statement, and the third specifies database connection parameters in the LIBNAME
statement.

n The following LIBNAME statement uses defaults. The connection information for
the SAS Metadata Server is obtained from the metadata system options. Data
source connection information is obtained from metadata.

libname metaeng meta library=mylib;

n This example specifies the LIBNAME statement options for the metadata engine
to connect to the metadata server. Data source connection information is
obtained from metadata.

libname myeng meta library=mylib
 repname=temp metaserver='a123.us.company.com' port=8561
 user=idxyz pw=abcdefg;

n This example specifies the LIBNAME statement options for the metadata engine
to connect to the target database. The connection information for the SAS

77

Metadata Server is obtained from the metadata system options. The credentials
specified in the DBUSER= and DBPASSWORD= arguments override data
source connection information that is stored in metadata.

libname oralib meta library=oralib dbuser=orauser dbpassword=orapw;

Example: Before and After the Metadata
Engine

Overview
This example shows how data can be accessed with the SAS/ACCESS Interface to
Oracle and then, for comparison, shows how the same data can be accessed with
the metadata engine. The code accesses Oracle data, lists the tables that exist in
the data source, and prints the contents of one table.

Using the SAS/ACCESS Interface to Oracle Engine
Directly

To use the SAS/ACCESS Interface to Oracle engine directly to access the data, you
submit statements like the following, which require that you know how to use the
Oracle engine and that you know the appropriate options to access the data:

libname oralib oracle user=myuser pw=mypw
 path=ora_dbms preserve_tab_names=yes
 connection=sharedread schema=myschema; 1

proc datasets library=oralib; 2

quit;

proc print data=oralib.Sales (readbuff=1000); 3

run;

data work.temp;
 set oralib.Sales (dbindex=myindex); 4

run;

1 Identifies an Oracle library that contains the Oracle tables that you want to
process.

2 Lists all of the Oracle tables that are available.

3 Displays the Oracle Sales table.

4 Attempts to use the specified index to improve performance.

78 Chapter 9 / Examples for the Metadata Engine

Using the Metadata Engine
You can access the same data using the metadata engine. However, when using
the metadata engine, you do not have to know how to use the Oracle engine, or
know the appropriate options to access the data. You do not need to be aware that
you are using an Oracle database.

Using SAS Management Console or SAS Data Integration Studio, an administrator
creates metadata in a SAS Metadata Repository for your Oracle environment. The
metadata engine interprets this metadata and locates your data. You do not have to
know how to connect to the metadata server or the repository, because this
information can be provided by the metadata system options.

Here is what happens when you use the metadata engine to access the Oracle
data:

1 You submit the following LIBNAME statement for the metadata engine.
LIBRARY= identifies the SASLibrary object that defines information about the
Oracle library. This SASLibrary object serves as an anchor point for obtaining
other metadata.

libname metaeng meta library=mylib;

The metadata server connection properties are specified by metadata system
options, so they are omitted from the LIBNAME statement.

2 The metadata engine queries the repository. The query retrieves information
from the SASLibrary object that is specified by LIBRARY=. Connection and
schema information are returned by the query.

3 From the information returned by the metadata query, the metadata engine is
able to generate the following LIBNAME statement, which is the same LIBNAME
statement that is shown at the beginning of this example:

libname oralib oracle user=myuser pw=mypw
 path=ora_dbms preserve_tab_names=yes
 connection=sharedread schema=myschema;

4 With the generated LIBNAME statement, the metadata engine uses the Oracle
engine anytime it needs to access the Oracle data. For example, to view the
tables that exist, you would submit the following:

proc datasets library=metaeng;
quit;

The metadata engine sends a query to the repository. The query requests all
members of the SASLibrary that was specified by LIBRARY=. The metadata
engine returns only those members that are defined in the repository. Any Oracle
table that is not defined in the metadata is not displayed. (If METAOUT=DATA,
all tables are displayed, regardless of whether they are defined in metadata.)

5 For the following PRINT procedure, the metadata engine sends a request to the
repository for the metadata that is associated with the Sales table.

proc print data=metaeng.Sales;
run;

Example: Before and After the Metadata Engine 79

The metadata engine returns the columns that are defined in the metadata.
Therefore, if the Sales table has 20 columns, and only five columns are defined
in the metadata, then you see only five columns. (If METAOUT=DATA, all
columns are displayed, regardless of whether they are defined in the metadata.)

6 A SASLibrary metadata object also stores index information for tables. Any use
of the metadata engine that uses indexes causes a query to the repository that
requests index information. The index metadata must match the physical index
on the table. The metadata engine uses the index information that is stored in
the repository:

data work.temp;
 set metaeng.Sales;
run;

80 Chapter 9 / Examples for the Metadata Engine

PART 4

Procedures

Chapter 10
Introduction to Procedures for Metadata . 83

Chapter 11
METADATA Procedure . 87

Chapter 12
METALIB Procedure . 123

Chapter 13
METAOPERATE Procedure . 153

81

82

10
Introduction to Procedures for
Metadata

Overview of Procedures for Metadata . 83

Comparison of the METADATA Procedure and the METAOPERATE Procedure . . 84

Overview of Procedures for Metadata
As with the other metadata language elements, you can use the metadata
procedures in a batch SAS program or in the SAS windowing environment. You can
also perform these tasks with a product like SAS Management Console.

The procedures enable you to create and maintain the metadata in a SAS Metadata
Repository.

n The METADATA procedure sends a method call, in the form of an XML string, to
the SAS Metadata Server.

n The METALIB procedure updates metadata to match the tables in a library.

n The METAOPERATE procedure performs administrative tasks on the metadata
server.

To submit the procedures, you must establish a connection with the metadata
server. You can specify connection information in the procedure, in system options,
or in a dialog box. For more information, see “Connection Options ” on page 38.

83

Comparison of the METADATA
Procedure and the METAOPERATE
Procedure

The METADATA procedure can be used to perform some of the same informational
tasks as the METAOPERATE procedure. The benefit of using PROC
METAOPERATE is simpler syntax. The benefit of using PROC METADATA is a
broader range of tasks. (PROC METADATA supports all of the parameters of the
methods that it submits. Some of these parameters are not supported by PROC
METAOPERATE.) In addition, PROC METADATA creates XML output that you can
use in another program (for example, to run reports).

Here is an example that uses PROC METAOPERATE to check whether the SAS
Metadata Server is paused or running:

proc metaoperate
 action=status;
run;

The SAS Metadata Server returns the following information to the SAS log:

NOTE: Server a123.us. company.com SAS Version is 9.4.
NOTE: Server a123.us. company.com SAS Long Version is 9.04.01M0P11062012.
NOTE: Server a123.us. company.com Operating System is XP_PRO.
NOTE: Server a123.us. company.com Operating System Family is DNTHOST.
NOTE: Server a123.us. company.com Operating System Version is Service Pack 3.
NOTE: Server a123.us. company.com Client is janedoe.
NOTE: Server a123.us. company.com Metadata Model is Version 15.01.
NOTE: Server a123.us. company.com is RUNNING on 14Nov2012:11:28:57.

PROC METADATA can perform a similar check in two ways. You can use the
following code:

proc metadata
in=' <Status>
<Metadata>
</Metadata>
</Status>';
run;

Or, you can submit this code (note the blank space in the IN= argument):

proc metadata
 method=status
 in=' ';
run;

The SAS Metadata Server returns the following information to the SAS log in the
form of XML. The status parameters differ slightly from those returned by PROC
METAOPERATE.

<ModelVersion>15.01</ModelVersion><PlatformVersion>9.4.0.0</PlatformVersion>

84 Chapter 10 / Introduction to Procedures for Metadata

<ServerState>ONLINE</ServerState><PauseComment/><ServerLocale>en_US</ServerLocale>

PROC METADATA supports two interfaces for submitting requests: the SAS Open
Metadata Interface DoRequest method, which accepts XML-formatted method calls
as input, and the SAS Open Metadata Interface Status method, which supports only
XML elements that are supported by the Status method: The first PROC
METADATA example is an example of a Status method call that is submitted
through the DoRequest method. There is an implied METHOD=DOREQUEST
argument in the request. The second PROC METADATA example shows how
METHOD=STATUS is used to get default status information. The Status method is
recommended for issuing server status queries, because it is simpler and because
the DoRequest method is not available when the SAS Metadata Server is paused.

Consider this request, issued through default DoRequest interface:

proc metadata
in=' <Status>
 <Metadata>
 <OMA JOURNALSTATE=""/>
 </Metadata>
 </Status> ';
run;

The code returns the journal state as follows:

<Status><Metadata><OMA JOURNALSTATE="IDLE"/></Metadata></Status>

Here is the same example using METHOD=STATUS. (To get information with
METHOD=STATUS, you submit the parameter directly in the IN= argument.)

proc metadata
 method=status
 in='<OMA JOURNALSTATE=""/>';
run;

This code returns the journal state:

<OMA JOURNALSTATE="IDLE"/>

If you have a simple query that is not supported by PROC METAOPERATE, and
you do not want to assign an XML LIBNAME engine to parse the output of PROC
METADATA, you can use the metadata DATA step functions.SAS provides the
“METADATA_PAUSED Function” on page 244 to determine whether the SAS
Metadata Server is paused. SAS provides the “METADATA_VERSION Function” on
page 252 to get the model version number.

Comparison of the METADATA Procedure and the METAOPERATE Procedure 85

86 Chapter 10 / Introduction to Procedures for Metadata

Chapter 11
METADATA Procedure

Overview: METADATA Procedure . 87
What Does the METADATA Procedure Do? . 88

Syntax: METADATA Procedure . 88
PROC METADATA Statement . 89

Usage: METADATA Procedure . 93
Formatting an XML Method Call for DoRequest . 93
See Also . 95
Submitting an XML Element with METHOD=STATUS . 95
Metadata Server Configurations and PROC METADATA . 96
Getting Information about a SAS Metadata Server Cluster 97
Getting Information about Server Backups . 99
Getting Information about the Server’s Alert Email System 100

Results: METADATA Procedure . 100
Results: METADATA Procedure . 100

Examples: METADATA Procedure . 101
Example 1: Get Information about Metadata Repositories 101
Example 2: Add an Encoding to The Output XML File . 104
Example 3: Request the Metadata for One Object . 105
Example 4: Request the Metadata for One Type of Object 109
Example 5: Get Server Backup Information with PROC METADATA 111
Example 6: Get Information about the Server’s Alert Email

Notification Subsystem with PROC METADATA . 115
Example 7: Get Information about the Server Cluster with PROC METADATA . . . 118

87

Overview: METADATA Procedure

What Does the METADATA Procedure Do?
The METADATA procedure sends an XML string to the SAS Metadata Server.
Depending on the value in the METHOD= argument, DOREQUEST or STATUS, the
IN= argument can contain a SAS Open Metadata Interface method call for reading
or writing metadata. Or, it can contain an XML element that is supported in the SAS
Open Metadata Interface IServer Status method. The IServer Status method
supports options for monitoring the metadata server and its configuration.

In DOREQUEST mode (the default when the METHOD= argument is omitted), the
procedure submits requests to the metadata server via the SAS Open Metadata
Interface’s IOMI DoRequest method, which is a messaging interface. This
messaging interface accepts all methods from the SAS Open Metadata Interface’s
IOMI server interface, which consists of methods for reading and writing metadata. It
also accepts the IServer Status method. However, this messaging interface is
available only when the metadata server is in an online state (that is, the metadata
server is not paused or in some transitory state). For more information about
metadata server states, see SAS Intelligence Platform: System Administration
Guide.

When METHOD=STATUS is specified, PROC METADATA submits IServer Status
method requests directly to the metadata server. METHOD=STATUS enables you to
get information about the metadata server when the metadata server is online,
paused, and in a transitory state.

There are specific requirements for submitting requests through
METHOD=DOREQUEST versus METHOD=STATUS.

When METHOD=STATUS is specified, PROC METADATA can get status
information about a single SAS Metadata Server or a cluster of SAS Metadata
Server nodes. The procedure can also be used to get information about metadata
server backups, the metadata server’s alert email notification system, and the
metadata server’s alert email reminder system.

The METAOPERATE procedure and the metadata DATA step functions can perform
some of the same tasks as the METADATA procedure. For more information, see
“Comparison of the METADATA Procedure and the METAOPERATE Procedure” on
page 84.

Syntax: METADATA Procedure
Restriction: This procedure is not supported in SAS Viya.

88 Chapter 11 / METADATA Procedure

Requirement: The metadata server must be running.

Notes: The OPTIONS= argument applies to SAS 9.4M3 and to later releases.
Be careful when you modify metadata objects because many objects have
dependencies on other objects. For more information, see Chapter 2, “Using Language
Elements That Read and Write Metadata,” on page 7. A product like SAS Management
Console or SAS Data Integration Studio is recommended for the routine maintenance of
metadata. Before you use PROC METADATA to create or modify metadata, perform a
server backup.

See: “Example: Creating a Report with the METADATA Procedure and the XML Engine” on
page 16

PROC METADATA <server-connection-arguments>
<METHOD=DOREQUEST | STATUS>
IN="XML-string" | fileref
<OUT=fileref>
<HEADER=NONE | SIMPLE | FULL>
<NOREDIRECT>
<OPTIONS="XML-element">
<VERBOSE>;

Statement Task

PROC METADATA Sends an XML string to the metadata server

PROC METADATA Statement
Sends an XML string to the SAS Metadata Server.

Syntax
PROC METADATA <METHOD=DOREQUEST> IN="XML-method-call" | fileref
<options>;

PROC METADATA METHOD=STATUS IN="XML-element" | fileref <options>;

Summary of Optional Arguments
HEADER= NONE | SIMPLE | FULL
METHOD=DOREQUEST | STATUS
NOREDIRECT
OPTIONS= "XML-element"
OUT=fileref
VERBOSE

PROC METADATA Statement 89

Required Argument
IN="XML-string" | fileref

specifies an input XML string or fileref. The type of XML string that is submitted
depends on whether the METHOD= argument is specified and what its value is.

n If the METHOD= argument is omitted or if it specifies
METHOD=DOREQUEST, IN= specifies an XML-formatted method call or IN=
specifies an XML file that contains the method call.

You form the method call as if you are submitting it in the inMetadata
parameter of the DoRequest method. You can submit any method from the
SAS Open Metadata Interface IOMI server interface and the IServer Status
method. For more information, see “Formatting an XML Method Call for
DoRequest” on page 93.

n If METHOD=STATUS, IN= specifies an XML element that is valid in the
inMeta parameter of the IServer Status method or IN= specifies an XML file
that contains the XML element. For more information, see “Submitting an
XML Element with METHOD=STATUS” on page 95.

For an example of how a fileref is specified in the IN= argument, see “Example
4: Request the Metadata for One Type of Object” on page 109.

Note PROC METADATA does not support fixed-length records in the XML
method call under z/OS. PROC METADATA returns an error on files with
fixed-length records whether a fileref or XML string is used.

Optional Arguments
HEADER= NONE | SIMPLE | FULL

specifies whether to include an XML header in the output XML file. The
declaration specifies the character-set encoding for web browsers and XML
parsers to use when processing national language characters in the output XML
file. For more information, see “Example 2: Add an Encoding to The Output XML
File” on page 104.

NONE
omits an encoding declaration. Web browsers and parsers might not handle
national language characters appropriately.

SIMPLE
inserts an XML header that specifies the XML version number: <?xml
version="1.0"?>. This is the default value when the HEADER= argument is
not specified.

FULL
inserts an XML declaration that represents the encoding that was specified
when creating the output XML file. The source for the encoding varies,
depending on the operating environment. In general, the encoding value is
taken from the ENCODING= option specified in the FILENAME statement, or
from the ENCODING= system option.

SAS attempts to use that encoding for the output XML file (and in the XML
header). The encoding can vary. A single encoding can have multiple names
or aliases that can appear in the XML header. These names might not be
valid or recognized in all XML parsers. When generating the encoding
attribute in the XML header, SAS attempts to use an alias that will be
recognized by Internet Explorer. If the alias is not found, SAS attempts to use

90 Chapter 11 / METADATA Procedure

a name that will be recognized by Java XML parsers. If the name is not
found, SAS uses an alias by which SAS will recognize the encoding.

For information about encoding and transcoding, see SAS National
Language Support (NLS): Reference Guide.

METHOD=DOREQUEST | STATUS
METHOD= is an optional argument that specifies whether PROC METADATA is
submitting a metadata query or a server status or configuration query. See the
IN= argument on page 90 for information about the requirements for each
method. Use of METHOD=STATUS is recommended for getting server status
and configuration information because it can connect to a metadata server that is
in an online, paused, or transitory state. If the METHOD= argument is omitted,
the default mode of operation is DOREQUEST.

NOREDIRECT
NOREDIRECT is an optional argument that is used with METHOD=STATUS in a
clustered SAS Metadata Server configuration. In a single SAS Metadata Server
configuration, NOREDIRECT is ignored. NOREDIRECT temporarily overrides
the cluster load balancer so that a request can be executed on the server node
specified in the connection options only. Use NOREDIRECT with
METHOD=STATUS when you want to get status information about a specific
server node. For more information, see “Metadata Server Configurations and
PROC METADATA” on page 96.

OPTIONS= "XML-element"
is an optional argument that is supported with METHOD=STATUS only.
Currently, the OPTIONS= argument accepts one XML element: <CLUSTER/>.

<CLUSTER/>
specifies to send the query in the IN= argument to the master node. Use
OPTIONS="<CLUSTER/>" when you want to list information about all nodes
in the cluster. This argument enables you to query the master node without
knowing its connection parameters. For more information, see “Metadata
Server Configurations and PROC METADATA” on page 96.

OUT=fileref
specifies an XML file in which to store the output that is returned by the metadata
server. The value must be a fileref, not a pathname. Therefore, you must first
submit a FILENAME statement to assign a fileref to a pathname. In most cases,
the output XML string is identical to the input XML string, with the addition of the
requested values within the XML elements. If the OUT= argument is omitted,
PROC METADATA output is written to the SAS log. For more information, see
Results: METADATA Procedure on page 100. See also: “GetRepositories
Request That Directs Output to an XML File” on page 102.

Notes PROC METADATA can generate large XML output. You might need to
specify a large LRECL value or RECFM=N (streaming output) to avoid
truncation of long output lines.

Under z/OS, fixed-length records in the XML method call are not
supported by PROC METADATA. Specify RECFM=V (or RECFM=N as
suggested above) when you create the XML method call.

VERBOSE
specifies to print the input XML string to the SAS log after it has been
preprocessed.

PROC METADATA Statement 91

Server Connection Arguments
Server connection arguments establish communication with the metadata server. If you omit
these arguments, then the values of the metadata system options are used or the values can
be obtained interactively. Note that server connections made with server connection
arguments are not redirected to another server in the cluster when the default server
connection profile is used. If the server specified in the server connection arguments is not
available, then the connection will fail. If connection redirection is important for the request,
use metadata system options to establish communication with the server instead. For more
information, see “Connection Options ” on page 38.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do
not specify PASSWORD=, the value of the METAPASS= system option is used.
For more information, see “METAPASS= System Option” on page 49. The
maximum length is 512 characters.

Alias METAPASS= or PW=

PORT=number
is the TCP port that the metadata server listens to for requests. This port number
was used to start the metadata server. If you do not specify PORT=, the value of
the METAPORT= system option is used. For more information, see
“METAPORT= System Option” on page 50. The range of allowed port numbers
is 1–65535. The metadata server is configured with a default port number of
8561.

Alias METAPORT=

Requirement Do not enclose the value in quotation marks.

PROTOCOL=BRIDGE
specifies the network protocol for connecting to the metadata server. If you do
not specify PROTOCOL=, the value of the METAPROTOCOL= system option is
used. For more information, see “METAPROTOCOL= System Option” on page
52. In this release, the only supported value is BRIDGE, which specifies the SAS
Bridge protocol. This is the server default, so there is no need to specify this
argument.

Alias METAPROTOCOL=

Requirement Do not enclose the value in quotation marks.

REPOSITORY= "name"
is the name of the SAS Metadata Repository to use when resolving the
$METAREPOSITORY substitution variable. PROC METADATA enables you to
specify the substitution variable $METAREPOSITORY in your input XML. The
substitution variable is resolved to the repository that you specify in
REPOSITORY=. This value is the repository's Name= attribute. If you do not
specify REPOSITORY=, the value of the METAREPOSITORY= system option is
used. For more information, see “METAREPOSITORY= System Option” on page
53. The default for the METAREPOSITORY= system option is FOUNDATION.
The maximum length is 32,000 characters.

Alias METAREPOSITORY= or REPOS=

92 Chapter 11 / METADATA Procedure

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value LOCALHOST can be used if the SAS session is connecting to
the metadata server on the same computer. If you do not specify SERVER=, the
value of the METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 54. The maximum length is 256
characters.

Alias HOST= or IPADDR= or METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server
supports several authentication providers. For more information about
authentication, see the SAS Intelligence Platform: Security Administration Guide.
If you do not specify USER=, the value of the METAUSER= system option is
used. For more information, see “METAUSER= System Option” on page 57. The
maximum length is 256 characters.

Alias ID= or METAUSER= or USERID=

Usage: METADATA Procedure

Formatting an XML Method Call for DoRequest

Overview
The IN= argument of PROC METADATA submits one or more XML-formatted
method calls to the SAS Metadata Server. You can submit any method that is
supported by the DoRequest method of the SAS Open Metadata Interface,
including:

n all methods in the IOMI server interface

n the IServer Status method

When multiple method calls are sent in one DoRequest submission, they must be
enclosed within <Multiple_Requests></Multiple_Requests> elements.

For information about how to format a method call for DoRequest, see the
documentation for the DoRequest method in SAS Open Metadata Interface:
Reference and Usage. The IOMI server interface section of the book shows how to
format each IOMI method for use in the DoRequest interface. The IOMI methods
are documented with many usage examples.

PROC METADATA is among several clients that can submit the DoRequest method
to the SAS Metadata Server. You are strongly advised to read SAS Open Metadata

Usage: METADATA Procedure 93

Interface: Reference and Usage for help in understanding concepts such as flags,
filters, and templates. The following topics provide a brief introduction to submitting
method calls through the DoRequest interface.

The Entire Method Is an XML Element
With PROC METADATA, you submit a request as an XML string. In the request, a
method is represented as an XML element. In the following example, the method is
GetMetadataObjects. The request starts and ends with GetMetadataObjects tags.
Do not include the DoRequest method in the XML string because the procedure
calls DoRequest for you.

proc metadata
 in='<GetMetadataObjects>
 <Reposid>A0000001.A5UO0N94</Reposid>
 <Type>SASLibrary</Type>
 <Objects/>
 <NS>SAS</NS>
 <Flags>0</Flags>
 <Options/>
 </GetMetadataObjects>';
run;

The GetMetadataObjects method has parameters Reposid, Type, Objects, NS
(namespace), Flags, and Options. The method parameters are submitted as XML
subelements in the input XML method string.

A Metadata Object Is an XML Element
Some methods accept metadata objects as input. Within your XML string, metadata
objects are represented as XML elements. Object attributes, if any, are XML tag
attributes. In the following code, a PhysicalTable object has "NE Sales" in its Name=
attribute:

<PhysicalTable Id="A5UO0N94.B20000TV" Name="NE Sales"/>

A Metadata Association Is an XML
Element
Metadata associations are XML elements, which are nested within the primary
object’s XML element. In the following code, the PhysicalTable object has a
Columns association to a Column object that has “Sales Associates” in its Name=
attribute:

<PhysicalTable Name="NE Sales">
 <Columns>
 <Column Name="Sales Associates"/>
 </Columns>
</PhysicalTable>

94 Chapter 11 / METADATA Procedure

The Name= attribute in the Column XML element defines or identifies a particular
Column metadata object.

Empty XML elements (that is, XML elements with no content between the start and
end tags) can be expressed in XML shorthand as a singleton tag, like this:
<Columns/>. In a GetMetadata request, an empty association name subelement
instructs the metadata server to return all objects associated with the primary object
under that association name.

Quotation Requirements
Single or double quotation marks can be used to submit the IN= XML method string.
To ensure that the string is parsed correctly, it is recommended that any additional
quotations within the string, such as those enclosing XML attribute values, be
balanced. For example, if you submit the IN= string within single quotation marks,
use double quotation marks for attribute values. If you use double quotation marks
to submit the IN= string, use single quotation marks for attribute values.

When additional nesting of quotations is necessary, such as in a
GetMetadataObjects <XMLSELECT search="string"/> element, use double
apostrophes or double quotation marks as follows:

<XMLSelect search="*[@PublicType=''InformationMap.Relational'']"/>

<XMLSelect search=""*[@PublicType= 'InformationMap.Relational']""/>

See Also
Forming proper XML input can be a challenge. Use the following resources:

n See “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 16

n SAS Open Metadata Interface: Reference and Usage provides the following
information:

o which methods to use for common tasks

o the DoRequest method and other methods in the IOMI server interface

o the Status method in the IServer server interface

n The SAS Metadata Model: Reference shows the relationships among objects,
associations, and attributes that you specify in XML tags.

Submitting an XML Element with
METHOD=STATUS

When METHOD=STATUS, there is no need to specify all of the Status method’s
parameters in the IN= XML string. PROC METADATA accepts as input XML
elements that are valid in the Status method’s inMeta parameter. In the IN=

Usage: METADATA Procedure 95

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

argument, specify only the XML elements for which you want to get values. For
example:

proc metadata
 method=status
 in='<ServerState/>
 <PauseComment/>
 <OMA JournalState=""/>
 <OMA JournalHistoricalData=""/>
 <OMA SERVERSTARTPATH=" "/>';
run;

This example submits five XML elements that might be useful when the server is
unavailable.

You can also use METHOD=STATUS to get information about server backups and
recoveries, the server backup configuration, the metadata server’s alert email
notification subsystem, and clustered metadata server configurations. See the
Examples section.

For a complete list of the XML elements that are available in the Status method, see
the Status method documentation in SAS Open Metadata Interface: Reference and
Usage.

Metadata Server Configurations and PROC
METADATA

Beginning in SAS 9.4, the SAS Intelligence Platform supports single SAS Metadata
Server configurations and clustered SAS Metadata Server configurations.

n In a single metadata server configuration, all metadata requests are received
and processed by a single SAS Metadata Server.

n In a clustered metadata server configuration, three or more identical metadata
servers are linked in such a way that provides metadata redundancy. The
servers have a master-slave relationship. The slave nodes process read
requests and forward update requests to the master node. The master node
processes the updates and then propagates them to the slave nodes. If one
node becomes unavailable, its load is transferred to another node. A load-
balancing algorithm controls server connections.

The clustered metadata server configuration has no effect on PROC METADATA
METHOD=DOREQUEST requests, except to improve metadata availability. All
server nodes have identical metadata; the cluster simply increases the number of
nodes that are available to process requests.

The load balancer can affect the information returned by a METHOD=STATUS
request. In a clustered server configuration, the load balancer directs all queries to a
slave node of the load balancer’s choice, regardless of which server is specified in
the connection options. Most of the time, the default connection is sufficient to
answer questions that administrators have about the metadata server. In a clustered
server configuration, all server nodes have identical configurations and are
managed uniformly. For example, the default connection is sufficient for getting
information about metadata system options, omaconfig.xml server configuration
options, and for getting information about metadata server backups.

96 Chapter 11 / METADATA Procedure

However, a slave node knows only about itself and the master node. The master
node is the only node that has information about all of the nodes in the cluster. In
order to get complete results for METHOD=STATUS queries that request a list or a
count of the server nodes that are available (<CLUSTER CURRENT_NODES=" "/>
and <CLUSTER LIST=" "/>), you must direct the requests to the master node.
PROC METADATA supports two arguments to enable you to control where Status
requests are sent in a clustered server configuration:

n The OPTIONS="<CLUSTER/>" argument was added to PROC METADATA in
SAS 9.4M3 to enable you to send requests directly to the master node. You do
not need to know connection parameters for the master node when you use this
argument.

n The NOREDIRECT argument specifies to send the request to the server node
indicated in the server connection options. In previous releases, the
NOREDIRECT argument was used to send a request to the master node. Now,
this argument can be used to send a request to a specific server node,
regardless of whether it is a master or slave.

You might want to send a status request to a specific slave node for one of the
following reasons:

n to get information about the server node’s start path

n to check for alert conditions that could result in the automatic termination of the
server node.

For more information about cluster XML elements, see “Getting Information about a
SAS Metadata Server Cluster” on page 97.

Getting Information about a SAS Metadata Server
Cluster

The following XML elements can be submitted through PROC METADATA with
METHOD=STATUS to get information about the cluster:

<CLUSTER attributes/>
returns values for specified cluster attributes. The valid attributes are:

CLUSTERGUID=" "
returns the cluster’s unique identifier. This value is the same for all nodes in
the cluster.

DEFINED_NODES=" "
returns the number of servers defined in the cluster.

CURRENT_NODES=" "
returns the number of servers that are known to the server that received the
query. This attribute returns different results, depending on whether it is
processed by a slave node or by the master node.

HAS_FIRST_NODE=" "
returns a YES or NO indicating whether the server defined as Node 1 is
available to the cluster. This value is the same for all nodes in the cluster.

HAS_QUORUM=" "
returns a YES or NO indicating whether a quorum exists.

Usage: METADATA Procedure 97

LIST=" "
returns an integer indicating the number of servers that are known to the
server that received the query, in addition to <CLUSTERNODE/> XML
elements that describe each server. The <CLUSTERNODE/> XML elements
include the server name, host name, port number, a Self attribute, and a
Flags attribute for each server. The Self attribute identifies the receiving
server with a “Y” or a “N”. The Flags attribute indicates whether the node is a
slave node or the master node. The LIST= attribute returns information about
two nodes if it is processed by a slave node. To get a complete listing of
available servers, a request that contains this attribute should be directed to
the master node.

<CLUSTERSTATE/>
returns the value STARTING, QUORUM, or LOSTQUORUM. STARTING means
that the cluster is waiting for more server nodes to start up and complete the
quorum. QUORUM means that a sufficient number of server nodes are operating
for the cluster to service metadata requests. LOSTQUORUM means that the
cluster does not have enough server nodes to service metadata requests.

<OMA MAXIMUM_CLUSTER_NODES=" "/>
returns the maximum number of server nodes that are supported in the cluster
as configured in the omaconfig.xml file.

An administrator might use the cluster XML elements to answer the following
questions:

n Fewer server nodes can be defined at cluster configuration than are supported.
Administrators can add server nodes later up to the number specified in the
<OMA MAXIMUM_CLUSTER_NODES=" "/> omaconfig.xml option plus one.
The additional slot is for the master. These additional server nodes must be
added using the SAS Deployment Wizard. Submitting this XML element in
PROC METADATA with METHOD=STATUS returns the value of this
omaconfig.xml option. If you have a need to add servers beyond this number,
contact SAS Technical Support.

n An administrator can track the number of server nodes that are defined in the
SAS Deployment Wizard and removed with the SAS Deployment Manager by
submitting the <CLUSTER DEFINED_NODES=" " element.

n The administrator can submit the <CLUSTER LIST=" "/> element to the master
node to get an accurate count of the currently available server nodes and their
connection parameters.

n The quorum requires that at least half of the servers that are defined in the
cluster be available to continue operating. If exactly half of the servers are
available, then the server defined as Node 1 must be among those that are
operating. The <CLUSTERSTATE/> and <CLUSTER DEFINED_NODES=" "
CURRENT_NODES=" " HAS_FIRST_NODE=" " HAS_QUORUM=" "/> elements
can be submitted to monitor the cluster’s status in relation to the quorum.

For an example of how the cluster-related XML elements and arguments are
submitted, see “Example 7: Get Information about the Server Cluster with PROC
METADATA” on page 118.

98 Chapter 11 / METADATA Procedure

Getting Information about Server Backups
PROC METADATA can get information about server backups. For information about
the XML elements that are submitted to get information about backups, see the
IServer Status method in SAS Open Metadata Interface: Reference and Usage. For
information about how the XML elements are submitted from PROC METADATA,
see “Example 5: Get Server Backup Information with PROC METADATA” on page
111.

The XML elements that get information about backups behave the same in a
clustered metadata server configuration as they do in a single metadata server
configuration with one exception. An additional step is necessary in a clustered
server configuration when you want to return the list of files that were included in the
last backup.

The files that were included in a backup are listed by submitting the
<METADATASERVERBACKUPMANIFEST/> XML element in the IN= argument with
METHOD=STATUS. By default, this XML element reads the backup manifest file
from the SAS Metadata Server’s configuration directory. This works to get
information about the last backup in a single server configuration. In a clustered
server configuration, the master node performs backups. However, slave nodes
receive all metadata queries, and the slave looks in its own configuration directory
for the manifest file (and it’s not there). In addition, the designated master node can
change without notification, depending on the needs of the cluster.

Follow these steps to ensure that you are looking at the contents of the last backup:

1 Get the name of the last backup by issuing the following request:

proc metadata
method=STATUS
in='<MetadataServerBackupHistory
XPath="MetadataServerBackupManifest/Backups/
Backup[POSITION()=LAST()]"/>';
run;

The request returns information similar to the following:

<Backup Status="Successful"
StartingUserID="META:Scheduler" StartDateTime="2012-10-25T00:59:59-04:00"
Name="2012-10-25T00_59_59-04_00" Directory="Backups/2012-10-25T00_59_59-04_00"
Comment="" Reorg="N" Size="6015741"/>

2 Submit the request again, this time specifying the backup’s Name value in the
<METADATASERVERBACKUPMANIFEST/> XML element as follows:

<METADATASERVERBACKUPMANIFEST BackupName="2012-10-25T00_59_59-04_00"/>

Usage: METADATA Procedure 99

Getting Information about the Server’s Alert Email
System

The same XML elements that are submitted in PROC METAOPERATE with
ACTION=REFRESH to temporarily change the values of server alert email system
options and configuration options can be submitted in PROC METADATA with
METHOD=STATUS to get the current values of those options. For a listing of the
XML elements, see “Using Alert Email XML Elements” on page 175.

In SAS 9.4M2, the SAS Metadata Server added a reminder system and defined a
grace period for responding to alert email messages that report the condition the
journal commit task stopped running.

<OMA ALERT_CONDITION_FREQUENCY=" "/>
Returns the amount of time that elapses before the initial and subsequent alert
email reminders about the alert condition are be sent. The time value is returned
in seconds. The default value is 21,600 seconds (six hours).

<OMA ALERT_CONDITION_GRACE_PERIOD=" "/>
Returns the amount of time that the alert condition is allowed to persist before
the SAS Metadata Server shuts itself down. The time value is returned in
seconds. The default value is 259,200 seconds (three days).

<Scheduler><AlertConditions/></Scheduler>
Specify the <AlertCondition/> subelement to determine whether an alert
condition exists on the specified SAS Metadata Server. If an alert condition
exists, the subelement returns an <AlertCondition//> XML element and an
<ExpirationTime/> XML element. The <AlertCondition/> element includes the
error and a datetime value representing the time at which the error occurred. The
<ExpirationTime/> element includes the server’s scheduled termination time.

The <Scheduler/> XML element is not case-sensitive.

For more information, see “Example 6: Get Information about the Server’s Alert
Email Notification Subsystem with PROC METADATA” on page 115.

Results: METADATA Procedure

Results: METADATA Procedure
The METADATA procedure produces output in the SAS log or in an XML file. If you
do not specify the OUT= argument, the output is written to the SAS log. To send the
output to an XML file, you must first submit a FILENAME statement to assign a
fileref to the pathname. The file can be temporary or permanent.

100 Chapter 11 / METADATA Procedure

In most cases, the output XML string is identical to the input XML string, with the
addition of the requested values within the XML elements. XML output is mostly
unformatted and difficult to read. To get a more readable representation, you can
send the output to an XML file, and then open the XML file in an internet browser
such as Internet Explorer. The browser inserts line breaks between the XML
elements to make them more readable. For an example of a typical output versus
an output that was routed to a file with the OUT= argument, see “Example 1: Get
Information about Metadata Repositories” on page 101.

To use the output XML file (for example, to run reports), create an XML map, and
then use an XML LIBNAME statement to read the XML file. The XML LIBNAME
statement associates the XML map with the XML file so that it can be read by the
XML engine as if it were a SAS data set. You can copy the contents to a SAS data
set if you choose. Like the output XML file, this SAS data set can be temporary or
permanent. For an example that creates a report and reads it with the XML engine,
see “Example: Creating a Report with the METADATA Procedure and the XML
Engine” on page 16. For more information about the XML engine and XML maps,
see the SAS XMLV2 and XML LIBNAME Engines: User’s Guide.

The VERBOSE= argument does not affect the XML output. It causes the input XML
to be written to the SAS log.

Examples: METADATA Procedure

Example 1: Get Information about Metadata
Repositories
Features: XML string in the IN= argument

default output vs. fileref in OUT= argument

Note: You must be an administrative user of the metadata server to perform this task.

Details
This example issues the IOMI GetRepositories method to list the metadata
repositories that are registered on the SAS Metadata Server. This example also
compares the procedure’s default output, which is written to the SAS log, to the
output returned when the OUT= argument is specified. The OUT= argument writes
the output to an XML file.

Example 1: Get Information about Metadata Repositories 101

GetRepositories Request That Returns the
Default Output
The default behavior of the GetRepositories method is to return the Id=, Name=,
Desc=, and DefaultNS= (namespace) attributes. This method call sets the OMI_ALL
(1) flag to return a complete list of each repository’s attributes. The default output of
a PROC METADATA request is a continuous, unformatted string, which can be
unreadable when one or more flags is specified.

proc metadata
 in="<GetRepositories>
 <Repositories/>
 <!-- OMI_ALL (1) flag -->
 <Flags>1</Flags>
 <Options/>
 </GetRepositories>";
run;

Example Code 11.1 Log Output from GetRepositories Method

<GetRepositories><Repositories><Repository Id="A0000001.A0000001"
Name="REPOSMGR" Desc="The Repository Manager" DefaultNS="REPOS"
RepositoryType="" RepositoryFormat="15" Access="OMS_FULL"CurrentAccess=
"OMS_FULL" PauseState="" Path="rposmgr" Engine="" Options=""
MetadataCreated="01Jan1960:00:00:00" MetadataUpdated="01Jan1960:00:00:00"/>
<Repository Id="A0000001.A5POKZP3" Name="scratch1" Desc="scratch1"
DefaultNS="SAS" RepositoryType="FOUNDATION" RepositoryFormat="15"
Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState="" Path="scratch1"
Engine="BASE" Options="" MetadataCreated="06Sep2012:15:35:15"
MetadataUpdated="06Sep2012:15:35:15"/><Repository Id="A0000001.A5A4F7P2"
Name="Custom1" Desc="TestRepository1" DefaultNS="SAS" RepositoryType="Custom"
RepositoryFormat="15" Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState=""
Path="Custom" Engine="" Options="" MetadataCreated="12Oct2012:14:57:08"
MetadataUpdated="12Oct2012:14:57:08"/><Repository Id="A0000001.A5QYJ9DO"
Name="Custom2" Desc="TestRepository2" DefaultNS="SAS" RepositoryType="Custom"
RepositoryFormat="15" Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState=""
Path="Custom2" Engine="" Options="" MetadataCreated="12Oct2012:14:58:10"
MetadataUpdated="12Oct2012:14:58:10"/><Repository Id="A0000001.A5PA4NBL"
Name="Custom3" Desc="TestRepository3" DefaultNS="SAS" RepositoryType="Custom"
RepositoryFormat="15" Access="OMS_FULL" CurrentAccess="OMS_FULL" PauseState=""
Path="Custom3" Engine="" Options="" MetadataCreated="12Oct2012:14:58:53"
MetadataUpdated="12Oct2012:14:58:53"/></Repositories><Flags>1</Flags><Options/>
</GetRepositories>

GetRepositories Request That Directs
Output to an XML File
This PROC METADATA request submits the same GetRepositories method call as
the previous request and specifies the OUT= argument to direct the output to an
XML file. You must first submit a FILENAME statement, because the OUT= value

102 Chapter 11 / METADATA Procedure

accepts a fileref only, not a pathname. When you open the output XML file in a
browser, the browser displays formatted XML.

filename myoutput "C:\myxml\reports\getrepos.xml";

proc metadata
out=myoutput
in="<GetRepositories>
 <Repositories/>
 <!-- OMI_ALL (1) flag -->
 <Flags>1</Flags>
 <Options/>
 </GetRepositories>";
run;

Output 11.1 Content of Output XML File When Opened in a Browser

Example 1: Get Information about Metadata Repositories 103

Example 2: Add an Encoding to The Output XML
File
Features: HEADER= argument

Details
By default, PROC METADATA inserts the static header <?xml version=”1.0”?> in
the output XML file that is created when you specify the OUT= argument. The
header does not specify an encoding. This example shows two ways that you can
add an encoding value to the XML header.

Add the Session Encoding to the XML
Header
To add the SAS session encoding to the XML header, specify the HEADER=FULL
argument in the PROC METADATA request. When you do not specify
HEADER=FULL, the default value is HEADER=SIMPLE, which omits an encoding
value.

filename myoutput "u:\out2.xml";

proc metadata
 header=full
 out=myoutput
 in="<GetTypes>
 <Types/>
 <Ns>SAS</Ns>
 <Flags/>
 <Options/>
 </GetTypes>";
run;

Output 11.2 Header Created with HEADER=FULL Argument

<?xml version="1.0" encoding="windows-1252" ?>

104 Chapter 11 / METADATA Procedure

Specify a Custom Encoding for the XML
Header
To specify a custom encoding, specify the desired encoding value in the FILENAME
statement and specify the HEADER=FULL argument in the PROC METADATA
request.

filename myoutput "u:\out3.xml" encoding=ascii;

proc metadata
 header=full
 out=myoutput
 in="<GetTypes>
 <Types/>
 <Ns>SAS</Ns>
 <Flags/>
 <Options/>
 </GetTypes>";
run;

Output 11.3 Header Created with ENCODING= Option and HEADER=FULL

<?xml version="1.0" encoding="us-ascii" ?>

Example 3: Request the Metadata for One Object
Features: XML string in the IN= argument

SAS Open Metadata Interface GetMetadata method
OMI_FULL_OBJECT and OMI_SUCCINCT flags
OUT= argument

Details
This method call returns the full set of metadata available for a PhysicalTable
metadata object whose object identifier is A5TJRDIT.B2000005.

Program
filename myoutput 'C:\myoutput\output.xml';

proc metadata
 in='<GetMetadata>

Example 3: Request the Metadata for One Object 105

 <Metadata>
 <PhysicalTable Id="A5TJRDIT.B2000005"/>
 </Metadata>

 <Ns>SAS</Ns>

 <!-- OMI_FULL_OBJECT (2) + OMI_SUCCINCT (2048) -->
 <Flags>2050</Flags>

 <Options/>
 </GetMetadata>'
 out=myoutput;
run;

Program Description
Submit an XML string that contains a GetMetadata method call in the PROC
METADATA IN= argument. The GetMetadata method is used to retrieve the values
of specified properties for a specified metadata object. The GetMetadata method
has four parameters, which are submitted within the XML subelements
<Metadata/>, <Ns/>, <Flags/>, and <Options/>. The XML string in this example
requests an object of the Physical Table metadata type that has the object identifier
A5TJRDIT.B2000005. This information is specified in the GetMetadata method’s
<METADATA/> subelement.

filename myoutput 'C:\myoutput\output.xml';

proc metadata
 in='<GetMetadata>
 <Metadata>
 <PhysicalTable Id="A5TJRDIT.B2000005"/>
 </Metadata>

Specify the namespace in the <Ns/> subelement. “SAS” is the valid value.

 <Ns>SAS</Ns>

Specify the object properties that you want to retrieve. An object’s properties
include attributes and associations to other objects. By default, the GetMetadata
method returns an object’s Id= and Name= attributes. You can request specific
attributes by specifying their names in the XML string submitted in the <Metadata/>
subelement. Or you can specify one or more OMI flags. This example specifies the
flags OMI_FULL_OBJECT and OMI_SUCCINCT. OMI_FULL_OBJECT (2) gets the
requested values of the specified object, and the properties of both an object’s direct
and nested associations. The OMI_SUCCINCT (2048) flag specifies to return only
information about properties for which values are stored. OMI flags are set by
specifying their numeric value in the <Flags/> subelement. To combine GetMetadata
flags, you add their numeric values together, and specify the total in the <Flags/>
subelement.

 <!-- OMI_FULL_OBJECT (2) + OMI_SUCCINCT (2048) -->
 <Flags>2050</Flags>

Complete the PROC METADATA request. No options are associated with the
specified flags, so the <Options/> subelement is specified as a terminated element.
The PROC METADATA OUT= argument is specified to write the output from the
request to a file.

 <Options/>

106 Chapter 11 / METADATA Procedure

 </GetMetadata>'
 out=myoutput;
run;

Example 3: Request the Metadata for One Object 107

Output 11.4 Contents of the results1.xml File When Opened in a Browser

108 Chapter 11 / METADATA Procedure

Example 4: Request the Metadata for One Type of
Object
Features: fileref in the IN= argument

SAS Open Metadata Interface GetMetadataObjects method
Use of OMI_XML_SELECT flag

Details
The following example lists information about the SAS Information Maps for
relational databases that are registered in a metadata repository. The SAS Open
Metadata Interface method call is stored in a temporary input file to simplify quoting
requirements for a search string within the XML string and submitted to the server
by using a fileref. The results are directed to an output XML file so that the content
can be viewed in a browser.

Program
filename myinput temp lrecl=256;
filename myoutput "C:\results2.xml" lrecl=256;

data _null_;
 file myinput;
 input;
 put _infile_ ' ';
 datalines;

<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>Transformation</Type>
 <Objects/>
 <NS>SAS</NS>
 <-- OMI_XMLSELECT (128) -->
 <Flags>128</Flags>
 <Options>
 <XMLSelect search="*[@PublicType='InformationMap.Relational']"/>
 </Options>
</GetMetadataObjects>
;;
run;

proc metadata
 in=myinput
 out=myoutput;
run;

Example 4: Request the Metadata for One Type of Object 109

Program Description
Assign input and output filerefs.

filename myinput temp lrecl=256;
filename myoutput "C:\results2.xml" lrecl=256;

Use a null DATA step to create the temporary XML input file. The PUT
statement specifies to write the lines following the DATALINES statement to the
location indicated in the FILE statement.

data _null_;
 file myinput;
 input;
 put _infile_ ' ';
 datalines;

Under the DATALINES statement, specify the XML elements for a
GetMetadataObjects method call. The GetMetadataObjects method retrieves
information about all objects of a specified metadata type from a specified metadata
repository. A GetMetadataObjects method call has XML subelements <Reposid/>,
<Type/>, <Objects/>, <Ns/>, <Flags/>, and <Options/>. The <Reposid/> subelement
identifies the repository to look in, by repository ID. This example specifies a macro
variable, so that different repository ID values can be substituted in the request. A
SAS Information Map is represented in a metadata repository with a PrimaryType
object of the Transformation metadata type. This type is specified in the <Type>
subelement. Several other objects in the type dictionary use the Transformation
metadata type as their primary metadata type, including SAS reports. In addition,
SAS supports two types of information maps: information maps for relational tables
and information maps for cubes. This method call sets the GetMetadataObjects
OMI_XMLSELECT flag (128) to filter the request to retrieve only Transformation
objects describing information maps for relational tables. This numeric value is
specified in the <Flags/> subelement. An information map for a relational table has a
TypeName= value of "InformationMap.Relational” in its type definition. This value is
specified in the <XMLSelect search=" "/> element, which is submitted in the
<Options/> subelement. In all, the query specifies to return Transformation objects
that have the value “InformationMap.Relational” in the PublicType= attribute.

<GetMetadataObjects>
 <Reposid>$METAREPOSITORY</Reposid>
 <Type>Transformation</Type>
 <Objects/>
 <NS>SAS</NS>
 <-- OMI_XMLSELECT (128) -->
 <Flags>128</Flags>
 <Options>
 <XMLSelect search="*[@PublicType='InformationMap.Relational']"/>
 </Options>
</GetMetadataObjects>
;;
run;

Submit the iput and output filerefs to PROC METADATA. The
GetMetadataObjects method returns output in the <Objects/> subelement.

proc metadata
 in=myinput
 out=myoutput;

110 Chapter 11 / METADATA Procedure

run;

Output 11.5 Contents of the results2.xml File When Opened in a Browser

Example 5: Get Server Backup Information with
PROC METADATA
Features: METHOD= argument

XML element in the IN= argument
IServer Status method backup XML elements

Details
The SAS Metadata Server performs unassisted, scheduled server backups. The
following code samples show how to get information about server backups with
PROC METADATA.

Note: The recommended interface for managing server backups and performing
recoveries is the Server Backup node of SAS Management Console. However,
PROC METADATA can also be used to get information about server backups.

Get the Server Backup Location, Retention
Policy, and Backup Schedule
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupConfiguration/> XML element. The
<MetadataServerBackupConfiguration/> XML element is valid in the inMeta
parameter of the SAS Open Metadata Interface IServer Status method.

Example 5: Get Server Backup Information with PROC METADATA 111

proc metadata
 method=status
 in='<MetadataServerBackupConfiguration/>';
run;

Example Code 11.2 Log Output from Metadata Server Backup Configuration Request

<MetadataServerBackupConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="MetadataServerBackupConfiguration.xsd">
1 <MetadataServer GUID="C678E41B-FC7E-4D90-9C4C-52EAC67427CB"
2 ClusterGUID="B818CCAE-5DC3-4B78-A12C-7F1F34971F70"/>
3 <Schedule Event="Backup" Weekday1="0200" Weekday2="0200" Weekday3="0200"
Weekday4="0200" Weekday5="0200" Weekday6="0200" Weekday7="0200"/></Schedule>
4 <BackupConfiguration BackupLocation="Backups" DaysToRetainBackups="7"
RunScheduledBackups="Y"/></MetadataServerBackupConfiguration>

1 The MetadataServer GUID is the server’s unique metadata identifier.

2 The ClusterGUID is the cluster’s unique metadata identifier. In a clustered server
configuration, each backup records the GUID of the server that took the backup,
and also records the ClusterGUID. In a clustered environment, a backup will not
be recovered unless the ClusterGUIDs in the backup and the target server node
match. In a single SAS Metadata Server configuration, there will be no
ClusterGUID recorded. A backup should not be used to restore a server unless
the MetadataServer GUIDs match.

3 The <Schedule> element contains the backup schedule.

4 The <BackupConfiguration> element contains the backup location (relative to the
MetadataServer subdirectory of the server’s configuration directory), the
retention policy, and an attribute indicating whether automated backups are
turned on.

Get the Backup Schedule for a Specific
Day
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <Schedule/> XML element to get the backup schedule. Within the
<Schedule/> XML element, specify Backup in the Event= attribute, and the attribute
for the weekday about which you are inquiring with an empty string. The
WeekDay1= attribute is Sunday. This example requests Tuesday’s backup
schedule.

proc metadata
 method=status
 in='<Schedule Event="Backup" WeekDay3=""/>';
run;

112 Chapter 11 / METADATA Procedure

Get the Backup Retention Policy Only
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <BackupConfiguration/> XML element to get information about the
configuration. Within the <BackupConfiguration/> XML element, specify the
DaysToRetainBackups= attribute with an empty string.

proc metadata
 method=status
 in='<BackupConfiguration DaysToRetainBackups=""/>';
run;

Get the Backup History
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupHistory/> XML element to get information about
the backup history.

proc metadata
 method=status
 in='<MetadataServerBackupHistory/>';
run;

Get Information about the Last Backup
from the History
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupHistory/> XML element to get information about
the backup history. Within the <MetadataServerBackupHistory/> XML element,
specify the logical path for the backup location in the XPath= attribute and a query.
The MetadataServerBackupManifest.xml file contains a record of the repositories
and files copied in a backup. [POSITION()=LAST()] specifies the record’s location.

proc metadata
 method=status
 in='<MetadataServerBackupHistory
XPath="MetadataServerBackupManifest/Backups/
Backup[POSITION()=LAST()]"/>';
run;

Get the Backup Manifest of the Last
Backup
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupManifest/> XML element to get the backup
manifest. This element returns information about the last backup by default. Note
that the steps for getting this information in a clustered server configuration are

Example 5: Get Server Backup Information with PROC METADATA 113

different than for a single server configuration. For more information, see “Getting
Information about Server Backups ” on page 99.

proc metadata
 method=status
 in='<MetadataServerBackupManifest/>';
run;

Get the Backup Manifest of an Earlier
Backup
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupManifest/> XML element to get a backup
manifest. Within the <MetadataServerBackupManifest/> XML element, specify the
backup name in the BackupName= attribute. The server assumes the backup in the
BackupName= attribute is in the configured backup location.

proc metadata
 method=status
 in='<MetadataServerBackupManifest
BackupName="2010-12-13T00_59_59-05_00"/>';
run;

Get the Backup Manifest of a Backup That
Is Not in the Configured Backup Location
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerBackupManifest/> XML element to get a backup
manifest. Within the <MetadataServerBackupManifest/> XML element, specify the
backup name in the BackupPath= attribute. Specify the absolute pathname of the
backup in the BackupPath= attribute.

proc metadata
 method=status
 in='<MetadataServerBackupManifest BackupPath="C:/
2010-12-08T12_44_21-05_00"/>';
run;

List the Contents of the
MetadataServerRecoveryManifest.xml File
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <MetadataServerRecoveryManifest/> XML element. The server
maintains a record of the last recovery only.

proc metadata
 method=status

114 Chapter 11 / METADATA Procedure

 in='<MetadataServerRecoveryManifest/>';
run;

Check the Health of the Backup Scheduler
Thread
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <Scheduler/> XML element to get information about the scheduler.
Within the <Scheduler/> XML element, specify the Ping= attribute with an empty
string. Possible return values are Alive, TimeOut, Down, or Unconfigured.

proc metadata
 method=status
 in='<Scheduler Ping=""/>';
run;

Example 6: Get Information about the Server’s Alert
Email Notification Subsystem with PROC
METADATA
Features: METHOD=STATUS argument

XML element in the IN= argument
IServer Status method alert email XML elements

Details
The examples in this topic show how to get information about the server’s alert
email notification system with PROC METADATA.

Note: You must submit email server configuration options that are defined in the
omaconfig.xml file to the Status method in the case in which they are defined in the
omaconfig.xml file. Server configuration options have the form <OMA
ATTRIBUTE_NAME="value"/> in the omaconfig.xml file. That is, all text in the XML
elements except the value is specified as uppercase. Other XML elements are not
as restrictive.

List the Configured Alert Email Recipients
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <OMA ALERTEMAIL=" "/> XML element with an empty string. This XML

Example 6: Get Information about the Server’s Alert Email Notification Subsystem with
PROC METADATA 115

element returns the email addresses to which the SAS Metadata Server sends an
email message in the event of a metadata server backup error, a metadata server
recovery error, or an error that prevents the repository data sets from being updated
from the journal.

proc metadata
 method=status
 in='<OMA ALERTEMAIL=""/>';
run;

Example Code 11.3 Log Output from the Alert Email Recipient Request

<OMA ALERTEMAIL="John.Doe@us.company.com"/>

Determine the Alert Email Host
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <OMA EMAILHOST=” “/> XML element with an empty string. This XML
element returns the network address of the enterprise’s SMTP server (for example,
mailhost.company.com).

proc metadata
 method=status
 in='<OMA EMAILHOST=""/>';
run;

Example Code 11.4 Log Output from the Email Host Request

<OMA EMAILHOST="mailhost.unx.sas.com"/>

Determine the Authentication Protocol and
Port Number
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <OMA EMAILAUTHPROTOCOL=" “/> and <OMA EMAILPORT=” “/>
XML elements with empty strings. <OMA EMAILAUTHPROTOCOL=" “/> returns the
authentication protocol for SMTP that is sent by the SAS Metadata Server. Valid
values are LOGIN or NONE. <OMA EMAILPORT=” “/> returns the port number that
is used by the SMTP server that is configured in the EMAILHOST attribute.

proc metadata
 method=status

116 Chapter 11 / METADATA Procedure

 in='<OMA EMAILAUTHPROTOCOL=" "/><OMA EMAILPORT=" "/>';
run;

Example Code 11.5 Log Output from the Email Port and Authentication Protocol Request

<OMA EMAILPORT="25"/><OMA EMAILAUTHPROTOCOL="LOGIN"/>

Determine the Frequency of Alert Email
Reminders and the Termination Grace
Period
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <OMA ALERT_CONDITION_FREQUENCY=” “/> and <OMA
ALERT_CONDITION_GRACE_PERIOD=” “/> XMLelements with an empty string.
<OMA ALERT_CONDITION_FREQUENCY=” “/> returns the amount of time that will
elapse before the initial and subsequent alert email reminders about the alert
condition are sent. The time value is returned in seconds. The default value is
21,600 seconds (six hours). The <OMA ALERT_CONDITION_GRACE_PERIOD=”
“/> XML element returns the amount of time that the alert condition is allowed to
persist before the SAS Metadata Server shuts itself down. The time value is
returned in seconds. The default value is 259,200 seconds (three days).

proc metadata
 method=status
 in='<OMA ALERT_CONDITION_FREQUENCY=" "/>
 <OMA ALERT_CONDITION_GRACE_PERIOD=" "/>';
run;

Example Code 11.6 Log Output from the Alert Condition Reporting Frequency and Grace
Period Request

<OMA ALERT_CONDITION_FREQUENCY="21600"/>
<OMA ALERT_CONDITION_GRACE_PERIOD="259200"/>';

Check for Alert Email Conditions
Specify the METHOD= argument with the STATUS value. In the IN= argument,
specify the <Scheduler/> XML element and <AlertConditions/> XML subelement to
determine whether an alert condition exists on the specified SAS Metadata Server. If
an alert condition exists, the <AlertConditions/> subelement returns an

Example 6: Get Information about the Server’s Alert Email Notification Subsystem with
PROC METADATA 117

<AlertCondition/> XML element and an <ExpirationTime/> XML element. The
<AlertCondition/> element includes the error and a datetime value representing the
time at which the error occurred. The <ExpirationTime/> element includes the
server’s scheduled termination time. Specify the NOREDIRECT argument to
process the request on the connected server. NOREDIRECT is ignored if it is
specified in a single metadata server configuration.

proc metadata
 metaserver="computer.company.com"
 metaport=8564
 metauser="myid"
 metapass="mypassword"
 method=status
in='<Scheduler><AlertConditions/></Scheduler>'
noredirect;
run;

Example Code 11.7 Log Output When No Alert Condition Is Found

<Scheduler><AlertConditions/></Scheduler>

Example Code 11.8 Log Output When Alert Condition Is Found

<Scheduler><AlertConditions><AlertCondition>At 15May2014:18:19:34 the journal
commit task stopped running.</AlertCondition><ExpirationTime>18May2014:18:33:00
</ExpirationTime></AlertConditions></Scheduler>

Example 7: Get Information about the Server
Cluster with PROC METADATA
Features: METHOD=STATUS argument

METACONNECT=NONE system option
NOREDIRECT argument
OPTIONS="<CLUSTER/>” argument
IServer Status method cluster XML elements

Details
The examples in this topic show how to get information about a metadata server
cluster.

118 Chapter 11 / METADATA Procedure

Note: The following examples assume that the default server connection profile has
been activated in the SAS session with the METAPROFILE option (the default
configuration). When this profile is active, the SAS session re-routes server
connections to another server node in the cluster when the node specified in the
metadata system options cannot be found. For more information about the default
server connection profile, see Specifying a Stored Connection Profile.

Note: In the following examples, all server nodes are installed on one computer. As
a result, all nodes have the same host name and are assigned different port
numbers. In a typical clustered metadata server configuration, the server nodes are
installed on different computers; the nodes use the same port number and have
different host names.

Requirement: You must submit server configuration options that are defined in the
omaconfig.xml file to the Status method in the case in which they are defined in the
omaconfig.xml file. Server configuration options have the form <OMA
ATTRIBUTE_NAME=”value”/> in the omaconfig.xml file. That is, all text in the XML
elements except the value is specified as uppercase. Other XML elements are not
as restrictive.

Determine the Maximum Number of Server
Nodes Configured in the omaconfig.xml
File
This request can be submitted from any node in the cluster. The attribute name is
uppercase because the <OMA MAXIMUM_CLUSTER_NODES=""/> XML element
is an omaconfig.xml configuration option.

proc metadata
 method=status
 in='<OMA MAXIMUM_CLUSTER_NODES=""/>';
run;

Example Code 11.9 Log Output from the Maximum Cluster Nodes Request

<OMA MAXIMUM_CLUSTER_NODES="8" />

Determine the Actual Number of Server
Nodes Defined
This request can be submitted from any node in the cluster. The <CLUSTER/> XML
element and its attributes are not case-sensitive. This XML element requests
properties for the cluster’s Defined_Nodes= attribute.

Example 7: Get Information about the Server Cluster with PROC METADATA 119

proc metadata
 method=status
 in='<Cluster Defined_Nodes=" " />';
run;

Example Code 11.10 Log Output from the Cluster Defined Nodes Request

<Cluster Defined_Nodes="4" />

List the Active Servers in the Cluster
This request must be submitted from the master node. The <Cluster/> XML element
in the OPTIONS= argument directs the request to the master node. The <Cluster/>
XML element in the IN= argument specifies the LIST= attribute. The LIST= attribute
returns information about available server nodes. If the OPTIONS= argument was
not specified, the results would include information about two nodes only: the slave
node that processed the request and the master node.

proc metadata
 method=status
 in='<Cluster List=" "/>'
 options='<Cluster/>'
run;

The following output has been reformatted for readability. In the output, the master
node is identified by the attribute Self="Y". The output also includes the Name, Host,
and Port values of each server node. The Name value indicates the order in which
the nodes were defined to the cluster.

Example Code 11.11 Log Output for a Cluster List Request That Went to the Master Node

<Cluster List="4">
<ClusterNode Self="Y" Name="Node_1" Host="a123" Port="3181" Flags="Master
+FirstNode"/>
<ClusterNode Self="N" Name="Node_2" Host="a123.us.company.com" Port="3182"
Flags="Init+Slave"/>
<ClusterNode Self="N" Name="Node_4" Host="a123.us.company.com" Port="3184"
Flags="Init+Slave"/>
<ClusterNode Self="N" Name="Node_3" Host="a123.us.company.com" Port="3183"
Flags="Init+Slave"/>
</Cluster>

Get the Current State of the Cluster
This request must be submitted from the master node. The <Cluster/> XML element
in the OPTIONS= argument directs the request to the master node. The <Cluster/>

120 Chapter 11 / METADATA Procedure

XML element in the IN= argument requests values for the Defined_Nodes=,
Current_Nodes=, Has_First_Node=, and Has_Quorum= cluster attributes. If the
OPTIONS= argument was not specified, the results would include information about
two nodes only: the slave node that processed the request and the master node.

proc metadata
 method=status
 in='<ClusterState/>
 <Cluster Defined_Nodes="" Current_Nodes="" Has_First_Node=""
 Has_Quorum=""/>'
 options='<Cluster/>';
run;

Example Code 11.12 Log Output from Cluster State and Cluster Attribute Requests

<ClusterState>QUORUM</ClusterState>
<Cluster Defined_Nodes="4" Current_Nodes="4" Has_First_Node="Yes" Has_Quorum="Yes"/>

Determine the Cluster ID of the Metadata
Server Cluster
This request can be submitted to any server node in the cluster.

proc metadata
 method=status
 in='<Cluster ClusterGUID=" "/>';
run;

Example Code 11.13 Log Output from a ClusterGUID Request

<Cluster ClusterGUID="33A9C93D-1A94-4DBE-B712-B09B55D57937"/>

Direct a Request to a Specific Server Node
That Is Not the Master Node
This request specifies the server node that it wants to query using PROC
METADATA metadata server connection options. The NOREDIRECT procedure
option prevents the load balancer from rerouting the request to a different server
node. This request checks for error conditions on a specific server node. You might
want to submit the request to all server nodes periodically.

proc metadata
metaserver="computer.company.com"
metaport=8564

Example 7: Get Information about the Server Cluster with PROC METADATA 121

metauser="myid"
metapass="mypassword"
method=status
in='<SynchCheck><Results/></SynchCheck>
 <Scheduler><AlertConditions/></Scheduler>
 <OMA ALERTEMAIL=" "/>
 <OMA ALERT_CONDITION_FREQUENCY=" "/>
 <OMA ALERT_CONDITION_GRACE_PERIOD=" "/>
 <OMA SERVERSTARTPATH=" "/>';
noredirect;
run;

The following output has been reformatted for readability.
<SynchCheck><Results/></SynchCheck> is an IServer Status method XML
element introduced in SAS 9.4M3. It returns the results of a cluster synchronization
check feature that can be invoked in the SAS Management Console Metadata
Manager Analyze/Repair wizard or with the sas-analyze-metadata batch tool. The
results indicate that two repositories were checked: the SAS Metadata Server
Repository Manager and the Foundation repository. Discrepancies are reported in
<Container/> subelements within the <Results/> XML element. The absence of
<Container/> subelements indicates that no discrepancies were found. The
<Scheduler/> XML element lets you know whether any alert conditions are being
managed by the scheduler. This server node does not have any alert conditions in
the queue. The next few elements show the server node has the default alert email
reminder schedule and grace period. The <OMA SERVERSTARTPATH=" "/> XML
element shows the directory from which the server node could be restarted if
necessary. For more information about this feature, see the documentation for the
Analyze/Repair wizard and the sas-analyze-metadata batch tool in SAS Intelligence
Platform: System Administration Guide.

Example Code 11.14 Log Output from the Error Check On the Server Node at Port 8564

<SynchCheck>
<Results>
<Repository Id="A0000001" Name="REPOSMGR"/>
<Repository Id="A5DST1OY" Name="Foundation"/>
</Results></SynchCheck>
<OMA ALERTEMAIL="john.doe@company.com"/>
<OMA ALERT_CONDITION_FREQUENCY="21600"/>
<OMA ALERT_CONDITION_GRACE_PERIOD="259200"/>
<OMA SERVERSTARTPATH="C:\SAS\FoundationServers\Lev4\SASMeta\MetadataServer"/>

122 Chapter 11 / METADATA Procedure

Chapter 12
METALIB Procedure

Overview: METALIB Procedure . 123
What Does the METALIB Procedure Do? . 124

Syntax: METALIB Procedure . 125
PROC METALIB Statement . 126
OMR Statement . 126
DBAUTH Statement . 129
EXCLUDE or SELECT Statement . 130
FOLDER= or FOLDERID= Statement . 131
IMPACT_LIMIT Statement . 132
NOEXEC Statement . 133
PREFIX Statement . 134
REPORT Statement . 134
UPDATE_RULE Statement . 135

Usage: METALIB Procedure . 136
How PROC METALIB Works . 136
What Metadata Is Updated? . 137
Considerations When Creating SASLibrary Objects . 138
SASLibrary Objects and Folders . 138

Results: METALIB Procedure . 139
Introduction . 139
Output Format . 140
Details in the Report . 140

Examples: METALIB Procedure . 140
Example 1: Creating Metadata for a Data Source . 140
Example 2: Synchronizing Metadata with the Data Source 142
Example 3: Selecting Tables for Processing . 145
Example 4: Performing an Impact Analysis . 145
Example 5: Adding a Prefix to New Metadata Names . 149
Example 6: Specifying a Folder for the Metadata . 150

123

Overview: METALIB Procedure

What Does the METALIB Procedure Do?
The METALIB procedure creates, updates, and deletes metadata for data sources
in a SAS library. In this documentation, a data source is referred to as a table,
whether it is a data table or a view.

When you run PROC METALIB, you must specify a SAS library for which a
metadata object is already defined in the SAS Metadata Repository. A SAS library is
represented in a SAS Metadata Repository by a SASLibrary object. You can create
a SASLibrary object by using the New Library wizard in the SAS Management
Console Data Library Manager or in SAS Data Integration Studio. For important
information to create a SASLibrary object, see “Considerations When Creating
SASLibrary Objects” on page 138.

The METALIB procedure performs the following tasks by default:

n creates metadata for any table in the library that does not have metadata.

n updates existing metadata about the tables' columns, keys, indexes, and
integrity constraints to match the current tables in the library.

With optional statements, PROC METALIB can perform the following additional
tasks:

n Delete metadata that has no corresponding table in the library.

n Suppress the metadata add action, the metadata update action, or both.

n Add a prefix to the name of new table objects.

n Specify where new metadata is stored in SAS folders.

n Select or exclude specific tables from processing.

n Perform an impact analysis to see whether any Transformation or Job object is
associated with the tables. (Information maps are modeled with Transformation
objects.)

n Limit the update of table objects that would affect Job or Transformation objects.

n Generate a report of changes that the procedure made to metadata.

n Generate a report of needed metadata changes without making the changes.

n In the generated report, include a list of tables that match the metadata.

For more information, see “How PROC METALIB Works” on page 136.

124 Chapter 12 / METALIB Procedure

Syntax: METALIB Procedure
Restriction: This procedure is not supported in SAS Viya.

Requirements: The SAS Metadata Server must be running.
The specified SAS library must already have a SASLibrary object in the SAS Metadata
Server. For important information to create a SASLibrary object, see “Considerations
When Creating SASLibrary Objects” on page 138.
PROC METALIB assigns libraries in the current SAS session. The library in the
SASLibrary object must be accessible to the SAS session from which the procedure is
submitted for the procedure to work.
If the data source is ADABAS, you must set the META_ADABAS environment variable to
1.
A user must have WriteMetadata permission to the SAS Metadata Repository and
WriteMemberMetadata permission to the target SAS folder to create metadata. In
addition, the user must have ReadMetadata permission to update metadata.

PROC METALIB;
OMR <=> (library-identifier <server-connection-arguments>);
<DBAUTH (DBUSER=userid DBPASSWORD=password);>
<EXCLUDE <=> (table-specification(s));>
| <SELECT (table-specification(s) <READ=read-password>;>
<FOLDER= "/pathname";> | <FOLDERID= "identifier.identifier";>
<IMPACT_LIMIT = n;>
<NOEXEC;>
<PREFIX <=> text;>
<REPORT <<=> (report-arguments)>;>
<UPDATE_RULE <=> (<DELETE> <NOADD> <NOUPDATE>);>

Statement Task Example

PROC METALIB Create and update metadata in the SAS
Metadata Repository to match the data source

Ex. 1

OMR Specify the target library and connection
parameters for the SAS Metadata Server

Ex. 1

DBAUTH Specify database credentials to authenticate to
the database.

EXCLUDE or SELECT Exclude or select a table or a list of tables for
processing

Ex. 3

FOLDER= or
FOLDERID=

Specify where new metadata is stored in SAS
folders

Ex. 6

Syntax: METALIB Procedure 125

Statement Task Example

IMPACT_LIMIT Specify the maximum number of Job or
Transformation objects that can be affected by
updates to table objects

Ex. 4

NOEXEC Suppress the metadata changes from being
made

Ex. 4

PREFIX Specify a text string to add to the beginning of
the names of new table objects

Ex. 5

REPORT Create a report that summarizes metadata
changes

Ex. 2

UPDATE_RULE Override the default add, delete, and update
behavior

Ex. 2

PROC METALIB Statement
Creates and updates metadata in the SAS Metadata Repository to match the data source.

Syntax
PROC METALIB;

Details
The PROC METALIB statement invokes the METALIB procedure. Secondary
statements identify the target SAS library and the specific actions that you want to
perform. For processing details, see “How PROC METALIB Works” on page 136.

OMR Statement
Specifies the target SAS library and optional connection parameters for the SAS Metadata Server.

Syntax
OMR <=> (library-identifier <server-connection-arguments>);

126 Chapter 12 / METALIB Procedure

Required Argument
library-identifier

specifies a SASLibrary object, which defines a SAS library, from the SAS
Metadata Repository. The SASLibrary object can be identified using any of the
following forms:

LIBID=<">identifier<">
specifies the 8-character metadata identifier of the SASLibrary object that
represents the library. The 8-character metadata identifier is the second half
of the 17-character identifier. For more information, see “What Is a Metadata
Identifier?” on page 13 and “Obtaining Metadata Names and Identifiers” on
page 13.

LIBRARY=<">name<">
specifies the value in the SASLibrary object's Name attribute.

LIBURI="URI-format"
specifies a URI, which is a standard from SAS Open Metadata Architecture.
For more information, see “What Is a URI?” on page 14.The following URI
formats are supported:

LIBURI="identifier.identifier"
specifies the full 17-character metadata identifier, which references both
the repository and the object. This syntax is equivalent to specifying both
LIBID= and REPID=. An example is liburi="A58LN5R2.A9000001".

LIBURI="SASLibrary/identifier.identifier"
specifies the SASLibrary object type, followed by the full 17-character
metadata identifier. This syntax is equivalent to specifying both LIBID=
and REPID=. An example is liburi="SASLibrary/A58LN5R2.A9000001".

LIBURI="SASLibrary?@attribute='value'"
specifies the SASLibrary object type, followed by a search string.
Examples are liburi="SASLibrary?@libref='mylib'" and
liburi="SASLibrary?@engine='base'".

Requirement The URI must resolve to a single metadata object. When
using an attribute qualifier such as @engine='base', if more
than one Base library is defined in metadata, PROC
METALIB returns WARNING: Multiple metadata objects
found.

Requirement You must enclose the LIBURI= value in quotation marks.

Note SAS Data Integration Studio can process work tables that exist
temporarily in the Work library. The metadata type is WorkTable. Usually,
work tables are not assigned to a library and have no library metadata,
but they do have table and column metadata. A work table that results
from a generated transformation can be dynamic in nature. In other
words, its structure might be modified by the transformation. PROC
METALIB can update the metadata to match the work table. If there is no
library assignment, submit a blank library specification, and identify the
work table with the SELECT statement. Here is an example with a blank
library specification: proc metalib; omr (libid=""
repid="A5O7HLNB"); select ("A5O7HLNB.A9000001"); run;

OMR Statement 127

Optional Arguments
The following server connection arguments establish communication with the SAS Metadata
Server. If you omit these arguments, then the values of the system options are used, or the
values can be obtained interactively. For more information, see “Connection Options ” on
page 38.

PASSWORD="password"
is the password for the authorized user ID on the SAS Metadata Server. If you
do not specify PASSWORD=, the value of the METAPASS= system option is
used. For more information, see “METAPASS= System Option” on page 49. The
maximum length is 256 characters.

Alias METAPASS= or PW=

PORT="number"
is the TCP port that the SAS Metadata Server listens to for connections. This
port number was used to start the metadata server. If you do not specify PORT=,
the value of the METAPORT= system option is used. For more information, see
“METAPORT= System Option” on page 50. The range of allowed port numbers
is 1 to 65535. The metadata server is configured with a default port number of
8561.

Alias METAPORT=

REPID=<">identifier<"> | REPNAME=<">name<">
specifies the repository that contains the SASLibrary object. If you specify both
REPID= and REPNAME=, REPID= takes precedence over REPNAME=. If you
do not specify REPID= or REPNAME=, the value of the METAREPOSITORY=
system option is used. For more information, see “METAREPOSITORY= System
Option” on page 53. The default for the METAREPOSITORY= system option is
FOUNDATION.

REPID=<">identifier<">
specifies an 8-character identifier. This identifier is the first half of the
SASLibrary object's 17-character identifier, and is the second half of the
repository's identifier. For more information, see “What Is a Metadata
Identifier?” on page 13 and “Obtaining Metadata Names and Identifiers” on
page 13.

REPNAME=<">name<">
specifies the value in the repository's Name= attribute. The maximum length
is 256 characters.

Alias METAREPOSITORY=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the SAS
Metadata Server. The value LOCALHOST can be used if the SAS session is
connecting to a server on the same computer. If you do not specify SERVER=,
the value of the METASERVER= system option is used. For more information,
see “METASERVER= System Option” on page 54. The maximum length is 256
characters.

Alias HOST= or IPADDR= or METASERVER=

USER="authorized-user-ID"
is an authorized user ID on the SAS Metadata Server. An authorized user ID has
ReadMetadata and WriteMetadata permission to the specified SASLibrary. It has

128 Chapter 12 / METALIB Procedure

WriteMemberMetadata permission to the SAS folders that are affected by the
update. SAS folders that can be affected by the update include the library's
folder and the table's folder, if the table is in a different folder from the library. For
more information, see SAS Intelligence Platform: Security Administration Guide.
If you do not specify USER=, the value of the METAUSER= system option is
used. For more information, see “METAUSER= System Option” on page 57. The
maximum length is 256 characters.

Alias ID= or METAUSER= or USERID=

DBAUTH Statement
Specifies database credentials to authenticate to the database.

Notes: The behavior of this statement has changed. Beginning in SAS 9.4M6, the credentials in
the DBAUTH statement override any other predefined authentication type. In SAS
releases prior to SAS 9.4M6, the authentication credentials specified in the DBAUTH
statement are overridden in favor of other predefined authentication types.
The DBAUTH statement was introduced in SAS 9.4M3.

Syntax
DBAUTH (DBUSER=userid DBPASSWORD=password);

Required Arguments
DBUSER=<">user-name<">

specifies the name of a database user account that can access the library on the
database.

Note A user name value is changed to uppercase text if it is not enclosed in
quotation marks. If a value is case sensitive or contains special
characters, it has to be enclosed in either single or double quotation
marks.

DBPASSWORD=<">password<">
specifies the password associated with the specified database user account.

Note A password value is changed to uppercase text if it is not enclosed in
quotation marks. If a value is case sensitive or contains special
characters, it has to be enclosed in either single or double quotation
marks.

Tip We recommend that you encode the password before submitting it in the
DBAUTH statement. You can encode the password with PROC
PWENCODE. For more information about PROC PWENCODE, see Base
SAS Procedures Guide.

DBAUTH Statement 129

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Details
Normally, the METALIB procedure uses credentials that are stored in the server
definition that is associated with the specified library to connect to a data source.
The use of metadata-based credentials is desirable because it saves users from
having to know the database user ID and password. It enables administrators to
define additional security beyond what is enforced by the database. Metadata-
based credentials continue to be the recommended mode of data source
authentication.

The DBAUTH statement was initially provided to enable batch programs to supply
the credentials for libraries that have an authentication type of Prompt set in their
server definitions. Normally, when the authentication type is Prompt, the SAS
Metadata Server displays a logon dialog box to prompt users for the credentials.
The DBAUTH statement suppresses the logon dialog box and provides the
credentials programmatically instead. If any stored credentials were found in the
metadata repository, the DBAUTH statement had no effect.

Beginning in SAS 9.4M6, the DBAUTH statement behaves the same way as the
metadata engine’s DBUSER= and DBPASSWORD= options. The database
authentication credentials in the DBAUTH statement override any predefined
authentication types, including credentials that are stored in an authentication
domain.

Here is an example of how the DBAUTH statement is specified:

proc metalib;
 omr(library="oralib_prompt");
 select(dept);
 dbauth(dbuser=scott dbpassword="{SAS002}F77E0C345A42C6A753443DCE");
 run;

EXCLUDE or SELECT Statement
Excludes or selects a table, or a list of tables, for processing.

Requirement: Use either EXCLUDE or SELECT, not both. Use one form of table specification (that is,
either table-name or table-identifier).

Interaction: When you specify a SELECT or EXCLUDE statement, if any table in the selected list has
a foreign key or a unique key that is referenced by a foreign key, be sure to include the
related foreign key and unique key tables in the selected list. Otherwise, the foreign key
definition will not be added or updated in the repository.

Syntax
EXCLUDE<=>(table-specification(s))
| SELECT<=>(table-specification(s) <READ=read-password>);

130 Chapter 12 / METALIB Procedure

Required Argument
(table-specification)

<">table-name<"> <<">table-name-n<">>
is the SAS name of one or more physical data sources in the location that is
referenced by the specified SASLibrary object.

If the underlying engine associated with the SASLibrary object supports case-
sensitive identifiers and any of the listed table names contains mixed-case
elements or special characters, you must enclose each table name in
quotation marks. Otherwise, SAS treats the table name as uppercase. In the
following example, all of the values must be enclosed in quotation marks if
you want the casing of the table names preserved. If the values were not
enclosed in quotation marks, they would be uppercase as TAB1, TAB2,
TAB3, and TABLE4.

select ("tab1" "tab2" "tab3" "Table4");

<">reposid.tableid<">
is the full 17-character metadata identifier of a PhysicalTable object. The
identifier is valid for SELECT, but not for EXCLUDE. For more information,
see “What Is a Metadata Identifier?” on page 13 and “Obtaining Metadata
Names and Identifiers” on page 13. Quotation marks are optional.

Note: SAS Data Integration Studio can process work tables that exist
temporarily in the Work library. See the note about a blank library specification at
“OMR Statement” on page 126.

Optional Argument
read-password

is the READ password, if any, that was previously assigned to the table. For
information about file protection, see SAS Language Reference: Concepts. The
following example specifies a READ password for tab1:

select ("tab1" read=mypwd "tab2" "tab3" "Table4");

FOLDER= or FOLDERID= Statement
Specifies where new metadata is stored in SAS folders.

See: “Example 6: Specifying a Folder for the Metadata” on page 150

Syntax
FOLDER = "/pathname" | FOLDERID = "identifier.identifier";

FOLDER= or FOLDERID= Statement 131

Required Arguments
FOLDER= "/pathname"

is the pathname to an existing folder in the SAS folder tree. If the specified folder
does not exist, or if the name of the folder is misspelled, PROC METALIB returns
an error. The pathname begins with a forward slash and is relative to the branch
of the folder tree in which the folder resides. Here is an example:

folder="/User Folders/MyUserID/My Folder/Test";

Restriction The pathname cannot have more than nine nested subfolders and
cannot exceed 512 characters in length.

Requirement The metadata server interprets a parenthetical phrase that
appears at the end of the path specification to be the name of a
valid metadata object type. Include a slash (/) at the end of the
path specification when it includes a value enclosed in
parentheses. For example:

folder="/SharedData/Schemas/par(en)/";

FOLDERID= "identifier.identifier"
is the full 17-character metadata identifier of the Tree object that represents the
folder. Using FOLDERID= is not recommended if you can use FOLDER=. The
FOLDER= syntax is preferable because it shows the location of the folder in
SAS Management Console.

Details
PROC METALIB creates and updates table objects in the folder indicated by the
specified SASLibrary object unless you specify a different folder with the FOLDER=
or FOLDERID= statement. The default location for a SASLibrary object is the
Shared Data folder. When you specify FOLDER= or FOLDERID=, you add or
update the table object in the specified SAS folder instead. Column, ForeignKey,
Index, KeyAssociation, and UniqueKey objects are added or updated in the same
folder as the specified PhysicalTable object. The SASLibrary object remains in its
original folder.

If a table is defined in more than one folder, updating the table object in all of the
folders is recommended. And, you must submit a PROC METALIB step for each
folder. Using the SELECT= statement is recommended to ensure that you update
the correct table. If a table is defined in more than one folder, then you will see
multiple table objects in the Data Library Manager on the Plug-ins tab of SAS
Management Console. The multiple table objects will have the same name, but they
will be in different SAS folder locations. Every table object has a unique metadata
identifier.

IMPACT_LIMIT Statement
Specifies the maximum number of Job or Transformation objects that can be affected by an update to a
table object.

See: “Example 4: Performing an Impact Analysis” on page 145

132 Chapter 12 / METALIB Procedure

Syntax
IMPACT_LIMIT=n;

Required Argument
n

maximum number (an integer) of Job or Transformation objects that can be
affected by an update to a table object. For each table that is analyzed, if the
specified number is exceeded, the table's metadata is not added, updated, or
deleted.

Details
The IMPACT_LIMIT statement is optional. An impact analysis is not performed
unless IMPACT_LIMIT and REPORT are specified.

The recommended usage is as follows:

1 Specify IMPACT_LIMIT=0 with REPORT to determine what tables have
associated Job or Transformation objects.

2 Specify IMPACT_LIMIT=0 with REPORT (TYPE=DETAIL) to identify which type
of object is associated: Job or Transformation.

3 Specify IMPACT_LIMIT with an integer that specifies the number of Job or
Transformation objects found. Any updates to table objects will be made.

IMPACT_LIMIT identifies potential impact only. It does not verify that a Job or
Transformation object was affected, only that it could be affected.

IMPACT_LIMIT identifies only the Job or Transformation objects that can be directly
affected. These objects might contain other objects that could be affected down the
line by the changes, but those objects are not analyzed. If you would like to perform
a more thorough impact analysis, you can use SAS Data Integration Studio.

For more information about Job and Transformation objects, see the online Help in
SAS Data Integration Studio.

NOEXEC Statement
Suppress the metadata changes from being made.

Syntax
NOEXEC;

NOEXEC Statement 133

Details
If you specify NOEXEC and the REPORT statement, you can generate a report of
changes that your request would make to metadata before you commit to making
the changes. The SAS log contains warnings about any tables that have metadata,
but no longer exist in the library.

PREFIX Statement
Specifies a text string to add to the beginning of the name of new table objects.

See: “Example 5: Adding a Prefix to New Metadata Names” on page 149

Syntax
PREFIX <=> text;

Required Argument
<">text<">

is the text string to add. The text string is prepended to the value in the Name
attribute of the current table objects being created. By default, the SAS table
name is stored in a table object’s Name attribute. Defining a prefix modifies the
value in the Name attribute. Together, the length of the SAS table name and the
prefix cannot exceed 60 characters. If the text string includes special characters
or to retain the casing in the string as it is entered, enclose the text string in
quotation marks. Otherwise, the text is converted to uppercase.

REPORT Statement
Creates a report that summarizes metadata changes in the Output window.

Default: TYPE=SUMMARY report

See: “Example 4: Performing an Impact Analysis” on page 145

Syntax
REPORT <<=> (report-arguments)>;

134 Chapter 12 / METALIB Procedure

Optional Arguments
TYPE=DETAIL | SUMMARY

DETAIL
specifies that the report includes all of the information generated by
TYPE=SUMMARY. In addition, the report includes the list of Job and
Transformation objects that are related to the tables that are being
processed.The “IMPACT_LIMIT Statement” statement must also be specified
to include the list of Job and Transformation objects.

SUMMARY
specifies that the report includes information about any metadata changes
that were (or will be) made to the table that is being processed.

When specified with IMPACT_LIMIT, the following occurs:

n Only tables for which Job or Transformation objects are associated are
listed. (This is also known as an impact analysis.)

n No changes are made unless IMPACT_LIMIT is greater than zero.

MATCHING
specifies that the report includes a list of tables whose metadata matches their
data sources (that is, they require no metadata changes). By default, the report
does not include the list of these matching tables, but it does include the number
of matching tables.

Details
The REPORT statement is optional. If it is omitted from the PROC METALIB
request, PROC METALIB writes summary information to the SAS log. Specifying
REPORT without any report arguments causes the output to be written to the
Output window. For more information, see Results: METALIB Procedure on page
139 .

UPDATE_RULE Statement
Overrides one or more of the default add, update, and delete actions.

Requirement: An error is returned if you specify NOADD and NOUPDATE and omit DELETE. The
procedure must have an action to perform if both the add and update actions are
suppressed.

Syntax
UPDATE_RULE <=> (<DELETE> <NOADD> <NOUPDATE>);

UPDATE_RULE Statement 135

Required Arguments
DELETE

specifies to delete a table object in the repository if a corresponding data source
is not found. PROC METALIB ignores table objects that have no corresponding
data sources by default.

NOADD
specifies not to add table objects to the repository. By default, PROC METALIB
creates a new table object for any data source in the library whose SAS name
does not match the name of a table object in the current repository.

NOUPDATE
specifies not to update existing table objects in the current repository to match
the corresponding data sources. PROC METALIB updates existing table objects
to match the corresponding data sources by default.

Usage: METALIB Procedure

How PROC METALIB Works
When submitted without options, PROC METALIB compares the SAS tables in the
SAS library indicated by the specified SASLibrary object to the table objects in the
SAS folder indicated by the SASLibrary object. If you did not specify a SAS folder
when defining the SASLibrary object, the Shared Data folder is used. You can
request that the procedure compare the SAS tables to the objects in a different SAS
folder by using the FOLDER statement.

The procedure compares all tables in the SASLibrary to all table objects in the folder
by default. You can limit processing to specific tables with the SELECT statement.
You can exclude tables from processing with the EXCLUDE statement.

The procedure performs update processing and add processing only by default. It
performs update processing before it performs add processing. That is, the
procedure compares and updates the table objects that are already in the SAS
folder to the tables in the SAS library. Then, it attempts to create new table objects
for SAS tables that do not have objects in the folder.

The procedure uses the value in the table objects TableName attribute to match the
SAS tables to table objects for update processing. The TableName attribute stores
the SAS table name of the table that the object describes.

The procedure uses the value in the table objects Name attribute for add
processing. The value in a table object’s Name attribute is the same as the value in
the TableName attribute by default (the SAS table name), unless you specify a
prefix with the PREFIX statement when the object is created. The PREFIX
statement adds a text string at the beginning of the table name stored in the Name
attribute. Because add processing looks for a matching SAS table name in the
Name attribute, this is a way to guarantee that a new table object is created for an
object the next time that you submit the METALIB procedure. The PREFIX

136 Chapter 12 / METALIB Procedure

statement gives you the flexibility to create multiple table objects for a given SAS
table in a SAS folder. Use of the TableName attribute for update processing ensures
that all table objects that describe a given SAS table in a folder are updated.

You can request that the procedure delete table objects for which a corresponding
SAS table no longer exists by using the UPDATE_RULE statement and specifying
the DELETE option. When the UPDATE_RULE is DELETE, this delete process
precedes the default update and add processes.

You can suppress one of the default update or add processes at any time by
specifying NOUPDATE or NOADD in the UPDATE_RULE statement. Do not specify
both options at the same time unless you also specify DELETE. Otherwise, the
procedure has nothing to do.

PROC METALIB writes summary information to the SAS log by default. You can
request that the information be written to the Output window by specifying the
REPORT statement without options. The summary information notes which tables
were updated, added, and deleted, and the number of table objects that did not
require a metadata update. A MATCHING option includes the names of the table
objects that did not require metadata changes in the summary report. A DETAIL
option prints information about Job or Transformation objects that can be affected by
an update to a table object when the IMPACT_LIMIT statement is specified with the
REPORT statement. If you specify the NOEXEC statement and the REPORT
statement, you can generate a report of changes that your request makes to
metadata before you commit to making the changes. The SAS log contains
warnings about any tables that have metadata but no longer exist in the library.

What Metadata Is Updated?
A SAS table object consists of objects of the following SAS Metadata Model
metadata types: PhysicalTable, Column, Index, UniqueKey, ForeignKey, UniqueKey,
and KeyAssociation. Each is updated, as appropriate to describe any given SAS
table, with these exceptions:

n PROC METALIB does not create Index, UniqueKey, and ForeignKey metadata
objects for external databases that are accessed with the SAS/SHARE server.

n PROC METALIB does not create metadata for indexes on which expressions are
defined. When an expression is defined on an index, the index is ignored. Table
metadata is created without metadata for the index.

PROC METALIB populates the PhysicalTable ID, Name, Desc, IsDBMSView,
MemberType, PublicType, TableName, and MetadataCreated attributes when it
adds a table object. Additional attributes might be populated for a table object if the
table object was created or updated by another mechanism. For example, a table
object created by the SAS Import wizard might populate additional attributes. PROC
METALIB preserves the additional attributes populated or updated by other
mechanisms in its update processing.

Beginning with SAS 9.4M2, the procedure does not presume that a table object will
always be updated with the SASLibrary object that was used to create it. When
invoked on an existing table object, the procedure checks the table object’s library
ownership. The library that owns a table object is identified in the PhysicalTable
object’s TablePackage association. If the SASLibrary object that is being used to
update the table object is different from the SASLibrary object that was used to
create the table object, the TablePackage association is updated with information
about the new library. This approach provides flexibility for exporting and importing

Usage: METALIB Procedure 137

data between different servers. In this way, a Base SAS table that was exported to
Oracle can be updated to reflect that the source library is now an Oracle library.

PROC METALIB imports column attributes to the table object, except the
DBSASTYPE data set option setting, to match the columns in the SAS table. You
can manually adjust a column's attributes using SAS Management Console or SAS
Data Integration Studio, and the metadata LIBNAME engine uses the modified
attributes. However, if you do this, you must manually adjust the column’s attributes
after each run of PROC METALIB or exclude tables whose attributes you have
manually modified from update processing. Otherwise, the updates are lost in the
update process.

For more information about the SAS Metadata Model metadata types that make up
a table object, see their descriptions in the SAS Metadata Model: Reference.

Considerations When Creating SASLibrary Objects
Here are some important considerations when creating SASLibrary objects:

n When you create a SASLibrary object in SAS Management Console or SAS
Data Integration Studio, choose the resource template that is specific to the type
of data source library that you are creating. For example, use the SAS BASE
Library template, or the template for the specific database library. Do not use
the Pre-assigned Library template. Library definitions created with the Pre-
assigned Library template cannot be assigned using metadata.

n To pre-assign the SAS library described in the resource template, select the This
library is pre-assigned check box on the Advanced tab of the resource
template, and then select the pre-assignment type By Native Engine. PROC
METALIB might fail if the library is pre-assigned with the By Metadata Engine
pre-assignment type. The METALIB procedure gains access to table data from
the assigned library. When the pre-assignment type is By Metadata Engine, the
procedure can access only tables that are already described by metadata, and
only as the tables are described. The existing metadata cannot be updated, and
no new table objects can be added. For PROC METALIB to create and update
metadata, it must have access to the physical tables in the library.

See SAS Intelligence Platform: Data Administration Guide for detailed instructions
on how to create a SASLibrary object.

SASLibrary Objects and Folders
PROC METALIB creates table objects in the folder indicated by the specified
SASLibrary object unless you specify a different folder with the FOLDER= or
FOLDERID= statement. If a folder is not specified in the SASLibrary object, the
default location is the Shared Data folder.

If you choose to create table objects in more than one folder, be aware that you
need to run PROC METALIB on each folder to update the metadata. PROC
METALIB maintains a separate set of table objects for each folder.

Table object names within a folder must be unique. A folder is not limited to table
objects from a single library. You can register tables from different libraries in the
same folder as long as the table names are unique.

138 Chapter 12 / METALIB Procedure

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

To ensure that a table name is unique within a folder or across multiple folders, you
can use the PREFIX statement. The PREFIX statement enables you to add a string
value to the beginning of table object name to make the metadata name unique. If
you rename a table object in SAS Management Console, the name is not preserved
the next time you run PROC METALIB.

For more information, see “Example 6: Specifying a Folder for the Metadata” on
page 150. Also see “FOLDER= or FOLDERID= Statement” on page 131.

Results: METALIB Procedure

Introduction
By default, regardless of whether you specify the REPORT statement, the METALIB
procedure writes a summary to the SAS log of changes that were made to the
metadata. Here is an example:

NOTE: A total of 10 tables were analyzed for library "mylib".
NOTE: Metadata for 2 tables was updated.
NOTE: Metadata for 0 tables was added.
NOTE: Metadata for 7 tables matched the data sources.
NOTE: 1 other tables were not processed due to error or UPDATE_RULE.

If you specify the REPORT statement, a detailed report is written to the SAS Output
window. The report provides the same summary as the SAS log, and also lists the
changes to tables and their Column, ForeignKey, Index, KeyAssociation, and
UniqueKey objects.

Some procedure arguments add information to the report.

n If you specify UPDATE_RULE=(DELETE), the report lists the number of table
objects that were deleted from metadata.

n If you specify the SELECT or EXCLUDE statement, the report lists the number of
tables that were not found in either source (data source or metadata).

n If you specify MATCHING in the REPORT statement, the report lists the tables
that match the metadata.

n If you specify TYPE=DETAIL in the REPORT statement, and you specify the
IMPACT_LIMIT statement, the report lists the number of tables that were not
processed because of large impact. It also lists Job and Transformation objects
that are directly related to the table that is being processed.

If you specify the NOEXEC statement, the procedure does not make any of the
changes to the metadata. The SAS log and Output window summarize the metadata
changes that would have been applied if NOEXEC had not been specified.

For information about REPORT statement syntax, see “REPORT Statement” on
page 134.

Results: METALIB Procedure 139

Output Format
The default report destination is HTML.

Details in the Report
The METALIB procedure updates the attribute values of the table object and the
attribute values of associated objects to match the data in the specified SAS library.
The procedure then produces a report. Most of the report is self-explanatory. Here is
more information about two of the columns in the report:

SAS Name
is the SAS name of the item described by the metadata.

n For an index, this value is the IndexName= attribute.

n For a column, this value is the SASColumnName= attribute.

n For a non-primary UniqueKey, this value is a two-part identifier in the form
SASTableName.data-source-key-name.

n For a primary UniqueKey, this value is a two-part identifier in the form
SASTableName.Primary.

n For a foreign key, this value is a two-part identifier in the form primary-table-
SASTableName.foreign-table-SASTableName.

Change
is a system-generated description of the change that was made. The description
can be a single word, such as “Added” or “Deleted”, or it can be an attribute
name (which indicates that the attribute's value was modified). It can be a
“Column” or a “Column Order” message, followed by the name of the column
that was affected by the change. PROC METALIB changes a table's Columns
association to make the metadata column order match the data source column
order. Affected columns are listed separately in the report. The column order in
the report indicates the new metadata column order.

Examples: METALIB Procedure

Example 1: Creating Metadata for a Data Source
Features: OMR statement with LIBID= argument

REPORT statement

140 Chapter 12 / METALIB Procedure

Details
Note: To read or write a metadata definition, you must first establish a connection to
the SAS Metadata Server. All of the examples in this section assume that a server
connection was previously established by using metadata system options.

This example creates metadata that describes the physical data sources in a new
SAS library in a SAS Metadata Repository. The SAS library must already exist and
contain SAS data. You must have already created a metadata definition for the SAS
library in the SAS Management Console Data Library Manager.

Program
proc metalib;
 omr (libid="AZ00000A");

 report;
 run;

Program Description
Identify the SAS library for which you want to create metadata in the OMR
statement. PROC METALIB creates new metadata and updates any existing
metadata for the SAS library identified in the OMR statement. In this request, the
SASLibrary object is identified in the LIBID= argument by its 8-character metadata
identifier.

proc metalib;
 omr (libid="AZ00000A");

Specify the REPORT statement. The REPORT statement without options creates
a default summary report of the tasks that were performed by PROC METALIB.

 report;
 run;

The summary report shows that PROC METALIB added metadata definitions for
seven tables.

Example 1: Creating Metadata for a Data Source 141

Output 12.1 Summary of New Table Metadata Created by PROC METALIB

Example 2: Synchronizing Metadata with the Data
Source
Features: OMR statement

UPDATE_RULE statement with DELETE argument
REPORT statement with MATCHING argument

Details
This example adds, updates, and deletes existing metadata in a SAS library in the
SAS Metadata Repository to match the current data sources in the SAS library.

142 Chapter 12 / METALIB Procedure

Program
proc metalib;
 omr (libid="AZ00000A");

 update_rule=(delete);

 report(matching);
run;

Program Description
Identify the SAS library in the OMR statement. This example specifies the same
library that was in the previous example.

proc metalib;
 omr (libid="AZ00000A");

Specify the UPDATE_RULE statement with the DELETE argument. The
DELETE argument specifies to delete any table object that does not correspond to a
table in the SAS library. The default actions of add and update are also performed.

 update_rule=(delete);

Specify the REPORT statement with the MATCHING argument. The MATCHING
argument causes the report to include a list of tables whose metadata matches the
data source. If you do not specify the MATCHING argument when synchronizing
existing metadata, and if there has been no change to the data source that would
result in adding, updating, or deleting metadata, the REPORT statement returns
only summary statistics.

 report(matching);
run;

The report shows that one table was updated, two tables were added, and six tables
matched the data source.

Example 2: Synchronizing Metadata with the Data Source 143

Output 12.2 Summary of Metadata Updated by PROC METALIB with UPDATE_RULE=(DELETE)

144 Chapter 12 / METALIB Procedure

Example 3: Selecting Tables for Processing
Features: OMR statement with LIBURI= argument

SELECT statement

Details
This example adds or updates metadata for a specific table. The table can be
identified by specifying its table name or metadata identifier.

Select a Table by Name
To select a table by name, specify the value in the SASTableName= attribute of its
table object in the SELECT statement. This table has the value “mytable” in the
SASTableName= attribute. Because the UPDATE_RULE statement is omitted, the
default is to update or add the specified metadata. Therefore, if a table with this SAS
table name does not exist, a new table object is created.

proc metalib;
 omr (liburi="SASLibrary?@name='MyTestLibrary'");
 select (mytable);
run;

Select a Table with Its Metadata Identifier
This syntax is preferred because metadata identifiers are unique. The first part of
the two-part metadata identifier (A7892350) identifies the repository that contains
the table object. The second part (B00265DX) identifies the table object in the
repository.

proc metalib;
 omr (liburi="SASLibrary?@name='MyTestLibrary'");
 select (A7892350.B00265DX);
run;

Example 4: Performing an Impact Analysis
Features: IMPACT_LIMIT statement

REPORT statement
REPORT(TYPE=DETAIL) statement

Example 4: Performing an Impact Analysis 145

Details
The IMPACT_LIMIT statement can be used with the REPORT statement in PROC
METALIB to obtain information about Job and Transformation objects that are
potentially affected by updates to table objects. The statements can be used to
determine what tables have associated Job or Transformation objects, and which
type of object is associated. The tables are not updated unless the IMPACT_LIMIT
statement specifies an integer matching the outstanding number of objects that are
found.

Determine Which Tables Have Associated
Objects
Specify the library that you want to examine in the OMR statement, specify the
IMPACT_LIMIT= statement with a value of 0 (zero), and specify the REPORT
statement. Because the impact limit is set to zero, any impact on a Job or
Transformation object results in an impact limit exceeded entry in the output. Library
AZ000009 has two tables that are potentially associated with a Job or
Transformation object: EMPINFO and SALARY.

proc metalib;
 omr (libid=AZ000009);
 impact_limit=0;
 report;
run;

146 Chapter 12 / METALIB Procedure

Output 12.3 Summary Report of Tables That Have Associated Job or Transformation
Objects

Determine the Type of the Associated
Objects
Specify the library that you want to examine in the OMR statement, specify the
IMPACT_LIMIT= statement with a value of zero, and specify REPORT
(TYPE=DETAIL). The detail report specifies the object’s metadata type and potential
role within the table. The output shows the objects are of type Transformation and
are part of an information map.

proc metalib;
 OMR=(libid=AZ000009);
 impact_limit=0;
 report (type=detail);
run;

Example 4: Performing an Impact Analysis 147

Output 12.4 Detailed Report of Objects Associated with Each Table

Update the Affected Tables
Specify the IMPACT_LIMIT= statement with an integer value to modify the tables.
The integer “2” is specified, because based on the previous example, two table
objects are affected. Also specify the REPORT statement.

proc metalib;
 OMR=(libid=AZ000009);
 impact_limit=2;
 report;
run;

148 Chapter 12 / METALIB Procedure

The report shows that one table was updated and nine tables matched the data
source.

Output 12.5 Report of Changes When IMPACT_LIMIT=2 Is Specified

Example 5: Adding a Prefix to New Metadata
Names
Features: PREFIX= statement

Details
To add a prefix to the name of a new metadata object during an update, specify the
PREFIX statement.

In this example, the user runs an update on December 15, and wants to add that
date to any new metadata object. A new table exists in the SAS library. In the data

Example 5: Adding a Prefix to New Metadata Names 149

source, the table has the SASTableName= value of ABBA. In the metadata, the table
object is named December15ABBA.

Program
Submit the PREFIX statement with PROC METALIB. If any new metadata object is
defined, the metadata name (the Name= attribute) begins with the specified prefix.

proc metalib;
 omr (library="MyTestLibrary");
 select (abba);
 prefix="December15";
 report;
run;

Output 12.6 Prefix on Metadata Name Value

Example 6: Specifying a Folder for the Metadata
Features: FOLDER= statement

150 Chapter 12 / METALIB Procedure

Details
These examples illustrate how PROC METALIB works with folders.

Create Metadata in the Registered Library
Location
If a SAS library named baselib is defined in /My Folder/test, the following PROC
METALIB statement registers the Class table in /My Folder/test. The FOLDER=
statement is not necessary because the library is already located in /My Folder/test.

proc metalib;
 omr(library=baselib);
 select (class);
run;

Create Metadata in a Different Shared
Folder
To create metadata for the Class table in a different folder, use the FOLDER= or
FOLDERID= statement. The FOLDER= statement specifies a different folder
location than the one in which the library is located. The folder must exist. PROC
METALIB does not create it for you. There will be two table objects for the Class
table in SAS library baselib. One definition is associated with the /My Folder/test
location, and one definition is associated with the /Shared Data/Export location.

proc metalib;
 omr(library=baselib);
 folder="/Shared Data/Export";
 select (class);
run;

Create Metadata in a Personal Folder
If a library named oraclelib is defined in /Shared Data, the following request creates
table objects in /My Folder/Oracle. This request assumes the /My Folder/Oracle
folder already exists. PROC METALIB returns an error if a folder of the specified
name cannot be found in the specified location.

proc metalib;
 omr(library=oraclelib);
 folder="/User Folders/MyUserId/My Folder/Oracle";
run;

Example 6: Specifying a Folder for the Metadata 151

152 Chapter 12 / METALIB Procedure

Chapter 13
METAOPERATE Procedure

Overview: METAOPERATE Procedure . 153
What Does the METAOPERATE Procedure Do? . 154

Syntax: METAOPERATE Procedure . 155
PROC METAOPERATE Statement . 155

Usage: METAOPERATE Procedure . 168
How PROC METAOPERATE Works . 168
Metadata Server Configurations and PROC METAOPERATE 168
How PAUSE, RESUME, and REFRESH Affect Repositories 170
Using Backup and Recover Options . 171
Recovery in a Clustered Server Configuration . 173
Changing a Clustered Server to Stand-Alone Mode . 174
Using Alert Email XML Elements . 175

Examples: METAOPERATE Procedure . 176
Example 1: Get the SAS Metadata Server’s Status with PROC METAOPERATE 176
Example 2: Pause and Resume the SAS Metadata Server 178
Example 3: Enable ARM Logging . 179
Example 4: Recover Memory on the Metadata Server . 180
Example 5: Delete All Metadata Records from a Repository 181
Example 6: Test the Alert Email Notification Subsystem with PROC

METAOPERATE . 181
Example 7: Execute Backup and Recover Options in PROC METAOPERATE . . 183
Example 8: Stop One Server in a Metadata Server Cluster 185

153

Overview: METAOPERATE Procedure

What Does the METAOPERATE Procedure Do?
The METAOPERATE procedure enables you to perform administrative tasks in
batch mode that are associated with the SAS Metadata Server. PROC
METAOPERATE performs the following tasks:

n delete, empty, or unregister a SAS Metadata Repository

n pause the metadata server to temporarily change it to a more restrictive state,
and then resume it to the online state

n refresh the metadata server to do the following:

o recover memory

o reload authorization inheritance rules

o enable or disable Application Response Measurement (ARM) logging

o temporarily change the SAS Metadata Server’s alert email system options
and configuration options

o execute an ad hoc server backup

o change the metadata server's backup configuration

o change the metadata server's backup schedule

o recover the SAS Metadata Server from an earlier backup, and perform roll-
forward recovery from the metadata server journal

o terminate the recovery if you need to regain control of the metadata server
during the recovery process

o rebuild or restart the scheduler that executes the server backups

n stop or get the status of the metadata server

Beginning in SAS 9.4, the SAS Intelligence Platform supports single SAS Metadata
Server configurations and clustered SAS Metadata Server configurations. PROC
METAOPERATE has been modified to operate uniformly on all servers in a cluster
by default when a clustered server configuration is detected. The only exceptions
are when a recovery is performed and when the REORG option is selected to regain
unused disk space in repository data sets during a metadata backup. Optional
arguments are available to enable administrators to control client activity on specific
servers within the cluster. Users of the single server configuration are unaffected by
cluster-related defaults. For more information, see “Metadata Server Configurations
and PROC METAOPERATE” on page 168.

The METADATA procedure performs some of the same tasks as PROC
METAOPERATE. For more information, see “Comparison of the METADATA
Procedure and the METAOPERATE Procedure” on page 84.

154 Chapter 13 / METAOPERATE Procedure

Syntax: METAOPERATE Procedure
Restriction: This procedure is not supported in SAS Viya.

PROC METAOPERATE <server-connection-arguments>
ACTION=PAUSE | REFRESH | RESUME | DELETE | EMPTY | STATUS

| STOP | UNREGISTER
<NOAUTOPAUSE>
<NOCLUSTER>
<NOREDIRECT>
<OPTIONS="XML-string">
<OUT=SAS-data-set>;

Statement Task

PROC METAOPERATE Perform administrative tasks associated with a single
SAS Metadata Server or metadata server cluster

PROC METAOPERATE Statement
Performs administrative tasks associated with a single SAS Metadata Server or metadata server cluster.

Syntax
PROC METAOPERATE ACTION=value <options>;

Summary of Optional Arguments
NOAUTOPAUSE
NOCLUSTER
NOREDIRECT
OPTIONS="XML-string"
OUT=SAS-data-set

PROC METAOPERATE Statement 155

Required Argument
ACTION=value

Value specifies the action that you want to perform.

DELETE
removes the specified repository, and removes the repository's registration
from the repository manager. The repository is specified in the
REPOSITORY= server connection argument or the METAREPOSITORY=
system option. To invoke this action, the user must have appropriate
permission to the repository, the repository must be registered in SAS
Management Console as online, and the metadata server cannot be paused
offline. For more information about the permissions needed to delete a
repository, see SAS Intelligence Platform: System Administration Guide. The
“NOAUTOPAUSE” argument is required.

In a clustered server configuration, the DELETE action is executed uniformly
on all servers in the cluster.

EMPTY
removes the metadata records from the specified repository, but does not
remove the repository's registration from the repository manager. The
repository is specified in the REPOSITORY= server connection argument or
the METAREPOSITORY= system option. To invoke this action, the user must
have access permission to the repository, the repository must be registered in
SAS Management Console as online, and the metadata server cannot be
paused offline. The “NOAUTOPAUSE” argument is required. For more
information, see “Example 5: Delete All Metadata Records from a Repository”
on page 181.

In a clustered server configuration, the EMPTY action is executed uniformly
on all servers in the cluster.

PAUSE
The Pause action has two uses:

n The primary use is to downgrade the availability of the SAS Metadata
Server configuration to a specified state. The state is specified in an XML
“<SERVER STATE="ADMIN | OFFLINE | READONLY"” element in the
OPTIONS= argument. For information about the supported state
changes, see “How PAUSE, RESUME, and REFRESH Affect
Repositories” on page 170. If the <SERVER STATE="value"/> XML
element is omitted, the server is paused to an offline state. In an offline
state, the server process continues to exist, but it does not accept client
requests, except for some administrative requests. You might find it more
beneficial to downgrade the server to an ADMIN or a READONLY state.

An XML “<PAUSECOMMENT>text</PAUSECOMMENT>” element can
also be specified in the OPTIONS= argument. <PAUSECOMMENT>
enables you to submit free-form text with the PAUSE action to post a
reason for the service interruption. This text is inserted into a holding area
and is displayed to all SAS Metadata Server callers until the server is
resumed and the text is cleared from the holding area with the RESUME
action. For more information, see “Example 2: Pause and Resume the
SAS Metadata Server” on page 178.

n The second reason to use ACTION=PAUSE is to regain control of the
metadata server in the event that the backup recovery process stops
responding. Specify the “<FORCE/>” XML element in the OPTIONS=
argument with <SERVER STATE="ADMIN"/> and ACTION=PAUSE to

156 Chapter 13 / METAOPERATE Procedure

regain control of the server. The server is paused to an offline state if you
omit <SERVER STATE="ADMIN"/>.

In a clustered metadata server configuration, the Pause action is executed
uniformly on all servers in the cluster.

Before using the <FORCE/> option with Pause, see “Recovery in a Clustered
Server Configuration” on page 173.

REFRESH
affects the metadata server configuration differently depending on the XML
elements that you specify in the OPTIONS= argument. Here are the choices:

n If you specify REFRESH without an XML element or if you specify the
<SERVER/> XML element, the REFRESH action pauses and resumes
the metadata server configuration (in a single step). Do not specify the
STATE= parameter in the <SERVER/> XML element. The REFRESH
action recovers memory on the entire metadata server configuration, and
reloads authorization inheritance rules. For more information, see
“Example 4: Recover Memory on the Metadata Server” on page 180. After
the refresh, all repositories return to their registered access mode. For
more information, see “How PAUSE, RESUME, and REFRESH Affect
Repositories” on page 170.

n With the “<ARM parameter-name="value"/>” XML element specified, the
REFRESH action enables or disables ARM logging, and specifies a
pathname for the ARM log. For more information, see “Example 3: Enable
ARM Logging” on page 179.

n With the “<OMA ALERTEMAILTEST="text"/>” XML element specified, the
REFRESH action sends a test alert email message to the address
configured in the <OMA ALERTEMAIL="email-address"/> option in the
omaconfig.xml configuration file. If the test message is not received, you
can specify one or more of the following XML elements. These XML
elements can be used to change the alert email settings until an alert
email test is successful:“<OMA ALERTEMAIL="email-address(es)"/>”,
“<OMA EMAILAUTHPROTOCOL="NONE | LOGIN"”, “<OMA
EMAILHOST="server-network-address"/>”, “<OMA EMAILID="server-
email-address"/>”, “<OMA EMAILPW="password"/>”, and “<OMA
EMAILPORT="port-number"/>”. For more information, see “Using Alert
Email XML Elements” on page 175.

n With the “<OMA JOURNALPATH="filename"/>” XML element specified,
the REFRESH action specifies a new filename for metadata server
journaling.

Note: This option is valid only when <OMA JOURNALTYPE="SINGLE"/>
is specified in the server’s omaconfig.xml configuration file. Use of the
<OMA JOURNALTYPE=”SINGLE”/> option is discouraged because it
disables recovery roll-forward processing.

n When used with backup-related XML elements, REFRESH enables you to
execute ad hoc backups and modify the default SAS Metadata Server
backup configuration and backup schedule. It also recovers the metadata
server from a previous backup, and rebuilds or restarts the backup
scheduler thread. The following options are available:“<BACKUP
attributes/>” on page 161, “<BACKUPCONFIGURATION attribute(s)/> ”
on page 161, “<RECOVER BACKUPNAME="name" |
BACKUPPATH="pathname" options/>” on page 163, “<SCHEDULE

PROC METAOPERATE Statement 157

EVENT="Backup" WEEKDAYn="time<R>"/>” on page 165, and
“<SCHEDULER/>” on page 165. For more information, see “Using
Backup and Recover Options” on page 171, “Recovery in a Clustered
Server Configuration” on page 173, and “Example 7: Execute Backup and
Recover Options in PROC METAOPERATE” on page 183.

For information about how Refresh options are processed in a clustered
metadata server configuration, see “Metadata Server Configurations and
PROC METAOPERATE” on page 168.

RESUME
returns all servers in the metadata server configuration to the online state and
metadata repositories to their registered state before the Pause. For more
information, see “How PAUSE, RESUME, and REFRESH Affect
Repositories” on page 170 “Example 2: Pause and Resume the SAS
Metadata Server” on page 178.

Any text that was specified in the “<PAUSECOMMENT>text</
PAUSECOMMENT>” XML element by the PAUSE action is cleared.

In a clustered metadata server configuration, the Resume action is executed
uniformly on all servers in the cluster. For more information about SAS
Metadata Server configurations, see “Metadata Server Configurations and
PROC METAOPERATE” on page 168.

You can specify the “<FORCE/>” XML element in the OPTIONS= argument
when using ACTION=RESUME. <FORCE/> has one use: to regain control of
the metadata server configuration during the backup recovery process in the
event that the recovery process stops responding . However, when
<FORCE/> is used with ACTION=RESUME, the server is returned to an
online state, when it might be safer to return to an administrator-only state.
The <SERVER/> XML element is required when <FORCE/> is used.

Before using the <FORCE/> option with RESUME, see “Using Backup and
Recover Options” on page 171 and “Recovery in a Clustered Server
Configuration” on page 173.

STATUS
returns information about the access state and software properties of the
SAS Metadata Server. The properties include the SAS software version,
release number, host operating environment, SAS Metadata Model version
number, and the user ID that started the metadata server. The access state
indicates whether the metadata server is paused or running. For an example
of how the Status action is specified, see “Example 1: Get the SAS Metadata
Server’s Status with PROC METAOPERATE” on page 176.

In a clustered server configuration, status queries are routed to a slave server
that is chosen by the cluster’s load balancer. To get status information for a
specific server in the cluster, specify that server node in the connection
options and specify the NOREDIRECT argument with ACTION=STATUS.

TIP The PROC METAOPERATE STATUS action gets basic
information about the metadata server’s availability. You can obtain
more detailed information by using PROC METADATA with
METHOD=STATUS. For more information, see Chapter 11,
“METADATA Procedure,” on page 87.

158 Chapter 13 / METAOPERATE Procedure

STOP
halts client activity on the metadata server configuration and terminates the
metadata server process(es). In complex environments, the metadata server
shutdown can take a few minutes. Therefore, PROC METAOPERATE might
finish executing before the metadata server configuration finishes its
shutdown. Metadata in repositories is unavailable until the metadata server
configuration is restarted. You cannot restart a metadata server configuration
with PROC METAOPERATE.

In a clustered metadata server configuration, the Stop action is executed
uniformly on all servers in the cluster. To stop a specific server in the cluster,
specify that server in the connection options and specify the NOCLUSTER
argument with ACTION=STOP. For more information, see “Metadata Server
Configurations and PROC METAOPERATE” on page 168.

UNREGISTER
removes the repository's registration from the repository manager, but does
not remove the metadata records from the repository, and does not remove
the repository from disk. The repository is specified in the REPOSITORY=
server connection argument or the METAREPOSITORY= system option. To
invoke this action, the user must have access permission to the repository,
the repository must be registered in SAS Management Console as online,
and the metadata server cannot be paused offline. The “NOAUTOPAUSE”
argument is required.

In a clustered server configuration, it is recommended that you change a
repository to an offline state to make it unavailable instead of using
UNREGISTER.

Requirement You must have the appropriate SAS Administrator role on the
metadata server to execute all actions except STATUS.

Tips Specifying more than one XML element in a PROC
METAOPERATE statement might cause unwanted results. Use
more than one XML element only when specified in the
documentation.

If you use PROC METAOPERATE to delete, empty, or unregister
a project repository, you must first make sure that no metadata is
checked out to that project repository. See SAS Data Integration
Studio documentation for information about unlocking any
checked out objects. Or, you can use SAS Management Console
to delete, empty, or unregister a project repository. SAS
Management Console unlocks any checked-out objects before it
performs the action.

Optional Arguments
NOAUTOPAUSE

NOAUTOPAUSE is required for the DELETE, EMPTY, and UNREGISTER
actions. It is required when the REFRESH action is specified with the
“<BACKUP attributes/>”, “<BACKUPCONFIGURATION attribute(s)/> ”,
“<RECOVER BACKUPNAME="name" | BACKUPPATH="pathname" options/>”,
“<SCHEDULE EVENT="Backup" WEEKDAYn="time<R>"/>”, and
“<SCHEDULER/>” XML elements in the OPTIONS= parameter. It is
recommended with the “<OMA ALERTEMAILTEST="text"/>” option.
NOAUTOPAUSE omits the automatic pause and resume of the metadata server

PROC METAOPERATE Statement 159

when PROC METAOPERATE passes an action to the metadata server. Without
NOAUTOPAUSE, all repositories experience the implicit pause and resume
whenever an action is passed to the server. This can be unwanted because it
makes all repositories temporarily unavailable.

NOCLUSTER
NOCLUSTER is an option that is used with the STOP action in a clustered
metadata server configuration. In a single metadata server configuration,
NOCLUSTER is ignored. NOCLUSTER turns off the default behavior that
causes the STOP action to be executed on all servers in the cluster. It causes
the STOP action to be executed on the connected metadata server only. For
more information, see “Metadata Server Configurations and PROC
METAOPERATE” on page 168. When NOCLUSTER is specified, NOREDIRECT
is executed behind the scenes.

NOREDIRECT
NOREDIRECT is an option that is used with the STATUS action in a clustered
metadata server configuration. In a single metadata server configuration,
NOREDIRECT is ignored. NOREDIRECT temporarily overrides the cluster’s
load balancer so that the status request can be executed only on the metadata
server in the connection options. Use NOREDIRECT with ACTION=STATUS
when you want to get status information about a specific slave server or the
master server. For more information, see “Metadata Server Configurations and
PROC METAOPERATE” on page 168.

OPTIONS="XML-string"
specifies a quoted string that contains one or more XML elements. Some of the
XML elements specify additional parameters for the actions. The OPTIONS=
argument is required for some actions.

Note: To ensure that the XML string is parsed correctly by the metadata server,
you must indicate that quotation marks within the XML element are characters.
You can nest single and double quotation marks, or double and double-double
quotation marks as follows: options='<ARM ARMSUBSYS="(ARM_OMA)"
ARMLOC="myfileref"/>' options="<ARM ARMSUBSYS=""(ARM_OMA)""
ARMLOC=""myfileref""/>"

The XML elements include the following:

<ARM parameter-name="value"/>
is one or more <ARM/> XML elements that specify system options to enable
or disable ARM logging. REFRESH is the most appropriate action to specify
the <ARM/> XML element, but PAUSE and RESUME actions can specify it. If
the metadata server is refreshed or stopped and restarted, ARM parameters
return to the values in the configuration file. For more information, see
“Example 3: Enable ARM Logging” on page 179 . Also see information about
ARM logging in SAS Intelligence Platform: System Administration Guide and
the ARMSUBSYS= and ARMLOC= system options in SAS Interface to
Application Response Measurement (ARM): Reference. An <ARM/> element
can include the following parameters:

ARMSUBSYS="(| OMA)"
enables and disables ARM logging.

ARMLOC="fileref | filename"
specifies a location to which to write the ARM log. If ARM logging is
already enabled, specifying ARMLOC= writes the ARM log to a new
location. Relative and absolute pathnames are read as different locations.

160 Chapter 13 / METAOPERATE Procedure

<BACKUP attributes/>
supported with the REFRESH action, invokes an ad hoc backup of the
metadata server to the location specified in the server’s backup configuration.
The backup is named with a modified date-and-time stamp in ISO 8601
format. For more information, see “Using Backup and Recover Options” on
page 171.

Optional attributes are the following:

COMMENT="text"
accepts a user-specified text string of unlimited length to describe the
reason for the ad hoc backup. This comment is recorded as part of the
backup history. The backup history is visible in the Server Backup node of
the SAS Management Console Metadata Manager, or it can be requested
with PROC METADATA. For more information, see Chapter 11,
“METADATA Procedure,” on page 87.

REORG="Y | N"
specifies whether repository data sets should be rebuilt to release unused
disk space before the backup. The default value is N (No).

CAUTION
The REORG option is not recommended for ad hoc backups
because it interrupts the operation of the metadata server. For more
information, see “<SCHEDULE EVENT="Backup" WEEKDAYn="time<R>"/>”
on page 165.

Note: The REORG option is ignored in a running clustered metadata
server configuration. The REORG option must be run on a metadata
server that is running in stand-alone mode. For more information, see
“Using Backup and Recover Options” on page 171.

<BACKUPCONFIGURATION attribute(s)/>
supported with the REFRESH action, modifies the value of the specified
backup configuration attribute. Backup configuration attributes include:

BackupLocation="directory"
specifies the directory in which to write the metadata server backups. In a
single SAS Metadata Server configuration, the default location is a
Backups subdirectory of the SASMeta/MetadataServer directory. To
create the directory in a location other than MetadataServer or on a
different drive, specify an absolute pathname that is meaningful to the
computer that hosts the metadata server. If the specified directory does
not exist, the metadata server creates it for you. In a clustered SAS
Metadata Server configuration, the backup location is a shared location
that is configured at installation.

RunScheduledBackups="Y | N"
controls the backup scheduler. A value of “Y” enables scheduled backups.
A value of “N” disables them.

DaysToRetainBackups="number"
specifies the number of days to keep backups before they are deleted
from the backup location. The default value is “7”. To never remove any
backups, specify “0” in this attribute. A value of “0” is not advisable except
as a temporary setting.

PROC METAOPERATE Statement 161

<FORCE/>
supported with the PAUSE or RESUME actions, regains control of the
metadata server during the recovery process in the event that the recovery
process stops responding. When used with RESUME, <FORCE/> returns the
server to an online state, where it is available to clients. When used with
PAUSE, you have the option to specify “<SERVER STATE="ADMIN |
OFFLINE | READONLY"” to return the server to the ADMIN state. In the
ADMIN state, you can examine the server for problems before making it
available to clients.

<OMA ALERTEMAIL="email-address(es)"/>
supported with the REFRESH action, temporarily modifies the email
addresses to which the SAS Metadata Server sends an alert email message.
This option is permanently configured in the omaconfig.xml file, but it can be
temporarily modified for the duration of the server session with the REFRESH
action. The configured email recipients can be viewed on the General tab of
the active server’s Properties window in SAS Management Console. Or,
configured email recipients can be listed by issuing the omaconfig.xml option
in PROC METADATA with METHOD=STATUS. To specify more than one
email address, enclose each address in single quotation marks, place a blank
space between each address, and enclose the list in parentheses: for
example, "('Bill@mycompany.com' 'Susan@mycompany.com')". For more
information, see “Using Alert Email XML Elements” on page 175. The
NOAUTOPAUSE argument is recommended with this action.

<OMA ALERTEMAILTEST="text"/>
supported with the REFRESH action, sends a test alert email message to the
address(es) configured in the <OMA ALERTEMAIL="email-address"/> option.
This option is permanently configured in the omaconfig.xml configuration file,
but can be temporarily modified for the duration of the server session with the
REFRESH action. The test email messages are sent to both the permanent
addresses in the omaconfig.xml file and any temporary addresses specified
with the REFRESH action. For more information, see “Using Alert Email XML
Elements” on page 175.

<OMA EMAILAUTHPROTOCOL="NONE | LOGIN"
supported with the REFRESH action, temporarily changes the authentication
protocol for SMTP email that is sent by the SAS Metadata Server. When you
specify the value “LOGIN”, you also need to specify EMAILID and EMAILPW.
The value “NONE” specifies that no authentication protocol is used. This
option is permanently configured in the sasv9.cfg file, but it can be
temporarily modified for the duration of the server session with the REFRESH
action. For more information, see “Using Alert Email XML Elements” on page
175.

<OMA EMAILHOST="server-network-address"/>
supported with the REFRESH action, temporarily changes the network
address of the enterprise’s SMTP server (for example,
mailhost.company.com). This option is permanently configured in the
sasv9.cfg file, but it can be temporarily modified for the duration of the server
session with the REFRESH action. For more information, see “Using Alert
Email XML Elements” on page 175.

<OMA EMAILID="server-email-address"/>
supported with the REFRESH action, temporarily changes the email address
for the FROM field of alert email messages that are sent by the SAS
Metadata Server. The email address can be entered in either of the following
forms: "server-name<user-account@domain>" or "<user-account@domain>".
This option is permanently configured in the sasv9.cfg file, but it can be

162 Chapter 13 / METAOPERATE Procedure

temporarily modified for the duration of the server session with the REFRESH
action. For more information, see “Using Alert Email XML Elements” on page
175.

<OMA EMAILPW="password"/>
supported with the REFRESH action, specifies the logon password to be
used with the email address that you specified in the EMAILID option. The
password should be encoded with PROC PWENCODE. For more information
about PROC PWENCODE, see the Base SAS Procedures Guide. You
should use SAS002 as the minimum encryption level. SAS002 is the
standard SAS proprietary encryption level that is available with PROC
PWENCODE. To specify a higher encryption level, you must have
SAS/SECURE software enabled.

<OMA EMAILPORT="port-number"/>
supported with the REFRESH action, temporarily changes the port number
that is used by the SMTP server that you specified in the EMAILHOST
option. This option is permanently configured in the sasv9.cfg file, but it can
be temporarily modified for the duration of the server session with the
REFRESH action. For more information, see “Using Alert Email XML
Elements” on page 175.

<OMA JOURNALPATH="filename"/>
supported with the REFRESH action, stops writing journal entries to the
metadata server journal file in the current location, and resumes writing
journal entries in a new journal file in the specified physical location. This
option is valid only when the metadata server is configured with <OMA
JOURNALTYPE="SINGLE"/> in the omaconfig.xml configuration file. The
default configuration setting is <OMA
JOURNALTYPE="ROLL_FORWARD"/>, which supports roll-forward recovery
of the server.

<PAUSECOMMENT>text</PAUSECOMMENT>
supported with the PAUSE action, enables you to submit free-form text (for
example, the reason for the pause) into a holding area that will be displayed
to all SAS Metadata Server callers. The text is cleared from the holding area
when the server is resumed with the RESUME action. Quotation marks are
optional around the text.For more information, see “Example 2: Pause and
Resume the SAS Metadata Server” on page 178.

<RECOVER BACKUPNAME="name" | BACKUPPATH="pathname"
options/>

supported with the REFRESH action, recovers the metadata server from the
backup specified in the BACKUPNAME="name" or
BACKUPPATH="pathname" attribute with the specified options.

BACKUPNAME="name"
specifies the name of a backup. Server backups are named with a
modified date-and-time stamp. For information about backup names, see
“Using Backup and Recover Options” on page 171. The server looks for
backups in the backup location specified in the current configuration. To
use a backup from a different directory, either use the BACKUPPATH=
attribute instead of BACKUPNAME=, or specify the BACKUPLOCATION=
attribute with the BACKUPNAME= attribute. The default backup location
is the Backups subdirectory of the SASMeta/MetadataServer configuration
directory.

PROC METAOPERATE Statement 163

BACKUPPATH="pathname"
specifies the absolute pathname to the backup. This option is useful when
the backup is located in a different directory or drive from the backup
location specified in the current configuration.

Optional recovery attributes are as follows:

BACKUPLOCATION="directory"
specifies the name of the directory that contains the backup specified in
the BACKUPNAME= attribute, if the directory differs from the backup
directory specified in the current configuration. The name that you specify
is considered to be relative to the SASMeta/MetadataServer directory.

COMMENT="text"
specifies a user-defined text string to record an explanation for the
recovery. The text string is displayed in the backup history.

PAUSECOMMENT="text"
specifies a user-defined text string that will be displayed as a recovery
notification to clients.

INCLUDEALLCONFIGFILES=" Y | N"
specifies whether to replace configuration files in the server directory with
the configuration files that are in the directory when the backup occurs.
The default value is N (No).

CAUTION
When INCLUDEALLCONFIGFILES="Y", the server.pid file, any recent
changes to the omaconfig.xml file, and files that were added to the
configuration directory after the last backup will be lost. The recovery
overwrites all files in the SASMeta/MetadataServer directory, except the
backup history, backup configuration, and manifests. It replaces them with the
configuration files in the backup. This option should never be set in a
clustered server configuration. The server.pid file from the backup might have
a different PID number than the current server.

ROLLFORWARD="blank | _ALL_ | datetime"
specifies whether the metadata server journal should be used to apply
changes that were made to the server after the backup was taken, and
whether to recover all changes from the journal or only changes up to a
specified point in time.

Omitting this attribute, or specifying it with a blank value specifies not to
recover changes from the journal.

ALL
recovers all changes from the journal.

datetime
recovers changes from the journal up to a specified point in time. The
metadata server log displays changes in server local time. The
ROLLFORWARD= attribute requires input in GMT time. See “Using
Backup and Recover Options” on page 171 for information to convert
server local time values to GMT time.

Note: The <RECOVER/> option is available only on a SAS Metadata
Server that is running in stand-alone mode. The option is ignored when it
is encountered in a running clustered server configuration. For more

164 Chapter 13 / METAOPERATE Procedure

information, see “Recovery in a Clustered Server Configuration” on page
173.

<SCHEDULE EVENT="Backup" WEEKDAYn="time<R>"/>
supported with the REFRESH action, modifies the server backup schedule.

EVENT="Backup"
specifies the event to be scheduled. The valid value is "Backup". The
Event= attribute is required.

WEEKDAYn="time”
specifies the backup schedule. The metadata server supports daily
backups, specified in a weekly schedule where the attribute WeekDay1=
is Sunday, the attribute WeekDay7= is Saturday, and appropriately
numbered WeekDayn= attributes represent the other days of the week.
Backup times are specified in four-digit values based on a 24-hour clock:
for example, 0100 is 1 a.m. and 1300 is 1 p.m. The <SCHEDULE
EVENT="Backup"/> option accepts input in server local time and applies
values in server local time. The default backup schedule specifies
backups Monday through Saturday at 1 a.m. (Deployment backups occur
at 1 a.m. on Sundays.) To change the schedule, specify the appropriate
WeekDayn= attribute with the backup time. The new time overwrites the
old time. To schedule more than one backup in a day, separate the time
values with semicolons: for example, “0100; 1300”. To remove all backups
from a day, specify an empty string.

R
specifies to perform a REORG with a backup. REORG releases unused
disk space from metadata repository data sets before a backup. The
operation is necessary for repository maintenance, but it is time-intensive
and causes the metadata server to be paused. It should not be performed
often.

In a single SAS Metadata Server configuration, the default backup
schedule performs REORG on Monday mornings (WeekDay2="0100R").
The REORG option is ignored in a clustered metadata server
configuration. To run a backup with REORG in a clustered metadata
server configuration, the administrator must stop the cluster and execute
the backup on a server that is running in stand-alone mode. For more
information, see “Changing a Clustered Server to Stand-Alone Mode” on
page 174.

<SCHEDULER/>
supported with the REFRESH action, rebuilds or restarts the backup
scheduler, depending on the XML subelement that is specified in the
<SCHEDULER/> element. The backup scheduler runs continuously from the
time the metadata server is started, and buffers the schedule in 48-hour
increments. The <SCHEDULER/> XML element restores the scheduler in the
event the scheduler is inoperative and backups are not taking place on the
specified schedule. You can issue a STATUS method request through PROC
METADATA to check the health of the scheduler. For more information, see
“Example 5: Get Server Backup Information with PROC METADATA” on page
111. The supported subelements are:

<REBUILD/>
forces the scheduler to rebuild its in-memory linked list of events.

<RESTART/>
causes the current scheduler thread to stop, and then starts a new one.

PROC METAOPERATE Statement 165

<SERVER STATE="ADMIN | OFFLINE | READONLY"
supported with the PAUSE and RESUME actions, the XML element has the
following uses:

n With PAUSE, it is optional and specifies an access state to apply to the
metadata server. If you do not specify the <SERVER STATE="ADMIN |
OFFLINE | READONLY"/> XML element, or if you specify <SERVER/>
without a STATE= parameter, the default behavior is to pause the
metadata server to an offline state. When the server is paused to an
offline state, all repositories are also paused to an offline state.

STATE= enables you to specify these alternative values:

ADMIN
allows only users with administrative status to read and write metadata on the
metadata server.

READONLY
allows Read-Only access to all users.

n With RESUME, the XML element specifies that the action applies to the
metadata server. It is specified without the STATE= parameter (SERVER/)
when the <FORCE/> option is used.

OUT=SAS-data-set
names the output data set. This argument is used with the STATUS action. Other
actions do not create output.

Server Connection Arguments
Server connection arguments establish communication with the metadata server. If you omit
these arguments, then the values of the metadata system options are used or the values can
be obtained interactively. Server connections made with server connection arguments are not
redirected to another server in the cluster when the default server connection profile is used.
If the server specified in the server connection arguments is not available, then the
connection will fail. If connection redirection is important for the request, use metadata
system options to establish communication with the server instead. For more information,
see “Connection Options ” on page 38.

PASSWORD="password"
is the password for the authenticated user ID on the metadata server. If you do
not specify PASSWORD=, the value of the METAPASS= system option is used.
For more information, see “METAPASS= System Option” on page 49. The
maximum length is 512 characters.

Alias METAPASS= or PW=

PORT=number
is the TCP port that the metadata server listens to for connections. This port
number started the metadata server. If you do not specify PORT=, the value of
the METAPORT= system option is used. For more information, see
“METAPORT= System Option” on page 50. The range of allowed port numbers
is 1 to 65535. The metadata server is configured with a default port number of
8561.

Alias METAPORT=

Requirement Do not enclose the value in quotation marks.

166 Chapter 13 / METAOPERATE Procedure

PROTOCOL=BRIDGE
is the network protocol for connecting to the metadata server. If you do not
specify PROTOCOL=, the value of the METAPROTOCOL= system option is
used. For more information, see “METAPROTOCOL= System Option” on page
52. In this release, the only supported value is BRIDGE, which specifies the SAS
Bridge protocol. This is the server default, so there is no need to specify this
argument.

Alias METAPROTOCOL=

Requirement Do not enclose the value in quotation marks.

REPOSITORY="name"
is the name of an existing repository. This value is the repository's Name=
parameter. The REPOSITORY= argument is required when the action is
UNREGISTER, DELETE, or EMPTY. For other actions, if you do not specify
REPOSITORY=, the value of the METAREPOSITORY= system option is used.
For more information, see “METAREPOSITORY= System Option” on page 53.
The default for the METAREPOSITORY= system option is FOUNDATION. The
maximum length is 32,000 characters.

Alias METAREPOSITORY= or REPOS=

SERVER="host-name"
is the host name or network IP address of the computer that hosts the metadata
server. The value LOCALHOST can be used if the SAS session is connecting to
the metadata server on the same computer. If you do not specify SERVER=, the
value of the METASERVER= system option is used. For more information, see
“METASERVER= System Option” on page 54. The maximum length is 256
characters.

Alias HOST= or IPADDR= or METASERVER=

USER="authenticated-user-ID"
is an authenticated user ID on the metadata server. The metadata server
supports several authentication providers. For more information about controlling
user access to the metadata server, see the SAS Intelligence Platform: Security
Administration Guide. If you do not specify USER=, the value of the
METAUSER= system option is used. For more information, see “METAUSER=
System Option” on page 57. The maximum length is 256 characters.

Alias ID= or METAUSER= or USERID=

PROC METAOPERATE Statement 167

Usage: METAOPERATE Procedure

How PROC METAOPERATE Works
The administrator of the metadata server configuration can perform four types of
maintenance with PROC METAOPERATE.

n Control the availability of the metadata server by calling methods in the IServer
server interface of SAS Open Metadata Architecture. Use PAUSE, REFRESH,
RESUME, STATUS, and STOP.

n Destroy or otherwise permanently remove a repository by calling methods in the
IOMI server interface of SAS Open Metadata Architecture. Use DELETE,
EMPTY, and UNREGISTER.

n Manage server backups. Use REFRESH.

n Test and temporarily reconfigure the SAS Metadata Server’s alert email
notification subsystem. Use REFRESH.

Metadata Server Configurations and PROC
METAOPERATE

Beginning in SAS 9.4, the SAS Intelligence Platform supports single SAS Metadata
Server configurations and clustered SAS Metadata Server configurations.

n In a single metadata server configuration, all metadata requests are received
and processed by a single SAS Metadata Server. If this metadata server ceases
to function, metadata processing is unavailable until the metadata server can be
recovered.

n In a clustered metadata server configuration, three or more identical metadata
servers are linked in such a way that provides metadata redundancy. All of the
metadata servers are available for processing requests. If one server becomes
unavailable, its load is transferred to another server.

To ensure consistency among the servers in a clustered metadata server
configuration, PROC METAOPERATE behaves as follows:

n PROC METAOPERATE cannot be used to configure a metadata server cluster
or to permanently add or remove servers from the clustered metadata server
configuration. A metadata server cluster is configured with the SAS Deployment
Wizard at installation. Any additional servers must be added to the cluster with
the SAS Deployment Wizard. Servers are removed from the cluster using the
SAS Deployment Manager.

168 Chapter 13 / METAOPERATE Procedure

n PROC METAOPERATE controls the availability of the cluster of servers as a
whole. The server control actions (for example, PAUSE, RESUME, and STOP)
pause, resume, and stop all servers in the cluster by default.

n A NOCLUSTER argument is supported with the STOP action to enable an
administrator to stop an individual server in the cluster if it needs maintenance.
When NOCLUSTER is specified, the STOP action is executed only on the server
specified in the connection options. A server cannot be started or restarted with
PROC METAOPERATE. For information about how to start a server, see the
SAS Intelligence Platform: System Administration Guide.

For an example of how the NOCLUSTER argument is specified, see “Example 8:
Stop One Server in a Metadata Server Cluster” on page 185.

The cluster remains available as long as it has the quorum. The quorum requires
that at least half of the servers that are defined in the cluster be available to
continue operating. If exactly half of the servers are available, then the server
defined as Node 1 must be among those that are operating. When a quorum is
lost, the cluster makes metadata unavailable to clients until enough servers are
recovered and the quorum is regained.

CAUTION
Before stopping a server node with NOCLUSTER, make sure you have
enough remaining nodes to maintain a quorum. When too many servers
become unavailable in the cluster, the quorum could be lost.

n In a cluster, a load balancer controls server connections. The STATUS action
gets information about whatever server received the request by default. The
server node that you specify in the connection options is unlikely to be the node
that processes the request. You can direct the STATUS action to a specific
server node by specifying the NOREDIRECT argument. When NOREDIRECT is
specified, the request is processed by the server identified in the connection
options.

TIP The PROC METAOPERATE STATUS action returns basic
information about a metadata server’s availability. It does not get any
information about the server cluster or any given server node’s role in the
cluster. You can obtain cluster information by using PROC METADATA
with METHOD=STATUS. For more information, see “Metadata Server
Configurations and PROC METADATA” on page 96.

Here are some other things to know about how PROC METAOPERATE actions and
options operate in a clustered metadata server configuration:

n ACTION=REFRESH options that recover memory on the server and change
alert email settings or the alert email server configuration are executed uniformly
on all servers in the cluster. Modifications to settings are for the duration of the
cluster session. To make the changes permanent, you must modify all of the
servers’ sasv9.cfg and omaconfig.xml files.

n Repository control actions (for example, EMPTY, DELETE, and UNREGISTER)
execute uniformly on all servers in the cluster.

n The server nodes in the cluster have a master-slave relationship.
ACTION=REFRESH options that request server backups back up the master
server. The backups are used by the master server to recover the server nodes
as needed, and they can be used by administrators to return the master server

Usage: METAOPERATE Procedure 169

to a point in time before a transaction occurred that corrupted repository
metadata. For more information, see “Recovery in a Clustered Server
Configuration” on page 173.

n ACTION=REFRESH options that modify the server backup configuration and
backup schedule store the information in a central location. As a result, the
information is available to all of the server nodes for processing queries. Any
server node can take over the backup task should it become the master server.
For information about these options, see “Using Backup and Recover Options”
on page 171.

n ACTION=REFRESH options that enable or disable ARM logging are executed
on the master server.

n The ACTION=REFRESH <RECOVER/> option is available only on a server that
is running in stand-alone mode. For more information, see “Recovery in a
Clustered Server Configuration” on page 173.

n Backups that specify the REORG option must be executed on a SAS Metadata
Server that is running in stand-alone mode.

For more information about administering a clustered metadata server configuration,
see the SAS Intelligence Platform: System Administration Guide.

Users of the single metadata server configuration are not affected by cluster-related
defaults. If cluster-related arguments are specified in a single metadata server
configuration, they are ignored or processed as appropriate for the single metadata
server configuration.

How PAUSE, RESUME, and REFRESH Affect
Repositories

The PAUSE and RESUME actions enable you to temporarily downgrade the
availability of all repositories on a metadata server by specifying a state change for
the server. PAUSE invokes the more restrictive server state. RESUME returns the
server to an ONLINE state.

Important things to know about PAUSE are:

n You cannot change the state of a specific repository with PAUSE. PAUSE affects
all repositories on the server.

n You can never increase the availability of a repository with PAUSE. PAUSE
changes only a repository’s availability if the specified server state is more
restrictive than the repository’s registered access mode.

n A repository’s registered access mode cannot be permanently modified with
PROC METAOPERATE; the downgrade is temporary. You must use SAS
Management Console to permanently modify a repository’s registered access
mode. As an alternative, you can modify the value of a repository’s Access=
attribute by issuing an UpdateMetadata request with PROC METADATA.

An important thing to know about RESUME is:

n A repository’s registered access mode is its persisted state. When RESUME
returns the server to an ONLINE state, each repository is returned to its
registered access mode.

170 Chapter 13 / METAOPERATE Procedure

A metadata repository’s availability during a PAUSE is reported in its PauseState
attribute. The PauseState= value is computed from both the metadata server state
and the repository's registered access mode.

The following grid shows how a repository's PauseState= value is computed from
the repository's access mode (the rows) and the metadata server's state (the
columns). For example, a repository with a registered Read-Only access mode and
an Admin server state has an admin(readonly) pause state.

Table 13.1 How the Server State Affects the Repository State

Registered
Access Mode

Online Server
State

Admin Server
State

Read-Only
Server State

Offline
Server State

online online admin read-only offline

read-only read-only admin(readonly) read-only offline

administration admin admin admin(readonly) offline

offline offline offline offline offline

Notice in the grid that when you use PROC METAOPERATE to pause the metadata
server to an OFFLINE state (which is the default), the repositories are set to an
OFFLINE state. This is because OFFLINE is the most restrictive state.

The REFRESH action is equivalent to a PAUSE to OFFLINE that is immediately
followed by a RESUME. You can REFRESH a specific repository or the server as a
whole. For more information about the tasks that require PAUSE, REFRESH, or
RESUME actions, see SAS Intelligence Platform: System Administration Guide.

Using Backup and Recover Options
A SAS Metadata Server has the ability to back up and recover itself. Backups are
initiated by a dedicated scheduler thread that is started when the metadata server is
started. Backups are executed in a dedicated backup thread that is started as
needed, so that backups do not interrupt the regular operation of the metadata
server. When a server recovery is requested, the recovery process is executed in
the backup thread.

The SAS Metadata Server is configured with a default backup configuration and
backup schedule by the SAS Deployment Wizard. The default backup schedule
performs backups Monday through Saturday at 1 a.m. (Deployment backups occur
at 1 a.m. on Sundays.) Backups are retained for seven days, and run unassisted
unless you modify the default backup schedule. In a single SAS Metadata Server
configuration, the Monday morning backup includes a REORG process that
releases unused disk space from repository data sets. The REORG process
temporarily pauses the server to a read-only state. Therefore, it needs to run when
server activity is low. The REORG option is ignored in the clustered server
configuration. In order to run a backup with REORG in a clustered server
configuration, an administrator must stop the cluster and execute the backup on a
server that is running in stand-alone mode. For more information, see “Changing a
Clustered Server to Stand-Alone Mode” on page 174.

Usage: METAOPERATE Procedure 171

You can modify the default backup configuration and backup schedule in SAS
Management Console by opening the Server Backup node in the SAS Management
Console Metadata Manager (this is the recommended method). Or you can modify
the backup configuration and backup schedule by using PROC METAOPERATE.
You can also perform ad hoc backups and request a recovery using both tools.

PROC METAOPERATE supports two options that are not supported in SAS
Management Console:

n an option to rebuild or restart the scheduler thread in case backups are not
occurring as scheduled. See ACTION=“REFRESH” on page 157 and
“<SCHEDULER/>” on page 165.

n an option to interrupt the recovery process in the event that it stops responding.
See ACTION=“PAUSE” on page 156, ACTION=“RESUME” on page 158, and
“<FORCE/>” on page 162.

For more information about performing metadata server backups, including
integrating server backups with other SAS backups, see the SAS Intelligence
Platform: System Administration Guide.

The recommended tool for performing metadata server recoveries is SAS
Management Console. The recovery feature enables you to restore the metadata
server using a specified backup and supports a ROLL_FORWARD= attribute that
enables you to request roll-forward recovery to a specified datetime value from the
metadata server journal file.

The metadata server log records datetime values in server local time. The
ROLL_FORWARD= attribute of the PROC METAOPERATE <RECOVER
BACKUPNAME="name" | BACKUPPATH="pathname"/> option requires input in
GMT time. Backup names contain information that you can use to convert server
local time values to GMT time values. Backups are named with a date-and-time
stamp in modified ISO 8601 format. The ISO 8601 format is a server local datetime
value that includes the GMT offset at the end of the string. The server modifies the
format in that it changes colons between time values to underscores. For example,
consider the backup name:

2010-09-20T00_59_59-04_00

The numbers preceding the T are the date: September 20, 2010. The numbers
immediately following the T are the server local time (00_59_59). The -04_00 at the
end of the time is the GMT offset. In this case, the backup was made just before 1
a.m. server local time. The minus offset indicates that the time value is four hours
less than GMT. A time zone that is greater than GMT has a plus offset (+07_00).
Use the GMT offset in your backup names to determine how you need to adjust the
input value from the server log.

TIP To avoid having to make the time conversion, you can use SAS
Management Console to perform recoveries. The SAS Management Console
Server Backup Recovery window enables you to specify the roll-forward
value in server local or GMT time.

The following table summarizes the backup-related options that are supported by
PROC METAOPERATE:

172 Chapter 13 / METAOPERATE Procedure

Table 13.2 Summary of Backup and Recover Tasks and Options

Task ACTION= OPTION=

change the default backup
location, retention policy,
or turn off scheduled
backups

REFRESH <BACKUPCONFIGURATION
attribute(s)/>

modify the backup
schedule

REFRESH <SCHEDULE
EVENT="BACKUP"
WEEKDAYn="timevalue"/>

invoke an ad hoc backup REFRESH <BACKUP options/>

recover the server from a
backup if a metadata
update causes
applications to stop
functioning (but the server
is still functioning)

REFRESH Single-server configuration:
<RECOVER
BACKUPNAME="name" |
BACKUPPATH="pathname"
options/>

Clustered server configuration:
See “Recovery in a Clustered
Server Configuration” on page
173.

restart the scheduler
thread

REFRESH <SCHEDULER/>

regain control of the
metadata server during the
recovery process in the
event that the recover
process stops responding

PAUSE or RESUME <FORCE/>

For usage examples, see “Example 7: Execute Backup and Recover Options in
PROC METAOPERATE” on page 183.

For information about how to recover a metadata server or cluster node that is
unresponsive, see “What to Do If the SAS Metadata Server Is Unresponsive” and
“Use Individual Scripts to Operate Servers” in the SAS Intelligence Platform: System
Administration Guide. A metadata server or cluster node is unresponsive if it cannot
be started or does not respond to a PROC METADATA METHOD=STATUS request.

The server’s backup history can be monitored in the Server Backup node of the
SAS Management Console Metadata Manager or by using PROC METADATA. For
more information, see Chapter 11, “METADATA Procedure,” on page 87.

Recovery in a Clustered Server Configuration
In a clustered server configuration, the master server manages restore and
recovery. Any server node can leave and rejoin the cluster at any point in time.

Usage: METAOPERATE Procedure 173

When it rejoins, the master server examines it and either forces it to recover from
the most recent backup, or feeds it the necessary updates from the master's journal
file, without administrative intervention. A slave server is rejected if its cluster GUID
does not match that of the master server.

Should the cluster lose quorum, all server nodes are paused to an offline state until
the administrator can return enough server nodes to service to regain quorum.
These nodes can be existing server nodes that have been repaired, or new nodes.
An administrator can add new server nodes by using the SAS Deployment Wizard.
The master server automatically brings new and recommissioned server nodes up-
to-date, whether they are missing a few transactions or need a complete set of
metadata added. The cluster will be in a STARTING state until enough server nodes
have been updated to meet the quorum requirements. As soon as the cluster
reaches quorum, the available server nodes are changed to an online state. Any
server nodes added after quorum is reached are updated by the master while the
cluster operates.

The only time an administrator needs to restore a cluster is if repository metadata
becomes corrupted. For example, if a large-scale metadata update added metadata
to repositories that caused applications to stop functioning. To recover a cluster in
the case of corrupted metadata, an administrator must stop the cluster, recover one
server in stand-alone mode, and then re-start this one server and other server
nodes in normal (clustered) mode. The first server will become master and will
recover the slave nodes as they join the cluster. For more information, see
“Changing a Clustered Server to Stand-Alone Mode” on page 174.

Changing a Clustered Server to Stand-Alone Mode
In a clustered metadata server configuration, tasks that replace or restructure
repository data sets must be performed when the cluster is stopped and on one
server that is running in stand-alone mode. Examples of tasks that must be run in
stand-alone mode are as follows:

n restoring SAS metadata repositories to an earlier version of metadata

n removing unused disk space from repository data sets by running a backup with
the REORG option

To change a cluster to run in stand-alone mode:

1 Stop the cluster by running PROC METAOPERATE with ACTION=STOP or by
using a script. By default, PROC METAOPERATE stops all servers in the
cluster..

2 Start one server with the -startNoCluster option. For information about starting
a server, see the SAS Intelligence Platform: System Administration Guide.

3 Use SAS Management Console or PROC METAOPERATE to perform the task.

CAUTION
When recovering a server that was started with –startNoCluster, do NOT
check the check box to also restore configuration files. Configuration files
contain host-specific information. Restoring another server’s configuration files can
cause problems. Backing up and restoring configuration files is still supported in a

174 Chapter 13 / METAOPERATE Procedure

single SAS Metadata Server configuration, but it is not supported in a clustered SAS
Metadata Server configuration.

4 After the task is successfully completed, stop the server.

5 Restart the server in normal mode.

6 Start the remaining servers in normal mode.

The first server becomes the master server and recovers the slave nodes as they
join the cluster.

Using Alert Email XML Elements
The REFRESH action supports optional XML elements that can be used to test the
SAS Metadata Server’s alert email notification subsystem. The alert email
notification subsystem sends alert email messages when any of the following occur:

n an alert email test

n a metadata server backup error

n a metadata server recovery error

n an error prevents repository data sets from being updated from the journal

n a slave server fails to initialize or synchronize and shuts itself down.

XML elements are available to send a test alert email message to configured
recipients, to temporarily change the addressees, and to temporarily modify the alert
email server configuration until an alert email can be sent successfully. The
modifications are active for the duration of the server session. To permanently
modify the alert email settings, you must stop the SAS Metadata Server and modify
the options in the appropriate configuration files. Alert email addressees are
permanently configured in the omaconfig.xml file. The alert email server is
permanently configured in the sasv9.cfg file

The following table summarizes alert email testing tasks that can be performed with
PROC METAOPERATE ACTION=REFRESH.

Task OPTION=

Send a test alert email message <OMA ALERTEMAILTEST="text"/>

Specify a different alert email recipient <OMA ALERTEMAIL="email-address"/>

Change the email authentication
protocol

<OMA EMAILAUTHPROTOCOL="LOGIN |
NONE"/>

Change the email server <OMA EMAILHOST="server-network-
address"/>

Change the email port <OMA EMAILPORT="port-number"/>

Usage: METAOPERATE Procedure 175

Task OPTION=

Change the email address in the From
field

<OMA EMAILID="server-email-address"/>

Change the password associated with
the From user address

<OMA EMAILPW="password"/>

For usage examples, see “Example 6: Test the Alert Email Notification Subsystem
with PROC METAOPERATE” on page 181.

To get the current value of the alert email settings, use PROC METADATA. When
you specify METHOD=STATUS, submitting the above-mentioned XML elements in
the IN= argument returns current values for each option. See “Example 6: Get
Information about the Server’s Alert Email Notification Subsystem with PROC
METADATA” on page 115.

Examples: METAOPERATE Procedure

Example 1: Get the SAS Metadata Server’s Status
with PROC METAOPERATE
Features: ACTION=STATUS argument

OUT= argument

Details
These examples use ACTION=STATUS to request basic information about the
configuration and availability of the SAS Metadata Server. They also show how the
default log output compares to the output that can be obtained with the OUT=
argument. The OUT= argument returns the same information in a SAS data set.

To issue more detailed queries about the metadata server's configuration and
availability, use Chapter 11, “METADATA Procedure,” on page 87.

176 Chapter 13 / METAOPERATE Procedure

ACTION=STATUS Argument with No
Other Arguments
By default, the output goes to the SAS log.

proc metaoperate
 action=status;
run;

Example Code 13.1 Status Information That Is Written to the SAS Log

NOTE: Server a123.us.company.com SAS Version is 9.4.
NOTE: Server a123.us.company.com SAS Long Version is 9.04.01M3P10022014.
NOTE: Server a123.us.company.com Operating System is X64_7PRO.
NOTE: Server a123.us.company.com Operating System Family is WIN.
NOTE: Server a123.us.company.com Operating System Version is Service Pack 1.
NOTE: Server a123.us.company.com Client is myuserid.
NOTE: Server a123.us.company.com Metadata Model is Version 16.01.
NOTE: Server a123.us.company.com is RUNNING on 04Nov2014:15:44:40.

ACTION=STATUS with the OUT=
Argument
The OUT= argument directs output to a SAS data set. This data set is created in the
WORK library. PROC PRINT is used to print the contents of the WORK.STATOUT
data set.

proc metaoperate
 action=status
 out=statout;
run;

proc print data=work.statout;
run;

Example 1: Get the SAS Metadata Server’s Status with PROC METAOPERATE 177

Output 13.1 PROC PRINT of Data Set WORK.STATOUT

Example 2: Pause and Resume the SAS Metadata
Server
Features: ACTION=PAUSE argument

OPTIONS= argument with <SERVER STATE=”ADMIN”/> and
<PAUSECOMMENT>text</PAUSECOMMENT>
ACTION=RESUME argument

Note: You must be an administrative user of the metadata server to perform these actions.

Details
In a clustered server configuration, the PAUSE action always pauses all server
nodes in the cluster. The RESUME action executes on all servers in the cluster.

Pause the Metadata Server
The option <SERVER STATE="ADMIN"/> specifies to downgrade the server to an
ADMIN state. If you omit the server <SERVER STATE=“ "/> XML element, the
server is changed to an offline state. <PAUSECOMMENT> enables you to specify a
reason the metadata server is paused. If any user requests the status of the
metadata server, the <PAUSECOMMENT> text is included in the information that is
printed to the log. The server remains in the downgraded state until you issue a
Resume action.

178 Chapter 13 / METAOPERATE Procedure

proc metaoperate
 action=pause
 options="<Server State='ADMIN'/>
 <PauseComment>The server will resume at 2a.m.</
PauseComment>";
run;

Resume the Metadata Server
The RESUME action restores a paused metadata server to the online state. The
RESUME action cannot restart a stopped metadata server.

proc metaoperate
 action=resume;
run;

Example 3: Enable ARM Logging
Features: ACTION=REFRESH argument

OPTIONS= argument with <ARM/>

Note: You must be an administrative user of the metadata server to perform this action.

Details
ARM logging is enabled by specifying ACTION=REFRESH and specifying ARM
system options in an <ARM/> XML element in the OPTIONS= argument.
ARMSUBSYS=(ARM_OMA) specifies to start ARM logging for the metadata server.
The ARMLOC= system option specifies the location and filename for the log file. In
a clustered server configuration, ARM logging is performed on the master server.

Program
proc metaoperate
 action=refresh
 options="<ARM ARMSUBSYS=""(ARM_OMA)"" ARMLOC=""logs/
armfile.log""/>";
run;

Example 3: Enable ARM Logging 179

Example 4: Recover Memory on the Metadata
Server
Features: ACTION=REFRESH argument

OPTIONS= argument with <Server/> only

Note: You must be an administrative user of the metadata server to perform this action.

Details
The Refresh action can be used to recover memory by closing and reopening all
repositories on the server, or by closing and reopening a specific repository. In a
clustered server configuration, the Refresh action always executes on all servers in
the cluster.

Close and Reopen All Repositories
Specify the Refresh action and specify the <Server/> XML element in the
OPTIONS= argument. Closed containers will be reopened as needed in response to
subsequent metadata queries and updates.

proc metaoperate
 action=refresh
 options='<Server/>';
run;

Close and Reopen a Specific Repository
Specify the Refresh action and specify the <Repository/> XML element with the
repository’s ID= value.

proc metaoperate
 action=refresh
 options='<Repository Id="A5H9YT45"/>';
run;

180 Chapter 13 / METAOPERATE Procedure

Example 5: Delete All Metadata Records from a
Repository
Features: ACTION=EMPTY argument

NOAUTOPAUSE argument

Note: You must be an administrative user of the metadata server to perform this action.

Details
Metadata records are deleted from a metadata repository by specifying
ACTION=EMPTY and specifying the repository name in the REPOSITORY=
procedure option. The Empty action deletes metadata records from a specified
repository, but it does not remove the repository's registration from the repository
manager. The Empty action is useful for clearing a repository that will be
repopulated. In a clustered server configuration, the Empty action always executes
on all servers in the cluster.

Note: The NOAUTOPAUSE argument is required with the Empty action.The
NOAUTOPAUSE argument suppresses the automatic pause and resume of the
metadata server that occurs when PROC METAOPERATE passes an action to the
metadata server. The automatic pause and resume is unwanted because it makes
all repositories temporarily unavailable.

Program
proc metaoperate
 action=empty
 repository="MyRepos"
 noautopause;
run;

Example 6: Test the Alert Email Notification
Subsystem with PROC METAOPERATE
Features: ACTION=REFRESH argument

OPTIONS= argument with <OMA ALERTEMAILTEST=”text”/>, <OMA
ALERTEMAIL=”email-address”/>, <OMA EMAILHOST=”server-network-address”/>,
<OMA EMAILPORT=”port-number”/>, <OMA EMAILAUTHPROTOCOL=”value”/>

Example 6: Test the Alert Email Notification Subsystem with PROC METAOPERATE
181

NOAUTOPAUSE argument

Note: You must be an administrative user of the metadata server to perform this action.

Details
The REFRESH action supports options that enable you to test the configuration of
the metadata server’s alert email subsystem. Any modifications that you make to
both the recipients and the alert email server’s configuration are active for the
duration of the server session. You must update the sasconfig.cfg and
omaconfig.xml files to permanently modify the recipients or email configuration.

Note: To permanently modify the recipients or configuration in a clustered server
configuration, you must update the sasconfig.cfg and omaconfig.xml files of all
server nodes in the cluster.

Note: The NOAUTOPAUSE argument is recommended with ACTION=REFRESH.

Send a Test Message To the Configured
Alert Email Recipients
The alert email recipient(s) that are configured in the omaconfig.xml file are
displayed on the General tab of the active server’s Properties window. When you
submit the <OMA ALERTEMAILTEST= “message”/> XML element, if the
addressees do not receive an email message with the specified text from the
metadata server, there is a problem with the email address(es) or the alert email
configuration.

proc metaoperate
 action=refresh
 options='<OMA ALERTEMAILTEST="Please disregard. This is only a
test."/>'
 noautopause;
run;

Output 13.2 Sample Content of a Test Alert Email Message

This is a test of the Refresh method alert email test options.

This email was sent by the Metadata Server running on host a123.us.company.com
using port 8561.
The server directory is 'C:\SAS\BIServer\Lev1\SASMeta\MetadataServer' and the
current log will
typically be found in the 'Logs' directory.

182 Chapter 13 / METAOPERATE Procedure

Send a Test Message to a Different Email
Address
A test message to an email address that is not in the omaconfig.xml is sent by
submitting the <OMA ALERTEMAIL= ” ”/> XML element. If the message is not
received, there is likely a problem with the specified email address or with the alert
email configuration.

proc metaoperate
 action=refresh
 options='<OMA ALERTEMAIL="John.Doe@company.com"/>
<OMA ALERTEMAILTEST="This is a test of the alert email system."/>'
noautopause;
run;

Submit System Options That Temporarily
Change the Alert Email Server
Configuration
Submit email omaconfig.xml elements with ACTION=REFRESH to test email hosts,
ports, and protocols. Continue testing until a working combination is found.

proc metaoperate
 action=refresh
 options='<OMA EMAILHOST="mailserver2.us.company.com"/>
<OMA EMAILPORT="35"/>
<OMA EMAILAUTHPROTOCOL="login"/>
<OMA ALERTEMAIL="MyUserID@us.company.com"/>
<OMA ALERTEMAILTEST="alert email test using mailserver 2 on port
35."/>'
 noautopause;
run;

Example 7: Execute Backup and Recover Options
in PROC METAOPERATE
Features: ACTION=REFRESH argument

OPTIONS= argument with <BACKUP/>, <BACKUPCONFIGURATION/>,
<SCHEDULE/>, and <RECOVER/>

Note: You must be an administrative user of the metadata server to perform these actions.

Example 7: Execute Backup and Recover Options in PROC METAOPERATE 183

Details
In a clustered metadata server configuration, backups run on the master server. All
of the backup configuration files are maintained in a central location, regardless of
the server specified in the server connection parameters (not shown here).

Execute an Ad Hoc Backup of the SAS
Metadata Server
Specify the Refresh action and specify the <Backup/> XML element in the
OPTIONS= procedure option. Use the Comment= attribute of the <Backup/> XML
element to specify a reason for backup.

proc metaoperate
 action=REFRESH
 options=
 "<Backup Comment='Test of backup system.'/>"
 noautopause;
 run;

Modify the Backup Configuration
Specify the Refresh action and specify the <BackupConfiguration/> XML element in
the OPTIONS= procedure option. Within the <BackupConfiguration/> XML element,
specify the configuration attributes that you want to modify. This request changes
the backup retention policy from the default value of 7 days to 4 days.

proc metaoperate
 action=REFRESH
 options=
 "<BackupConfiguration DaysToRetainBackups='4'/>"
 noautopause;
 run;

Modify the Default Backup Schedule
Specify the Refresh action and specify the <Schedule/> XML element in the
OPTIONS= procedure option with the Event= attribute. This example continues
nightly backups. However, they will occur at 2 a.m. instead of 1 a.m.

proc metaoperate
 action=REFRESH
 options=
 "<Schedule Event='Backup' WeekDay2='0200R' WeekDay3='0200'
 WeekDay4='0200' WeekDay5='0200' WeekDay6='0200' WeekDay7='0200'/>"

184 Chapter 13 / METAOPERATE Procedure

 noautopause;
 run;

Recover the Metadata Server
Specify the Refresh action and specify the <Recover/> XML element in the
OPTIONS= procedure option. Within the <Recover/> XML element, specify the
BackupPath= attribute and pathname for the backup that you want to restore. Note
that the <Recover/> option is not supported in a running clustered server
configuration. In a clustered configuration, the option is available only on a server
that is started with the -startNoCluster option.For more information, see
“Recovery in a Clustered Server Configuration” on page 173.

proc metaoperate
 action=REFRESH
 options=
 "<Recover BackupPath='Backups/2010-09-16T16_14_36-05_00'
IncludeAllConfigFiles='N' RollForward='16Sep2010:16:22:30'
PauseComment='The metadata server is being recovered.'
Comment='Recovery from 2010-09-16T16_14_36-05_00'/>"
 noautopause;
 run;

Terminate a Hung Recovery Process
Specify the Pause action and submit the <Server/> and <Force/> XML elements in
the OPTIONS= procedure option. When you terminate a recovery, put the metadata
server in an ADMIN state.

proc metaoperate
 action=PAUSE
 options="<Server State='ADMIN'/><Force/>";
run;

Example 8: Stop One Server in a Metadata Server
Cluster
Features: ACTION=STOP argument

METACONNECT=NONE system option
NOCLUSTER argument

Note: You must be an administrative user of the metadata server to perform this action.

Example 8: Stop One Server in a Metadata Server Cluster 185

Details
When a clustered metadata server configuration is detected, the STOP action (and
all other PROC METAOPERATE actions) are executed uniformly on all of the
servers in the cluster by default. This example shows two ways to stop a specific
server only.

Note: The following examples assume that the default server connection profile has
been activated in the SAS session with the METAPROFILE option. When this profile
is active, the SAS session re-routes server connections to another server node in
the cluster if the node specified in METASERVER= and METAPORT= system
options cannot be found. For more information about the default server connection
profile, see “Specifying a Stored Connection Profile” on page 40.

Stop a Specific Server Node Using
Connection Options
Specify server connection properties for the node that you want to stop as
procedure arguments and specify ACTION=STOP with the NOCLUSTER procedure
option. SAS does not enforce METAPROFILE processing when metadata server
connection values are specified as procedure options. If the node specified in
SERVER= and PORT= cannot be found, the request will fail. NOCLUSTER instructs
the cluster’s load balancer to execute the STOP action only on the node identified in
SERVER= and PORT=.

proc metaoperate
 server="a123.us.company.com"
 port=3182
 user="sasadm@saspw"
 password="adminpw"
 action=stop
 nocluster;
run;

Stop a Specific Server Node Using System
Options
When the server that you want to stop is connected via system options, the
METACONNECT=NONE system option is needed to turn off METAPROFILE
processing. Otherwise, SAS attempts to connect to another server from the cluster if
the server specified in METASERVER= and METAPORT= cannot be found.
NOCLUSTER prevents the reconnection from occurring. Set the METACONNECT=
system option again with a blank value following the request. The

186 Chapter 13 / METAOPERATE Procedure

METACONNECT= system option is needed to reactivate METAPROFILE
processing for subsequent metadata requests.

options metaserver="a123.us.company.com"
 metaport=3182
 metauser="sasadm@saspw"
 metapass="adminpw"
 metaconnect=none;

proc metaoperate
 action=stop
 nocluster;
run;

options metaconnect=" ";

Example 8: Stop One Server in a Metadata Server Cluster 187

188 Chapter 13 / METAOPERATE Procedure

PART 5

DATA Step Functions

Chapter 14
Introduction to DATA Step Functions for Metadata 191

Chapter 15
Understanding DATA Step Functions for Reading and Writing Metadata 195

Chapter 16
DATA Step Functions for Reading and Writing Metadata 217

Chapter 17
Understanding DATA Step Functions for Metadata
Security Administration . 253

Chapter 18
DATA Step Functions for Metadata Security Administration 267

189

190

14
Introduction to DATA Step
Functions for Metadata

Overview of DATA Step Functions for Metadata . 191

Best Practices . 192

Array Parameters . 193

Overview of DATA Step Functions for
Metadata

The metadata DATA step functions provide a programming-based interface to
create and maintain metadata in the SAS Metadata Server. Alternatively, you can
perform metadata tasks by using a product like SAS Management Console.
However, with DATA step functions, you can write a SAS program and submit it in
batch. You can store information in a data set, create your own customized reports,
or use information in an existing data set to update metadata. The DATA step
provides broad flexibility with IF-THEN/ELSE conditional logic, DO loops, and more.

This book documents two categories of DATA step functions:

n DATA step functions for reading and writing metadata

n DATA step functions for metadata security administration

Before you can use the metadata DATA step functions, you must issue the
metadata system options to establish a connection with the metadata server. For
more information, see “Connection Options ” on page 38.

For help with forming your DATA step, see the following references:

n For information about metadata objects, see the SAS Metadata Model:
Reference.

191

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

n For information about administering metadata, see the SAS Intelligence
Platform: System Administration Guide.

n For information about using functions in a DATA step, see SAS Functions and
CALL Routines: Reference.

n For information about DATA step concepts, see SAS Language Reference:
Concepts.

Best Practices
A product like SAS Management Console or SAS Data Integration Studio is
recommended over the DATA step functions for the creation and routine
maintenance of metadata. For more information, see Chapter 2, “Using Language
Elements That Read and Write Metadata,” on page 7. If you must modify the
metadata, run a full backup of the repositories. For more information, see the SAS
Intelligence Platform: System Administration Guide.

When the metadata server returns multiple objects, they are returned in the same
order as they are stored in the metadata server. Therefore, if order is important, your
program must examine the objects before it acts on them.

A best programming practice is to define all variables (for example, with a LENGTH
or FORMAT statement) in the DATA step before you call any functions. Metadata
functions that get values (“METADATA_APPPROP Function” on page 218,
“METADATA_GETNATR Function” on page 227, “METADATA_GETNPRP Function”
on page 231, “METADATA_GETPROP Function” on page 234,
“METADATA_GETURI Function” on page 235, “METADATA_PATHOBJ Function” on
page 242, and “METADATA_RESOLVE Function” on page 245) store retrieved
metadata values in a SAS character variable. There are a series of return code
values that indicate either normal completion (0) or some error (-1, -2, or -3). When
the data to be retrieved is longer than the declared length of the character variable
to receive it, the data is truncated, and the return code is still 0. Be careful to specify
an appropriate length for the character variable to be sure you get all of the data.
The maximum length for a character variable is 32,767.

For performance reasons, metadata objects are cached by URI. If an object name
includes special characters, you should encode the object name with the
URLENCODE function before using the metadata DATA step functions. When the
URI is created, the metadata DATA step logic decodes reserved URL characters,
which can change the object name. In the following example, the URLENCODE
function encodes the table name “J#1% 2” before calling the METADATA_DELOBJ
function:

data _null_;
 tabname= urlencode('J#1% 2');
 put tabname=;

 rc=metadata_delobj("omsobj:PhysicalTable?PhysicalTable[@SASTableName='" ||
 strip(tabname) || "'][TablePackage/SASLibrary[@Name?'BASE_PC']]");
 put rc= ;

run;

192 Chapter 14 / Introduction to DATA Step Functions for Metadata

Note: If your metadata object name contains embedded blanks, make sure that the
object name in the DATA step has the same number of blanks.

To refresh the metadata object with the most recent data from the metadata server,
purge the URI with the “METADATA_PURGE Function” on page 244.

For best performance, always resolve your URI into an ID instance. For example, if
you make several function calls on the object “OMSOBJ:LogicalServer?
@Name='foo '”, first use the “METADATA_RESOLVE Function” on page 245 or
“METADATA_GETNOBJ Function” on page 229 to convert the object to
“OMSOBJ:LogicalServer\A57DQR88.AU000003”. URIs in the ID instance form can
fully exploit object caching and usually require only one read from the metadata
server.

Array Parameters
Several of the DATA step functions use two-dimensional arrays for input or output.
The arrays enable applications to move information in and out of the metadata
server with fewer calls. However, the DATA step is not two-dimensional, so the
following conventions enable you to handle these multiple-row arrays:

n For functions that return arrays, the function asks the metadata server to return
only one row (or a specific row) of an output array. The output array is generally
kept in an object cache that lasts only as long as the DATA step. The key to the
cache is the uri argument, and the key to the row is the n argument. When you
submit the function, it checks whether information from the output array already
exists in the cache and, if so, returns the information from the cache. If the
information does not exist in the cache, the function calls the metadata server to
fill the cache. You can use the n argument to iterate through the rows of the
array; see how n is used in “Examples: DATA Step Functions for Reading
Metadata” on page 198 and “Examples: DATA Step Functions for Metadata
Security Administration” on page 256.

n The functions that input arrays are similar to the functions that return arrays, but
the array is not kept in an object cache. Rather than iterating with an n argument,
you specify the multiple values in a comma-delimited list. In some functions, you
submit two values that must be in parallel. In other words, for a name, value pair,
if you specify three name arguments, then you must specify three value
arguments.

For more information about DO loops and array processing in a DATA step, see
SAS Language Reference: Concepts.

Array Parameters 193

194 Chapter 14 / Introduction to DATA Step Functions for Metadata

15
Understanding DATA Step
Functions for Reading and
Writing Metadata

What Are the DATA Step Functions for Reading and Writing Metadata? 195

Referencing a Metadata Object with a URI . 197

Comparison of DATA Step Functions to Metadata Procedures 198

Examples: DATA Step Functions for Reading Metadata . 198
Overview . 198
Metadata Access Overview . 199
Featured Functions . 199
Featured Metadata Types and Associations . 200
Example: Listing Libraries and Their Associated Directory or Database Schema . 200
Example: Listing Libraries and Their Server Contexts . 203
Example: Listing Logins and Their Associated Identities and

Authentication Domains . 207
Example: Listing User Group Memberships . 210
Example: Listing Users and Their Logins . 213

What Are the DATA Step Functions for
Reading and Writing Metadata?

These DATA step functions enable an administrator to set or return information
about attributes, associations, and properties from metadata objects.

195

Table 15.1 Metadata DATA Step Functions for Reading and Writing Metadata

Name Description

“METADATA_APPPROP Function” on
page 218

Returns the value of the specified
property from the specified
SoftwareComponent or
DeployedComponent object.

“METADATA_DELASSN Function” (p. 220) Deletes all objects that make up the
specified association

“METADATA_DELOBJ Function” (p. 222) Deletes the first object that matches the
specified URI

“METADATA_GETATTR Function” (p. 223) Returns the value of the specified
attribute for specified object

“METADATA_GETNASL Function” (p. 225) Returns the nth association of the
specified object

“METADATA_GETNASN Function” (p. 226) Returns the nth associated object of the
specified association

“METADATA_GETNATR Function” (p. 227) Returns the nth attribute on the object
specified by the URI

“METADATA_GETNOBJ Function” (p. 229) Returns the nth object that matches the
specified URI

“METADATA_GETNPRP Function” (p. 231) Returns the nth property of the specified
object

“METADATA_GETNTYP Function” (p. 233) Returns the nth object type on the
metadata server

“METADATA_GETPROP Function” (p. 234) Returns the specified property of the
specified object

“METADATA_GETURI Function” (p. 235) Returns a URL for the application
described by the specified
SoftwareComponent object.

“METADATA_NEWOBJ Function” (p. 238) Creates a new metadata object

“METADATA_PATHOBJ Function” (p. 242) Returns the Id and Type attributes of the
specified folder object

“METADATA_PAUSED Function” (p. 244) Determines whether the metadata server
is paused

“METADATA_PURGE Function” (p. 244) Purges the specified URI

196 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

Name Description

“METADATA_RESOLVE Function” (p. 245) Resolves a URI into an object on the
metadata server

“METADATA_SETASSN Function” (p. 247) Modifies an association list for an object

“METADATA_SETATTR Function” (p. 249) Sets the specified attribute for the
specified object

“METADATA_SETPROP Function” (p. 250) Sets the specified property for the
specified object

“METADATA_VERSION Function” (p. 252) Returns the metadata server model
version number

Referencing a Metadata Object with a
URI

When you use a metadata DATA step function for reading and writing metadata, you
specify an object by using a URI, which is a concept from SAS Open Metadata
Architecture. For more information, see “What Is a Metadata Identifier?” on page 13
and “What Is a URI?” on page 14. Here are examples for the DATA step functions
for reading and writing metadata:

ID
omsobj: A57DQR88.AU000003

type/ID
omsobj: LogicalServer/A57DQR88.AU000003

type?@attribute='value'
omsobj: LogicalServer?@Name='SASApp - OLAP Server'

Notes:

n The OMSOBJ: prefix is not case sensitive.

n Escape characters are supported with the %nn URL escape syntax. For more
information, see the URLENCODE function in SAS Functions and CALL
Routines: Reference.

Referencing a Metadata Object with a URI 197

Comparison of DATA Step Functions to
Metadata Procedures

The METADATA procedure can perform some of the same tasks as the DATA step
functions for reading and writing metadata. Both language elements can query
metadata for reports, or make changes to specified objects.

PROC METADATA can submit any method that is supported by the DoRequest
method of the SAS Open Metadata Interface, including all methods of the IOMI
class, and the Status method of the IServer class. PROC METADATA produces
XML output. By using the XML LIBNAME engine and ODS, you can create reports.

In general, the DATA step functions perform the same tasks as the PROC
METADATA methods. However, with the DATA step functions, you do not have to
understand the XML hierarchy. You can create the same type of ODS reports as you
can with PROC METADATA. Instead of writing the output to an XML data set, you
use the DATA step to create an output SAS data set directly. See how these two
examples create similar reports from their output: “Example: Creating a Report with
the DATA Step” on page 21 and “Example: Creating a Report with the METADATA
Procedure and the XML Engine” on page 16.

Examples: DATA Step Functions for
Reading Metadata

Overview
This section describes how to use SAS metadata DATA step functions to identify
and track metadata that describes data libraries and users. The examples show how
to:

n list the SAS libraries that are defined in metadata

n list the servers that are used to access the libraries

n list the logins defined on the system and their associated user identities and
authentication domains

n list user group assignments

n list the logins used by metadata identities

Because these examples do not create metadata, they can be run on a production
metadata server. However, they must be executed by a user who has authorization
to the metadata, such as the SAS Administrator.

198 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

Metadata Access Overview
There is no need to know the physical location of metadata to access it. All access
to metadata is controlled by the SAS Metadata Server. To use the metadata server,
a program must establish a connection to it. In a SAS program, you establish a
connection by specifying metadata system options. For information about the
metadata server connection system options, see “Overview of System Options for
Metadata” on page 37.

Once a server connection is established, communicating with the metadata server
involves defining variables for function arguments and issuing metadata DATA step
functions. Use the FORMAT or LENGTH statement to define argument variables.
Use the KEEP statement to specify which variables to include in the output data set.
You should be familiar with the SAS Metadata Model metadata types that represent
entities that you want to query, and the properties defined for each metadata type.

The SAS metadata DATA step functions use a Uniform Resource Identifier (URI)
argument to access metadata objects. The preferred URI forms are:

 “omsobj: type/ID”

or

“omsobj: type?@attribute='value'”

type is the name of the metadata type that represents the entity in the SAS
Metadata Model. The ID value or attribute= ‘value’ pair is used as a filter to locate
the objects that meet the criteria.

In the examples that follow, the following URI is used to request all objects of the
specified type:

"omsobj:type?@Id contains '.'"

The URI can return multiple objects. The GETNOBJ DATA step function returns
output in a two-dimensional array. Each call to GETNOBJ retrieves the URI
representing the nth object returned from the query. In the examples, n=1 specifies
to get the first object in the array. n+1 specifies to iterate through the content of the
array.

Featured Functions
METADATA_GETNOBJ

Returns the nth object that matches the specified URI. For more information, see
“METADATA_GETNOBJ Function” on page 229.

METADATA_GETATTR
Returns the value of the specified attribute for the specified object. For more
information, see “METADATA_GETATTR Function” on page 223.

METADATA_GETNASN
Returns the nth associated object of the specified association. For more
information, see “METADATA_GETNASN Function” on page 226.

Examples: DATA Step Functions for Reading Metadata 199

METADATA_RESOLVE
Resolves a URI into an object on the metadata server. For more information, see
“METADATA_RESOLVE Function” on page 245.

Featured Metadata Types and Associations
n A SAS library is described in the SAS Metadata Model by the SASLibrary

metadata type. A directory is described by the Directory metadata type. A
database schema is described by the DatabaseSchema metadata type. A
SASLibrary metadata object has a UsingPackages association to a Directory or
DatabaseSchema metadata object.

n A group of SAS servers of different server types is described in the SAS
Metadata Model by the ServerContext metadata type. A SASLibrary metadata
object has a DeployedComponents association to a ServerContext metadata
object.

n External logins are represented in the SAS Metadata Model by the Login
metadata type. Users are represented by the Person metadata type. User
groups are represented by the IdentityGroup metadata type. Person and
IdentityGroup are subtypes of the Identity metadata type. An authentication
domain is represented by the AuthenticationDomain metadata type. A Login
object has an AssociatedIdentities association to objects of the Identity subtypes.
A Login object has a Domains association to an AuthenticationDomain object.

n A Person metadata object has an IdentityGroups association to an IdentityGroup
metadata object. A Person metadata object has a Logins association to a Login
metadata object.

n Internal logins are represented by the InternalLogin metadata type. An
InternalLogin has a ForIdentity association to an identity. An identity has a
InternalLoginInfo association to an InternalLogin.

For more information about the metadata types and their associations, see SAS
Metadata Model: Reference.

Example: Listing Libraries and Their Associated
Directory or Database Schema

This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all libraries and their associated directory or database
schema. The results are returned to a SAS data set in the Work library, which is
printed with PROC PRINT.

Note: When running the program, be sure to modify the META* system options to
provide connection parameters for your metadata server. METAUSER should be a
user who has ReadMetadata permission to the metadata objects being queried.
METAREPOSITORY specifies to look in the Foundation repository. If you have more
than one metadata repository, you might want to run this program on all of the
repositories. The same is true for other examples in this section.

200 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

/*Connect to the metadata server. */

options metaserver="myserver"
 metaport=8561
 metauser="sasadm@saspw"
 metapass="adminpw"
 metarepository="Foundation";

/* Begin the query. The DATA statement names the output data set. */

data metadata_libraries;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length of each variable. */

 length liburi upasnuri $256 name $128 type id $17 libref engine $8 path
mdschemaname schema $256;

/* The KEEP statement defines the variables to include in the
output data set. */

 keep name libref engine path mdschemaname schema;

/* The CALL MISSING routine initializes the output variables to missing values. */

 call missing(liburi,upasnuri,name,engine,libref);

 /* The METADATA_GETNOBJ function specifies to get the SASLibrary objects
in the repository. The argument nlibobj=1 specifies to get the first object that
matches the requested URI. liburi is an output variable. It will store the URI
of the returned SASLibrary object. */

 nlibobj=1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);

 /* The DO statement specifies a group of statements to be executed as a unit
for each object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR function
is used to retrieve the values of the Name, Engine, and Libref attributes of
the SASLibrary object. */

 do while (librc>0);

 /* Get Library attributes */
 rc=metadata_getattr(liburi,'Name',name);
 rc=metadata_getattr(liburi,'Engine',engine);
 rc=metadata_getattr(liburi,'Libref',libref);

 /* The METADATA_GETNASN function specifies to get objects associated to the
library via the UsingPackages association. The n argument specifies to return the
first associated object for that association type. upasnuri is an output variable.
It will store the URI of the associated metadata object, if one is found. */

 n=1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);

 /* When a UsingPackages association is found, the METADATA_RESOLVE function

Examples: DATA Step Functions for Reading Metadata 201

is called to resolve the URI to an object on the metadata server. The CALL MISSING
routine assigns missing values to output variables. */

 if uprc > 0 then do;
 call missing(type,id,path,mdschemaname,schema);
 rc=metadata_resolve(upasnuri,type,id);

 /* If type='Directory', the METADATA_GETATTR function is used to get its
path and output the record */

 if type='Directory' then do;
 rc=metadata_getattr(upasnuri,'DirectoryName',path);
 output;
 end;

 /* If type='DatabaseSchema', the METADATA_GETATTR function is used to get
the name and schema, and output the record */

 else if type='DatabaseSchema' then do;
 rc=metadata_getattr(upasnuri,'Name',mdschemaname);
 rc=metadata_getattr(upasnuri,'SchemaName',schema);
 output;
 end;

 /* Check to see if there are any more Directory objects */

 n+1;
 uprc=metadata_getnasn(liburi,'UsingPackages',n,upasnuri);
 end; /* if uprc > 0 */

 /* Look for another library */

 nlibobj+1;
 librc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",nlibobj,liburi);
 end; /* do while (librc>0) */
run;

/* Print the metadata_libraries data set */

proc print data=metadata_libraries; run;

202 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

The example creates output similar to the following:

Figure 15.1 PROC PRINT of metadata_libraries Data Set

Example: Listing Libraries and Their Server
Contexts

This program uses the SAS metadata DATA step functions to return more detailed
information about the libraries. The results are returned to a Libraries data set in the
Work library. The requested data includes the library metadata ID, the library name,
libref, engine, path on the file system (or if DBMS data, the DBMS path), and the
server contexts to which the library is associated.

/*Connect to the metadata server with the metadata system options,
as shown in the previous example. */

data work.Libraries;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length for each variable. */

 length LibId LibName $ 32 LibRef LibEngine $ 8 LibPath $ 256
ServerContext uri uri2 type $ 256 server $ 32;

Examples: DATA Step Functions for Reading Metadata 203

/* The LABEL statement assigns descriptive labels to variables. */

 label
LibId = "Library Id"
LibName = "Library Name"
LibRef = "SAS Libref"
LibEngine = "Library Engine"
ServerContext = "Server Contexts"
LibPath = "Library Path"
;

/* The CALL MISSING routine initializes output variables to missing values. */

 call missing(LibId,LibName,LibRef,LibEngine,LibPath,
 ServerContext,uri,uri2,type,server);
 n=1;
 n2=1;

 /* The METADATA_GETNOBJ function gets the first Library object. If none
are found, the program prints an informational message. */
 rc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",n,uri);
 if rc<=0 then put "NOTE: rc=" rc
 "There are no Libraries defined in this repository"
 " or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit
for the object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the Id, Name, LibRef, and Engine attributes
of the SASLibrary object. */

 do while(rc>0);
 objrc=metadata_getattr(uri,"Id",LibId);
 objrc=metadata_getattr(uri,"Name",LibName);
objrc=metadata_getattr(uri,"Libref",LibRef);
objrc=metadata_getattr(uri,"Engine",LibEngine);

 /* The METADATA_GETNASN function gets objects associated
via the DeployedComponents association. If none are found, the program
prints an informational message. */

 objrc=metadata_getnasn(uri,"DeployedComponents",n2,uri2);
 if objrc<=0 then
 do;
 put "NOTE: There is no DeployedComponents association for "
 LibName +(-1)", and therefore no server context.";
 ServerContext="";
 end;

 /* When an association is found, the METADATA_GETATTR function gets
the server name. */

 do while(objrc>0);
 objrc=metadata_getattr(uri2,"Name",server);
 if n2=1 then ServerContext=quote(trim(server));
 else ServerContext=trim(ServerContext)||" "||quote(trim(server));

204 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

/* Look for another ServerContext */
 n2+1;
 objrc=metadata_getnasn(uri,"DeployedComponents",n2,uri2);
 end; /*do while objrc*/

 n2=1;

 /* The METADATA_GETNASN function gets objects associated via the
UsingPackages association. The program prints a message if an
association is not found.*/

 objrc=metadata_getnasn(uri,"UsingPackages",n2,uri2);
 if objrc<=0 then
 do;
 put "NOTE: There is no UsingPackages association for "
 LibName +(-1)", and therefore no Path.";
 LibPath="";
 end;

/* When a UsingPackages association is found, the METADATA_RESOLVE function
is called to resolve the URI to an object on the metadata server. */

 do while(objrc>0);
 objrc=metadata_resolve(uri2,type,id);

 /*if type='Directory', the METADATA_GETATTR function is used to get its path */

 if type='Directory' then objrc=metadata_getattr(uri2,"DirectoryName",LibPath);

 /*if type='DatabaseSchema', the METADATA_GETATTR function is used to get
the name */

 else if type='DatabaseSchema' then objrc=metadata_getattr(uri2, "Name", LibPath);
 else LibPath="*unknown*";

 /* output the records */
 output;
 LibPath="";

 /* Look for other directories or database schemas */

 n2+1;
 objrc=metadata_getnasn(uri,"UsingPackages",n2,uri2);
 end; /*do while objrc*/

 ServerContext="";
 n+1;

 /* Look for other libraries */

 n2=1;
 rc=metadata_getnobj("omsobj:SASLibrary?@Id contains '.'",n,uri);

 end; /*do while rc*/

/* The KEEP statement defines the variables to include in the output data set. */

Examples: DATA Step Functions for Reading Metadata 205

 keep
LibId
LibName
LibRef
LibEngine
ServerContext
LibPath;
run;

/* Write a basic listing of data */

proc print data=work.Libraries label;
 /* subset results if you wish
 where indexw(ServerContext,'"SASMain"') > 0; */
run;

The example creates output similar to the following:

Figure 15.2 PROC PRINT of work.Libraries Data Set

206 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

Example: Listing Logins and Their Associated
Identities and Authentication Domains

This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all logins and the users or groups to which they
belong. It returns the authentication domains in which the logins are active. The
results are returned to a Logins data set in the Work library.

Note: A typical user can see only logins that he or she owns, and the logins of
groups of which he or she is a member. For this example to return meaningful
information, it must be executed by an unrestricted user or by a user who has been
assigned the User and Group Administrative role.

/*Connect to the metadata server using the metadata system options
shown in the first example.*/

data logins;

 /* The LENGTH statement defines variables for function arguments and assigns
the maximum length for each variable. */

 length LoginObjId UserId IdentId AuthDomId $ 17
 IdentType $ 32
 Name DispName Desc uri uri2 uri3 AuthDomName $ 256;

/* The CALL MISSING routine initializes the output variables to missing values. */

 call missing
(LoginObjId, UserId, IdentType, IdentId, Name, DispName, Desc, AuthDomId, AuthDomName);
 call missing(uri, uri2, uri3);
 n=1;

 /* The METADATA_GETNOBJ function specifies to get the Login objects
in the repository. The n argument specifies to get the first object that
matches the uri requested in the first argument. The uri argument is an output
variable. It will store the actual uri of the Login object that is returned.
The program prints an informational message if no objects are found. */

 objrc=metadata_getnobj("omsobj:Login?@Id contains '.'",n,uri);
 if objrc<=0 then put "NOTE: rc=" objrc
 "There are no Logins defined in this repository"
 " or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit
for the Login object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the object's Id and UserId attributes. */

 do while(objrc>0);
 arc=metadata_getattr(uri,"Id",LoginObjId);
 arc=metadata_getattr(uri,"UserId",UserId);

Examples: DATA Step Functions for Reading Metadata 207

/* The METADATA_GETNASN function specifies to get objects associated
via the AssociatedIdentity association. The AssociatedIdentity association name
returns both Person and IdentityGroup objects, which are subtypes of the Identity
metadata type. The URIs of the associated objects are returned in the uri2 variable.
If no associations are found, the program prints an informational message. */

 n2=1;
 asnrc=metadata_getnasn(uri,"AssociatedIdentity",n2,uri2);
 if asnrc<=0 then put "NOTE: rc=" asnrc
 "There is no Person or Group associated with the " UserId "user ID.";

/* When an association is found, the METADATA_RESOLVE function is called to
resolve the URI to an object on the metadata server. */

 else do;
 arc=metadata_resolve(uri2,IdentType,IdentId);

 /* The METADATA_GETATTR function is used to get the values of each identity's
Name, DisplayName and Desc attributes. */

 arc=metadata_getattr(uri2,"Name",Name);
 arc=metadata_getattr(uri2,"DisplayName",DispName);
 arc=metadata_getattr(uri2,"Desc",Desc);
 end;

 /* The METADATA_GETNASN function specifies to get objects associated
via the Domain association. The URIs of the associated objects are returned in
the uri3 variable. If no associations are found, the program prints an
informational message. */

 n3=1;
 autrc=metadata_getnasn(uri,"Domain",n3,uri3);
 if autrc<=0 then put "NOTE: rc=" autrc
 "There is no Authentication Domain associated with the " UserId "user ID.";

 /* The METADATA_GETATTR function is used to get the values of each
AuthenticationDomain object's Id and Name attributes. */

 else do;
 arc=metadata_getattr(uri3,"Id",AuthDomId);
 arc=metadata_getattr(uri3,"Name",AuthDomName);
 end;

 output;

 /* The CALL MISSING routine reinitializes the variables back to missing values. */

 call missing(LoginObjId, UserId, IdentType, IdentId, Name, DispName, Desc, AuthDomId,
AuthDomName);

 /* Look for more Login objects */

 n+1;
 objrc=metadata_getnobj("omsobj:Login?@Id contains '.'",n,uri);
 end;

208 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

/* The KEEP statement specifies the variables to include in the output data set. */

 keep LoginObjId UserId IdentType Name DispName Desc AuthDomId AuthDomName;
run;

/* The PROC PRINT statement prints the output data set. */
proc print data=logins;
 var LoginObjId UserId IdentType Name DispName Desc AuthDomId AuthDomName;
run;

Examples: DATA Step Functions for Reading Metadata 209

The example creates output similar to the following:

Figure 15.3 PROC PRINT of Logins Data Set

Example: Listing User Group Memberships
This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all users and the user groups to which they belong.
The results are returned to a Users_Grps data set in the Work library. The results
are presented in a listing created with PROC REPORT.

Note: User groups are represented in the SAS Metadata Model by the
IdentityGroup metadata type. The IdentityGroup metadata type is also used to
represent roles. This example lists IdentityGroup objects of both types. If you want
to exclude roles from the listing, use the METADATA_GETATTR function to get the
value of each object’s PublicType attribute. A traditional user group has PublicType=
“UserGroup”. A role has PublicType=“Role”. Then, use the values to distinguish
between two types of IdentityGroup objects.

/*Connect to the metadata server using the metadata system options as
shown in the first example. */

210 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

data users_grps;

/* The LENGTH statement defines variables for function arguments and
assigns the maximum length of each variable. */

 length uri name dispname group groupuri $256
id MDUpdate $20;

/* The CALL MISSING routine initializes output variables to missing values.*/

 n=1;
 call missing(uri, name, dispname, group, groupuri, id, MDUpdate);

 /* The METADATA_GETNOBJ function specifies to get the Person objects
in the repository. The n argument specifies to get the first Person object that is
returned. The uri argument will return the actual uri of the Person object that
is returned. The program prints an informational message if no Person objects
are found. */

 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 if nobj=0 then put 'No Persons available.';

/* The DO statement specifies a group of statements to be executed as a unit
for the Person object that is returned by METADATA_GETNOBJ. The METADATA_GETATTR
function gets the values of the object's Name and DisplayName attributes. */

 else do while (nobj > 0);
 rc=metadata_getattr(uri, "Name", Name);
 rc=metadata_getattr(uri, "DisplayName", DispName);

/* The METADATA_GETNASN function gets objects associated via the IdentityGroups
association. The a argument specifies to return the first associated object for
that association type. The URI of the associated object is returned in the
groupuri variable. */

 a=1;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);

 /* If a person does not belong to any groups, set their group
 variable to 'No groups' and output their name. */

 if grpassn in (-3,-4) then do;
 group="No groups";
 output;
 end;

 /* If the person belongs to many groups, loop through the list
 and retrieve the Name and MetadataUpdated attributes of each group,
 outputting each on a separate record. */

 else do while (grpassn > 0);
 rc2=metadata_getattr(groupuri, "Name", group);
 rc=metadata_getattr(groupuri, "MetadataUpdated", MDUpdate);
 a+1;

Examples: DATA Step Functions for Reading Metadata 211

 output;
 grpassn=metadata_getnasn(uri,"IdentityGroups",a,groupuri);
 end;

 /* Retrieve the next person's information */

 n+1;
 nobj=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
 end;

/* The KEEP statement specifies the variables to include in the output data set. */

 keep name dispname MDUpdate group;
run;

 /* Display the list of users and their groups */
proc report data=users_grps nowd headline headskip;
 columns name dispname group MDUpdate;
 define name / order 'User Name' format=$30.;
 define dispname / order 'Display Name' format=$30.;
 define group / order 'Group' format=$30.;
 define MDUpdate / display 'Updated' format=$20.;
 break after name / skip;
run;

The example creates output similar to the following:

Figure 15.4 PROC REPORT of Users_Grps Data Set

212 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

Example: Listing Users and Their Logins
This program uses the SAS metadata DATA step functions to query the metadata
repository, and return a list of all Person objects and their associated logins. The
SAS Metadata Server supports external user accounts and internal user accounts.
Both types of user accounts are modeled with the metadata type Person. An internal
user account differs from an external user account in that a user specifies the user
name with the suffix @saspw to log on (for example, sasadm@saspw). This value is
known only to the metadata server. External accounts require domain-qualified user
IDs to log on. An external account can have multiple logins defined for it. The logins
are controlled with authentication domains. This program requests a listing of the
users that are defined on the metadata server, and notes whether they are internal
or external accounts. It lists the logins and authentication domains for each external
account. The results are returned to an Identities data set in the Work library. The
example includes code to print the listing with PROC PRINT, or to export it to a
Microsoft Excel spreadsheet with PROC EXPORT.

/*Connect to the metadata server using the metadata system options as
shown in the first example. */

data work.Identities;

/* The LENGTH statement defines the lengths of variables for function arguments. */
length IdentId IdentName DispName ExtLogin IntLogin DomainName $32
uri uri2 uri3 uri4 $256;

/* The LABEL statement assigns descriptive labels to variables. */
label
 IdentId = "Identity Id"
 IdentName = "Identity Name"
 DispName = "Display Name"
 ExtLogin = "External Login"
 IntLogin = "Is Account Internal?"
 DomainName = "Authentication Domain";

/* The CALL MISSING statement initializes the output variables to missing values. */
call missing(IdentId, IdentName, DispName, ExtLogin, IntLogin, DomainName,
uri, uri2, uri3, uri4);
n=1;
n2=1;

/* The METADATA_GETNOBJ function specifies to get the Person objects in the repository.
The n argument specifies to get the first person object that is returned.
The uri argument will return the actual uri of the Person object. The program prints an
informational message if no objects are found. */

rc=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
if rc<=0 then put "NOTE: rc=" rc
"There are no identities defined in this repository"
" or there was an error reading the repository.";

/* The DO statement specifies a group of statements to be executed as a unit.
The METADATA_GETATTR function gets the values of the Person object's Id, Name,

Examples: DATA Step Functions for Reading Metadata 213

and DisplayName attributes. */
do while(rc>0);
 objrc=metadata_getattr(uri,"Id",IdentId);
 objrc=metadata_getattr(uri,"Name",IdentName);
 objrc=metadata_getattr(uri,"DisplayName",DispName);

/* The METADATA_GETNASN function gets objects associated via the
InternalLoginInfo association. The InternalLoginInfo association returns
internal logins. The n2 argument specifies to return the first associated object
for that association name. The URI of the associated object is returned in
the uri2 variable. */

objrc=metadata_getnasn(uri,"InternalLoginInfo",n2,uri2);

/* If a Person does not have any internal logins, set their IntLogin
variable to 'No' Otherwise, set to 'Yes'. */
IntLogin="Yes";
DomainName="**None**";
if objrc<=0 then
do;
put "NOTE: There are no internal Logins defined for " IdentName +(-1)".";
IntLogin="No";
end;

/* The METADATA_GETNASN function gets objects associated via the Logins association.
The Logins association returns external logins. The n2 argument specifies to return
the first associated object for that association name. The URI of the associated
object is returned in the uri3 variable. */

objrc=metadata_getnasn(uri,"Logins",n2,uri3);

/* If a Person does not have any logins, set their ExtLogin
variable to '**None**' and output their name. */
if objrc<=0 then
do;
put "NOTE: There are no external Logins defined for " IdentName +(-1)".";
ExtLogin="**None**";
output;
end;

/* If a Person has many logins, loop through the list and retrieve the name of
each login. */
do while(objrc>0);
objrc=metadata_getattr(uri3,"UserID",ExtLogin);

/* If a Login is associated to an authentication domain, get the domain name. */
DomainName="**None**";
objrc2=metadata_getnasn(uri3,"Domain",1,uri4);
if objrc2 >0 then
do;
 objrc2=metadata_getattr(uri4,"Name",DomainName);
end;

/*Output the record. */
output;

214 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

n2+1;

/* Retrieve the next Login's information */
objrc=metadata_getnasn(uri,"Logins",n2,uri3);
end; /*do while objrc*/

/* Retrieve the next Person's information */
n+1;
n2=1;

rc=metadata_getnobj("omsobj:Person?@Id contains '.'",n,uri);
end; /*do while rc*/

/* The KEEP statement specifies the variables to include in the output data set. */
keep IdentId IdentName DispName ExtLogin IntLogin DomainName;
run;

/* The PROC PRINT statement writes a basic listing of the data. */
proc print data=work.Identities label;
run;

/* The PROC EXPORT statement can be used to write the data to an Excel spreadsheet. */
/* Change DATA= to the data set name you specified above. */
/* Change OUTFILE= to an appropriate path for your system. */

proc export data=work.Identities
 dbms=EXCEL2000
 outfile="C:\temp\Identities.xls"
 replace;
run;

The example creates output similar to the following:

Figure 15.5 PROC PRINT of work.Identities Data Set

Examples: DATA Step Functions for Reading Metadata 215

216 Chapter 15 / Understanding DATA Step Functions for Reading and Writing Metadata

16
DATA Step Functions for Reading
and Writing Metadata

Dictionary . 218
METADATA_APPPROP Function . 218
METADATA_DELASSN Function . 220
METADATA_DELOBJ Function . 222
METADATA_GETATTR Function . 223
METADATA_GETNASL Function . 225
METADATA_GETNASN Function . 226
METADATA_GETNATR Function . 227
METADATA_GETNOBJ Function . 229
METADATA_GETNPRP Function . 231
METADATA_GETNTYP Function . 233
METADATA_GETPROP Function . 234
METADATA_GETURI Function . 235
METADATA_NEWOBJ Function . 238
METADATA_PATHOBJ Function . 242
METADATA_PAUSED Function . 244
METADATA_PURGE Function . 244
METADATA_RESOLVE Function . 245
METADATA_SETASSN Function . 247
METADATA_SETATTR Function . 249
METADATA_SETPROP Function . 250
METADATA_VERSION Function . 252

217

Dictionary

METADATA_APPPROP Function
Returns the value of the specified property from the specified SoftwareComponent or DeployedComponent
object.

Syntax
value=METADATA_APPPROP(softwareComponent, property);

value=METADATA_APPPROP(softwareComponent/deployedComponent, property)

Required Arguments
softwareComponent (in)

specifies the name of a SoftwareComponent object.

softwareComponent/deployedComponent (in)
specifies the name of a DeployedComponent object. The name of the owning
SoftwareComponent must precede the name of the DeployedComponent object,
separated by a slash.

property (in)
specifies the name of a Property object.

value (out)
returns the value of the specified Property object. The value is in character form.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

The function searches the repository specified in the METAREPOSITORY system
option.

The METADATA_APPPROP function uses SYSRC and SYSMSG to return function
status, error, and warning messages. Valid SYSRC values are:

0
Success completion.

XOMINOREPOSITORY
Unable to connect to the metadata repository.

218 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

XOMISCFAIL
No objects match the specified SoftwareComponent name.

XOMIPROPFAIL
No objects match the specified Property name.

Examples

Example 1: Getting a Property Value for a
SoftwareComponent

data _null_;

 length val $50;
 softwareComp="BI Dashboard 4.3";
 prop="bid.WorkspaceServer";
 val="";

 val = metadata_appprop(softwareComp,prop);

 sysrc=sysrc();
 sysmsg=sysmsg();

 put sysrc=;
 put sysmsg;
 put val=;

run;

Output 16.1 Value Returned for the SoftwareComponent’s bid.WorkspaceServer Property

sysrc = 0
 sysmsg is empty
 val = SASApp - Logical Pooled Workspace Server

Example 2: Getting a Property Value for a
DeployedComponent

data _null_;

 length val $50;
 softwareComp="Web Infra Platfrm Soap Svcs 9.3/
SecurityTokenService";
 prop="TokenExpiry";
 val="";

 val = metadata_appprop(softwareComp,prop);

 sysrc=sysrc();
 sysmsg=sysmsg();

METADATA_APPPROP Function 219

 put sysrc=;
 put sysmsg;
 put val=;

run;

Output 16.2 Value Returned for the DeployedComponent’s TokenExpiry Property

sysrc = 0
 sysmsg is empty
 val = 900

Example 3: Using the Function in a Macro
%let val=%sysfunc(metadata_appprop(BI Dashboard 4.3,bid.DefaultAlertExpirationInterval));
%put &=sysrc;
%put &=sysmsg;
%put &=val;

Output 16.3 Value Returned for the bid.DefaultAlertExpirationInterval Property

sysrc = 0
 sysmsg is empty
 val = 86400000

See Also
Functions

n “METADATA_GETPROP Function” on page 234

n “METADATA_GETNPRP Function” on page 231

METADATA_DELASSN Function
Deletes all objects that make up the specified association.

Syntax
rc=METADATA_DELASSN(uri, assn);

220 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

assn (in)
specifies an association name.

Return Values
0 Successful completion.

-1 Unable to connect to the metadata server.

-2 The deletion was unsuccessful; see the SAS log for details.

-3 No objects match the URI.

Example
data _null_;
 length uri $256
 curi $256
 curi1 $256
 curi2 $256;

 rc=0;

 /* Create a PhysicalTable object. */

 rc=metadata_newobj("PhysicalTable",
 uri,
 "My Table");
 put rc=;
 put uri=;

 /* Create a couple of columns on the new PhysicalTable object. */

 rc=metadata_newobj("Column",
 curi,
 "Column1",
 "myrepos",
 uri,
 "Columns");

 put rc=;
 put curi=;

 rc=metadata_newobj("Column",
 curi1,
 "Column2",
 "myrepos",
 uri,
 "Columns");

METADATA_DELASSN Function 221

 put rc=;
 put curi1=;

 rc=metadata_newobj("Column",
 curi2,
 "Column3",
 "myrepos",
 uri,
 "Columns");

 put rc=;
 put curi2=;

 /* Delete association between table and columns, remove Column objects. */
 rc=metadata_delassn(uri,"Columns");
 put rc=;

 /* Delete PhysicalTable object. */
 rc=metadata_delobj(uri);
 put rc=;

run;

See Also
Functions

n “METADATA_SETASSN Function” on page 247

n “METADATA_GETNASN Function” on page 226

METADATA_DELOBJ Function
Deletes the first object that matches the specified URI.

Syntax
rc = METADATA_DELOBJ(uri);

Required Argument
uri (in)

specifies a Uniform Resource Identifier.

222 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Return Values
0

Successful completion

-1
Unable to connect to the metadata server

-2
The deletion was unsuccessful; see the SAS log for details

-3
No objects match the URI

Example
data _null_;

 rc=metadata_delobj("omsobj:Property?@Name='My Object'");
 put rc=;

run;

See Also
Functions

n “METADATA_DELASSN Function” on page 220

n “METADATA_GETNOBJ Function” on page 229

n “METADATA_GETNTYP Function” on page 233

n “METADATA_NEWOBJ Function” on page 238

METADATA_GETATTR Function
Returns the value of the specified attribute for the specified object.

Syntax
rc = METADATA_GETATTR(uri, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

METADATA_GETATTR Function 223

attr (in)
specifies an attribute of a metadata object.

value (out)
returns the value of the specified attribute.

Return Values
0

Successful completion

-1
Unable to connect to the metadata server

-2
The attribute was not found

-3
No objects match the URI

Example
data _null_;

 length name $200
 desc $200
 modified $100;

 rc=metadata_getattr("omsobj:Machine?@Name='bluedog'","Name",name);
 put rc=;
 put name=;

 rc=metadata_getattr("omsobj:Machine?@Name='bluedog'","Desc",desc);
 put rc=;
 put desc=;

rc=metadata_getattr("omsobj:Machine?
@Name='bluedog'","MetadataUpdated",modified);
 put rc=;
 put modified=;

run;

See Also
Functions

n “METADATA_GETNATR Function” on page 227

n “METADATA_SETATTR Function” on page 249

224 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

METADATA_GETNASL Function
Returns the nth association for the specified object.

Syntax
rc = METADATA_GETNASL(uri, n, asn);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
numeric index value that indicates which row to return from the array; see “Array
Parameters” on page 193 .

asn (out)
returns the association name.

Return Values
n

The number of objects that match the URI

-1
Unable to connect to the metadata server

-3
No objects match the URI

-4
n is out of range

Example
data _null_;
 length assoc $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all possible associations of this object. */

 rc=metadata_getnasl("omsobj:Machine?@Name='bluedog'",
 n,

METADATA_GETNASL Function 225

 assoc);
 put assoc=;
 n=n+1;
 end;
run;

See Also
Functions

n “METADATA_GETNASN Function” on page 226

n “METADATA_SETASSN Function” on page 247

METADATA_GETNASN Function
Returns the nth associated object of the specified association.

Syntax
rc = METADATA_GETNASN(uri, asn, n, nuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

asn (in)
specifies an association name.

n (in)
Numeric index value that indicates which row to return from the array; see “Array
Parameters” on page 193 .

nuri
returns the URI of the nth associated object.

Return Values
n

The number of associated objects

-1
Unable to connect to the metadata server

-3
No objects match the URI

226 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

-4
n is out of range

Example
data _null_;
 length uri $256
 text $256;
 rc=1;
 arc=0;
 n=1;

 do while(rc>0);

 /* Walk through all the notes on this machine object. */

 rc=metadata_getnasn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 n,
 uri);

 arc=1;
 if (rc>0) then arc=metadata_getattr(uri,"StoredText",text);
 if (arc=0) then put text=;
 n=n+1;
 end;
run;

METADATA_GETNATR Function
Returns the nth attribute of the specified object.

Syntax
rc = METADATA_GETNATR(uri, n, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array;
see “Array Parameters” on page 193.

attr (out)
returns the name of a metadata object attribute.

METADATA_GETNATR Function 227

value (out)
returns the value of the specified attribute.

Return Values
n

The number of attributes for the URI.

-1
Unable to connect to the metadata server.

-2
No attributes are defined for the object.

-3
No objects match the URI.

-4
n is out of range.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

Examples

Example 1: Using an Object URI
data _null_;
 length attr $256
 value $256;
 rc=1;
 n=1;
 do while(rc>0);

 /* Walk through all the attributes on this machine object. */

 rc=metadata_getnatr("omsobj:Machine?@Name='bluedog'",
 n,
 attr,
 value);

 if (rc>0) then put n= attr= value=;

 n=n+1;

 end;
run;

228 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Example 2: Using a Repository URI
options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

data _null_;
 length id $20
 type $256
 attr $256
 value $256;

 rc=metadata_resolve("omsobj:RepositoryBase?
@Name='myrepos'",type,id);

 put rc=;
 put id=;
 put type=;
 n=1;
 rc=1;
 do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?
@Name='myrepos'",n,attr,value);
 if (rc>=0) then put attr= value=;
 n=n+1;
 end;
run;

See Also
Functions

n “METADATA_GETATTR Function” on page 223

n “METADATA_SETATTR Function” on page 249

METADATA_GETNOBJ Function
Returns the nth object that matches the specified URI.

Syntax
rc = METADATA_GETNOBJ(uri, n, nuri);

METADATA_GETNOBJ Function 229

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array;
see “Array Parameters” on page 193.

nuri (out)
returns the URI of the nth object that matches the input URI or matches a
subtype object of the input URI.

Return Values
n

The number of objects and subtype objects that match the specified URI.

-1
Unable to connect to the metadata server.

-4
n is out of range.

Examples

Example 1: Determining How Many Machine
Objects Exist

data _null_;
 length uri $256;
 nobj=0;
 n=1;

 /* Determine how many machine objects are in this repository. */

 nobj=metadata_getnobj("omsobj:Machine?@Id contains '.'",n,uri);
 put nobj=; /* Number of machine objects found. */
 put uri=; /* URI of the first machine object. */

run;

Example 2: Looping Through Each Repository on a
Metadata Server

options metaserver="a123.us.company.com"
 metaport=8561
 metauser="myid"
 metapass="mypassword"
 metarepository="myrepos";

230 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

data _null_;
 length uri $256;
 nobj=1;
 n=1;

 /* Determine how many repositories are on this server. */

 do while(nobj >= 0);

 nobj=metadata_getnobj("omsobj:RepositoryBase?@Id contains
'.'",n,uri);
 put nobj=; /* Number of repository objects found. */
 put uri=; /* Nth repository. */
 n=n+1;
 end;
run;

See Also
Functions

n “METADATA_DELOBJ Function” on page 222

n “METADATA_NEWOBJ Function” on page 238

METADATA_GETNPRP Function
Returns the nth property of the specified object.

Syntax
rc = METADATA_GETNPRP(uri, n, prop, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

n (in)
specifies a numeric index value that indicates which row to return from the array;
see “Array Parameters” on page 193.

prop (out)
returns the name of an abstract property string.

value (out)
returns the value of the specified property string.

METADATA_GETNPRP Function 231

Return Values
n

The number of properties for the URI.

-1
Unable to connect to the metadata server.

-2
No properties are defined for the object.

-3
No objects match the URI.

-4
n is out of range.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

Example
data _null_;
 length prop $256
 value $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all the properties on this machine object. */

 rc=metadata_getnprp("omsobj:Machine?@Name='bluedog'",
 n,
 prop,
 value);

 if (rc>0) then put n= prop= value=;
 n=n+1;
 end;
run;

See Also
Functions

n “METADATA_APPPROP Function” on page 218

n “METADATA_GETPROP Function” on page 234

232 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

n “METADATA_SETPROP Function” on page 250

METADATA_GETNTYP Function
Returns the nth object type on the server.

Syntax
rc = METADATA_GETNTYP(n, type);

Required Arguments
n (in)

specifies a numeric index value that indicates which row to return from the array;
see “Array Parameters” on page 193.

type (out)
returns the metadata type in the specified row.

Return Values
0

No matching type found.

n
The number of objects that match the URI.

-1
Unable to connect to the metadata server.

-4
n is out of range.

Example
data _null_;
 length type $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* Walk through all possible types on this server. */
 rc=metadata_getntyp(n,type);
 put type=;
 n=n+1;
 end;

METADATA_GETNTYP Function 233

run;

METADATA_GETPROP Function
Returns the value and Uniform Resource Identifier (URI) of the specified property for the specified object.

Syntax
rc = METADATA_GETPROP(uri, prop, value, propuri);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

prop (in)
specifies an abstract property string.

value (out)
returns the value of the specified property string.

propuri (out)
returns the URI of the property object that is associated with the input URI.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Named property is undefined.

-3
No objects match the specified URI.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

Example
data _null_;

234 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

 length value $200
 propuri $200;
 rc=metadata_getprop("omsobj:Machine?@Name='bluedog'","Property
1",value,propuri);
 if rc=0 then put value= propuri=;
run;

See Also
Functions

n “METADATA_APPPROP Function” on page 218

n “METADATA_GETNPRP Function” on page 231

n “METADATA_SETPROP Function” on page 250

METADATA_GETURI Function
Returns a URL for the application specified by the SoftwareComponent object.

Syntax
rc = METADATA_GETURI("softwareComponent", url, protocol, hostname, port,
service);

Required Argument
"softwareComponent" (in)

specifies the name of a SoftwareComponent object. Valid values are "Stored
Process Web App" or "BI Web Services for Java".

Optional Arguments
url (out)

returns a Uniform Resource Locator (URL) that can be used to open the
application.

protocol (out)
returns the protocol associated with the application.

hostname (out)
returns the name of the host on which the application is installed.

port (out)
returns the port number associated with the application.

service (out)
returns the service name associated with the application.

METADATA_GETURI Function 235

Return Values
0

Successful completion.

-1
Unable to connect to the SAS Metadata Server.

-2
No metadata objects match the SoftwareComponent object.

-3
No attributes found for the specified SoftwareComponent.

-4
Failure finding Foundation repository.

-5
Memory allocation failure.

-6
Invalid parameters.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

The function returns values for specified output parameters only. The parameters
are positional. That is, the requested values are interpreted by the specified output
parameter’s position in the parameter list, rather than by the parameter’s name. Use
null values to indicate the position in the parameter list.

The following are examples of valid syntax:

/* Get the completed url */
rc = METADATA_GETURI("softwareComponent", url);

/* Get just the service component of the uri */
rc = METADATA_GETURI("softwareComponent",,,,, service);

/* Get the protocol and port parameters */
rc = metadata_geturi("softwareComponent",,protocol,,port,);

Examples

Example 1: Getting All Data from the Stored
Process Web App SoftwareComponent

options metaserver="computer.company.com";
options metaport=8561;
options metaprotocol=bridge;
options metauser="myid";
options metapass="mypassword";

236 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

options metarepository="foundation";

data _null_;
 length protocol $20 hostname $80 port $20 service $100 url $200;
 rc = metadata_geturi("Stored Process Web App", url, protocol,
hostname,
port, service);

 put rc=;
 put url=;
 put protocol=;
 put hostname=;
 put port=;
 put service=;

 run;

Here is the example log output:

rc = 0
 url = http://computer.company.com:8080/SASStoredProcess
 protocol = http
 hostname = computer.company.com
 port = 8080
 service = /SASStoredProcess

Example 2: Getting Selected Output from the BI
Web Services for Java SoftwareComponent

options metaserver="computer.company.com";
options metaport=8561;
options metaprotocol=bridge;
options metauser="myid";
options metapass="mypassword";
options metarepository="foundation";

data _null_;
 length service $100;
 rc = metadata_geturi("BI Web Services for Java",,,,,service);

 put rc=;
 put url=;
 put protocol=;
 put hostname=;
 put port=;
 put service=;

run;

Here is the expected log output:

METADATA_GETURI Function 237

 rc = 0
 url =
 protocol =
 hostname =
 port =
 service = /SASBIWS

See Also
Functions:

n “METADATA_PURGE Function” on page 244

METADATA_NEWOBJ Function
Creates a new metadata object.

Syntax
rc = METADATA_NEWOBJ(type, uri<, name><, repos><, parent><, asn>);

Required Arguments
type (in)

specifies a metadata type.

uri (out)
returns a Uniform Resource Identifier (URI).

Optional Arguments
name (in)

specifies a value for the Name attribute of the new metadata object.

repos (in)
specifies the repository identifier of an existing repository. By default, the new
object is created in the default repository.

parent (in)
specifies the Uniform Resource Identifier (URI) of an existing metadata object
with which to associate the new metadata object. Must be used with ASN. ASN
specifies the association name that relates the two metadata objects.

asn (in)
specifies an association name that is relative to the parent metadata object.

238 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Unable to create object; see the SAS log for details.

-9
Unable to allocate memory.

Details
When you create a new metadata object, the object might be unusable if you do not
create the proper attributes and associations. For more information, see the SAS
Metadata Model: Reference.

The following example creates a SASLibrary object, PhysicalTable object, and
Column objects, and associates the library with the table. Note that each object has
PublicType= and UsageVersion= attributes defined. The SASLibrary and
PhysicalTable objects also have a containing folder defined.

Example
data _null_;
 length uri $256
 curi $256
 curi1 $256
 curi2 $256
 luri $256;

 rc=0;

 /* Create a SASLibrary object in the Shared Data folder. */

 rc=metadata_newobj("SASLibrary",
 luri,
 "DS Test Library",
 "Foundation",
 "omsobj:Tree?@Name='Shared Data'",
 "Members");
 put rc=;
 put luri=;

 /* Add PublicType= and UsageVersion= attribute values. */

 rc=metadata_setattr(luri,
 "PublicType",
 "Library");
 put rc=;

METADATA_NEWOBJ Function 239

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

 put luri=;

 rc=metadata_setattr(luri,
 "UsageVersion",
 "1000000.0");
 put rc=;
 put luri=;

 /* Create a PhysicalTable object in the Shared Data folder. */

 rc=metadata_newobj("PhysicalTable",
 uri,
 "TestTable",
 "Foundation",
 "omsobj:Tree?@Name='Shared Data'",
 "Members");
 put rc=;
 put uri=;

 /* Add PublicType= and UsageVersion= attribute values. */

 rc=metadata_setattr(uri,
 "PublicType",
 "Table");
 put rc=;

 rc=metadata_setattr(uri,
 "UsageVersion",
 "1000000.0");
 put rc=;

 /* Create a couple of columns on the new PhysicalTable object. */

 rc=metadata_newobj("Column",
 curi,
 "Column1",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi=;

 /* Add PublicType= and UsageVersion= attribute values to
Column. */
 rc=metadata_setattr(curi,
 "PublicType",
 "Column");
 put rc=;

 rc=metadata_setattr(curi,
 "UsageVersion",
 "1000000.0");
 put rc=;

240 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

 rc=metadata_newobj("Column",
 curi1,
 "Column2",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi1=;

/* Add PublicType= and UsageVersion= attribute values to Column2. */
 rc=metadata_setattr(curi1,
 "PublicType",
 "Column");
 put rc=;

 rc=metadata_setattr(curi1,
 "UsageVersion",
 "1000000.0");
 put rc=;

 rc=metadata_newobj("Column",
 curi2,
 "Column3",
 "Foundation",
 uri,
 "Columns");

 put rc=;
 put curi2=;

/* Add PublicType= and UsageVersion= attribute values to Column3. */
 rc=metadata_setattr(curi2,
 "PublicType",
 "Column");
 put rc=;

 rc=metadata_setattr(curi2,
 "UsageVersion",
 "1000000.0");
 put rc=;

/* Create an association between library and the table */

 rc=metadata_setassn(luri,
 "Tables",
 "Append",
 uri);
 put=rc;

 run;

METADATA_NEWOBJ Function 241

See Also
Functions

n “METADATA_DELOBJ Function” on page 222

n “METADATA_GETNOBJ Function” on page 229

METADATA_PATHOBJ Function
Returns the Id and Type attributes of the specified folder object.

Syntax
rc = METADATA_PATHOBJ(proj, path, deftype, type, ID);

Required Arguments
proj (in)

not currently used. Set this argument to null by submitting an empty string “ ”.

path (in)
specifies the pathname of the object in SAS folders. Pathname begins with a
forward slash. Can include the deftype in parentheses as a suffix.

deftype (in)
Optionally specifies the value in the TypeName= attribute of the object’s type
definition in the SAS type dictionary. Can be omitted if deftype is specified as a
suffix in the path argument. The deftype is not the same as the type. type
corresponds to the value in a type definition’s MetadataType= attribute. For
example, If you submit a deftype of StoredProcess, the returned type will be
ClassifierMap. For more information, see “What Is the SAS Type Dictionary?” on
page 8.

type (out)
specifies the metadata type of the returned ID.

ID (out)
returns the object's unique identifier.

Return Values
n

Number of objects that match the URI.

0
Successful completion.

-1
Unable to connect to the metadata server.

242 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

-2
Syntax error in the path.

-3
Named object not found in the path.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

Examples

Example 1: Specifying the TypeName Value in Path

data _null_;
 length id $20;
 length type $256;
 proj="";
 deftype="";
 id="";
 type="";

 rc=metadata_pathobj(proj,"/Samples/Stored Processes/
Sample(StoredProcess)",
 deftype,type,id);

 put rc=;
 put id=;
 put type=;

run;

Example 2: Specifying the TypeName Value in
Deftype

data _null_;
 length id $20;
 length type $256;
 proj="";
 deftype="StoredProcess";
 id="";
 type="";

 rc=metadata_pathobj(proj,"/Samples/Stored Processes/Sample",
 deftype,type,id);

 put rc=;

METADATA_PATHOBJ Function 243

 put id=;
 put type=;

run;

METADATA_PAUSED Function
Determines whether the server specified by the METASERVER system option is paused.

Syntax
rc = METADATA_PAUSED();

Return Values
0

Server is not paused.

1
Server is paused.

-1
Unable to connect to the metadata server.

Example
data _null_;
 rc=metadata_paused();
 if rc eq 0 then put 'server is not paused';
 else if rc eq 1 then put 'server is paused';
run;

METADATA_PURGE Function
Purges the specified URI.

Syntax
rc = METADATA_PURGE(<uri>);

244 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Optional Argument
uri (in)

specifies a Uniform Resource Identifier; if no argument is specified, the entire
connection is purged from the cache.

Return Values
0

Object successfully purged.

Details
For performance reasons, metadata objects are cached by URI. To refresh the
metadata object with the latest data from the metadata server, purge the URI with
the METADATA_PURGE function.

Example
data _null_;
 length association $256;
 rc=1;
 n=1;

 do while(rc>0);

 /* This will make this DATA step run much slower by */
 /* purging the object cache, which requires the metadata */
 /* server to be accessed again. */
 /* Compare run timings by commenting out the purge. */

 rc=metadata_purge("omsobj:Machine?@Name='bluedog'");

 /* Walk through all possible associations of this object. */

 rc=metadata_getnasl("omsobj:Machine?@Name='bluedog'",
 n,
 association);
 put association=;
 n=n+1;
 end;
run;

METADATA_RESOLVE Function
Resolves a URI into an object on the metadata server.

METADATA_RESOLVE Function 245

Syntax
rc = METADATA_RESOLVE(uri, type, ID);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

type (out)
returns the metadata type for the first object (or subtype object) that matches the
input URI.

ID
returns the unique identifier for the first object (or subtype object) that matches
the input URI.

Return Values
n

Number of objects and subtype objects that match the specified URI.

0
No objects match the URI.

-1
Unable to connect to the metadata server.

Details
See “Best Practices” on page 192 for important information about submitting this
function.

Examples

Example 1: Using an Object URI
data _null_;
 length id $20
 type $256;
 rc=metadata_resolve("omsobj:Machine?@Name='bluedog'",type,id);
 put rc=;
 put id=;
 put type=;
run;

246 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Example 2: Using a Repository URI
data _null_;
 length id $20
 type $256
 attr $256
 value $256;

 rc=metadata_resolve("omsobj:RepositoryBase?
@Name='myrepos'",type,id);

 put rc=;
 put id=;
 put type=;
 n=1;
 rc=1;
 do while(rc>=0);

rc=metadata_getnatr("omsobj:RepositoryBase?
@Name='myrepos'",n,attr,value);
 if (rc>=0) then put attr=;
 if (rc>=0) then put value=;
 n=n+1;

 end;
run;

METADATA_SETASSN Function
Modifies an association list for an object.

Syntax
rc = METADATA_SETASSN(uri, asn, mod, auri-1< , auri-2 … >);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

asn (in)
specifies an association name.

mod (in)
specifies the modification to be performed on the metadata object. Values
include the following:

METADATA_SETASSN Function 247

APPEND
Appends the specified associations to the end of the specified object's
association element list without modifying any of the other associations on
the list.

MERGE
Modifies existing associations in the specified object's association list, and
adds any associations that do not already exist. (New and changed
associations are placed at the end of the association list. Use REPLACE if
you need to specify the order of the association list.)

MODIFY
Modifies an existing association, or adds an association that does not already
exist. (Use MODIFY with a single association; use MERGE for a multiple
association1.)

REMOVE
Deletes the specified associations from the specified object's association
element list without modifying any of the other associations on the list.

REPLACE
For a single association, replaces an existing association with the specified
association. For a multiple association, replaces an existing association list
with the specified association list. Any existing associations that are not
represented in the new association list are deleted.

auri–1<, auri-2 …> (in)
specifies a list of the URIs of the associated objects; see “Array Parameters” on
page 193.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-3
No objects match the input URI.

-4
Unable to perform modification; see the SAS log for details.

-5
Invalid modification.

-6
Unable to resolve association list URIs.

Example
data _null_;

1. A single association refers to an association name with a 0-to-1 or 1-to-1 cardinality. Only one association of that name
is supported between the specified metadata types. A multiple association refers to an association name that has a 0-to-
many or 1-to-many cardinality. Any association in which the upper bound for each side of the association is “many” is
considered to be a many-to-many association. For more information about single and multiple associations, see
“Understanding Associations” in SAS Metadata Model: Reference.

248 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

https://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

 length uri $256;
 rc=0;

 /* Create a TextStore object. */

 rc=metadata_newobj("TextStore",
 uri,
 "My TextStore");
 put uri=;

 rc=metadata_setassn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 "Append",
 uri);
 put rc=;

 rc=metadata_setassn("omsobj:Machine?@Name='bluedog'",
 "Notes",
 "Remove",
 uri);
 put rc=;

run;

See Also
Functions

n “METADATA_DELASSN Function” on page 220

n “METADATA_GETNASN Function” on page 226

METADATA_SETATTR Function
Sets the specified attribute for the specified object.

Syntax
rc = METADATA_SETATTR(uri, attr, value);

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

attr (in)
specifies an attribute of the metadata object.

METADATA_SETATTR Function 249

value (in)
specifies a value for the specified attribute.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Unable to set the attribute.

-3
No objects match the URI.

Example
data _null_;
 rc=metadata_setattr("omsobj:Machine?@Name='bluedog'",
 "Desc",
 "My New Description");
 put rc=;
run;

See Also
Functions

n “METADATA_GETATTR Function” on page 223

n “METADATA_GETNATR Function” on page 227

METADATA_SETPROP Function
Sets the specified property for the specified object.

Syntax
rc = METADATA_SETPROP(uri, prop, value, propuri);

250 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

Required Arguments
uri (in)

specifies a Uniform Resource Identifier.

prop (in)
specifies an abstract property string.

value (in)
specifies a value for the specified property.

propuri (out)
returns the URI of the property object that is associated with the input URI.

Return Values
1

New property was created and set.

0
Existing property was successfully set.

-1
Unable to connect to the metadata server.

-2
Unable to set the attribute.

-3
No objects match the URI.

-4
Unable to create a new property.

-9
Unable to allocate memory.

Example
data _null_;
 length propuri $200;
 rc=metadata_setprop("omsobj:Machine?@Name='bluedog'","New
Property",
 "my value",propuri);
 if rc>=0 then put propuri=;
run;

See Also
Functions

n “METADATA_GETPROP Function” on page 234

n “METADATA_GETNPRP Function” on page 231

METADATA_SETPROP Function 251

METADATA_VERSION Function
Returns the metadata server's model version number.

Syntax
ver = METADATA_VERSION();

Return Values
ver

Metadata server model version number.

-1
Unable to connect to the metadata server.

Example
data _null_;
 ver=metadata_version();
 put ver=;
run;

252 Chapter 16 / DATA Step Functions for Reading and Writing Metadata

17
Understanding DATA Step
Functions for Metadata Security
Administration

What Are the DATA Step Functions for Metadata Security Administration? 253

Transaction Contexts and URIs . 254

Using the %MDSECCON() Macro . 255

Examples: DATA Step Functions for Metadata Security Administration 256
Overview . 256
Example: Begin and End Transaction Context . 256
Example: Working with ACTs . 257

What Are the DATA Step Functions for
Metadata Security Administration?

These DATA step functions enable an administrator to programmatically define or
query authorization settings on objects in the SAS Metadata Server. In addition,
these functions enable the administrator to create and manipulate access control
templates (ACTs) and apply them to objects in the metadata server.

With the metadata security administration functions, the administrator does not need
to know how the access controls are stored in metadata. The administrator specifies
which permission should be granted or denied to a user, and the metadata server
makes the appropriate change in the metadata. These tasks can also be performed
with PROC METADATA or the DATA step functions for reading and writing
metadata, but those methods can be complicated, and achieving the desired result
can be more difficult.

253

Note: To create security reports about authorization, use the macros that SAS
provides. The macros extract authorization information into SAS data sets that you
can use to create security reports. For more information, see the SAS Intelligence
Platform: Security Administration Guide.

Here are the functions, organized by task:

Table 17.1 Summary Table of DATA Step Functions for Metadata Security Administration

Task Functions Example

Transaction context control “METASEC_BEGTRAN
Function” on page 268

“METASEC_ENDTRAN
Function” on page 271

“Example: Begin and End
Transaction Context” (p. 256)

Access control definition “METASEC_APPLYACT
Function” on page 267

“METASEC_GETNACT
Function” on page 273

“METASEC_GETNAUTH
Function” on page 277

“METASEC_GETNID
Function” on page 282

“METASEC_REMACT
Function” on page 286

“METASEC_SETAUTH
Function” on page 289

“Example: Working with
ACTs” (p. 257)

ACT manipulation “METASEC_DELACT
Function” on page 269

“METASEC_GETACTA
Function” on page 272

“METASEC_GETNACTA
Function” on page 275

“METASEC_NEWACT
Function” on page 284

“METASEC_SETACTA
Function” on page 287

“Example: Working with
ACTs” (p. 257)

Transaction Contexts and URIs
The METASEC_BEGTRAN function creates a transaction context (TC), and the
METASEC_ENDTRAN function ends it. The TC instance is located in the metadata

254 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

server. The TC instance maintains the state of authorization query results and
update requests for a client that is using the security administration interface. The
TC accumulates changes that are requested for a single object. Submitting the
METASEC_ENDTRAN function commits or discards changes, and then ends the
TC.

Here are some usage notes:

n For the value of the TC, if you specify an empty string, a temporary context is
invoked, no server-side state is maintained, and changes to security settings are
made immediately. This choice can be efficient if you have only one change to
make, and you want to make the change immediately.

n Specifying the URI is a best practice and is usually required. For DATA step
functions that return information, the URI is the key to a cache of information
about the object. The information is returned one row at a time in two-
dimensional arrays. For more information, see “Array Parameters” on page 193.

If the URI refers to a standard metadata object, but not to an ACT or to a SAS
Metadata Repository, you can use a standard URI. For more information, see “What
Is a URI?” on page 14.

n If the URI refers to an ACT, the URI must be in the form
omsobj:AccessControlTemplate/my-ACTobj-id. For example:

omsobj:AccessControlTemplate/A5DRX6L4.AT000005

n If the URI refers to a repository, the URI must be in the form reposid:my-repos-id.
For example:

reposid:A5DRX6L4

Using the %MDSECCON() Macro
In the DATA step functions for metadata security administration, two arguments are
represented in the SAS Open Metadata Architecture as bit flags that can be
combined with an OR operation. One argument is flags, which is used in many of
the functions. The other argument is auth in the METASEC_GETNAUTH function.

To simplify usage for the DATA step functions, instead of specifying a numeric
parameter, you specify macro variables with easily recognizable names. To use the
macro variables, you must first submit the macro %MDSECCON(). The appropriate
macro variables are documented with the functions.

Using the %MDSECCON() Macro 255

Examples: DATA Step Functions for
Metadata Security Administration

Overview
These examples are self-contained. Specify your own connection options, and
submit the code in a SAS session.

To create security reports about authorization, use the macros that SAS provides.
The macros extract authorization information into SAS data sets that you can use to
create security reports. For more information, see the SAS Intelligence Platform:
Security Administration Guide.

CAUTION
Do not run examples against a production metadata server. The examples
create objects and identities to demonstrate the use of ACTs. Making changes to
security settings poses a risk to a production environment. Be sure to run these
examples in an experimental, nonproduction environment.

CAUTION
Do not use this code as an example of creating PhysicalTable and Person
objects. The PhysicalTable and Person objects that are created and deleted in these
examples are not usable by SAS products because they do not have the appropriate
attributes and associations. For information about attributes and associations, see SAS
Metadata Model: Reference. For information about metadata administration tasks, see
the SAS Intelligence Platform: System Administration Guide.

Note: A caller must have administrative access to the metadata server in order to
create and delete user definitions.

Example: Begin and End Transaction Context
options metaserver="myserver"
 metaport=8561
 metauser="myuser"
 metapass="mypwd"
 metarepository="Foundation";

/* Get macro variable bit flags. */

256 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/omamodref/67417/HTML/default/viewer.htm#titlepage.htm

%mdseccon();

data _null_;
 format tc $20.;
 length uri $256;
 tc = "";
 uri="";

 /* Create a PhysicalTable object. */
 rc=metadata_newobj("PhysicalTable",
 uri,
 "My Demo Table for METASEC");

 /* Start transaction on object created above using the URI. */
 rc=METASEC_BEGTRAN(uri,0,tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* ... other operations using the TC ... */

 /* End the transaction and commit any changes made to */
 /* the transaction since it was started. */
 rc=METASEC_ENDTRAN(uri,tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Delete the PhysicalTable */
 rc=metadata_delobj(uri);

run;

Example: Working with ACTs
options metaserver="myserver"
 metaport=8561
 metauser="myuser"
 metapass="mypwd"
 metarepository="Foundation";

/* Get macro variable bit flags. */
%mdseccon();

/*--------------------------------------*/
/* Create a new user for demo purposes. */
/*--------------------------------------*/

data _null_;
 length uri $256;
 rc=0;

Examples: DATA Step Functions for Metadata Security Administration 257

 /* Create a new Person object. */
 rc=metadata_newobj("Person",
 uri,
 "Demo User for METASEC");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 put "The new user's URI is " uri;
run;

/*---*/
/* Create a new ACT that denies PUBLIC ReadMetadata and grants */
/* SASUSERS ReadMetadata. Grant WriteMetadata and Readmetadata */
/* to a specific person to show the ACT working. */
/*---*/
data _null_;
 format tc $20.;
 length uri $256
 act_uri $256
 repos_uri $256
 type $60
 id $17;

 tc = "";
 uri="";

 /* Start transaction - No URI specified because the ACT does not
exist. */
 rc=METASEC_BEGTRAN("",0, tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* build the uri for the foundation repository */
 rc=metadata_resolve("omsobj:RepositoryBase?
@Name='Foundation'",type,id);
 tmpstr = substr(id, length(id)-7, 8);
 repos_uri="REPOSID:" || tmpstr;

 /* create the ACT */
 rc=METASEC_NEWACT(tc,repos_uri, "Name", "Grant SASUSERS ACT",
 "Desc", "ACT that denies PUBLIC but grants
SASUSERS.");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* The URI parameter is blank because the ACT has not been written
yet. */
 /* Note the use of &_SECAD_ACT_CONTENTS to indicate that this is
setting

258 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

*/
 /* the content of the ACT rather than security on the
ACT. */
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "SASUSERS",
 "Grant",
"ReadMetadata","",&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",

"Deny","ReadMetadata","",&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
 "Grant", "WriteMetadata","",
&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc = METASEC_SETAUTH(tc, "","Person", "Demo User for METASEC",
 "Grant", "ReadMetadata","",
&_SECAD_ACT_CONTENTS);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Protect the ACT so the public cannot edit the ACT. */
 /* The unrestricted user will be the only one who can */
 /* modify the ACT. */
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
 "Grant","ReadMetadata","");
 rc = METASEC_SETAUTH(tc, "","IdentityGroup", "PUBLIC",
 "Deny","WriteMetadata","");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Commit the transaction and write the ACT. */
 rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Transaction creating the ACT has been committed.";
run;

Examples: DATA Step Functions for Metadata Security Administration 259

/*--*/
/* Start a new DATA step to exercise the ACT. */
/*--*/

data _null_;
 format tc $20.;
 length uri $256
 act_uri $256
 identitytype $60
 identityname $60
 act_uri2 $256
 actname $60
 actdesc $60
 auth $ 18
 permission $ 60
 condval $ 100
 authorization $30
 authint 8
 type $60
 id $17
 attrname $60
 attrvalue $256;

 tc="";
 uri="";
 attrname="";
 attrvalue="";

 /* Create a PhysicalTable object. */
 rc=metadata_newobj("PhysicalTable",
 uri,
 "Demo Table 2 for METASEC");

 /* Start transaction on the object using the object's URI. */
 rc=METASEC_BEGTRAN(uri,0, tc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* In the SAS log, list the object's URI. */
 put "The object's URI is: " uri;

 /* In the SAS log, list the identities (both inherited and
explicit) */
 /* that have access controls related to the object in the
TC. */

 put "These identities (both inherited and explicit) have access
controls
related to the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 identitytype="";

260 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

 identityname="";
 rc=metasec_getnid(tc, uri, n, identitytype, identityname);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= identitytype= identityname=;
 n=n+1;
 end;
 end;

 /* Get list of ACTs on the object. */

 put "ACT or ACTs on the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 act_uri2="";
 actname="";
 actdesc="";
 rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= act_uri2= actname= actdesc=;
 n=n+1;
 end;
 end;

 /* Get the URI for the ACT that was created above. */
 /* For best performance, resolve URI into an ID instance to */
 /* exploit object caching. (See the best practices topic.) */

 id="";
 type="";
 rc=metadata_resolve("omsobj:AccessControlTemplate?@Name='Grant
SASUSERS
ACT'",
 type,id);
 act_uri="omsobj:AccessControlTemplate/" || id;

 /*---------------------------------*/
 /* Apply the ACT to the object. */
 /*---------------------------------*/
 rc = METASEC_APPLYACT(tc, uri, act_uri);

 /* In the SAS log, list the identities (both inherited and
explicit) */
 /* that have access controls related to the object in the
TC. */

Examples: DATA Step Functions for Metadata Security Administration 261

 put "After ACT has been applied, these identities have access
controls
related to the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 identitytype="";
 identityname="";
 rc=metasec_getnid(tc, uri, n, identitytype, identityname);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= identitytype= identityname=;
 n=n+1;
 end;
 end;

 /* Get list of ACTs on the object. */

 put "After ACT has been applied, ACT or ACTs on the object:";
 n=1;
 rc =1;
 do while (rc > 0) ;
 act_uri2="";
 actname="";
 actdesc="";
 rc=metasec_getnact(tc, uri, n, act_uri2, actname, actdesc);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put n= act_uri2= actname= actdesc=;
 n=n+1;
 end;
 end;

 /*---*/
 /* Next in the log, list all the authorizations on the object. */
 /* Authorizations will be returned in a loop. The Auth output */
 /* parameter is a bit field that returns much information. */
 /* It contains bit fields indicating if grants and denies are */
 /* explicit, from an ACT, or indirect (group or inheritance). */
 /* Use the macro variable defined in %mdseccon() to determine */
 /* what is in the fields. */
 /* To create security reports about authorization, use the */
 /* macros that SAS provides. See information above. */
 /*---*/

 put "These are authorizations on the object:";
 rc = 0;
 n=1;
 do while (rc = 0) ;
 condval="";

262 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

 auth="";
 identityname="";
 identitytype="";
 authorization="";
 permission="";

 rc=metasec_getnauth(tc, uri,n,

identitytype,identityname,auth,permission,condval);
 if (rc = 0)then do;
 n=n+1;
 authint = input(auth, 16.);

 /* The comparisons below must be done in the proper order */
 /* to assure precedence is honored. */
 authorization = "Neither Granted nor Denied";
 if (band(authint, &_SECAD_PERM_EXPM)) then do;
 if (band(authint,&_SECAD_PERM_EXPD)) then
 authorization = "Denied Explicitly";
 else
 authorization = "Granted Explicitly";
 end;
 else if (band(authint, &_SECAD_PERM_ACTM)) then do;
 if (band(authint,&_SECAD_PERM_ACTD)) then
 authorization = "Denied by ACT";
 else
 authorization = "Granted by ACT";
 end;
 else if (band(authint, &_SECAD_PERM_NDRM)) then do;
 if (band(authint,&_SECAD_PERM_NDRD)) then
 authorization = "Denied Indirectly";
 else
 authorization = "Granted Indirectly";
 end;

 put identityname= permission= authorization=;
 end; /* if rc =0 */
 end; /* while */

 /* Commit the transaction and write the ACT. */
 rc=METASEC_ENDTRAN("",tc, &_SECAD_COMMIT_TC);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Transaction has been committed.";
 put ;

 /*--*/
 /* The ACT calls below will be made without a transaction handle. */
 /* Changes will be immediate. */
 /* This code shows how to change the description of an ACT */
 /*--*/

 /* Get the Desc attribute */

Examples: DATA Step Functions for Metadata Security Administration 263

 attrvalue = "";
 rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "Existing ACT Description:" attrvalue;

 /* change the ACT description */
 rc = METASEC_SETACTA("",act_uri,"Desc",
 "ACT that denies PUBLIC and grants SASUSERS");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 /* Get the Desc attribute */
 attrvalue = "";
 rc = METASEC_GETACTA("",act_uri,"Desc", attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else
 put "New ACT Description:" attrvalue;

 /* list all the attributes on the ACT */
 put "These are the new attributes on the ACT:";

 n=1;
 rc =1;
 do while (rc > 0) ;
 attrname="";
 attrvalue="";
 rc=metasec_getnacta("", act_uri, n, attrname, attrvalue);
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
 else do;
 put "Attribute #" n "Name=" attrname "Value=" attrvalue;
 n=n+1;
 end;
 end;

run;

If you issue the METABROWSE command to open the Metadata Browser window,
you can see the new ACT, "My Demo ACT for METASEC." It is associated with the
new table, "My Demo Table 2 for METASEC."

The following code shows how to remove the ACT from the object. The calls in the
code are submitted without a transaction context, so the changes are made
immediately.

264 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

With METASEC_REMACT, you must specify the ID instance form of URI for the
ACT. Use the METADATA_RESOLVE function to find the ID. You can specify the
search form for the object from which you remove the ACT.

data _null_;
 length type $60
 id $17;
 type='';
 id='';
 rc=metadata_resolve("omsobj:AccessControlTemplate?@Name='Grant
SASUSERS
ACT'",
 type,id);
 rc2 = METASEC_REMACT("",
 "omsobj:PhysicalTable?@Name='Demo Table 2 for
METASEC'",
 "omsobj:AccessControlTemplate/"||id,
 "0");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;
run;

If you look at the Metadata Browser window again, you can see that the ACT has
been removed from the table.

The following code deletes the table, the ACT, and the person by name, with the
search form of URI. The calls in the code are submitted without a transaction
context, so the changes are made immediately. Because the PUBLIC user group
was denied access to the ACT earlier, only the unrestricted user can perform this
task. Administrative access is required to add and delete users.

options metaserver="myserver"
metaport=8561
metauser="sasadm@saspw"
metapass="adminpwd"
metarepository="Foundation";

data _null_;
 rc=metadata_delobj("omsobj:PhysicalTable?@Name='Demo Table 2 for
METASEC'");

 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc=metadata_delobj("omsobj:AccessControlTemplate?@Name='Grant
SASUSERS
ACT'");
 if (rc < 0) then do;
 sysmsg = sysmsg();
 put sysmsg;
 end;

 rc=metadata_delobj("omsobj:Person?@Name='Demo User for METASEC'");
 if (rc < 0) then do;

Examples: DATA Step Functions for Metadata Security Administration 265

 sysmsg = sysmsg();
 put sysmsg;
 end;
run;

266 Chapter 17 / Understanding DATA Step Functions for Metadata Security Administration

18
DATA Step Functions for
Metadata Security Administration

Dictionary . 267
METASEC_APPLYACT Function . 267
METASEC_BEGTRAN Function . 268
METASEC_DELACT Function . 269
METASEC_ENDTRAN Function . 271
METASEC_GETACTA Function . 272
METASEC_GETNACT Function . 273
METASEC_GETNACTA Function . 275
METASEC_GETNAUTH Function . 277
METASEC_GETNID Function . 282
METASEC_NEWACT Function . 284
METASEC_REMACT Function . 286
METASEC_SETACTA Function . 287
METASEC_SETAUTH Function . 289

Dictionary

METASEC_APPLYACT Function
Applies an ACT to an object.

Syntax
rc = METASEC_APPLYACT(tc, uri, act_uri,flags);

267

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object to
which you are applying the ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that
you are applying to the object; use the following form of URI:
“omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

flags (in)
not currently used; set to 0 (zero).

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method ApplyACTToObj(). For information about
the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 257 for a usage example.

METASEC_BEGTRAN Function
Begins the TC.

Syntax
rc = METASEC_BEGTRAN(uri, flags, tc);

Required Arguments
uri (in)

specifies a character variable or constant that contains the URI of the object to
be manipulated by the transaction, or an empty string if the object is not

268 Chapter 18 / DATA Step Functions for Metadata Security Administration

immediately known. When an empty string is used, identify the target resource in
the METASEC_ENDTRAN function.

flags (in)
not currently used; set to 0 (zero).

tc (out)
returns a character variable that contains the handle of the new TC; must be at
least $16.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Output variable for TC is too small to hold the TC handle.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method BeginTransactionContext(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

See “Example: Begin and End Transaction Context” on page 256 for a usage
example.

See Also
Functions

n “METASEC_ENDTRAN Function” on page 271

METASEC_DELACT Function
Deletes ACT from the metadata server.

METASEC_DELACT Function 269

Syntax
rc = METASEC_DELACT(tc, act_uri);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context; if tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that
you are deleting; use the following form of URI: “omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
ACT was not deleted; see sysmsg() for information.

Details
When the ACT is deleted, any associations are also deleted.

This function calls the ISecAdmin method DestroyAccessControlTemplate(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_GETACTA Function” on page 272

n “METASEC_GETNACT Function” on page 273

n “METASEC_NEWACT Function” on page 284

n “METASEC_SETACTA Function” on page 287

270 Chapter 18 / DATA Step Functions for Metadata Security Administration

METASEC_ENDTRAN Function
Ends the TC.

Syntax
rc = METASEC_ENDTRAN(uri, tc, flags);

Required Arguments
uri (in)

specifies a character variable or constant that contains the URI of the object to
be manipulated by the transaction.

tc (in)
specifies a character variable that contains the handle of the TC to be ended.

flags (in)
specifies an integer bit field that specifies whether the transaction should be
committed. Use one of the following macro variables from %MDSECCON() or an
integer. A value is required. The function will return an error if you do not specify
a value.

_SECAD_COMMIT_TC (1) Commit transaction.

_SECAD_DISCARD_TC (2) Do not commit transaction.

For more information, see “Using the %MDSECCON() Macro” on page 255.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-5
No TC handle was specified.

-99 or less
Other error; see log or sysmsg() for information.

METASEC_ENDTRAN Function 271

Details
This function calls the ISecAdmin method EndTransactionContext(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Begin and End Transaction Context” on page 256 for a usage
example.

See Also
Functions

n “METASEC_BEGTRAN Function” on page 268

METASEC_GETACTA Function
Returns an ACT attribute.

Syntax
rc = METASEC_GETACTA(tc, act_uri, attr, attr_value);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context; if tc is returned from the METASEC_BEGTRAN function, then
tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that is
requested; can be blank if the ACT was specified when creating the TC; use the
following form of URI: “omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

attr (in)
specifies a character variable that specifies the ACT attribute whose value you
are requesting; see Details for more information.

attr_value
returns a character variable that contains the value of the ACT attribute; see
Details for more information.

Return Values
0

Successful completion.

272 Chapter 18 / DATA Step Functions for Metadata Security Administration

-1
Unable to connect to the metadata server.

-99 or less
Attribute is not set; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For
information about this method, see SAS Open Metadata Interface: Reference and
Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

Table 18.1 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Optional

DESC Character string 200 Optional

USE REPOS or empty
string

5 Optional; the REPOS
value indicates that
the specified ACT
is the default
repository ACT

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_DELACT Function” on page 269

n “METASEC_GETNACTA Function” on page 275

n “METASEC_NEWACT Function” on page 284

n “METASEC_SETACTA Function” on page 287

METASEC_GETNACT Function
Returns the nth ACT.

METASEC_GETNACT Function 273

Syntax
rc = METASEC_GETNACT(tc, uri, n, act_uri, name, desc, use<, flags);>

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object from
which you want to return the ACTs.

If the URI is for a repository (in the form "ReposID:xxxxxxxx"), then the metadata
server function GetAccessControlTemplateList() is called to obtain the ACT
information.

If the URI is for an object (in the form "omsobj:ObjectType/xxxxxxxx.yyyyyyyy"),
then GetACTsOnObj() is called.

Search syntax is supported, such as "omsobj:ObjectType?@Name='My Object'
".

n (in)
specifies a one-based numeric index value that indicates which row to return
from the array. For information, see “Array Parameters” on page 193.

act_uri (out)
returns a character variable that contains the URI of the ACT that is requested;
this URI is in the following form: "omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy".

name (out)
returns a character variable that contains the name of the nth ACT.

desc (out)
returns a character variable that contains the description of the nth ACT.

use (out)
returns a character variable that contains the value of the USE attribute of the
nth ACT. If the ACT is for a repository, the returned value is "REPOS".
Otherwise, the returned value is an empty string.

Optional Argument
flags (in)

specifies an optional integer bit field. If the uri argument is in the form
ReposID:yyyyyyyy (that is, GetAccessControlTemplateList() is called), you can
use the following macro variable from %MDSECCON();

_SECAD_REPOS_DEPENDENCY_USES
(16)

Return all ACTs in all SAS
Metadata Repositories that
are not of type PROJECT.

For more information, see “Using the %MDSECCON() Macro” on page 255.

274 Chapter 18 / DATA Step Functions for Metadata Security Administration

Return Values
0

Successful completion, but no ACTs are found to be applied to the object.

-1
Unable to connect to the metadata server.

-2
Error returning the ACT list; see log or sysmsg() for information.

-3
No objects match the specified URI.

-4
Numeric value (n) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
If the uri argument represents a repository, then the ACTs in the repository are
returned. If uri does not represent a repository, then the ACTs that protect the object
are returned.

This function calls the ISecAdmin method GetAccessControlTemplateList() or
GetACTsOnObj(), depending on the form of the URI in the uri argument. For
information about the methods, see SAS Open Metadata Interface: Reference and
Usage.

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_APPLYACT Function” on page 267

n “METASEC_GETNAUTH Function” on page 277

n “METASEC_GETNID Function” on page 282

n “METASEC_REMACT Function” on page 286

n “METASEC_SETAUTH Function” on page 289

METASEC_GETNACTA Function
Returns the nth attribute for an ACT.

METASEC_GETNACTA Function 275

Syntax
rc = METASEC_GETNACTA(tc, act_uri, n, attr, attr_value);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context. If tc is returned from the METASEC_BEGTRAN function,
then tc references an existing ACT.

act_uri (in)
specifies a character variable that contains the URI of the ACT that is requested;
this URI is in the following form: “omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”.

n (in)
One-based numeric index value that indicates which row to return from the array.
For more information, see “Array Parameters” on page 193.

attr (out)
returns a character variable that contains the name of the nth attribute found on
the ACT; see Details for more information.

attr_value (out)
returns a character variable that contains the value of the nth attribute found on
the ACT; see Details for more information.

Return Values
0

Successful completion, but no ACTs are found.

-1
Unable to connect to the metadata server.

-4
Numeric value (n) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetAccessControlTemplateAttribs(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

The following table provides more information about the attr and attr_value
arguments.

276 Chapter 18 / DATA Step Functions for Metadata Security Administration

Table 18.2 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60

DESC Character string 200

USE REPOS or empty
string

5 The REPOS value
indicates that the
specified ACT is
the default
repository ACT

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_DELACT Function” on page 269

n “METASEC_GETACTA Function” on page 272

n “METASEC_NEWACT Function” on page 284

n “METASEC_SETACTA Function” on page 287

METASEC_GETNAUTH Function
Returns the nth authorization for an object.

Syntax
rc=METASEC_GETNAUTH(tc, uri, n, type, name, auth, perm, cond < , flags >< ,

display >)

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

METASEC_GETNAUTH Function 277

uri (in)
specifies a character variable or constant that contains the URI of the object that
is requested; can be an empty string " " if tc is specified. You can optimize
performance by using the following form of URI:

omsobj: metatype/identifier.identifier

n (in)
specifies a one-based numeric index value that indicates which row to return
from the array. For more information, see “Array Parameters” on page 193.

type (in/out)
specifies a character variable that contains the identity type. Valid values are
IdentityGroup or Person. If this argument is empty, all identity types associated
with authorizations for the object are returned. Can be a comma-delimited list
that is parallel to a list for the name argument.

name (in/out)
specifies a character variable that contains the identity name, which must be
unique for every identity of that type on the metadata server. If this argument is
empty, all identities associated with authorizations for the object are returned.
Can be a comma-delimited list that is parallel to a list for the type argument; for
more information, see “About the in/out Arguments” on page 281.

auth (out)
returns an integer bit field that indicates grant or deny, and the origin of the grant
or deny. You can use macro variables from %MDSECCON() to translate the
integer into a recognizable message. For more information, see “Authorizations
and the %MDSECCON() Macro” on page 279.

perm (in/out)
For input, specifies an optional, comma-delimited list of permission names for
which authorizations are requested. For more information, see “About the in/out
Arguments” on page 281. If this argument is empty, all available permissions are
returned.

For output, returns a character variable that contains the name of the permission
whose grant or deny state is specified in the auth argument.

cond (out)
returns a character variable that contains the condition if a grant permission is
conditional; can be very long, so if this argument is too short, the value is
truncated.

Optional Arguments
flags (in)

specifies an optional integer bit field. You can use one of the following macro
variables from %MDSECCON() or an integer:

_SECAD_ACT_CONTENTS (4) Return the authorizations
that define the contents of
an ACT when the tc or uri
argument references an
ACT.

_SECAD_DO_NOT_RETURN_PERMCOND
(8)

Do not return any available
values for the cond
argument.

278 Chapter 18 / DATA Step Functions for Metadata Security Administration

For more information, see “Using the %MDSECCON() Macro” on page 255.

display (out)
specifies a character variable that contains the value of the DisplayName
attribute, if the identity has a DisplayName attribute.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Error parsing type or name input list.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details

Origin
This function calls the ISecAdmin method GetAuthorizationsOnObj(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

Authorizations and the %MDSECCON() Macro
The auth parameter of the METASEC_GETNAUTH function returns an integer that
indicates grant or deny and the origin of the grant or deny. Here are the
authorizations that might be returned by the METASEC_GETNAUTH function, their
integer values, associated macro variables, and descriptions.

Table 18.3 Explicit, ACT, and Indirect Authorizations and Masks

Authorization
Type

Integer
value Macro Variable Description

Explicit deny 1 _SECAD_PERM_EXPD Explicit deny that originates from
the authorization that is directly
associated with the object

METASEC_GETNAUTH Function 279

Authorization
Type

Integer
value Macro Variable Description

Explicit grant 2 _SECAD_PERM_EXPG Explicit grant that originates from
the authorization that is directly
associated with the object

ACT deny 4 _SECAD_PERM_ACTD Deny that originates from an
ACT other than the default ACT

ACT grant 8 _SECAD_PERM_ACTG Grant that originates from an
ACT other than the default ACT

Indirect deny 16 _SECAD_PERM_NDRD Indirect deny that originates from
an IdentityGroup membership,
through inheritance, or from the
default ACT; an indirect value is
always returned

Indirect grant 32 _SECAD_PERM_NDRG Indirect grant that originates from
an IdentityGroup membership,
via inheritance, or from the
default ACT; an indirect value is
always returned

To simplify usage, you can use macro variables from %MDSECCON() instead of the
integer values. The macro variables in the table are set to the integer values by
%MDSECCON. For more information, see “Using the %MDSECCON() Macro” on
page 255. For suggested usage, see “Example: Working with ACTs” on page 257.

Masks
The following masks are provided to test whether a METASEC_GETNAUTH output
value applies to a given authorization category. A mask is a filter that returns an
indirect result. A bitwise AND between the mask and a value within that mask
produces the input value; otherwise, it produces a zero.

Table 18.4 Explicit, ACT, and Indirect Authorizations and Masks

Mask Type
Integer
value Macro Variable Description

Explicit mask 3 _SECAD_PERM_EXPM Mask to extract explicit value that
originates from the authorization
that is directly associated with
the object

ACT mask 12 _SECAD_PERM_ACTM Mask to extract indirect value
that originates from an ACT
other than the default ACT

280 Chapter 18 / DATA Step Functions for Metadata Security Administration

Mask Type
Integer
value Macro Variable Description

Indirect mask 48 _SECAD_PERM_NDRM Mask to extract indirect value
that originates from an
IdentityGroup membership, via
inheritance, or from the default
ACT; an indirect value is always
returned.

The masks can be used with the BAND function. Here is example code that
illustrates how the masks can be used:

rc=metasec_getnauth("",objuri,n,
 identitytypes,identitynames,
 auth,tmppermissions,condition,
 &_SECAD_RETURN_ROLE_TYPE, identitydispname);
...
authint = input(auth, 16.);
...
if (band(authint, &_SECAD_PERM_EXPM)) then do;
 if (band(authint,&_SECAD_PERM_EXPD)) then
 authorization = "Denied Explicitly";
 else
 authorization = "Granted Explicitly";
 end;
 else if (band(authint, &_SECAD_PERM_ACTM)) then do;
 if (band(authint,&_SECAD_PERM_ACTD)) then
 authorization = "Denied by ACT";
 else
 authorization = "Granted by ACT";
 end;
 else if (band(authint,&_SECAD_PERM_NDRM)) then do;
 if (band(authint,&SECAD_PERM_NDRD)) then
 authorization = "Denied Indirectly";
 else
 authorization = "Granted Indirectly";
 end;
...

About the in/out Arguments
Some of this function's arguments are in/out. After the first call for the specified URI,
the in/out parameters do not need to be reset to the initial calling value. Subsequent
calls retrieve the output values from the cache, and place them in the output
variable without consideration of the value when the call was made. In other words,
after the first call is made for the URI, the metadata server ignores the input aspect
of the in/out parameters.

Here is an example of comma-delimited lists for type and name arguments:

type = "person,person,person";
name = "Fred,Yolanda,Viktorija";

rc = metasec_getnauth(tc,uri,n,type,name,auth,permission,cond);

METASEC_GETNAUTH Function 281

See Also
Metadata Security Administration Functions

n “METASEC_APPLYACT Function” on page 267

n “METASEC_GETNACT Function” on page 273

n “METASEC_GETNID Function” on page 282

n “METASEC_REMACT Function” on page 286

n “METASEC_SETAUTH Function” on page 289

Other Functions

n “BAND Function” in SAS Functions and CALL Routines: Reference

METASEC_GETNID Function
Returns the nth identity for an object. Identities can come directly from the object, from the inheritance
parents, from the default ACT, and from any ACTs that are directly associated with the object.

Syntax
rc = METASEC_GETNID(tc, uri, n, type, name, flags<, display, origin);>

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object to
be manipulated by the transaction; can be an empty string “ ” if tc is specified.

n (in)
specifies a one-based numeric index value that indicates which row to return
from the array. For more information, see “Array Parameters” on page 193.

type (out)
returns a character variable that contains the identity type. The variable should
be large enough to store the two available values, IdentityGroup or Person. (It
should probably at least $13.)

name (out)
returns a character variable that contains the identity name, which must be
unique for every identity of that type on the SAS Metadata Server.

flags (in)
specifies an optional integer bit field. You can use one of the following macro
variables from %MDSECCON() or an integer:

282 Chapter 18 / DATA Step Functions for Metadata Security Administration

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1s3cxiitukk55n18if88g2djqzs.htm&locale=en

_SECAD_ACT_CONTENTS (4) If the uri argument references an
ACT, returns the identities that define
the ACT, and not the identities from
the access controls that protect the
ACT.

_SECAD_RETURN_ROLE_TYPE
(32)

Returns roles as the type for
IdentityGroups that are acting as
roles.

For more information, see “Using the %MDSECCON() Macro” on page 255.

Optional Arguments
display (out)

returns an optional character variable that contains the value of the DisplayName
attribute if the identity has a DisplayName attribute.

origin (out)
indicates where the identity originates for the object in security:

D The identity originates from an ACT or ACE that is directly attached to
the object.

I The identity originates from inheritance.

DI The identity originates from inheritance, but the identity is involved with
direct access controls on the object.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-2
Error returned from the metadata server; see log or sysmsg() for information.

-3
No objects match the specified URI.

-4
Numeric value (flag) exceeds the maximum usable value.

-5
n is out of range.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method GetIdentitiesOnObject(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

METASEC_GETNID Function 283

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_APPLYACT Function” on page 267

n “METASEC_GETNACT Function” on page 273

n “METASEC_GETNAUTH Function” on page 277

n “METASEC_REMACT Function” on page 286

n “METASEC_SETAUTH Function” on page 289

METASEC_NEWACT Function
Creates a new ACT.

Syntax
rc = METASEC_NEWACT(tc, repos_uri, attr, attr_value<, attrn, attr_valuen>);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

repos_uri (in)
specifies a character variable or constant that contains the URI of the repository
where you are creating the ACT; use the following form of URI:
“Reposid:xxxxxxxx”.

attr (in)
specifies a character variable or constant that specifies an ACT attribute. You
must pair this argument with an attr_value argument, and you can specify up to
three attr and attr_value pairs. See “Details” on page 285 for more information.

attr_value (in)
specifies a character variable or constant that contains the value of an ACT
attribute; you must pair this argument with an attr argument, and you can specify
up to three attr and attr_value pairs. See “Details” on page 285 for more
information.

284 Chapter 18 / DATA Step Functions for Metadata Security Administration

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method CreateAccessControlTemplate(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

Table 18.5 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Required; the
attribute value must
be unique within
the repository

DESC Character string 200 Optional

USE REPOS or empty
string

5 Optional; when you
specify REPOS, the
ACT becomes the
new default
repository ACT; see
the following
caution.

CAUTION
Passing in an empty string for the USE attribute is not recommended. Passing
in an empty string has an effect only when the ACT already has USE=REPOS. However,
setting a repository ACT's USE attribute to a blank leaves the repository in a default
mode where all permissions are granted. If you want to change the default ACT, it is
recommended that you set USE=REPOS on the ACT that you want to use as the
repository ACT. The metadata server automatically removes the USE=REPOS attribute
from the previous repository ACT. Thus, the repository is not left in a mode with no
repository ACT.

See “Example: Working with ACTs” on page 257 for a usage example.

METASEC_NEWACT Function 285

See Also
Functions

n “METASEC_DELACT Function” on page 269

n “METASEC_GETACTA Function” on page 272

n “METASEC_GETNACTA Function” on page 275

n “METASEC_SETACTA Function” on page 287

METASEC_REMACT Function
Removes an ACT from an object.

Syntax
rc = METASEC_REMACT(tc, uri, act_uri, flags);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object from
which you want to remove the ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that
you are removing; use the following form of URI:
“omsobj:AccessControlTemplate/xxxxxxxx.yyyyyyyy”.

flags (in)
not currently used; set to 0 (zero).

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Other error; see log or sysmsg() for information.

286 Chapter 18 / DATA Step Functions for Metadata Security Administration

Details
This function calls the ISecAdmin method RemoveACTFromObj(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_APPLYACT Function” on page 267

n “METASEC_GETNACT Function” on page 273

n “METASEC_GETNAUTH Function” on page 277

n “METASEC_GETNID Function” on page 282

n “METASEC_SETAUTH Function” on page 289

METASEC_SETACTA Function
Sets an ACT attribute.

Syntax
rc = METASEC_SETACTA(tc, act_uri, attr, attr_value);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context. If tc is returned from the METASEC_BEGTRAN function,
then tc references an existing ACT.

act_uri (in)
specifies a character variable or constant that contains the URI of the ACT that
you are modifying; can be blank if the ACT was specified when creating the TC.
Use the following form of URI: ”omsobj:AccessControlTemplate/
xxxxxxxx.yyyyyyyy”.

attr (in)
specifies a character variable that specifies the ACT attribute that you are
setting; see Details.

METASEC_SETACTA Function 287

attr_value (out)
returns a character variable that contains the value of the ACT attribute that you
are setting; any specified attribute values replace the current values for the ACT.
See Details.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-99 or less
Attribute is not set; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method SetAccessControlTemplateAttribs(). For
information about the method, see SAS Open Metadata Interface: Reference and
Usage.

Lowercase or mixed-case ACT attributes (Name, Desc, Use) are automatically
uppercased (NAME, DESC, USE). The following table provides more information about
the attr and attr_value arguments.

Table 18.6 ACT Attribute Specifications

Attribute Attribute Value
Maximum Length
of Attribute Value Notes

NAME Character string 60 Optional; the
attribute value must
be unique within
the repository.

DESC Character string 200 Optional

USE REPOS or empty
string

5 Optional; when you
specify REPOS, the
ACT becomes the
new default
repository ACT.
When you specify
an empty string,
the ACT is
removed from
being the default
repository ACT.
See the following
caution.

288 Chapter 18 / DATA Step Functions for Metadata Security Administration

CAUTION
Passing in an empty string for the USE attribute is not recommended. Passing
in an empty string has an effect only when the ACT already has USE=REPOS. However,
setting a repository ACT's USE attribute to a blank leaves the repository in a default
mode where all permissions are granted. If you want to change the default ACT, it is
recommended that you set USE=REPOS on the ACT that you want to use as the
repository ACT. The metadata server automatically removes the USE=REPOS attribute
from the previous repository ACT. Thus the repository is not left in a mode with no
repository ACT.

See “Example: Working with ACTs” on page 257 for a usage example.

See Also
Functions

n “METASEC_DELACT Function” on page 269

n “METASEC_GETACTA Function” on page 272

n “METASEC_GETNACTA Function” on page 275

n “METASEC_NEWACT Function” on page 284

METASEC_SETAUTH Function
Sets authorization for an object.

Syntax
rc = METASEC_SETAUTH(tc, uri, type, name, auth, perm, cond<, flags>);

Required Arguments
tc (in)

specifies a transaction context handle; can be an empty string " " to invoke with a
temporary context.

uri (in)
specifies a character variable or constant that contains the URI of the object to
be manipulated by the transaction; can be an empty string " " if transaction
context is specified.

type (in)
specifies a character variable or string constant that contains the identity type;
the variable should be large enough to store the two available values,
IdentityGroup or Person, probably at least $13.

METASEC_SETAUTH Function 289

name (in)
specifies a character variable that contains the identity name.

auth (in)
specifies a character variable that indicates the authorization to set for the
permission and identity (which are specified in the perm and name arguments,
respectively). Specify one of the following values:

G Grant

D Deny

R Remove

perm (in)
specifies a character variable that contains the name of the permission whose
grant, deny, or remove state is specified in the auth argument.

cond (in)
specifies a character variable that contains the condition if a grant permission is
conditional. The value can be very long, so if this argument is too short, the
value is truncated. The permissions are case sensitive and must match the case
of the permissions that are defined in the metadata server.

Optional Argument
flags (in)

Optional bit field. You can use one of the following macro variables from
%MDSECCON() or an integer:

_SECAD_ACT_CONTENTS
(4)

Return the authorizations that define the
contents of an ACT when the tc or uri
argument references an ACT.

For more information, see “Using the %MDSECCON() Macro” on page 255.

Return Values
0

Successful completion.

-1
Unable to connect to the metadata server.

-3
No objects match the specified URI.

-99 or less
Other error; see log or sysmsg() for information.

Details
This function calls the ISecAdmin method SetAuthorizationsOnObj(). For information
about the method, see SAS Open Metadata Interface: Reference and Usage.

See “Example: Working with ACTs” on page 257 for a usage example.

290 Chapter 18 / DATA Step Functions for Metadata Security Administration

See Also
Functions

n “METASEC_APPLYACT Function” on page 267

n “METASEC_GETNACT Function” on page 273

n “METASEC_GETNAUTH Function” on page 277

n “METASEC_GETNID Function” on page 282

n “METASEC_REMACT Function” on page 286

METASEC_SETAUTH Function 291

292 Chapter 18 / DATA Step Functions for Metadata Security Administration

	Contents
	What's New in SAS 9.4 Language Interfaces to Metadata
	Overview
	SAS 9.4M8
	SAS 9.4M7
	SAS 9.4M6
	SAS 9.4M5
	SAS 9.4M3
	Enhancements to PROC METADATA
	Enhancements to PROC METALIB
	Enhancements to the METADATA LIBNAME Engine
	New Metadata DATA Step Function
	Documentation Enhancements

	SAS 9.4M2
	Enhancements to PROC METADATA
	Enhancements to PROC METALIB
	Documentation Enhancements

	SAS 9.4
	Enhancements to PROC METAOPERATE
	Enhancements to PROC METADATA
	Enhancements System Options
	Enhancements to the Metadata LIBNAME Engine
	New Metadata DATA Step Function
	Documentation Enhancements

	Introduction
	What Are the Metadata Language Elements?
	Overview of Metadata Language Elements
	When to Use Metadata Language Elements
	What Can I Report on in a SAS Metadata Repository?

	Using Language Elements That Read and Write Metadata
	Overview of Using SAS Language Elements That Read and Write
Metadata
	Objects Included in the Dictionary
	What Is the SAS Type Dictionary?
	How the Type Dictionary Affects SAS Language Elements
	Creating Metadata
	Reading Metadata
	Deleting Metadata
	Repairing Metadata Objects

	Metadata Object Identifiers and URIs
	What Is a Metadata Identifier?
	Obtaining Metadata Names and Identifiers
	What Is a URI?

	Examples: Using Metadata Language Elements to Create Reports
	Overview of the Examples
	Example: Creating a Report with the METADATA Procedure and
the XML Engine
	Example: Creating a Report with the DATA Step
	Example: Creating Metadata for a JSON

	System Options
	Introduction to System Options for Metadata
	Overview of System Options for Metadata
	Connection Options
	Introduction to Connection Options
	Specifying Connection Properties Directly
	Connection Options
	Example: Configuration File
	Example: OPTIONS Statement

	Specifying a Stored Connection Profile
	Connection Options
	Default Server Connection Profile
	Example: Configuration File
	Example: SAS Invocation
	User-Defined Connection Profiles
	Example: Configuration File

	Encryption Options
	Resource Option

	System Options for Metadata
	Dictionary
	METAAUTORESOURCES System Option
	METACONNECT= System Option
	METAENCRYPTALG System Option
	METAENCRYPTLEVEL System Option
	METAPASS= System Option
	METAPORT= System Option
	METAPROFILE System Option
	METAPROTOCOL= System Option
	METAREPOSITORY= System Option
	METASERVER= System Option
	METASPN= System Option
	METAUSER= System Option

	Metadata LIBNAME Engine
	Introduction to the Metadata LIBNAME Engine
	Overview of the Metadata LIBNAME Engine
	Supported Features
	Features That Are Not Supported
	Advantages of Using the Metadata Engine
	The Metadata Engine and Authorization
	Permissions That Affect Data Access through the Metadata Engine
	The Metadata Engine and Extended Attributes
	How the Metadata Engine Constructs a LIBNAME Statement

	Reference for the Metadata Engine
	LIBNAME Statement for the Metadata Engine
	Overview: Metadata LIBNAME Statement
	Syntax: Metadata LIBNAME Statement
	Syntax
	Required Arguments
	Server Connection Arguments
	Optional Database Connection Arguments
	METAOUT= Argument

	SAS Data Set Options for the Metadata Engine
	METAOUT= Data Set Option
	Overview
	Syntax

	Examples for the Metadata Engine
	Example: Submitting the LIBNAME Statement
	Example: Before and After the Metadata Engine
	Overview
	Using the SAS/ACCESS Interface to Oracle Engine Directly
	Using the Metadata Engine

	Procedures
	Introduction to Procedures for Metadata
	Overview of Procedures for Metadata
	Comparison of the METADATA Procedure and the METAOPERATE Procedure

	METADATA Procedure
	Overview: METADATA Procedure
	What Does the METADATA Procedure Do?

	Syntax: METADATA Procedure
	PROC METADATA Statement

	Usage: METADATA Procedure
	Formatting an XML Method Call for DoRequest
	Overview
	The Entire Method Is an XML Element
	A Metadata Object Is an XML Element
	A Metadata Association Is an XML Element
	Quotation Requirements

	See Also
	Submitting an XML Element with METHOD=STATUS
	Metadata Server Configurations and PROC METADATA
	Getting Information about a SAS Metadata Server Cluster
	Getting Information about Server Backups
	Getting Information about the Server’s Alert Email System

	Results: METADATA Procedure
	Results: METADATA Procedure

	Examples: METADATA Procedure
	Example 1: Get Information about Metadata Repositories
	Details
	Example 2: Add an Encoding to The Output XML File
	Details
	Example 3: Request the Metadata for One Object
	Details
	Example 4: Request the Metadata for One Type of Object
	Details
	Example 5: Get Server Backup Information with PROC METADATA
	Details
	Example 6: Get Information about the Server’s Alert Email Notification
Subsystem with PROC METADATA
	Details
	Example 7: Get Information about the Server Cluster with PROC METADATA
	Details

	METALIB Procedure
	Overview: METALIB Procedure
	What Does the METALIB Procedure Do?

	Syntax: METALIB Procedure
	PROC METALIB Statement
	OMR Statement
	DBAUTH Statement
	EXCLUDE or SELECT Statement
	FOLDER= or FOLDERID= Statement
	IMPACT_LIMIT Statement
	NOEXEC Statement
	PREFIX Statement
	REPORT Statement
	UPDATE_RULE Statement

	Usage: METALIB Procedure
	How PROC METALIB Works
	What Metadata Is Updated?
	Considerations When Creating SASLibrary Objects
	SASLibrary Objects and Folders

	Results: METALIB Procedure
	Introduction
	Output Format
	Details in the Report

	Examples: METALIB Procedure
	Example 1: Creating Metadata for a Data Source
	Details
	Example 2: Synchronizing Metadata with the Data Source
	Details
	Example 3: Selecting Tables for Processing
	Details
	Example 4: Performing an Impact Analysis
	Details
	Example 5: Adding a Prefix to New Metadata Names
	Details
	Example 6: Specifying a Folder for the Metadata
	Details

	METAOPERATE Procedure
	Overview: METAOPERATE Procedure
	What Does the METAOPERATE Procedure Do?

	Syntax: METAOPERATE Procedure
	PROC METAOPERATE Statement

	Usage: METAOPERATE Procedure
	How PROC METAOPERATE Works
	Metadata Server Configurations and PROC METAOPERATE
	How PAUSE, RESUME, and REFRESH Affect Repositories
	Using Backup and Recover Options
	Recovery in a Clustered Server Configuration
	Changing a Clustered Server to Stand-Alone Mode
	Using Alert Email XML Elements

	Examples: METAOPERATE Procedure
	Example 1: Get the SAS Metadata Server’s Status with PROC METAOPERATE
	Details
	Example 2: Pause and Resume the SAS Metadata Server
	Details
	Example 3: Enable ARM Logging
	Details
	Example 4: Recover Memory on the Metadata Server
	Details
	Example 5: Delete All Metadata Records from a Repository
	Details
	Example 6: Test the Alert Email Notification Subsystem with PROC METAOPERATE
	Details
	Example 7: Execute Backup and Recover Options in PROC METAOPERATE
	Details
	Example 8: Stop One Server in a Metadata Server Cluster
	Details

	DATA Step Functions
	Introduction to DATA Step Functions for Metadata
	Overview of DATA Step Functions for Metadata
	Best Practices
	Array Parameters

	Understanding DATA Step Functions for Reading and Writing Metadata
	What Are the DATA Step Functions for Reading and Writing Metadata?
	Referencing a Metadata Object with a URI
	Comparison of DATA Step Functions to Metadata Procedures
	Examples: DATA Step Functions for Reading Metadata
	Overview
	Metadata Access Overview
	Featured Functions
	Featured Metadata Types and Associations
	Example: Listing Libraries and Their Associated Directory or
Database Schema
	Example: Listing Libraries and Their Server Contexts
	Example: Listing Logins and Their Associated Identities and
Authentication Domains
	Example: Listing User Group Memberships
	Example: Listing Users and Their Logins

	DATA Step Functions for Reading and Writing Metadata
	Dictionary
	METADATA_APPPROP Function
	METADATA_DELASSN Function
	METADATA_DELOBJ Function
	METADATA_GETATTR Function
	METADATA_GETNASL Function
	METADATA_GETNASN Function
	METADATA_GETNATR Function
	METADATA_GETNOBJ Function
	METADATA_GETNPRP Function
	METADATA_GETNTYP Function
	METADATA_GETPROP Function
	METADATA_GETURI Function
	METADATA_NEWOBJ Function
	METADATA_PATHOBJ Function
	METADATA_PAUSED Function
	METADATA_PURGE Function
	METADATA_RESOLVE Function
	METADATA_SETASSN Function
	METADATA_SETATTR Function
	METADATA_SETPROP Function
	METADATA_VERSION Function

	Understanding DATA Step Functions for Metadata Security Administration
	What Are the DATA Step Functions for Metadata Security Administration?
	Transaction Contexts and URIs
	Using the %MDSECCON() Macro
	Examples: DATA Step Functions for Metadata Security Administration
	Overview
	Example: Begin and End Transaction Context
	Example: Working with ACTs

	DATA Step Functions for Metadata Security Administration
	Dictionary
	METASEC_APPLYACT Function
	METASEC_BEGTRAN Function
	METASEC_DELACT Function
	METASEC_ENDTRAN Function
	METASEC_GETACTA Function
	METASEC_GETNACT Function
	METASEC_GETNACTA Function
	METASEC_GETNAUTH Function
	METASEC_GETNID Function
	METASEC_NEWACT Function
	METASEC_REMACT Function
	METASEC_SETACTA Function
	METASEC_SETAUTH Function

