
SAS® Micro Analytic Service
5.3: Programming and
Administration Guide

SAS® Documentation
September 9, 2019

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® Micro Analytic Service 5.3: Programming and
Administration Guide. Cary, NC: SAS Institute Inc.

SAS® Micro Analytic Service 5.3: Programming and Administration Guide

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

September 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

5.3-P1:masag

Contents

About This Book . vii
What’s New in SAS Micro Analytic Service 5.3 . ix
Accessibility . xiii

PART 1 Understanding SAS Micro Analytic Service 1

Chapter 1 • Introduction to SAS Micro Analytic Service . 3
What Is SAS Micro Analytic Service? . 3

Chapter 2 • Concepts . 5
Overview . 5
User or Business Context . 6
Module Context . 6
Revision . 7
Architecture . 8

PART 2 Using SAS Micro Analytic Service with SAS Event
Stream Processing 9

Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing 11
Overview . 11
Object Hierarchy . 12
XML Example . 12
Data Type Mappings . 15

Chapter 4 • Generating Derived Events . 19
Processing Event Opcodes and Flags . 19
Derived Event Suppression and NULL Key Fields . 21
Generating Multiple Derived Events from a Single Source Event 21
Multiple Derived Events and NULL Key Fields . 23

Chapter 5 • DS2 Programming for SAS Micro Analytic Service . 25
Overview . 26
DS2 Source Code Prerequisites . 26
DS2 Identifiers . 26
SAS Micro Analytic Service and SAS Foundation . 27
Programming Blocks . 27
Restrictions When Working with DS2 and SAS Micro Analytic Service 28
Public and Private Methods and Packages . 28
Argument Types Supported in Public Methods . 31
Implicit Data Type Conversions . 32
Determining Whether DS2 Code Is Executing in SAS Micro Analytic Service 33
Performing Calls between SAS Micro Analytic Service Modules 33
Using Analytic Store Models . 35

Chapter 6 • State Sharing between Modules . 39
Overview . 39
Shared Vectors . 40
Shared Hash Tables . 46

Chapter 7 • Best Practices for DS2 Programming in SAS Event Stream Processing 51
Overview . 51
Return Results . 51
Global Packages versus Local Packages . 52
Replacing SCAN (and TRANWRD) with DS2 Code . 53
Hash Package . 55
Character-to-Numeric Conversions . 55
Data Type Conversions . 55
Passing Character Values to Methods . 56
Performing the Computation Once . 56
Moving Invariant Computations Out of Loops . 56

Chapter 8 • Python Support in SAS Micro Analytic Service . 59
Introduction . 59
Example . 60
Public and Private Methods . 62
Working with Python and SAS Micro Analytic Service . 65
Configuring Python for SAS Event Stream Processing . 66

Chapter 9 • SAS Micro Analytic Service Logging and Deployment . 69
SAS Micro Analytic Service Logging . 69
Deployment . 70

PART 3 Using SAS Micro Analytic Service with SAS
Intelligent Decisioning or SAS Model Manager 73

Chapter 10 • DS2 Programming for SAS Micro Analytic Service . 75
Overview . 76
DS2 Source Code Prerequisites . 76
DS2 Identifiers . 76
SAS Micro Analytic Service and SAS Foundation . 77
Programming Blocks . 78
Restrictions When Working with DS2 and SAS Micro Analytic Service 78
Public and Private Modules and Methods . 79
Argument Types Supported in Public Methods . 82
Determining Whether DS2 Code Is Executing in SAS Micro Analytic Service 84
Performing Calls between SAS Micro Analytic Service Modules 84
Managing Large DS2 Modules . 86
Composite Modules . 89
Referencing Modules and Composite Submodules . 89
Using Analytic Store Models . 89

Chapter 11 • State Sharing between Modules . 93
Overview . 93
Shared Vectors . 94
Shared Hash Tables . 100

iv Contents

Chapter 12 • Best Practices for DS2 Programming in SAS Intelligent Decisioning 105
Overview . 105
Return Results . 105
Global Packages versus Local Packages . 106
Replacing SCAN (and TRANWRD) with DS2 Code . 107
Hash Package . 109
Character-to-Numeric Conversions . 109
Passing Character Values to Methods . 109
Performing the Computation Once . 110
Moving Invariant Computations Out of Loops . 110

Chapter 13 • Python Support in SAS Micro Analytic Service . 111
Introduction . 111
About Creating Python Modules . 112
Public and Private Methods . 113
Working with Python and SAS Micro Analytic Service . 116
Compiling Python Modules . 117
Configuring Python for SAS Intelligent Decisioning . 118

Chapter 14 • Administration . 121
SAS Micro Analytic Service Administration . 121
Database Access with DS2 . 122
Starting and Stopping SAS Micro Analytic Service . 124
Synchronous, Asynchronous, and Timed Execution . 124
SAS Micro Analytic Service Configuration . 125
SAS Micro Analytic Service Logging . 131
SAS Micro Analytic Service Security and Authorization . 133
Secure DS2 HTTP Package Usage . 134
Moving Objects by Using the SAS Viya Transfer Service . 134

PART 4 Appendixes 137

Appendix 1 • Executing Python Modules in DS2 Modules . 139
DS2 Interface to Python . 139
Sample DS2 Module Operations . 141
Configuring Support for a DS2 PyMAS Package . 146

Appendix 2 • SAS Micro Analytic Service Return Codes . 149

Appendix 3 • REST Server Error Messages and Resolutions . 161

Appendix 4 • Table Service Driver Reference . 167
DB2 Driver Reference . 167
FedSQL Driver Reference . 173
ODBC Driver Reference . 176
Oracle Reference . 183
PostgreSQL Driver Reference . 189
SAS Data Set Reference . 194
Teradata Reference . 198

Contents v

Appendix 5 • SAS Micro Analytic Service Tuning Guidelines . 203

Appendix 6 • Applying a New License . 205

Recommended Reading . 207
Index . 209

vi Contents

About This Book

Audience

SAS Intelligent Decisioning, SAS Model Manager, and SAS Event Stream Processing
include SAS Micro Analytic Service, which enables you to publish SAS analytics,
business rules, and user-written modules into operational environments. In addition, a
variety of SAS analytics is available to you, and you can author custom logic in DS2 or
Python, as well as deploy a combination of the module types that are specified above.

This guide is intended for developers and information technology administrators who
use a SAS Event Stream Processing, SAS Intelligent Decisioning, or SAS Model
Manager environment. Because aspects of SAS Micro Analytic Service differ according
to environment, ensure that you refer to the section that applies to your environment.

Included here is information about how SAS Micro Analytic Service processes
transactions and events, as well as tips, best practices, and restrictions on programming
DS2 or Python to run in SAS Micro Analytic Service.

Technology administrators can find information about how to configure SAS Micro
Analytic Service. Also included is information about how to configure Python and SAS
Micro Analytic Service to run Python code (optional).

vii

viii About This Book

What’s New in SAS Micro
Analytic Service 5.3

Overview

SAS Micro Analytic Service is a memory-resident, high-performance program execution
service that is included in selected SAS solutions. It provides hosting for DS2 and
Python programs and supports a “compile-once, execute-many-times” usage pattern. In
addition to supporting a rich variety of SAS analytics and business rules, SAS Micro
Analytic Service enables you to author DS2 or Python code that is customized to your
specific needs.

SAS Micro Analytic Service 5.3 includes the following enhancements:

• No restrictions on Python version

• Ability to perform calls between SAS Micro Analytic Service modules

• Support for direct Python module usage

• External credential functionality for compiling and executing Python modules

• Asynchronous module execution

• Asynchronous module publication

• Resource management improvements

• Batch recording for the SAS Intelligent Decisioning subject-contact service

• SAS lockdown support for controlling Python execution

No Restrictions on Python Version

SAS Micro Analytic Service no longer requires the Anaconda distribution of Python 3.4
or 2.7. You can now use any version of Python.

Perform Calls between SAS Micro Analytic
Service Modules

You can use the DS2 MASCall package to enable separate DS2 modules, published to
SAS Micro Analytic Service, to call one another across separate module executables.

ix

Support for Direct Python Module Usage

Using the SAS Micro Analytic Service REST interface, you can create a Python module
directly without using any DS2 code. This is useful when you need SAS Micro Analytic
Service to execute only Python code.

Compile and Execute Python Modules Using
Alternate Credentials

For security reasons, you might need to limit the access of Python processes to the file
system or other resources of the host server. You can accomplish this by using SAS Viya
external credentials functionality. This is supported only when you are using the SAS
Micro Analytic Service REST interface.

Execute Modules Asynchronously

By default, module execution is processed synchronously. Using the REST interface,
you can now perform asynchronous execution. When you use asynchronous execution,
the input parameter values are passed to the server and the execution occurs in a separate
thread.

Publish Modules Asynchronously

Using the SAS Micro Analytic Service REST interface, the jobs endpoint enables the
caller to submit a Create request or an Update request that is longer than the SAS Viya
web server time-out value.

Resource Management Improvements

The SAS Micro Analytic Service REST interface includes several features to support
and manage large DS2 modules. This enables a system administrator to balance the size
and complexity of the modules against system memory, system responsiveness, and
availability.

x What’s New in SAS Micro Analytic Service 5.3

Batch Recording for the SAS Intelligent
Decisioning Subject-Contact Service

The SAS Micro Analytic Service REST interface enables asynchronous recording of
contact and response history through the SAS Intelligent Decisioning subject-contact
service. This means that the code to record history in the database does not execute in
the time frame of executing the decision.

Database access is typically a high-latency activity. By removing this activity from the
decision flow, SAS Micro Analytic Service is able to meet strict response time
requirements.

SAS Lockdown Support for Controlling Python
Execution

If SAS is in a locked-down state, the SAS Micro Analytic Service Python interface is
prohibited by default. You can use arguments in the LOCKDOWN statement to enable
access to the Python interface.

SAS Lockdown Support for Controlling Python Execution xi

xii What’s New in SAS Micro Analytic Service 5.3

Accessibility

For information about the accessibility of any of the products mentioned in this
document, see the usage documentation for that product.

xiii

xiv What’s New in SAS Micro Analytic Service 5.3

Part 1

Understanding SAS Micro
Analytic Service

Chapter 1
Introduction to SAS Micro Analytic Service . 3

Chapter 2
Concepts . 5

1

2

Chapter 1

Introduction to SAS Micro
Analytic Service

What Is SAS Micro Analytic Service? . 3
Overview . 3
About Using SAS Micro Analytic Service . 3

What Is SAS Micro Analytic Service?

Overview
SAS Micro Analytic Service is a memory-resident, high-performance program execution
service. As a SAS platform service, it is not available for individual license, but is
included in selected SAS solutions. SAS Micro Analytic Service provides hosting for
DS2 and Python programs and supports a “compile-once, execute-many-times” usage
pattern. SAS Micro Analytic Service is multi-threaded and can be clustered for high
availability. It can host multiple programs simultaneously, as well as multiple user or
business contexts that are isolated from one another.

SAS Micro Analytic Service contains a core engine that is written in C for high
performance and, when deployed as part of SAS Event Stream Processing, includes C++
classes that integrate with SAS Event Stream Processing. These capabilities allow both
to execute within the same process space for maximum performance. The combination
of SAS Event Stream Processing and SAS Micro Analytic Service enables SAS
analytics, business logic, and user-written programs to operate on streams of data in
motion.

About Using SAS Micro Analytic Service
SAS Micro Analytic Service is integrated with SAS Event Stream Processing and
deployed with SAS Intelligent Decisioning and SAS Model Manager. Note the following
information about using SAS Micro Analytic Service with these solutions:

• When used in a SAS Intelligent Decisioning environment, SAS Micro Analytic
Service is called as a web application with a REST interface. The REST interface
(known as the SAS Micro Analytic Score service) provides easy integration with
client applications and adds persistence and clustering for scalability and high
availability.

SAS Intelligent Decisioning generates DS2 programs that implement user-created
rule sets and rule flows. It can combine SAS analytics, such as score code generated

3

by SAS Enterprise Miner, with business rules in order to form decision logic. SAS
Micro Analytic Service is used to compile and execute the generated code. For more
information, see SAS Intelligent Decisioning: User’s Guide.

• When SAS Model Manager is installed, a publishing destination is created
automatically for SAS Micro Analytic Service. Users can publish models to the SAS
Micro Analytic Service publishing destination and then score them within the
publishing destination. For more information, see SAS Model Manager: User’s
Guide.

• Users of SAS Model Studio can publish to SAS Micro Analytic Service if SAS
Model Manager is also installed.

• Users of SAS Event Stream Processing or SAS Intelligent Decisioning can publish
SAS analytics, such as predictive models that were created with a variety of SAS
products and analytical procedures. They can also author custom programs using the
SAS DS2 or Python programming languages or in the SAS Intelligent Decisioning
web application. The custom programs execute inside SAS Event Stream Processing
applications. SAS Micro Analytic Service can host multiple programs
simultaneously.

For information about SAS Event Stream Processing, see the product documentation
at http://support.sas.com.

SAS Micro Analytic Service supports a subset of the DS2 programming language, which
includes language features that are suitable for the high-performance execution of
transactions.

SAS Intelligent Decisioning generates DS2 programs that implement user-created rule
sets and rule flows. It can combine SAS analytics, such as score code generated by SAS
Enterprise Miner, with business rules in order to form decision logic. SAS Micro
Analytic Service is used to compile and execute the generated code.

SAS Micro Analytic Service supports the Python programming language. Python
programs that are written for SAS Micro Analytic Service might include custom
functions. They can use any third-party Python packages that have been deployed to a
local Python environment.

4 Chapter 1 • Introduction to SAS Micro Analytic Service

http://documentation.sas.com/?docsetId=edmug&docsetVersion=5.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mdlmgrug&docsetVersion=15.2&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mdlmgrug&docsetVersion=15.2&docsetTarget=titlepage.htm&locale=en
https://support.sas.com/software/products/event-stream-processing/index.html

Chapter 2

Concepts

Overview . 5

User or Business Context . 6

Module Context . 6

Revision . 7

Architecture . 8

Overview
DS2 and Python programs that are published to SAS Micro Analytic Service, whether
user-written or generated by SAS analytical solutions, are known as modules. This term
reflects the language-neutral nature of SAS Micro Analytic Service interfaces.

A module is a collection of methods. For DS2, a module represents one DS2 package
and its methods. For Python, a module is a collection of Python functions.

Module methods can be used for a wide variety of other purposes, including computing
scores, processing data, or making business decisions.

For SAS Event Stream Processing, module methods can be used to process events in a
continuous query. The results of such processing create derived events that flow to
downstream components in the continuous query. In addition to generating derived
events, module methods can influence SAS Event Stream Processing by interrogating
and setting event opcodes and flags. Event opcodes and flags are covered in more detail
in the DS2 and Python programming chapters that follow.

For SAS Intelligent Decisioning and SAS Model Manager, module methods can be used
to automate data-driven decisions. This is accomplished by executing analytical models
and business rules against the latest data from online channels, combined with data from
operational databases and other data sources.

SAS Micro Analytic Service uses two internal component types to manage the modules
that are published to it. These are the module context and the revision. A third
component, the user context, provides isolated execution environments that contain sets
of module contexts and revisions. SAS Micro Analytic Service automatically manages
user and module contexts for the user.

SAS Micro Analytic Service automatically manages user contexts for SAS Event Stream
Processing by maintaining one user context per event stream processing object.

5

The SAS Micro Analytic Service REST service, used by SAS Intelligent Decisioning
and SAS Model Manager, automatically creates and manages one user context per
tenant.

Before writing modules to deploy to SAS Micro Analytic Service, see the following
information:

• For DS2 modules, see the programming guidelines for your environment:

• SAS Event Stream Processing: Chapter 5, “DS2 Programming for SAS Micro
Analytic Service,” on page 25

• SAS Intelligent Decisioning and SAS Model Manager: Chapter 10, “DS2
Programming for SAS Micro Analytic Service,” on page 75

• For Python modules, see the programming guidelines for your environment:

• SAS Event Stream Processing: Chapter 8, “Python Support in SAS Micro
Analytic Service,” on page 59

• SAS Intelligent Decisioning and SAS Model Manager: Chapter 13, “Python
Support in SAS Micro Analytic Service,” on page 111

User or Business Context
A context is a container for the programs that SAS Micro Analytic Service executes. It is
also an isolated execution environment. That is, programs executing in one context are
not visible to any other context. Therefore, contexts can be used to provide a separate
environment for each user or different business unit, or for any other usage requiring
isolation. As noted in the previous section, programs that are hosted by SAS Micro
Analytic Service are known as modules. A context is a container of modules.

Because business context and user context are interchangeable terms that describe the
two common uses of this single component, this document uses the term user context for
simplicity.

Module Context
A module represents program code. In the case of DS2, each module represents exactly
one DS2 package. If you are unfamiliar with DS2 packages, see “Understanding DS2
Methods and Packages” in SAS DS2 Language Reference. Every module is owned by
exactly one user context.

In the case of Python, each module represents a collection of related Python functions,
and each module method represents one of those functions.

SAS Micro Analytic Service supports module revisions and is capable of hosting and
executing multiple revisions of a module concurrently. When SAS Micro Analytic
Service compiles a DS2 or Python module, it creates a revision of that module.
Therefore, a module context is a container of revisions. A module context also houses
any compiler warning or error messages that were generated from the latest compilation
or compilation attempt.

Note: SAS Micro Analytic Service runs the latest revision of a module by default.

6 Chapter 2 • Concepts

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=p1dk8i8h0035lwn1fua5drrbqk12.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=p1dk8i8h0035lwn1fua5drrbqk12.htm&locale=en

Note: The Micro Analytic Service REST interface supports running only the latest
revision of a module.

Revision
A revision is a version of a module. Each revision contains source code, an executable
code stream (optimized binary executable), and metadata. The metadata describes the
methods and method signatures of the module.

Revisions provide several advantages, including the ability to roll back to a previous
version of a module.

SAS Micro Analytic Service assigns a revision number to each revision, which is a
monotonically increasing integer beginning with 1. A revision is uniquely identified by
module name and revision number. When you reference a revision, specifying revision
number 0 selects the latest revision.

Note: When modules are published to SAS Micro Analytic Service by SAS Event
Stream Processing, only the latest revision is retained.

Figure 2.1 Component Hierarchy

Note: Revisions can be added and deleted, which might result in non-sequential revision
numbers. In the figure above, this is illustrated by one of the module’s revisions
going from Revision 1 to Revision 7.

Revision 7

Architecture
SAS Micro Analytic Service has a layered architecture:

Core Engine
The SAS Micro Analytic Service core engine is written in C and is multi-threaded
for high performance.

Note: SAS Event Stream Processing integrates with SAS Micro Analytic Service via
a private C interface to the core engine. This interface allows SAS Event Stream
Processing to call SAS Micro Analytic Service directly, in-process, for maximum
performance. When SAS Micro Analytic Service is deployed with SAS Event
Stream Processing, Java and REST layers are omitted.

Java Layer
a thin Java layer communicates with the core engine through the Java Native
Interface (JNI). Commands from the REST interface are passed to the core engine
through this Java layer.

REST
adds functionality such as persistence and clustering support.

Note: SAS Intelligent Decisioning and SAS Model Manager interface with SAS
Micro Analytic Service via REST, and uses all three layers of the architecture.

8 Chapter 2 • Concepts

Part 2

Using SAS Micro Analytic
Service with SAS Event
Stream Processing

Chapter 3
Publishing to SAS Micro Analytic Service in SAS
Event Stream Processing . 11

Chapter 4
Generating Derived Events . 19

Chapter 5
DS2 Programming for SAS Micro Analytic Service 25

Chapter 6
State Sharing between Modules . 39

Chapter 7
Best Practices for DS2 Programming in SAS
Event Stream Processing . 51

Chapter 8
Python Support in SAS Micro Analytic Service 59

Chapter 9
SAS Micro Analytic Service Logging and Deployment 69

9

10

Chapter 3

Publishing to SAS Micro
Analytic Service in SAS Event
Stream Processing

Overview . 11

Object Hierarchy . 12

XML Example . 12

Data Type Mappings . 15

Overview
SAS Event Stream Processing uses data flow models, known as continuous queries, that
define how events are routed among the various windows that make up a continuous
query.

Source windows are required for each continuous query. All event streams enter
continuous queries by being published or injected into a Source window. Source
windows are typically connected to one or more derived windows. Derived windows can
detect patterns in the data, transform the data, aggregate the data, analyze the data, or
perform computations based on the data. For more information, see the SAS Event
Stream Processing documentation at http://support.sas.com.

The derived window in which SAS Micro Analytic Service operates is the Calculate
window. Within a continuous query application, Calculate windows can be configured to
receive events from one or more source windows. These source events can be processed
by modules published to SAS Micro Analytic Service, which can in turn generate zero or
more derived events. These derived events can be subscribed to by downstream
windows. For more information, see “Working with SAS Micro Analytic Service
Modules” in SAS Event Stream Processing: Using Streaming Analytics.

SAS Event Stream Processing Studio can be used to author continuous queries.
Continuous queries can include elements that publish modules to SAS Micro Analytic
Service, and which identify the methods to use to process specific event streams. Up to
one method can be specified for each window that streams events directly into a
Calculate window (for example, for each upstream window connected to a Calculate
window by an edge).

11

https://support.sas.com/software/products/event-stream-processing/index.html
http://documentation.sas.com/?docsetId=espan&docsetVersion=6.1&docsetTarget=p1qv3axlms1ckmn1gv3hub74xmue.htm&locale=en
http://documentation.sas.com/?docsetId=espan&docsetVersion=6.1&docsetTarget=p1qv3axlms1ckmn1gv3hub74xmue.htm&locale=en

Object Hierarchy
SAS Event Stream Processing provides an assortment of elements for use in building
continuous query applications, enabling a wide variety of business needs to be met.
Some of the elements that incorporate SAS Micro Analytic Service functionality are
described briefly below. For more information, see the SAS Event Stream Processing
documentation at http://support.sas.com.

At a minimum, each event stream processing application consists of a SAS Event Stream
Processing Engine (a container of projects), at least one project (a container of
continuous queries), and at least one continuous query that contains windows and the
edges that connect them.

Each project maintains a SAS Micro Analytic Service environment that is shared among
the continuous queries within the project. DS2 and Python modules are published to
SAS Micro Analytic Service by including the <mas-modules> tag (a sub-element of
<project>).

SAS Micro Analytic Service operates on the data that is contained in events received by
Calculate windows. The Calculate window provides an XML element for mapping
source window events to module methods. The XML tag is named <mas-map>, which is
a sub-element of <window-calculate>.

XML Example
Here is an example of an XML continuous query definition. SAS Micro Analytic
Service related elements are highlighted.

<engine port='55555'>
 <description>
 This example has one source window and one calculate
 window. The calculate window uses DS2 code to calculate
 a value from the source window.

 The engine element creates the single engine top level container which
 sets up dfESP fundamental services such as licensing and logging.
 This single engine instance wraps one or more projects that wrap
 one or more continuous queries and different types of windows.
 </description>
 <projects>
 <project name='trades_proj' pubsub='auto' threads='4'>
 <description>
 This is to create a project. A project specifies a container
 that holds one or more continuous queries and are backed by a
 thread pool of user defined size. You can specify the pubsub
 port and type, number of threads for the project, index type,
 and a tag token data flow model.
 </description>
 <mas-modules>
 <mas-module language="ds2" module="module_1" func-names='compute_volume'>
 <description>
 <![CDATA[This is a SAS Micro Analytic Service module in DS2]]>

12 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

https://support.sas.com/software/products/event-stream-processing/index.html

 </description>
 <code>
 <![CDATA[
 ds2_options sas; /* SAS-style missing value handling */
 package module_1/overwrite=yes;
 method compute_volume(int quantity, double price, in_out int volume);
 volume = quantity * price;
 end;
 endpackage;
]]>
 </code>
 </mas-module>
 </mas-modules>
 <contqueries>
 <contquery name='trades_traders_cq' trace='cw1'>
 <description>
 This specifies the continuous query container that holds
 a collection of windows and enables you to specify the
 connectivity between windows. You can turn on tracing
 for a list of windows, and specify the index type for
 windows in the query.
 </description>
 <windows>
 <window-source name='Trades' index='pi_RBTREE'>
 <description>
 This defines a source window. All event streams must
 enter continuous queries by being published or
 injected into a source window.
 </description>
 <schema>
 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 </fields>
 </schema>
 <connectors>
 <connector class='fs' name='pub'>
 <properties>
 <property name='type'>pub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>input.csv</property>
 <property name='transactional'>true</property>
 </properties>
 </connector>
 </connectors>
 </window-source>
 <window-calculate name='cw1' algorithm='MAS'>
 <description>
 This defines a calculate window. The window passes
 all fields of the event as variables to the DS2 program.
 </description>
 <schema>

XML Example 13

 <fields>
 <field name='tradeID' type='string' key='true'/>
 <field name='security' type='string'/>
 <field name='quantity' type='int32'/>
 <field name='price' type='double'/>
 <field name='traderID' type='int64'/>
 <field name='time' type='string'/>
 <field name='volume' type='int32' key='true'/>
 </fields>
 </schema>
 <mas-map>
 <window-map module="module_1" revision="0" source="Trades"
 function="compute_volume"/>
 </mas-map>
 <connectors>
 <connector class='fs' name='sub'>
 <properties>
 <property name='type'>sub</property>
 <property name='fstype'>csv</property>
 <property name='fsname'>output.csv</property>
 <property name='snapshot'>true</property>
 </properties>
 </connector>
 </connectors>
 </window-calculate>
 </windows>
 <edges>
 <description>
 This fully specifies the continuous query with window
 connectivity, which is a directed graph.
 </description>
 <edge source='Trades' target='cw1'/ role='data'>
 </edges>
 </contquery>
 </contqueries>
 <project-connectors>
 <connector-groups>
 <connector-group name='sub_group'>
 <connector-entry connector='trades_traders_cq/cw1/sub'
 state='running'/>
 </connector-group>
 <connector-group name='pub_group'>
 <connector-entry connector='trades_traders_cq/Trades/pub'
 state='finished'/>
 </connector-group>
 </connector-groups>
 <edges>
 <edge source='sub_group' target='pub_group'/>
 </edges>
 </project-connectors>
 </project>
 </projects>
</engine>

14 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

Data Type Mappings
SAS Micro Analytic Service executes within the Calculate windows of continuous query
applications. A continuous query can specify that events from one or more upstream
windows be processed by SAS Micro Analytic Service when those events are received
by a given Calculate window. This specification maps each such input window’s events
to one of the methods that have been published to SAS Micro Analytic Service.

During continuous query initialization, when a window’s events are registered with a
method, SAS Micro Analytic Service inspects the window’s event schema and
automatically maps the event’s fields to method input parameters. This is done by
matching event field names with parameter names. It is legal for some, none, or all of the
names to match. It is also legal for methods to have no input parameters. In that case, no
input mapping is done. SAS Micro Analytic Service performs similar matching of the
specified method’s output parameter names with the Calculate window’s event field
names. Therefore, at run time, when an event is received from the specified window,
method input values are taken from that event, the method is executed, and the results
are used to create a derived event. The event flows downstream from the Calculate
window to any subscribers.

The following table describes the data type mappings between event field types and DS2
method parameter types, and between event field types and Python function argument
types. SAS Micro Analytic Service automatically translates the data types as needed
according to the table below. The Event Stream Processing Event Field Type column
lists the schema tag of each data type.

Event
Stream
Processing
Event Field
Type

Event
Stream
Processing
Type
Description

DS2 Method
Parameter
Type

DS2 Type
Description

Python
Function
Argument
Type

Python
Type
Description

Boolean 8-bit signed bool Boolean bool Boolean

int32 32-bit signed
integer

int 32-bit signed
integer

long Long integer

int64 64-bit signed
integer

BIGINT 64-bit signed
integer

long Long integer

double IEEE double double IEEE double float Floating-
point real

string UTF-8 string CHAR,
NCHAR,
varchar,
NVARCHAR

UTF-8 string string Unicode
string

money 192-bit fixed
decimal

double IEEE double float Floating-
point real

Data Type Mappings 15

Event
Stream
Processing
Event Field
Type

Event
Stream
Processing
Type
Description

DS2 Method
Parameter
Type

DS2 Type
Description

Python
Function
Argument
Type

Python
Type
Description

date Date and
time, as
seconds since
January 1,
1970

BIGINT Seconds
since
January 1,
1970

long Seconds
since
January 1,
1970

stamp Date and
time, as
microseconds
since January
1, 1970

BIGINT Microsecond
s since
January 1,
1970

long Microsecond
s since
January 1,
1970

array(i32) 32-bit signed
integer array

int
parameter[]

32-bit signed
integer array

list List of longs

array(i64) 64-bit signed
integer array

bigint
parameter[]

64-bit signed
integer array

list List of longs

array(dbl) IEEE double
array

double
parameter[]

IEEE double
array

list List of
floating
point real

rstring UTF-8 string char

nchar

varchar

nvarchar

UTF-8 string string Unicode
string

blob Binary large
object

binary Fixed-length
binary data

Not
supported

Not
supported

Note: String translates to either a single character type or to a variable length string
type in DS2, depending on how the DS2 method parameter is declared. Be careful
not to pass a multi-character string to a single CHAR argument in DS2, as run-time
errors might occur.

Note: The money type is presented to DS2 or Python as double or float, respectively.

The SAS Event Stream Processing Engine uses the UNIX epoch for date and time values
(January, 1, 1970). The values are presented to DS2 or Python as BIGINT or long,
respectively, using the SAS epoch (January 1, 1960). Native DS2 and Python date and
time types are not supported for public arguments. Seconds since 1960 is the SAS
datetime value, which makes calling SAS date and time functions convenient in DS2.
Stamp translates similarly, but with microsecond resolution rather than second
resolution.

For the base data types (string, int32, int64, double, datetime, timestamp, and money),
data is stored inline in the event. This allows for fast indexing and serialization.

For the array(i32), array(i64), array(dbl), blob, and rstring data types, data is not stored
in an event, but rather in another location in memory. The event contains a pointer to the
actual data. All of these object data types are reference counted at the object level. This
allows an object to be referenced in multiple events, which saves memory and the

16 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

amount of time that it would take to create a new object and copy the data. However,
note that these data types cannot be used as key fields for an event.

Data Type Mappings 17

18 Chapter 3 • Publishing to SAS Micro Analytic Service in SAS Event Stream Processing

Chapter 4

Generating Derived Events

Processing Event Opcodes and Flags . 19
Overview . 19
Operation Codes and Flags . 19
DS2 Opcodes Example . 21

Derived Event Suppression and NULL Key Fields . 21

Generating Multiple Derived Events from a Single Source Event 21
Overview . 21
Unique Keys . 22
Setting Opcodes and Flags on Multiple Derived Events . 23

Multiple Derived Events and NULL Key Fields . 23

Processing Event Opcodes and Flags

Overview
As discussed in Chapter 3, “Publishing to SAS Micro Analytic Service in SAS Event
Stream Processing,” SAS Micro Analytic Service is embedded in the Calculate windows
of continuous query applications. One or more upstream windows are connected to a
Calculate window by edges. Events flow from upstream windows to the Calculate
window along these edges.

Modules, which have been published to SAS Micro Analytic Service, process these
events. A module is a collection of methods, and each such upstream window can be
bound to a specific method. When an event flows from an upstream window to the
Calculate window, the method that is associated with that specific upstream window is
called. SAS Micro Analytic Service executes the method using input data from the
event, and then generates one or more derived events that contain the results of the
method execution.

Methods can be used to perform a wide variety of tasks such as scoring, advanced
analysis, and real-time decision making.

Operation Codes and Flags
Each event contains an operation code, or opcode, and a set of flags. For a detailed
explanation of these constructs, see SAS Event Stream Processing: Overview. SAS Micro

19

http://documentation.sas.com/?docsetId=espov&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en

Analytic Service module methods offer you the option of examining a Source window
event's opcode and flags and setting the opcode and flags of a derived event.

Note: This practice is recommended only for advanced SAS Event Stream Processing
users.

These are the opcodes:

• insert

• update

• delete

• upsert

• safedelete

One or more flags can be set in a given event, depending on the event opcode and
circumstances. Here are the possible flags:

• N — normal

• P — partial update

• R — retention

DS2 and Python module authors can add zero or more of the following special
arguments to their DS2 method or Python function signatures:

_inOpcode
populated with the Source window event opcode when the module method is called.
_inOpcode is an input argument and, if included, must appear before any output
arguments in the method signature. _inOpcode is a string type, and its value must be
insert, update, delete, upsert, or safedelete when the method is called.

_outOpcode
used to either set the opcode of the derived event to emit, or to cause no derived
event to be emitted. If _outOpcode is omitted from the method signature, SAS Micro
Analytic Service transfers the opcode of the Source window event to the derived
event. This is the standard behavior under normal circumstances. If _outOpcode is
included in the method signature and is set to missing, emission of the derived event
is skipped. If _outOpcode is included and is not set to missing, the value of
_outOpcode is used to set the opcode of the derived event. The value that is set must
be either insert, update, delete, upsert, or safedelete. To achieve normal
processing when _outOpcode is included, the method author must also include
_inOpcode and set _outOpcode=inOpcode. _outOpcode is an output argument.
Therefore, it must appear after all input arguments in the method signature.

_inFlags
populated with the Source window flags when the module method is called. _inFlags
is a string type containing one character per Source window event flag that is set. For
example, N and NR are possible values. Reserve space for at least three characters for
the _inFlags argument. _inFlags is an input argument. Therefore, if included, it must
appear before any output arguments in the method signature.

_outFlags
used to set the flags of the derived event to emit. If _outFlags is omitted from the
method signature, SAS Micro Analytic Service transfers the flags of the Source
window event to the derived event. This is the standard behavior under normal
circumstances. If _outFlags is included and is set to missing, SAS Micro Analytic
Service defaults to standard behavior and copies the Source window event flags to
the derived event.

20 Chapter 4 • Generating Derived Events

DS2 Opcodes Example
The following simple example illustrates how to conditionally set the derived event
opcode.

In this example, if the Source window event's opcode is delete, and its quantity is
greater than 2000, set the derived event's opcode to update, and set the price to 8.50.
Otherwise, preserve normal processing by assigning _inOpcode to _outOpcode, and set
the price to 10.00.

ds2_options sas;
package module_1/overwrite=yes;
method test_function(varchar(16) _inOpcode, int quantity,
 in_out double price, in_out varchar _outOpcode);
 if (_inOpcode = 'delete') and (quantity > 2000) then
 do;
 _outOpcode = 'update';
 price = 8.50;
 end;
 else
 do;
 _outOpcode = _inOpcode;
 price = 10.00;
 end;
end;
endpackage;

Derived Event Suppression and NULL Key Fields
In a DS2 method, when output arguments that are mapped to derived event key fields are
set to NULL or MISSING, the following rules (in order of precedence) are observed:

• If all key fields are NULL, the derived event is silently suppressed.

• If some, but not all, of the key fields are NULL, a warning is issued indicating that
the derived event is being suppressed because of an incomplete key set.

• If the _outOpcode pseudo argument is present but NULL, the derived event is
silently suppressed.

Generating Multiple Derived Events from a Single
Source Event

Overview
The methods that are published to SAS Micro Analytic Service can be used to generate
multiple derived events when a single source event is received. This is accomplished by
coding an array output argument for each derived event field. The values in the arrays
are then used to populate the fields of multiple derived events.

Generating Multiple Derived Events from a Single Source Event 21

A SAS Micro Analytic Service module method can produce one or more arrays. When
such a method is mapped to a SAS Event Stream Processing Source window, and when
at least one of the output array names matches a derived event field name, multiple
derived events can be generated. The number of elements in the matching array or arrays
at run time determines the number of events that are generated. As is the case with scalar
outputs, any array output that does not match a derived event field name is ignored.

When you are authoring a method that is capable of generating more than one event, the
best practice is to produce parallel arrays of the same size. When you follow this
practice, each array element contributes one value to each of the derived events, in order.
The arrays can contain different numbers of elements across method calls (for example,
they might generate one derived event for one call, three derived events for another, and
so on). However, for a single method call, the best practice is to produce the same
number of elements in each array.

If you ignore these best practices, you can still generate multiple events, but keep the
following rules in mind:

• The longest array that maps to a derived event field determines the number of events
that are generated.

• When the longest array is being determined, trailing missing values are not counted.

• If an array is shorter than the number of events to be generated, missing values are
set in the corresponding field of the derived events for which the array has no data.

Scalar output values, if any, are repeated in the corresponding fields of every derived
event.

Unique Keys
SAS Event Stream Processing requires that every event have a unique key composed of
one or more event fields. Therefore, the source event's key cannot be duplicated in
multiple generated derived events. In that case, SAS Event Stream Processing halts
processing and returns a duplicate key error. Because of this, the method author must
ensure that each derived event has a unique key value. To do that, produce an array
containing unique key values and mark the matching event field as a key in the derived
event schema. This technique is useful whenever you author your own module.

SAS Micro Analytic Service can execute modules that are generated by SAS analytics
products, where the analytic functions do not produce arrays of unique key values. To
accommodate such functions, SAS Micro Analytic Service provides a key generation
feature. To use this feature, add a key field named _masRowNum of type int32 to the
derived event schema, making it part of a composite key. When _masRowNum is
present, SAS Micro Analytic Service populates the field with the row number of each
derived event, in order, starting with 1. This feature ensures that the composite key value
is unique across multiple generated derived events.

Here is an example of a derived event schema:

ID*:int32,_masRowNum*:int32,symbol:int32,
 quantity:int32,price:double,total:double

Note: The module method does not need to produce a SAS Event Stream Processing
key value when the meta field _masRowNum is present.

22 Chapter 4 • Generating Derived Events

Setting Opcodes and Flags on Multiple Derived Events
When a set of derived events is generated from a single source event, you can explicitly
set opcodes or flags in the derived events either individually or as a group. To set
individual opcodes, use the _outOpcodeArray meta argument. Similar to _outOpcode,
_outOpcodeArray can also be used to suppress the generation of any of the individual
derived events.

To set flags in the derived events individually, use the _outFlagsArray meta argument.

To set the same opcode in all the derived events that are generated from a single source
event, use the _outOpcode meta argument and omit the _outOpcodeArray meta
argument. Similarly, to set the same flags in all the derived events that are generated
from a single source event, use the _outFlags meta argument and omit the
_outFlagsArray meta argument.

For information about the meta arguments _outOpcodeArray, _outFlagsArray,
_outOpcode, and _outFlags, see “Operation Codes and Flags” on page 19.

Multiple Derived Events and NULL Key Fields
In a DS2 method that generates multiple derived events from a single input event, when
output arguments that are mapped to derived event key fields are set to NULL or
MISSING, the following rules (in order of precedence) are observed:

• For any given derived event of a set, if all key fields are NULL, the derived event is
silently suppressed.

• For any given derived event of a set, if some of the key fields are NULL, but some
are not, a warning is issued indicating that the derived event is being suppressed
because of an incomplete key set.

• For any given derived event of a set, if _outOpcodeArray is present but the
corresponding _outOpcodeArray value is NULL or MISSING, the corresponding
derived event is suppressed.

• If _outOpcodeArray is present and the entire array is NULL or MISSING, the entire
derived event set is suppressed.

Multiple Derived Events and NULL Key Fields 23

24 Chapter 4 • Generating Derived Events

Chapter 5

DS2 Programming for SAS
Micro Analytic Service

Overview . 26

DS2 Source Code Prerequisites . 26

DS2 Identifiers . 26

SAS Micro Analytic Service and SAS Foundation . 27

Programming Blocks . 27

Restrictions When Working with DS2 and SAS Micro Analytic Service 28
Character Restrictions . 28
User-Defined Formats . 28

Public and Private Methods and Packages . 28
Overview . 28
Public Method Rules . 29
Public Method Example . 29
Private Method Example . 31
Method Overloading . 31

Argument Types Supported in Public Methods . 31
Overview . 31
Supported DS2 Data Types . 31
Unsupported DS2 Data Types . 32

Implicit Data Type Conversions . 32

Determining Whether DS2 Code Is Executing in SAS Micro Analytic Service . . . 33

Performing Calls between SAS Micro Analytic Service Modules 33
Overview . 33
MASCall Methods . 33
Examples . 34

Using Analytic Store Models . 35
About Analytic Store Models . 35
Publishing an Analytic Store Model . 36
Calling Analytic Store Models Using DS2 . 36
Example . 36
Configuring ASTORE File System Paths . 37
Composite Modules . 37

25

Overview
SAS Micro Analytic Service supports a subset of the DS2 programming language that is
suitable for high-performance transaction processing in real time. This chapter covers
only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS DS2 Language
Reference.

DS2 Source Code Prerequisites
The DS2 source code submitted to SAS Micro Analytic Service should begin with the
following statement, just above the PACKAGE statement:

"ds2_options sas;"

This statement instructs DS2 to use SAS missing value handling and helps ensure that
your DS2 program behaves the same as if it were run in SAS Foundation. DS2 source
code should end with this statement:

"endpackage;"

The code cannot contain DATA statements, PROC statements, or THREAD statements.
The source code should contain one and only one DS2 package, and this package can
contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line.
This line feed character makes it easier to use compiler warning and error messages that
include line numbers.

Note: DS2 supports only a specific style of comment. Comments start with the
characters /*, and they end with the characters */. All characters between the starting
and ending characters are part of the comment text. Comments can be nested. When
there is ambiguity in determining a token, the compiler always chooses the longest
possible sequence of characters that can make up a token.

DS2 Identifiers
For DS2 method, package, and argument names, SAS Micro Analytic Service supports
regular identifiers and delimited identifiers. When you are using a delimited identifier,
any character is allowed, including multi-byte and non-ASCII characters. You must
begin and end delimited identifiers with double quotation marks. For complete
information, see “DS2 Identifiers” in SAS DS2 Programmer’s Guide.

26 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

SAS Micro Analytic Service and SAS Foundation
Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine that does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2 and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

Here is an example PROC DS2 step that illustrates the above mechanism:

proc ds2;

ds2_options sas;
package myPackage/overwrite=yes;
method copyArray(char(12) in_array[4], in_out char(12) out_array[4]);
 out_array := in_array;
end;
endpackage;
run;

table _null_;
method init();
 dcl package myPackage p();
 dcl char(12) inarr[4];
 dcl char(12) outarr[4];
 inarr[1] = 'one';
 inarr[2] = 'two';
 inarr[3] = 'three';

 p.copyArray(inarr, outarr);
 put outarr[1]=;
 put outarr[2]=;
 put outarr[3]=;
end;
run;

quit;

Programming Blocks
Each DS2 module represents exactly one package, and therefore the DS2 PACKAGE
statement plays a major role in SAS Micro Analytic Service. A DS2 package contains
one or more methods, and methods can contain a wide variety of DS2 language
constructs. Package methods work well with rapid transaction processing because they
can be called over and over again with little overhead, as transactions flow through the
system. By contrast, the DS2 THREAD and TABLE statements are batch-oriented and
are not supported.

The following code blocks are supported:

Programming Blocks 27

• PACKAGE…ENDPACKAGE

• METHOD…END

• DO…END

The following code blocks are batch-processing oriented and are not supported:

• TABLE…ENDTABLE

• THREAD…ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

• OUTPUT

• SET

Restrictions When Working with DS2 and SAS
Micro Analytic Service

Character Restrictions
The following characters are not allowed in module IDs, package names, public method
names, and submodule names:

• backslash (\)

• forward slash (/)

• period (.)

• semicolon (;)

User-Defined Formats
SAS Micro Analytic Service does not support the use of SAS sessions. Because a SAS
session is required to create and access user-defined formats, SAS Micro Analytic
Service does not support the use of user-defined formats.

Public and Private Methods and Packages

Overview
Public methods are DS2 package methods that can be called by clients that are external
to SAS Micro Analytic Service, such as SAS Event Stream Processing.

When a public method is registered with SAS Event Stream Processing as an event
processor, the method's arguments are automatically mapped to the fields of the given
source window and Calculate window events. You register the method either by calling
dfESPproject::registerMethod_MAS() or by including it in a window-map entry of an
XML project definition.

Note: The method-argument-to-event-field mappings are by name and are case
sensitive.

28 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

DS2 package methods to be used for event processing must follow all of the public
method rules described below.

Private methods and packages are SAS Micro Analytic Service concepts, rather than
DS2 features.

SAS Micro Analytic Service can host public DS2 packages and private DS2 packages.
Private DS2 packages have fewer restrictions on the DS2 features that can be used than
public packages have. Although a private DS2 package cannot be called directly, it can
be called by another DS2 package. Private DS2 packages are useful as utility functions,
as solution-specific built-in functions, or for solution infrastructure. See your SAS
solution documentation for a description of the solution-specific built-in functions that
you can use when authoring custom DS2 modules.

A public DS2 package can contain private methods, as long as it contains at least one
public method. Any method that does not conform to the rules for public methods is
automatically treated as private. Private methods are allowed and do not produce errors
if they contain correct DS2 syntax. Private methods are not callable externally.
Therefore, they do not show up when querying the list of methods within a package.
However, they can be called internally by other DS2 package methods. Here are several
typical uses of private methods:

• Small utility functions that return a single, non-void, result.

• Methods containing DS2 package arguments. These are not callable externally.

Public Method Rules
Public methods must conform to the following rules:

• The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

• Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.
This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

• Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

• DS2 packages might not be passed as arguments in public methods. The presence of
a DS2 package argument results in the method becoming private.

• The VARARRAY statement might not be present in the argument list of a public
method. VARARRAY is a DS2 statement, not a data type. The presence of
VARARRAY in a methods argument list causes the method to become private.

• For a full list of data types that can be used as public method arguments, see
“Supported DS2 Data Types” on page 82.

Public Method Example
The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in_out double numbers[10]);

Public and Private Methods and Packages 29

 dcl int i;
 dcl int j;
 dcl int pivot;
 dcl double temp;

 i = lowerIndex;
 j = higherIndex;

 /* Calculate the pivot number, taking the pivot as the
 * middle index number. */
 pivot = numbers[ceil(lowerIndex+(higherIndex-lowerIndex)/2)];

 /* Divide into two arrays */
 do while (i <= j);
 /**
 * In each iteration, identify a number from the left side that
 * is greater than the pivot value. Also identify a number
 * from the right side that is less than the pivot value.
 * Once the search is done, then exchange both numbers.
 */
 do while (numbers[i] < pivot);
 i = i+1;
 end;
 do while (numbers[j] > pivot);
 j = j-1;
 end;
 if (i <= j) then do;
 temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;

 /* Move the index to the next position on both sides. */
 i = i+1;
 j = j-1;
 end;
 end;

 /* Call quickSort recursively. */
 if (lowerIndex < j) then do;
 quickSortStep(lowerIndex, j, numbers);
 end;
 if (i < higherIndex) then do;
 quickSortStep(i, higherIndex, numbers);
 end;
 end;

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

 method httppost(nvarchar(8192) url,
 nvarchar(67108864) payload,
 in_out nvarchar respbody,
 in_out int hstat, in_out int rc);
 declare package http h();
 rc = h.createPostMethod(url);
 if rc ne 0 then goto Exit;

30 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

 rc = h.setRequestContentType('application/json;charset=utf-8');
 if rc ne 0 then goto Exit;
 rc = h.addRequestHeader('Accept', 'application/json');
 if rc ne 0 then goto Exit;
 rc = h.setRequestBodyAsString(payload);
 if rc ne 0 then goto Exit;
 rc = h.executeMethod();
 if rc ne 0 then goto Exit;
 hstat = h.getStatusCode();
 if hstat lt 400 then h.getResponseBodyAsString(respbody, rc);
 else respbody = '';
 Exit:
 h.delete();
 end;

Private Method Example
The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull(double val) returns int;
 return null(val) OR missing(val);
end;

Method Overloading
SAS Micro Analytic Service does not support method overloading. The DS2
programming language does support method overloading for programs running in other
environments, but not when running in SAS Micro Analytic Service.

CAUTION:
If you publish a DS2 package that contains overloaded methods, run-time
errors can occur.

Argument Types Supported in Public Methods

Overview
SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are included below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Supported DS2 Data Types
• BIGINT

Argument Types Supported in Public Methods 31

• BINARY(n)

• CHAR(n)

• DOUBLE

• INTEGER

• NCHAR(n)

• NVARCHAR(n)

• VARCHAR(n)

Unsupported DS2 Data Types
• DATE

• DECIMAL(p, s)

• NUMERIC(p, s)

• PACKAGE

• TIME(p)

• TIMESTAMP(p)

• TINYINT

• VARBINARY(n)

Implicit Data Type Conversions
When the data types in the event schema differ from the data types in the corresponding
method arguments, certain implicit data conversions are supported. The following table
contains the supported data type conversions. A conversion is supported to and from
each type.

Data Type in Schema Module Method Argument Data Type

64-bit integer • 32-bit integer

• double

• Boolean

32-bit integer • 64-bit integer

• double

• Boolean

double • 32-bit integer

• 64-bit integer

• Boolean

SAS Micro Analytic Service confirms that a 64-bit integer value can successfully be
converted to a 32-bit integer value without overflow, but not all conversions are tested. If

32 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

problems are encountered, including those that are outside the SAS Micro Analytic
Service domain, an error occurs. For more information about numerical representation,
see the topics in Numerical Accuracy in SAS Software.

Determining Whether DS2 Code Is Executing in
SAS Micro Analytic Service

The DS2 function inmas() discovers whether SAS Micro Analytic Service is running in
the current process and, if so, determines whether the current thread is a member of the
SAS Micro Analytic Service worker thread pool. If it is, then the DS2 code is running
inside SAS Micro Analytic Service.

The function returns 1 (TRUE) if the DS2 code is executing in SAS Micro Analytic
Service, and 0 (FALSE) otherwise.

This can be useful to know when, for example, you have DS2 code that works in various
locations, but not in SAS Micro Analytic Service.

Performing Calls between SAS Micro Analytic
Service Modules

Overview
When a DS2 module references another DS2 package, the DS2 compiler does the
following:

1. Copies, from the source code repository, the source code of the referenced package
into the source code of the module to be published. The code is copied inline.

Note: The current DS2 language infrastructure supports source code repositories
only.

2. Compiles the combined source code into a single executable code stream.

A drawback to this approach is that the DS2 package code is repeated in every module
that references it. This results in increased memory usage for every redundant copy of a
package and longer compilation times.

SAS Micro Analytic Service resolves these issues via the DS2 MASCall package. This
package contains methods that enable separate DS2 modules, published to SAS Micro
Analytic Service, to call one another across separate module executables.

In addition to a smaller memory footprint and shorter compilation times, this
functionality enables a library of modules to be reused by many higher-level modules
without penalty.

MASCall Methods
Here are the package MASCall methods:

• allocParms(module_name, method_name)

This method creates a parameter list for the latest revision of the specified method.

Performing Calls between SAS Micro Analytic Service Modules 33

http://documentation.sas.com/?docsetId=lrcon&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&docsetVersion=9.4

• allocRevParms(module_name, revision_number, method_name)

This method is similar to allocParms, but it enables you to specify a revision number.

Important: The called module name is case-sensitive on UNIX systems. It is not case-
sensitive on Windows systems.

After allocParms() or allocRevParms() is called, the parameter setter methods operate on
the newly created parameter list.

Note that for both the setter and getter methods, arg_index is zero-based. The
argument takes a numeric index value, not a method parameter name.

Here are the setter methods:

• Scalar argument setters are of the form:

return_code = set<type>(arg_index, value)

• Array argument setters are of the form:

return_code = set<type>Array(arg_index, array_value)

After the input values are set, you can execute the target method by making the
following call, which calls the external module method that was previously specified by
allocParms() or allocRevParms():

callModule()

Note: Because the method to execute was previously specified, callModule() has no
parameters.

Output values returned by the method execution can be retrieved using the MASCall
getter methods, which are as follows:

• Scalar argument getters are of the form:

value = get<type>(arg_index)

• Array argument getters are of the following form.

get<type>Array(arg_index, array_value, rc)

Note: DS2 passes arrays and output values by reference.

After the output values are retrieved, call releaseParms() to release the parameters and
other resources used for the method. This releases the memory resources used for
memory execution and prevents memory leaks.

Examples
Here are DS2 MASCall package example method calls, where mc is the DS2 MASCall
instance variable that is created by calling the package constructor, which takes no
arguments. Here are two ways to construct a MASCall package instance named mc:

• Example 1:

declare package mascall mc();

• Example 2:

declare package mascall mc;
mc = _new_ mascall();

General example:

rc = mc.allocParms(module_name, method_name);
rc = mc.setDouble(0, additionalDiscount);

34 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

rc = mc.setString(1, currentPhone);
rc = mc.setString(2, currentPlan);
rc = mc.callModule();
treatments = mc.getString(3);
mc.releaseParms();

The complete set of DS2 package methods follows, where rc is the integer return code,
and mc is the package instance. Note that arg_index is zero-based. The argument
takes a numeric index value, not a method parameter name.

Parameter resource management:

rc = mc.allocParms(module_name, method_name);
rc = mc.allocRevParms(module_name, revision, method_name);
 mc.releaseParms();

Scalar argument setters:

rc = mc.setString(arg_index, value);
rc = mc.setLong(arg_index, value);
rc = mc.setInt(arg_index, value);
rc = mc.setDouble(arg_index, value);

Array argument setters:

rc = mc.setStringArray(arg_index, string_array);
rc = mc.setLongArray(arg_index, bigint_array);
rc = mc.setIntArray(arg_index, integer_array);
rc = mc.setDoubleArray(arg_index, double_array);

Execute or call a module's method:

rc = mc.callModule();

Scalar argument getters:

string_var = mc.getString(arg_index);
long_var = mc.getLong(arg_index);
int_var = mc.getInt(arg_index);
double_var = mc.getDouble(arg_index);

Array argument getters:

mc.getStringArray(arg_index, string_array, rc);
mc.getLongArray(arg_index, bigint_array, rc);
mc.getIntArray(arg_index, integer_array, rc);
mc.getDoubleArray(arg_index, double_array, rc);

Using Analytic Store Models

About Analytic Store Models
An analytic store file, called an ASTORE file, is a system that allows the state of a
trained analytical model to be saved in a transportable form. This enables it to
subsequently be used to score new data in a variety of environments. Many SAS
analytical procedures save the results from the training phase of model development as
analytic store models. A key feature of an ASTORE file is that it can be easily
transported from one platform to another. When an analytic store is published to SAS

Using Analytic Store Models 35

Micro Analytic Service, the state of the predictive model is restored and is available for
scoring new data.

Publishing an Analytic Store Model
Unlike DS2 and Python modules, analytic store models are not published to SAS Micro
Analytic Service as source code. Instead, analytic store models consist of binary code
and metadata. Client applications deliver analytic store models to SAS Micro Analytic
Service as ASTORE disk files.

Note: For information about calling an analytic store model by a DS2 module, see the
next section.

Calling Analytic Store Models Using DS2
If an analytic store model has been registered with SAS Micro Analytic Service, it can
be called by a DS2 module.

A DS2 module that calls an analytic store model must include an init() method that
invokes the score package's setvars() and setkey() methods.

Note: Failure to set this option can cause the system to stop responding on module
deletion or on shutdown.

The setvars() method is used by the DS2 score package to map variables to the analytic
store model's input and output parameters. The setkey() method takes a SHA-1
hexadecimal key as input and uses it to look up the analytic store model.

SAS Micro Analytic Service automatically calls the init() method, if present, when a
DS2 module is published.

Example
ds2_options sas;
package astoretest/overwrite=yes;
dcl package score sc();
dcl double CLAGE;
dcl double CLNO;
dcl double DEBTINC;
dcl double DELINQ;
dcl double NINQ;
dcl double VALUE;
dcl double _P_;
dcl double P__EVENT_0;
dcl double P__EVENT_1;
dcl nchar(32) I__EVENT_;
dcl nchar(4) _WARN_;
varlist allvars [_all_];

method init();
 sc.setvars(allvars);
 sc.setkey(n'EB3D1CA20AA0CB74465D25EEE2290E13692AF750');
end;

method preCode();
 P = 0.999;

36 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

end;

method postCode();
end;

method term();
end;

method astoreScore(double inCLAGE, double inCLNO, double inDEBTINC,
 double inDELINQ, double inNINQ, double inVALUE,
 in_out double out_P_, in_out double outP__EVENT_0,
 in_out double outP__EVENT_1, in_out nchar outI__EVENT_,
 in_out nchar out_WARN_);
 CLAGE = inCLAGE;
 CLNO = inCLNO;
 DEBTINC = inDEBTINC;
 DELINQ = inDELINQ;
 NINQ = inNINQ;
 VALUE = inVALUE;

 preCode();
 sc.scoreRecord();
 postCode();

 out_P_ = _P_;
 outP__EVENT_0 = P__EVENT_0;
 outP__EVENT_1 = P__EVENT_1;
 outI__EVENT_ = I__EVENT_;
 out_WARN_ = _WARN_;
end;

endpackage;

Configuring ASTORE File System Paths
In order to publish decisions that use analytic store models to a SAS Micro Analytic
Service destination, you must configure access to the location where the ASTORE files
are located. Also, users who need to work with analytic store models must have Read
and Write access to ASTORE directories. For more information, see “Configuring
Access to Analytic Store Model Files” in SAS Viya Administration: Models.

Composite Modules
Composite modules enable DS2 code running in SAS Micro Analytic Service to call one
or more analytic store models. A composite module consists of one DS2 module and
zero or more analytic store models, which are known as the members of the composite.
All members of a composite module are published, replaced, or deleted as a set. For
example, if one member of a composite module fails to publish, then all members of the
composite fail to publish. Also, any prior revisions of the composite module remain
unchanged.

Like other module types, the revisions of a composite module are owned by a module
context, have dictionaries, and can be queried for compilation messages, creation date-
times, and so on. The members of a composite module can include either a DS2 module

Using Analytic Store Models 37

http://documentation.sas.com/?docsetId=calmodels&docsetVersion=3.4&docsetTarget=n10916nn7yro46n119nev9sb912c.htm&locale=en
http://documentation.sas.com/?docsetId=calmodels&docsetVersion=3.4&docsetTarget=n10916nn7yro46n119nev9sb912c.htm&locale=en

or an analytic store model, or both. Other module types, such as Python and C, are not
supported as composite members.

Only the methods of the DS2 module of the composite are exposed for client
applications to call.

To avoid name collisions with DS2 modules that exist outside a composite module, each
composite revision has its own namespace. Therefore, each composite module must be
self-contained and without dependencies on any non-member module. Unlike other
module types, composite modules can be called only externally (for example, driven by
SAS Event Stream Processing events).

In SAS Event Stream Processing, a composite module is defined by specifying a DS2
module that calls an analytic store model or models in the <mas‑module> tag and by
including the new <module‑members> and <module‑member>sub-tags of
<mas‑module>. Each <module‑member> sub-tag should specify the location of an
ASTORE file on disk. The following example is an excerpt from an ESP continuous
query XML definition:

<mas-modules>

 <mas-module language="ds2" module="module_1" func-names='astoreScore'>
 <code-file>/your_ds2_folder/your_astore_caller.ds2</code-file>
 <module-members>
 <module-member member='astore_1'
 SHAkey='EB3D1CA20AA0CB74465D25EEE2290E13692AF750' type='astore'>
 <code-file>/your_astore_model_folder/your_astore_modelcode-file>/
 your_astore_model_folder/your_astore_model>
 </module-member>
 </module-members>
 </mas-module>

</mas-modules>

For more information, see SAS Event Stream Processing: Using SAS Event Stream
Processing Studio.

38 Chapter 5 • DS2 Programming for SAS Micro Analytic Service

http://documentation.sas.com/?docsetId=espstudio&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espstudio&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en

Chapter 6

State Sharing between
Modules

Overview . 39

Shared Vectors . 40
Overview . 40
State Vector Types . 40
Local State Vector Methods . 42
Shared State Vector Methods . 42
Setter and Getter Examples . 44

Shared Hash Tables . 46
Overview . 46
About Using Shared Hash Tables in DS2 . 46
Methods That Operate on the Default Shared Hash Table . 48
Default Shared Hash Table Example . 49
Methods That Operate on Non-default Shared Hash Tables 49

Overview
SAS Micro Analytic Service provides two ways to share data between modules that are
executing within a user context: shared vectors and shared hash tables. Shared vectors
are collections of data values. Shared hash tables are containers of stored vectors; the
vectors accessed by using keys.

When it is possible to represent the data, or state, that you want to share across modules
by a small number of vectors, the vectors can be shared with other modules by name.
However, vector lookup by name is a linear search and is therefore inefficient when
larger numbers of vectors are present. In such cases, shared hash tables are highly
recommended because of their efficiency.

When using shared hash tables, an efficient non-cryptographic hashing function is
applied to a key to quickly compute the desired vector's location within the hash table.
Shared hash tables also use non-locking synchronization mechanisms to further increase
efficiency.

Whether using shared vectors or shared hash tables, DS2 authors can use the MASState
package to create, share, retrieve, and delete data.

Important: SAS Micro Analytic Service shared state vectors and shared hash tables are
available only for DS2 modules. They are not supported for Python modules.

39

Important: These features support in-memory state sharing. They are not intended for
state-sharing across cluster nodes.

Shared Vectors

Overview
Collections of state data fields that are managed as a unit are referred to as state vectors.
Here are some key points about state vectors:

• A state vector contains one or more values, which are referred to by vector name and
a zero-based index.

• The data values in a state vector can contain the same data types or a mix of data
types.

• The number of data elements that is contained in a state vector is limited only by the
available memory.

• A state vector is similar to a database record in that it can contain multiple data
values of various types. However, it differs from a database record in that data values
are positional, rather than organized in named columns.

• You can initialize a shared state vector from a DS2 package method, including the
init() and constructor methods.

• A shared state vector name must be unique within the current user context. State
vector values can have any of the following DS2 data types:

• BIGINT

• BINARY

• DOUBLE

• DOUBLE ARRAY

• INTEGER

• INTEGER ARRAY

• VARCHAR

• VARCHAR ARRAY

Note: Binary data handling requires that you work within the limitations that are
briefly discussed in a note in “Scalar Setters Example” on page 44. In SAS
Micro Analytic Service, binary data typically refers to binary or character long
objects. These can be expressed as pointer and length pairs or as character
strings. Because DS2 does not support pointers directly, operations on binary
data are typically performed with string manipulation functions.

State Vector Types
There are two categories of MASState package methods— those that operate on local
state vectors and those that control state vector sharing.

40 Chapter 6 • State Sharing between Modules

Setting and retrieving individual values is always performed using local state vectors.
When a shared state vector is fetched, a local copy of that vector is created and returned
to the caller.

Similarly, when a state vector is shared, a copy of the local vector is created and made
centrally available for fetching by other modules and transactions.

Working with local state vectors has the advantage of allowing a set of values to be
updated and shared as a unit. This eliminates race conditions that could otherwise occur,
and enables consistent and complete state representations.

Figure 6.1 The State Vector Sharing Process

1 Module 1 creates a local values array.

2 Module 1 sets the values for the array.

3 These values are published as a shared state vector and assigned the name MyState.
This makes a deep copy of the vector.

4 Module 2 retrieves the MyState local vector. This makes a deep copy of the vector.

5 Module 2 updates the values and replaces the values in the local values array.

6 Module 2 replaces the values in the MyState shared state vector.

7 External clients retrieve and replace values for the MyState shared state vector.

8 Module 3 attempts to create a shared state vector called MyState. This is rejected
because a shared state vector with that name already exists.

Shared Vectors 41

The MASState package includes 28 methods. The following sections contain usage
examples for each of these methods.

Note that each example assumes that an instance of the MASState package, called st, has
been created:

dcl package masstate st()

Local State Vector Methods
The following methods control the creation and deletion of local vectors.

createVector(name, size)
This method creates a local state vector with the specified name, and space for the
number of values that is indicted by the specified size. The following example creates a
local state vector named MyVector with a size of 4:

rc = st.createVector('MyVector', 4);

deleteVector(name)
This method deletes the local state vector referenced by name. The following example
deletes the local vector created above:

rc = st.deleteVector('MyVector');

deleteAllVectors()
This method deletes all local vectors. The following example deletes all local vectors
managed by the current MASState package instance:

rc = st.deleteAllVectors();

Shared State Vector Methods
The following methods control the sharing and unsharing of state vectors with other
modules, and across transaction boundaries.

shareVector(name)
This method creates a copy of the named local state vector and makes it accessible to
other modules within the current user context. The name passed to shareVector() must be
unique within the user context. Otherwise, a duplicate name error is returned and the
vector is not shared. To update an existing shared state vector, call
replaceSharedVector().

method setValuesAndShareVector(in_out int rc);

 /* Create local vector */
 rc = st.createVector('MyVector', 4);

 /* Populate it with values*/
 rc = st.setInt('MyVector', 0, 100);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 1, 200);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 2, 300);
 if (rc ne 0) then return;

42 Chapter 6 • State Sharing between Modules

 rc = st.setInt('MyVector', 3, 400);
 if (rc ne 0) then return;

 /* Share vector with other modules */
 rc = st.shareVector('MyVector');
end;

fetchSharedVector(name)
This method fetches the shared state vector referenced by name and returns a local copy
of it. It is used to retrieve stateful data that has been published or updated by other
modules. After calling this method, the MASState package instance holds a local copy of
the shared state vector, which can be referenced by name.

method fetchSharedVector(in_out int rc);
 rc = st.fetchSharedVector('MyVector');
end;

unshareVector(name)
This method removes sharing for the vector referenced by name. The shared copy of the
vector is deleted from the current user context, and modules are no longer able to access
it. If no shared vector with the given name exists, this is considered a valid condition and
unshareVector() does not return an error. The unshareVector() method does not affect a
local state vector.

method unshareVector(in_out int rc);
 rc = st.unshareVector('MyVector');
end;

replaceSharedVector(name)
This method creates a copy of the named local state vector and replaces the existing
shared state vector of the same name, making the updated data accessible to other
modules within the user context. The name that is passed to replaceSharedVector() must
refer to an existing shared state vector. Otherwise, a not found error is returned and
the data is not shared.

method setNewValuesAndReplaceSharedVector(in_out int rc);

 /* Populate vector */
 rc = st.setInt('MyVector', 0, 111);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 1, 222);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 2, 333);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 3, 444);
 if (rc ne 0) then return;

 /* Share vector with other modules */
 rc = st.replaceSharedVector('MyVector');
end;

isVectorShared(name)
This method returns integer 1 (TRUE) if a shared state vector with the given name exists
within the current user context. Otherwise, it returns integer 0 (FALSE).

method isVectorShared(in_out int result);

Shared Vectors 43

 result = st.isVectorShared('MyVector');
end;

Setter and Getter Examples
Setter and getter methods are provided for each data type. These methods operate on
local vectors only. Individual data items are referenced by local vector name and by the
zero-based index of the data value.

The examples in this section illustrate each type-specific setter method. The MASState
package guards against errors such as index out of range and invalid data. As a best
practice, you should check return codes, and if applicable, return them to the caller.

Scalar Setters Example
method testScalarSetters(varchar(32) strVal,
 int intVal,
 bigint longVal,
 double dblVal,
 bigint refVal,
 bigint refSize,
 in_out int rc);
 rc = -1;

 /* Populate the vector with scalars of each type */
 rc = st.setString('AllScalarsVector', 0, strVal);
 if (rc ne 0) then return;
 rc = st.setInt('AllScalarsVector', 1, intVal);
 if (rc ne 0) then return;
 rc = st.setLong('AllScalarsVector', 2, longVal);
 if (rc ne 0) then return;
 rc = st.setDouble('AllScalarsVector', 3, dblVal);
 if (rc ne 0) then return;
 rc = st.setReference('AllScalarsVector', 4, refVal, refSize);
 if (rc ne 0) then return;
end;

Note: setReference() accepts a bigint reference value (for example, a pointer to a BLOB
or other binary data in memory) and a size (BLOB size in bytes or length of other
binary data). This is due to current limitations of the DS2 BINARY data type. The
getReference method returns a DS2 BINARY data type. (See “Scalar Getters
Example” on page 45.) The asymmetrical nature of this setter/getter pair is due to
limitations with BINARY processing that exist only on the setter side. With the
exception of BINARY, all other data types are handled symmetrically.

Array Setters Example
method testArraySetters(varchar(32) strVal[3],
 int intVal[3],
 bigint longVal[3],
 double dblVal[3],
 in_out int rc);
 rc = -1;

 /* Populate the vector with arrays of each type */
 rc = st.setStringArray('AllArraysVector', 0, strVal);
 if (rc ne 0) then return;

44 Chapter 6 • State Sharing between Modules

 rc = st.setIntArray('AllArraysVector', 1, intVal);
 if (rc ne 0) then return;
 rc = st.setLongArray('AllArraysVector', 2, longVal);
 if (rc ne 0) then return;
 rc = st.setDoubleArray('AllArraysVector', 3, dblVal);
 if (rc ne 0) then return;
end;

Scalar Getters Example
method testScalarGetters(in_out varchar strVal,
 in_out int intVal,
 in_out bigint longVal,
 in_out double dblVal,
 in_out binary refVal,
 in_out int rc);

 /* Retrieve scalars of each type from the vector */
 strVal = st.getString('AllScalarsVector', 0);
 if (missing(strVal)) then do;
 rc = -1;
 return;
 end;
 intVal = st.getInt('AllScalarsVector', 1);
 if (missing(intVal)) then do;
 rc = -1;
 return;
 end;
 longVal = st.getLong('AllScalarsVector', 2);
 if (missing(longVal)) then do;
 rc = -1;
 return;
 end;
 dblVal = st.getDouble('AllScalarsVector', 3);
 if (missing(dblVal)) then do;
 rc = -1;
 return;
 end;
 refVal = st.getReference('AllScalarsVector', 4);
end;

Note that the reference value is returned as a DS2 BINARY type, as indicated in “Scalar
Setters Example” on page 44.

Array Getters Example
method testArrayGetters(in_out varchar strVal[3],
 in_out int intVal[3],
 in_out bigint longVal[3],
 in_out double dblVal[3],
 in_out int rc);

 /* Retrieve arrays of each type from the vector */
 st.getStringArray('AllArraysVector', 0, strVal, rc);
 if (rc ne 0) then return;
 st.getIntArray('AllArraysVector', 1, intVal, rc);
 if (rc ne 0) then return;

Shared Vectors 45

 st.getLongArray('AllArraysVector', 2, longVal, rc);
 if (rc ne 0) then return;
 st.getDoubleArray('AllArraysVector', 3, dblVal, rc);
end;

Shared Hash Tables

Overview
SAS Micro Analytic Service shared hash tables enable high-performance sharing of in-
memory stateful data between modules and across transactions. Shared hash tables
consist of key/value pairs, where the keys are strings and the values are state vectors. For
more information about state vectors, see the previous section “Shared Vectors”.

Here are some key points about shared hash tables:

• State vectors with different sizes can reside within the same shared hash table.

• Shared hash tables are visible to all modules within the same user context.

• Up to eight hash tables can exist per user context, and each hash table can contain up
to 2,147,483,659 state vectors. Each state vector can contain any number of data
elements.

• You can initialize a shared state vector from a DS2 package method, including the
init() and constructor methods.

About Using Shared Hash Tables in DS2
The MASState package contains all the methods that are required for DS2 modules to
share data across SAS Micro Analytic Service modules and transaction boundaries.
These methods include operations on local state vectors and on shared hash tables.

Data can be shared among modules when you do either of the following:

• call methods that create a local state vector, populating it with values, and then
putting it in a shared hash table.

• call methods that get an existing vector from a shared hash table (which makes a
local copy), modifying its contents, and then replacing the vector in the hash table.

Shared hash tables are accessible by all DS2 modules within a user context.

When you create a new local state vector, you assign it a name. The name must be
unique within the hash table in which the vector will be stored. This name is used as
follows:

• as a key when subsequently storing the vector in a shared hash table.

That is, the name is used internally as input to a hashing algorithm that quickly
computes the hash table location where the vector will be stored.

• when deleting the state vector.

• when storing or retrieving state vector data values.

• when retrieving the vector from a shared hash table.

• when replacing the vector within a shared hash table.

46 Chapter 6 • State Sharing between Modules

Up to eight shared hash tables can be defined per user context. Hash tables are
referenced by index numbers zero through seven, where index zero refers to the default
hash table. The default hash table is created automatically when a new user context is
created. It is operated on by convenience methods that omit the table index argument.
The convenience methods are clear(), isEmpty(), size(), containsKey(), put(), get(),
replace(), and remove(). They are described in “Methods That Operate on the Default
Shared Hash Table” on page 48.

Figure 6.2 The Shared Hash Table Process

1 Module 1 creates a local state vector.

2 Module 1 sets the values for the local state vector.

3 Module 1 puts these values, contained in the MyState vector, into a shared hash
table.

4 Module 3 gets the MyState vector.

5 Module 3 updates the values in its local state vector.

6 Module 3 replaces the MyState state vector in the shared hash table.

7 External applications access the shared hash table to retrieve and replace the MyState
state vector.

8 Module 2 attempts to store a state vector called MyState in the shared hash table.
This is rejected because a state vector with that name already exists in the table.

Shared Hash Tables 47

Methods That Operate on the Default Shared Hash Table

Method Signature Description

int clear() Removes all state vectors from the default hash table. Returns
zero if successful, and nonzero otherwise.

int isEmpty() Returns 1 if the default hash table contains no state vectors,
and zero otherwise.

bigint size() Returns the number of state vectors currently in the default
hash table.

int containsKey(key) Returns 1 if the default hash table contains a state vector with
a name matching key, and zero otherwise.

int put(key) Inserts the state vector with the name indicated by the key into
the default shared hash table.

Returns zero if successful. Nonzero result codes are returned
if a duplicate key exists in the default hash table or if a local
state vector with a name matching key does not exist.

int get(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, a local copy of the state vector is made, and a zero
result code is returned. If not found, a nonzero result code is
returned.

Note: If a local state vector with a name matching key
already exists, and a state vector matching the key is found in
the default hash table, then the existing local state vector is
overwritten with the data values that are retrieved from the
default shared hash table.

int replace(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, the state vector in the default hash table is replaced
with a copy of the corresponding local state vector and a zero
result code is returned.

Nonzero result codes are returned if the key is not found in the
default hash table, or if a local state vector with a name
matching key does not exist.

int Remove(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, removes it and returns a zero result code. A nonzero
result code is returned if the key does not exist in the default
hash table.

48 Chapter 6 • State Sharing between Modules

Default Shared Hash Table Example
In the following example, method createAndPutVector() inserts a new state vector
containing two integer values into the default shared hash table. Method
incrementSharedValue() retrieves a state vector, named MyVector, from the default
shared hash table, making a local copy. It increments the integer data value within the
vector and then replaces the MyVector state vector in the default shared hash table.

ds2_options sas;
package statepkgtest/overwrite=yes;
dcl package masstate st();

 method createAndPutVector(varchar(32) key, in_out int rc);
 rc = st.createVector(key, 2);
 rc = st.setInt(key, 0, 100);
 if (rc ne 0) then return;
 rc = st.setInt(key, 1, 200);
 if (rc ne 0) then return;
 rc = st.put(key);
 rc = st.deleteVector(key);
end;
method incrementSharedValue(in_out int rc, in_out int int0Val);
 rc = st.get('MyVector');
 if (rc eq 0) then do;
 int0Val = st.getInt('MyVector', 0);
 int0Val = int0Val + 1;
 rc = st.setInt('MyVector', 0, int0Val);
 rc = st.replace('MyVector');
 end;
end;
endpackage;

Methods That Operate on Non-default Shared Hash Tables
Note: For the methods in the table, the following arguments apply:

• tableIndex indicates the hash table (0-7) on which to operate.

• key is a string value that uniquely identifies a vector within the hash table.

Method Signature Description

int hashTblCreate(tableIndex) Creates a new empty hash table, which can be
referenced by the given table index. Returns zero
if successful, and nonzero otherwise.

int hashTblDestroy(tableIndex) Removes all state vectors from the indicated hash
table, and then deletes the table. Returns zero if
successful, and nonzero otherwise.

int hashTblClear(tableIndex) Removes all state vectors from the indicated hash
table. Returns zero if successful, and nonzero
otherwise.

Shared Hash Tables 49

Method Signature Description

int hashTblIsEmpty(tableIndex) Returns 1 if the indicated hash table contains no
state vectors, and zero otherwise.

bigint hashTblSize(tableIndex) Returns the number of state vectors currently in
the indicated hash table.

int hashTblContainsKey(tableIndex,
key)

Returns 1 if the indicated hash table contains a
state vector with a name matching key, and zero
otherwise.

int hashTblPut(tableIndex, key) Inserts the state vector into the indicated hash
table at the position indicated by key.

Returns zero if successful.

Nonzero result codes are returned if a duplicate
key already exists in the indicated hash table, or if
a local state vector with a name matching key
does not exist.

int hashTblGet(tableIndex, key) Finds a state vector in the indicated hash table
with a name matching key.

If found, a local copy of the state vector is made,
and a zero result code is returned.

If not found, a nonzero result code is returned.

Note: If a local state vector with a name matching
key already exists, and a state vector matching the
key is found in the indicated hash table, then the
existing local state vector is overwritten with the
data values that are retrieved from the hash table.

int hashTblReplace(tableIndex,
key)

Finds a state vector in the indicated hash table
with a name matching key.

If found, the state vector in the indicated hash
table is replaced with a copy of the corresponding
local state vector and a zero result code is
returned.

Nonzero result codes are returned if the key is not
found in the hash table, or if a local state vector
with a name matching key does not exist.

int hashTblRemove(tableIndex,
key)

Finds a state vector in the indicated hash table
with a name matching key and, if found, removes
it and returns a zero result code.

A nonzero result code is returned if the key does
not exist in the hash table.

50 Chapter 6 • State Sharing between Modules

Chapter 7

Best Practices for DS2
Programming in SAS Event
Stream Processing

Overview . 51

Return Results . 51

Global Packages versus Local Packages . 52
Overview . 52
Example of Optimized Code . 52
Example of Poorly Optimized Code . 52

Replacing SCAN (and TRANWRD) with DS2 Code . 53

Hash Package . 55

Character-to-Numeric Conversions . 55

Data Type Conversions . 55

Passing Character Values to Methods . 56

Performing the Computation Once . 56

Moving Invariant Computations Out of Loops . 56

Overview
This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Return Results
If a DS2 method, or any method it calls, can result in a status code or failure, always
include a method output argument for returning the result to the caller.

51

Global Packages versus Local Packages

Overview
The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

Example of Optimized Code
This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load_and_clear.

/** FAST **/
package mypack;
 dcl double k d;
 dcl package hash h([k], [d]);

 method load_and_clear();
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Example of Poorly Optimized Code
This example creates a hash package instance that is local to the method and created and
deleted for each call to load_and_clear.

/** SLOW **/
package mypack;
 dcl double k d;

 method load_and_clear();
 dcl package hash h([k], [d]);
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;

52 Chapter 7 • Best Practices for DS2 Programming in SAS Event Stream Processing

endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code
Consider the following code:

i = 1;
onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
do while (onerow ~= '');
 j = 1;
 elt = scan(onerow, j, ';');
 do while (elt ~= '');
 * processing of each element in the row;
 j = j+1;
 elt = SCAN(onerow, j, ';');
 end;
 i = i+1;
 onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

• SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

• SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N^2).

• SCAN and TRANWRD require NCHAR or NVARCHAR input. If full_table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row_iter();
dcl package STRTOK col_iter();
row_iter.load(full_table, '|');
do while (row_iter.hasmore());
 row_iter.getnext(onerow);
 col_iter.load(onerow, ';');
 do while (col_iter.hasmore());
 col_iter.getnext(elt)
 * processing of each element;
 end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
 * So named because it mirrors (in a safe way) what is done by the original
 * strtok(1) function available in C.
 */
package sasuser.strtok/overwrite=yes;
 dcl varchar(32767) _buffer;
 dcl int strt blen;

Replacing SCAN (and TRANWRD) with DS2 Code 53

 dcl char(1) _delim;

 /* Loads the current object with the supplied buffer and delimiter
 * information. This avoids the cost of constructing and destructing the
 * object, and allows the declaration of a STRTOK outside of the loop in which
 * it is used.
 */
 method load(in_out varchar bufinit, char(1) delim);
 _buffer = bufinit .. delim;
 _delim = delim;
 strt = 1;
 blen = length(_buffer);
 end;

 /* Are there more fields? 1 means there are more fields. 0 means there are
 * no more fields.
 */
 method hasmore() returns integer;
 if (strt >= blen) then return 0;
 return 1;
 end;

 /* The void-returning GETNEXT method places the next token in the supplied
 * variable, tok.
 */
 method getnext(in_out varchar tok);
 dcl char(1) c;
 dcl int e;
 tok = '';
 if (hasmore()) then do;
 e = strt;
 c = substr(_buffer,e,1);
 do while (c ~= _delim);
 tok = tok .. c;
 e = e + 1;
 c = substr(_buffer,e,1);
 end;
 strt = e + 1;
 end;
 end;

 /* The value-returning GETNEXT method returns the next token. This version is
 * more computationally expensive because it requires an extra copy, as opposed to
 * the void-returning version, above.
 */
 method getnext() returns varchar(32767);
 dcl varchar(32767) tok;
 getnext(tok);
 return tok;
 end;

 /* Construct a STRTOK object using the parameters as initial values.
 */
 method strtok(varchar(32766) bufinit, char(1) delim);
 load(bufinit, delim);
 end;

54 Chapter 7 • Best Practices for DS2 Programming in SAS Event Stream Processing

 /* Construct a STRTOK object without an initial buffer to be consumed.
 */
 method strtok();
 strt = 0; blen = 0;
 end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces the CPU load due to how STRTOK retains the intermediate
state between calls to the getnext() methods. Therefore, it is O(N) instead of O(N^2).

Hash Package
With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double d1 d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([k1 k2], [d1 d2]);

Character-to-Numeric Conversions
When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;
s = '12.345';
ns = '12.345';

x = s; /* slow */
x = substr(s,1,16); /* faster */
x = substr(ns,1,16); /* even faster, avoids transcoding */

Data Type Conversions
When a source or derived event window includes an array of a particular type, and the
corresponding argument type in the module method is another type, a data type

Data Type Conversions 55

conversion can occur automatically. This happens only under certain circumstances. For
more information, see “Implicit Data Type Conversions” on page 32.

Passing Character Values to Methods
In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is
not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy_made(char(256) x);
 ...
end;

method no_copy(in_out char x);
 ...
end;

Performing the Computation Once
If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed_max then computed_max = compute(x);
if compute(x) < computed_min then computed_min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed_x = compute(x);
if computed_x > computed_max then computed_max = computed_x;
if computed_x < computed_min then computed_min = computed_x;

Moving Invariant Computations Out of Loops
If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i = 1 to dim(a);
 if (compute(x) eq a[i]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

56 Chapter 7 • Best Practices for DS2 Programming in SAS Event Stream Processing

computed_x = compute(x);
do i = 1 to dim(a);
 if (computed_x eq a[i]) then ...;
end;

Moving Invariant Computations Out of Loops 57

58 Chapter 7 • Best Practices for DS2 Programming in SAS Event Stream Processing

Chapter 8

Python Support in SAS Micro
Analytic Service

Introduction . 59

Example . 60

Public and Private Methods . 62
Overview . 62
About Private Methods . 62
About Public Methods . 62
Return Values . 63
Examples: Public and Private Methods . 64

Working with Python and SAS Micro Analytic Service . 65

Configuring Python for SAS Event Stream Processing . 66
Environment Configuration . 66

Introduction
SAS Micro Analytic Service supports modules that are written in the Python
programming language. A Python module represents a group of related Python
functions.

Input arguments are given in the function's argument list. The objects, variables, and
expressions listed in a Python function's return statement are positional with respect to
the output variables.

The output variables are listed in the function’s "Output:" docstring that is specified in
the first statement of the function. Any method that includes the "Output:" docstring is
considered a public method. Otherwise, it is considered a private method. For
information, see the sections later in this chapter.

Input and output argument names live in a single namespace and therefore cannot be the
same. This means that update arguments are not supported. This is true for all module
types in SAS Micro Analytic Service, even though the Python language does not enforce
such a restriction.

Here is an example of a Python public function that can be hosted by SAS Micro
Analytic Service.

import sys
import math
import pandas as pd

59

import numpy as np
def nppd(a):
 "Output: ser1"
 npa = np.array([[1,2,3],[4,5,6]])
 ser1 = pd.Series([212, a, -273])
 return ser1.tolist()

def trucks(Eng_Load, Oil_Temp, Eng_RPM):
 "Output: ser1, x, syspath"
 inputs = pd.Series([Eng_Load, Oil_Temp, Eng_RPM])
 b = np.arange(100)
 number = 0
 for index, item in enumerate(inputs):
 number += item + b[index + 7]
 # is it even or odd?
 x = math.fmod(number, 2)
 return nppd(Oil_Temp), x, getsyspath()

def getsyspath():
 "Output: p"
 p = [None] * 50
 # print(sys.path)
 syspaths = sys.path
 i = 0
 for path in syspaths:
 p[i] = path
 i = i + 1
 return p

Here is an example of a Python public function that has input arguments a and b, and no
output.

def calcATimesB(a, b):
 "Output: "
 print ("Function with no output variables.")
 c = a * b
 print ("Result is: ", c, ", but is not returned")
 return None

After Python is configured, see Appendix 1, “Executing Python Modules in DS2
Modules,” on page 139 for additional information.

Example
The following example illustrates the use of each SAS Event Stream Processing data
type as input to and as output from a public Python function.

Name: scalarsTest.py
Purpose: Test the Python program for scalar types
#
Inputs (name) (type)
inString String
inBool Boolean
inLong Long

60 Chapter 8 • Python Support in SAS Micro Analytic Service

inDouble Double
inTimestamp Long microseconds since 1960
inDatetime Long seconds since 1960
inMoney Double
#
Outputs (name) (type)
outString String
outBool Boolean
outLong Long
outDouble Double
outTimestamp Long microseconds since 1960
outDatetime Long seconds since 1960
outMoney Double
#
Note: Event stream processing presents the timestamp as
long microseconds since 1960 and datetime as long
seconds since 1960.

Import the datetime module to perform datetime operations.
import datetime

def scalarsTest(inString, inBool, inLong, inDouble,
 inTimestamp, inDatetime, inMoney):
 "Output: outString, outBool, outLong, outDouble,
 outTimestamp, outDatetime, outMoney"

 if inString == None:
 outString = None
 else:
 # Convert the casing of the string input.
 outString = inString.swapcase()

 if inBool == None:
 outBool = None
 else:
 # Reverse value of the Boolean.
 outBool = not inBool

 if inLong == None:
 outLong = None
 else:
 # Add 10 to long.
 outLong = inLong + 10

 if inDouble == None:
 outDouble = None
 else:
 # Add 10.1 to the double.
 outDouble = inDouble + 10.1

 if inTimestamp == None:
 outTimestamp = None
 else:
 # Since this is defined as a stamp in event stream processing
 # schema, this number is long microseconds since 1960.
 # Add one second == 1000000 microseconds.

Example 61

 outTimestamp = inTimestamp + 1000000

 if inDatetime == None:
 outDatetime = None
 else:
 # Since this is defined as date in the event stream processing schema,
 # this number is long seconds since 1960.
 # Add one day.
 outDatetime = inDatetime + (3600 * 24)

 if inMoney == None:
 outMoney = None
 else:
 # Add 25 cents.
 outMoney = inMoney + 0.25

 # Return all of the outputs.
 return outString, outBool, outLong, outDouble, outTimestamp,
 outDatetime, outMoney

Public and Private Methods

Overview
SAS Micro Analytic Service enables the use of hosting public and private methods,
where a method is a Python function. Note that public and private methods are SAS
Micro Analytic Service concepts, and are not Python features.

In general, any method that includes the "Output:" docstring is considered a public
method. If a method does not have the "Output:" docstring, then it is considered a private
method. However, there are syntax requirements that must be followed for the docstring
and the output arguments. For details, see “About Public Methods” on page 62.

Python modules can be published containing all public methods, or a mixture of public
and private methods.

Both public and private methods can call other functions that either exist within the
module internally or in external Python packages, including third-party libraries.

About Private Methods
Here are details about using a private method:

• A private method can be called internally by other methods (either public or private).

• A private method cannot be called directly (externally).

• Private methods are useful when used as utility functions within a package.

About Public Methods
Here are details about using a public method:

62 Chapter 8 • Python Support in SAS Micro Analytic Service

• For a function that has at least one output argument, there must be a space between
"Output:" and the first output argument name. For examples, see the next section
“Examples: Public and Private Methods” on page 64.

• When there is more than one output argument, the output argument names must be
comma separated.

• Line two of the function must begin with a docstring, and the first non-whitespace
token must be "Output:".

• All public functions that return more than one output argument must return a tuple
containing all of the output arguments.

This can be done by returning all of the arguments separated by commas.

• When returning zero arguments from a public function you are still required to
include the "Output:" docstring to indicate a public function. It should simply be
"Output:", with no output arguments listed.

• Order does matter. Therefore, the order in the return statement must match the order
in the "Output:" line. A best practice is to copy and paste from one to the other.

Return Values
When Python integers are returned, they are converted to int64_t. If the Python integer is
too large for the int64_t type, a run-time error is reported.

Although Python packages might support abstract types that provide an additional layer
on top of the built-in scalar types, such as integer and float, they cannot be returned from
SAS Micro Analytic Service public functions. Packages that have these abstract types
provide functions that can be used to extract the built-in type. Here is an example:

return numpy.float(x), numpy.int(y)

Note the following information about the return statement for Python functions:

• Functions that return nothing do not require a return statement. Python returns the
NoneType object. Therefore, an empty return statement (return) and returning
None (return None) are equivalent.

• Functions that return a single argument can return None. SAS Micro Analytic
Service maps the None value to the specific Missing value for the expected static
type.

• Functions that return multiple values can be formatted with or without parentheses
(for example, return a,b,c or return (a,b,c)).

Note: An attempt to return None from a function that expects multiple values is
invalid.

When return values are transferred between Python and SAS Micro Analytic Service, the
following rules are enforced by SAS Micro Analytic Service:

• A singleton value (non-tuple) is mapped to a tuple with a single value.

• Tuples map to multiple return arguments.

• Arrays and tuples cannot be used interchangeably. The Python tuple type is used to
return multiple values. The Python list type is used for SAS Micro Analytic Service
arrays.

• The argument count must match.

Public and Private Methods 63

The following code sample and table show some examples that illustrate the application
of these rules.

def one(a):
"output: b"
return oneVal

def two(a,b)
"output: a,b"
return twoVal

Python Value Assignment SAS Micro Analytic Service Value Assignment

oneVal = 1 oneVal = (1)

(one integer value)

oneVal = 1, oneVal = (1)

(one integer value)

oneVal = (1,) oneVal = (1)

(one integer value)

oneVal = (1, 2) An error occurs. It indicates that the expected output
variables do not match the actual output variables.

twoVal = 1,2 twoVal = (1,2)

(two integer values)

twoVal = (1,2), An error occurs. It indicates that an unknown tuple type is
present.

twoVal = ([1],[2]) twoVal = ([1],[2])

(two integer arrays)

Examples: Public and Private Methods
As mentioned previously in this chapter, for a method to be public, the output variables
must be listed in the function’s "Output:" docstring that is specified on the first statement
of the function. This is the second line of the method, immediately following the "def"
line.

Here are some examples. Note that the fun2 function would be considered private
because the docstring does not begin with "Output:".

def fun1(a, b):
 "Output:"
 """ This is a public function,
 but has no output args."""
 return

def fun2(a, b):
 """This will be private since the docstring doesn't begin with Output:

64 Chapter 8 • Python Support in SAS Micro Analytic Service

 Output: x, y, z"""
 return a+2, b*4, a/b

def fun3(a, b):
 ' Output: x, y, z'
 ''' multi
 Line
 doc string'''
 return a+2, b*4, a/b

def fun4(a, b):
 ''' Output: x, y, z'''
 """ multi
 Line
 doc string"""
 return a+2, b*4, a/b

def fun5(a, b):
 '''Output: q, r, s,
 t, u,
 v,
 w'''
 return a+2, b*4, a/b

Working with Python and SAS Micro Analytic
Service

When you work with Python and SAS Micro Analytic Service, note the following:

• Multi-tenant deployments are not supported.

• When sharing modules across other modules, because all modules belong to the
same tenant, you should understand the following logic:

If module A and module B each import module C, updates to module C affect both
module A and module B.

• All client requests are passed to SAS Micro Analytic Service with an OAuth access
token. This token is not passed to the Python subprocess. Therefore, Python code
cannot connect to a SAS service that requires an access token.

Note: This is a SAS Micro Analytic Service limitation on Python modules.

• SAS Micro Analytic Service Python interface usage is prohibited when any of the
following situations exist:

• The application enabled MASHostAccessDeny when initializing SAS Micro
Analytic Service.

• The MASHostAccess=DENY environment variable is set.

• The application provides MASHostOSID credentials that fail to authenticate.

• The CAS session is not running under a host operating system identity and it
attempts to run an action that uses SAS Micro Analytic Service.

• In this release of SAS Micro Analytic Service, maintaining multiple revisions of a
Python module is not supported. A subsequent publish request on the same Python

Working with Python and SAS Micro Analytic Service 65

module context replaces the existing revision. This means that the revision number
always remains at 1.

For example, consider the following two Python modules:

test.py:

 def execute(a,b):
 "Output: c"
 c = (a+b)
 return c

def score(x):
 "Output: y"
 return x * 0.5;

test2.py:

 def execute(a,b,c):
 "Output: d"
 d = (a+b+c)
 return d;

If you publish test.py and then publish test2.py to the same module context, the first
execute function is replaced by the second one. The new execute function has an
additional input argument (c) and a different output argument (d). Also, the new
revision no longer includes the score function.

Configuring Python for SAS Event Stream
Processing

Environment Configuration
SAS Micro Analytic Service does not require a specific version of Python. However, it is
possible that Python code that you publish to SAS Micro Analytic Service might have
dependencies to a specific version of Python or Python packages. To configure Python
for use within SAS Micro Analytic Service, note the following requirements:

• The MAS_PYPATH environment variable must be set. It specifies the absolute path
to the Python executable file. Here are some examples:

• UNIX platform:

MAS_PYPATH=/usr/bin/python
export MAS_PYPATH

• Windows platform:

set MAS_PYPATH=c:\python\python.exe

• When SAS Micro Analytic Service launches the Python client, it waits for the
environment to reconnect. By default, this wait time is 30 seconds. To change the
wait time, you can set the MAS_PYWAIT environment variable and assign the
applicable value (in milliseconds).

• Note the following important information about using Python:

• Python 2.x uses ASCII as the default encoding. Therefore, you must specify
another encoding at the top of the file to use non-ASCII Unicode characters in

66 Chapter 8 • Python Support in SAS Micro Analytic Service

literals. As a best practice, when using Python 2.x, always use the following as
the first line of your Python script:

-*- coding: utf-8 -*-

• In Python 2.x, the Unicode literal must be preceded by the letter u. Therefore,
literal strings should be written using the following form:

u”xxxxx”

• Python 3.x uses UTF-8 as the default encoding. Therefore, the encoding issues
noted above affect Python 2.x only. When using Python 3.x, you can use the
default encoding, and you can simply enclose literals in quotation marks.

• For Python environments prior to version 3.7, ensure that the LANG environment
variable is set as follows:

LANG=*.UTF-8

The asterisk (*) corresponds to the applicable locale value for your environment.
Some examples are en_US.UTF-8 (English United States), fr-FR.UTF-8 (French
France), or de-CH.UTF-8 (German Switzerland).

Note: If the LANG environment variable is not defined, SAS Micro Analytic
Service sets its value to en_US.UTF-8.

• Note the following information when you set environment variables (such as
PYTHONPATH) in the sub-processes that are launched to run on Python:

• In a UNIX environment, exported shell environment variables are inherited by
the sub-processes.

• In a Windows environment, you must define system and user environment
variables in Control Panel ð System and Security ð System ð Advanced
system settings ð Environment Variables.

Configuring Python for SAS Event Stream Processing 67

68 Chapter 8 • Python Support in SAS Micro Analytic Service

Chapter 9

SAS Micro Analytic Service
Logging and Deployment

SAS Micro Analytic Service Logging . 69
Overview . 69
Loggers . 69

Deployment . 70

SAS Micro Analytic Service Logging

Overview
SAS Micro Analytic Service uses the SAS Logging Facility. For more information, see
SAS Viya Administration: Logging. SAS Event Stream Processing provides a default
logging configuration file, and that file specifies loggers and appenders in addition to
those described in this chapter. For more information about SAS Event Stream
Processing, access the SAS product documentation at http://support.sas.com.

Compiler messages are retrieved and logged by SAS Event Stream Processing when it
publishes a module to SAS Micro Analytic Service.

Loggers
Logger names that start with the following prefixes apply to the SAS Micro Analytic
Service core: Admin, App, Audit, Perf.

Here are some important SAS Micro Analytic Service core loggers:

Name Events Logged Default Value

App.tk.MAS Method execution events INFO

App.tk.MAS.Service Start-up and shutdown events and the SAS
Micro Analytic Service version number

INFO

App.tk.MAS.Python Python events INFO

69

http://documentation.sas.com/?docsetId=callogging&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://support.sas.com

Name Events Logged Default Value

App.tk.MAS.CodeGen Compilation messages produced during an
attempt to publish. When a publish request
fails, error information is logged regardless of
the App.tk.MAS.CodeGen logger level.

FATAL

App.SQLServices.license

App.license

DataFlux.Licensing

Licensing events ERROR

Audit.Table.Connection Database connection events INFO

Loggers that start with App.TableServices.DS2.Runtime. or
App.TableServices.DS2.Config. can be used to diagnose DS2 problems. Module code
might also use other loggers.

When diagnosing DS2 problems, it is important to note that the
App.TableServices.DS2.Runtime.* and App.TableServices.DS2.Config.* loggers do not
inherit configuration from their ancestors. They must be configured explicitly, if you
want to capture logging events that are directed to those loggers. It is recommended that
you configure them only when diagnosing a DS2 problem since the additional logging
traffic affects performance. For more information about those DS2 loggers, see the “DS2
Loggers” section of SAS DS2 Programmer’s Guide.

Detailed information about operations such as compilation start and finish is logged at
the DEBUG level. Warning and error conditions are logged at the WARN or ERROR
levels, as appropriate.

Note: When App.tk.MAS.Service logger’s level is set to DEBUG or TRACE, you see a
message logging event that provides the SAS Micro Analytic Service version
number in the log. Here is an example:

May14 15:12:49 [00000007] DEBUG App.tk.MAS.Service -
Micro Analytic Service version information: 5.3, V.03.04M0P05052019,
Mon May 6 03:00:21 EDT 2019

Important: If you change the value for any SAS Micro Analytic Service core loggers,
you must restart SAS Micro Analytic Service for the change to take effect.

Deployment
SAS Micro Analytic Service is deployed automatically when SAS Event Stream
Processing is deployed. If necessary, you can add environment customizations to
your .bashrc file. For example, if you will use Python modules, you must complete the
deployment and configuration steps that are described in “Configuring Python for SAS
Event Stream Processing” on page 66.

If you encounter stack overflow errors when you are using the default SAS Micro
Analytic Service worker thread stack size of 8 MB, you can override the default value by
adding a definition of the MAStktstacksize environment variable to your .bashrc file.
Note the following information when assigning a value to MAStktstacksize:

70 Chapter 9 • SAS Micro Analytic Service Logging and Deployment

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

• You can specify a value using a unit of kilobytes or megabytes. The default value
unit is kilobytes.

• To specify a value using megabytes, you must include “m” or “M” as a suffix
following the number (for example, 10M or 10m).

• To specify a value using kilobytes, you can specify no suffix or add either a “k” or a
“K” following the number. This means that any of the following are valid values:
10240, 10240k, 10240K.

Here are examples of different ways to assign a value of 10 MB to the MAStktstacksize
environment variable:

• export MAStktstacksize=10240

• export MAStktstacksize=10240k

• export MAStktstacksize=10240K

• export MAStktstacksize=10m

• export MAStktstacksize=10M

Deployment 71

72 Chapter 9 • SAS Micro Analytic Service Logging and Deployment

Part 3

Using SAS Micro Analytic
Service with SAS Intelligent
Decisioning or SAS Model
Manager

Chapter 10
DS2 Programming for SAS Micro Analytic Service 75

Chapter 11
State Sharing between Modules . 93

Chapter 12
Best Practices for DS2 Programming in SAS
Intelligent Decisioning . 105

Chapter 13
Python Support in SAS Micro Analytic Service 111

Chapter 14
Administration . 121

73

74

Chapter 10

DS2 Programming for SAS
Micro Analytic Service

Overview . 76

DS2 Source Code Prerequisites . 76

DS2 Identifiers . 76

SAS Micro Analytic Service and SAS Foundation . 77

Programming Blocks . 78

Restrictions When Working with DS2 and SAS Micro Analytic Service 78
Character Restrictions . 78
User-Defined Formats . 79

Public and Private Modules and Methods . 79
Overview . 79
Public Method Rules . 80
Public Method Example . 80
Private Method Example . 82
Method Overloading . 82

Argument Types Supported in Public Methods . 82
Overview . 82
Supported DS2 Data Types . 82
Unsupported DS2 Data Types . 82
Data Grid Support . 83

Determining Whether DS2 Code Is Executing in SAS Micro Analytic Service . . . 84

Performing Calls between SAS Micro Analytic Service Modules 84
Overview . 84
MASCall Methods . 84
Examples . 85

Managing Large DS2 Modules . 86
Overview . 86
Asynchronous Module Creation and Update . 87
SAS Micro Analytic Service Time-Out Values . 87
Loading Modules On-Demand . 87
Verifying Minimum Memory . 88
Loading Modules from the Repository at Start-Up . 88
Understanding Eventual Consistency and Module Availability 88

Composite Modules . 89

Referencing Modules and Composite Submodules . 89

75

Using Analytic Store Models . 89
About Analytic Store Models . 89
Publishing an Analytic Store Model . 90
Calling Analytic Store Models Using DS2 . 90
Example . 90
Configuring ASTORE File System Paths . 91

Overview
SAS Micro Analytic Service supports a subset of the DS2 programming language that is
suitable for high-performance transaction processing in real time. This chapter covers
only that subset. Note that DS2 batch processing is not supported.

For more information about the DS2 programming language, see SAS DS2 Language
Reference.

DS2 Source Code Prerequisites
The DS2 source code submitted to SAS Micro Analytic Service should begin with the
following statement, just above the PACKAGE statement:

"ds2_options sas;"

This statement instructs DS2 to use SAS missing value handling and helps ensure that
your DS2 program behaves the same as if it were run in SAS Foundation. DS2 source
code should end with this statement:

"endpackage;"

The code cannot contain DATA statements, PROC statements, or THREAD statements.
The source code should contain one and only one DS2 package, and this package can
contain as many methods as desired.

It is a best practice to include a line feed character at the end of each source code line.
This line feed character makes it easier to use compiler warning and error messages that
include line numbers.

Note: DS2 supports only a specific style of comment. Comments start with the
characters /*, and they end with the characters */. All characters between the starting
and ending characters are part of the comment text. Comments can be nested. When
there is ambiguity in determining a token, the compiler always chooses the longest
possible sequence of characters that can make up a token.

DS2 Identifiers
For DS2 method, package, and argument names, SAS Micro Analytic Service supports
regular identifiers and delimited identifiers. When using a delimited identifier, any
character is allowed, including multi-byte and non-ASCII characters. You must begin
and end delimited identifiers with double quotation marks. For complete information,
see “DS2 Identifiers” in SAS DS2 Programmer’s Guide.

76 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

In the SAS Micro Analytic Service REST service, the names of the output parameters of
a step are the same as the in_out parameters names of the method. The parameter names
of the method can use delimited identifiers. However, they are difficult to use in a JSON
payload that uses double quotation marks to specify field names. Therefore, the double
quotation marks around the delimited identifiers for output parameters are not included
in the StepOutput.

Consider the following example:

A DS2 method returns a parameter called CustomerAge that has a value of 45. The
JSON output would appear as follows:

{
 "name" : "CustomerAge"
 "value" : 45
}

However, if an embedded space was included for readability purposes, the delimited
identifier "Customer Age" must be used. Because the double quotation mark (") is a
reserved character in JSON, it is represented by the escape characters \". This would
result in the following JSON representation:

{
 "name" : "\"Customer Age\"",
 "value" : 45

Because this is difficult to read, the SAS Micro Analytic Service REST service removes
the escape sequence characters. This results in the following JSON output:

{
 "name" : "Customer Age",
 "value" " "45

This is easy to read and is compatible with standard JSON tools.

SAS Micro Analytic Service and SAS Foundation
Although DS2 is supported by both SAS Foundation and SAS Micro Analytic Service,
SAS Micro Analytic Service has a lightweight, high-performance engine that does not
support either the full SAS language or PROC statements. Therefore, PROC statements
cannot be used. However, here is an effective DS2 authoring and testing mechanism:
develop your DS2 packages in SAS Foundation using PROC DS2 and publish those
packages to SAS Micro Analytic Service after removing the surrounding PROC DS2
syntax.

Here is an example PROC DS2 step that illustrates the above mechanism:

proc ds2;

ds2_options sas;
package myPackage/overwrite=yes;
method copyArray(char(12) in_array[4], in_out char(12) out_array[4]);
 out_array := in_array;
end;
endpackage;
run;

table _null_;

SAS Micro Analytic Service and SAS Foundation 77

method init();
 dcl package myPackage p();
 dcl char(12) inarr[4];
 dcl char(12) outarr[4];
 inarr[1] = 'one';
 inarr[2] = 'two';
 inarr[3] = 'three';

 p.copyArray(inarr, outarr);
 put outarr[1]=;
 put outarr[2]=;
 put outarr[3]=;
end;
run;

quit;

Programming Blocks
Each DS2 module represents exactly one package, and therefore the DS2 PACKAGE
statement plays a major role in SAS Micro Analytic Service. A DS2 package contains
one or more methods, and methods can contain a wide variety of DS2 language
constructs. Package methods work well with rapid transaction processing because they
can be called over and over again with little overhead, as transactions flow through the
system. By contrast, the DS2 THREAD and TABLE statements are batch-oriented and
are not supported.

The following code blocks are supported:

• PACKAGE…ENDPACKAGE

• METHOD…END

• DO…END

The following code blocks are batch-processing oriented and are not supported:

• TABLE…ENDTABLE

• THREAD…ENDTHREAD

Similarly, the following statements are not supported: OUTPUT and SET

• OUTPUT

• SET

Restrictions When Working with DS2 and SAS
Micro Analytic Service

Character Restrictions
The following characters are not allowed in module IDs, package names, public method
names, and submodule names:

78 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

• backslash (\)

• forward slash (/)

• period (.)

• semicolon (;)

User-Defined Formats
SAS Micro Analytic Service does not support the use of SAS sessions. Because a SAS
session is required to create and access user-defined formats, SAS Micro Analytic
Service does not support the use of user-defined formats.

Public and Private Modules and Methods

Overview
Public and private modules and methods are SAS Micro Analytic Service concepts,
rather than DS2 features. SAS Micro Analytic Service can host modules with methods
with public and private levels of visibility.

Public methods are methods of a module that are available for execution using the REST
interface. In order to be available, a method can contain only those parameters that map
to the following types and return a void result:

• bigint

• bigintArray

• datagrid

• dateTime

• dateTimeArray

• decimal

• decimalArray

• integer

• integerArray

• string

• stringArray

For information about the DS2 types that correspond to the above types, see “Argument
Types Supported in Public Methods” on page 82.

If a method contains other types of parameters or returns a non-void value, it is
considered private and cannot be executed using the REST service. However, these
methods can be called by other methods.

Public modules are modules that contain public methods that can be executed using the
REST interface. Module creators can choose to specify the visibility of a module.
However, a public module with no public methods is effectively a private module.

Public and Private Modules and Methods 79

Private modules and methods can be used to provide a clean interface to code that hides
internal implementation. Private methods are often used as utility or library methods to
help solve larger problems.

Public Method Rules
Public methods must conform to the following rules:

• The return type must be void. Rather than using a single return type, public methods
can return multiple outputs, where each output argument specifies the in_out
keyword in the method declaration. Non-void methods are treated as private.

• Arguments that are passed by reference (meaning ones that specify in_out) are
treated as output only. True update arguments are not supported by public methods.
This restriction results in more efficient parameter marshaling and supports all
interface layers, including REST.

• Input arguments must precede output arguments in the method declaration. It is
permissible for a method to have only inputs or only outputs. However, if both are
present, all inputs must precede the outputs.

• DS2 packages might not be passed as arguments in public methods. The presence of
a DS2 package argument results in the method becoming private.

• The VARARRAY statement might not be present in the argument list of a public
method. VARARRAY is a DS2 statement, not a data type. The presence of
VARARRAY in a methods argument list causes the method to become private.

• For a full list of data types that can be used as public method arguments, see
“Supported DS2 Data Types” on page 82.

Public Method Example
The example below illustrates a valid public method. It has a void return type (no
RETURNS clause), uses only publicly supported data types, and treats in_out arguments
as output only.

method quickSortStep (int lowerIndex, int higherIndex, in_out double numbers[10]);

 dcl int i;
 dcl int j;
 dcl int pivot;
 dcl double temp;

 i = lowerIndex;
 j = higherIndex;

 /* Calculate the pivot number, taking the pivot as the
 * middle index number. */
 pivot = numbers[ceil(lowerIndex+(higherIndex-lowerIndex)/2)];

 /* Divide into two arrays */
 do while (i <= j);
 /**
 * In each iteration, identify a number from the left side that
 * is greater than the pivot value. Also identify a number
 * from the right side that is less than the pivot value.
 * Once the search is done, then exchange both numbers.

80 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

 */
 do while (numbers[i] < pivot);
 i = i+1;
 end;
 do while (numbers[j] > pivot);
 j = j-1;
 end;
 if (i <= j) then do;
 temp = numbers[i];
 numbers[i] = numbers[j];
 numbers[j] = temp;

 /* Move the index to the next position on both sides. */
 i = i+1;
 j = j-1;
 end;
 end;

 /* Call quickSort recursively. */
 if (lowerIndex < j) then do;
 quickSortStep(lowerIndex, j, numbers);
 end;
 if (i < higherIndex) then do;
 quickSortStep(i, higherIndex, numbers);
 end;
 end;

Here is another example of a public method that illustrates the use of the HTTP package
calling out to a web service using a POST request and then getting a response.

 method httppost(nvarchar(8192) url,
 nvarchar(67108864) payload,
 in_out nvarchar respbody,
 in_out int hstat, in_out int rc);
 declare package http h();
 rc = h.createPostMethod(url);
 if rc ne 0 then goto Exit;
 rc = h.setRequestContentType('application/json;charset=utf-8');
 if rc ne 0 then goto Exit;
 rc = h.addRequestHeader('Accept', 'application/json');
 if rc ne 0 then goto Exit;
 rc = h.setRequestBodyAsString(payload);
 if rc ne 0 then goto Exit;
 rc = h.executeMethod();
 if rc ne 0 then goto Exit;
 hstat = h.getStatusCode();
 if hstat lt 400 then h.getResponseBodyAsString(respbody, rc);
 else respbody = '';
 Exit:
 h.delete();
 end;

Public and Private Modules and Methods 81

Private Method Example
The example below generates a private method in SAS Micro Analytic Service. It has a
non-void return type. That is, it has a RETURNS clause in the declaration, which
specifies a single integer return value.

method isNull(double val) returns int;
 return null(val) OR missing(val);
end;

Method Overloading
SAS Micro Analytic Service does not support method overloading. The DS2
programming language does support method overloading for programs running in other
environments, but not when running in SAS Micro Analytic Service.

CAUTION:
If you publish a DS2 package that contains overloaded methods, run-time
errors can occur.

Argument Types Supported in Public Methods

Overview
SAS Micro Analytic Service supports a subset of the DS2 data types for use as public
method arguments. Data types in the unsupported list can still be used in the body of a
(public or private) DS2 package method, and as arguments to private methods. The lists
of publicly supported and unsupported data types are included below.

Note: Any additional types added to the DS2 programming language in future releases
should be considered unsupported unless otherwise stated in the SAS Micro Analytic
Service documentation.

Supported DS2 Data Types
• BIGINT

• CHAR(n)

• DOUBLE

• INTEGER

• NCHAR(n)

• NVARCHAR(n)

• VARCHAR(n)

Unsupported DS2 Data Types
• BINARY(n)

82 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

• DATE

• DECIMAL(p, s)

• NUMERIC(p, s)

• PACKAGE

• TIME(p)

• TIMESTAMP(p)

• TINYINT

• VARBINARY(n)

Data Grid Support
In addition to the above supported DS2 data types, if SAS Intelligent Decisioning is
installed, SAS Micro Analytic Service also supports tabular data in data grid format.
This format is similar to a database table but it is typically much smaller in size. It is
used to hold structured data that cannot be well represented by arrays.

Public methods that contain parameters of the type DS2 package dcm_datagrid are
represented in the JSON payload of the media types application/
vnd.sas.microanalytic.module.step.input+json (input) and application/
vnd.sas.microanalytic.module.step.output+json (output).

The JSON structure is as follows:

• The first part is called metadata. It specifies each column in the table by name and
type. The assigned type can be Boolean, decimal, integer, string, or dateTime.

• The next part contains rows of data that correspond to the order and types of the
columns specified in the metadata part.

Here are a few examples of how the data grid format is represented:

"aTable" : [{
 "metadata" : [
 { "aStringColumn" : "string" },
 { "anIntColumn" : "integer" },
 { "aFloatColumn" : "decimal" },
 { "aBooleanColumn" : "boolean" },
 { "aTimestampColumn" : "dateTime" }]
 }, {
 "data" : [["one", 1, 1.11, true, "2001-01-01T01:01:01.000Z"],
 ["two", 2, 2.22, false, "2002-02-02T02:02:02.000Z"],
 ["three", 3, 3.33, true, "2003-03-03T03:03:03.000Z"],
 ["four", 4, 4.44, false, "2004-04-04T04:04:04.000Z"],
 ["five", 5, 5.55, true, "2005-05-05T05:05:05.000Z"],
 [null, null, null, null, null]]
 }],
 "aTableWithNoData" : [{
 "metadata" : [
 { "aStringColumn" : "string" },
 { "anIntColumn" : "integer" },
 { "aFloatColumn" : "decimal" },
 { "aBooleanColumn" : "boolean" },
 { "aTimestampColumn" : "dateTime" }]
 }, {

Argument Types Supported in Public Methods 83

 "data" : []
 }],
 "aNullValuedTable" : null

Determining Whether DS2 Code Is Executing in
SAS Micro Analytic Service

The DS2 function inmas() discovers whether SAS Micro Analytic Service is running in
the current process and, if so, determines whether the current thread is a member of the
SAS Micro Analytic Service worker thread pool. If it is, then the DS2 code is running
inside SAS Micro Analytic Service.

The function returns 1 (TRUE) if the DS2 code is executing in SAS Micro Analytic
Service, and 0 (FALSE) otherwise.

This can be useful to know when, for example, you have DS2 code that works in various
locations, but not in SAS Micro Analytic Service.

Performing Calls between SAS Micro Analytic
Service Modules

Overview
When a DS2 module references another DS2 package, the DS2 compiler does the
following:

1. Copies, from the source code repository, the source code of the referenced package
into the source code of the module to be published. The code is copied inline.

Note: The current DS2 language infrastructure supports source code repositories
only.

2. Compiles the combined source code into a single executable code stream.

A drawback to this approach is that the DS2 package code is repeated in every module
that references it. This results in increased memory usage for every redundant copy of a
package and longer compilation times.

SAS Micro Analytic Service resolves these issues via the DS2 MASCall package. This
package contains methods that enable separate DS2 modules, published to SAS Micro
Analytic Service, to call one another across separate module executables.

In addition to a smaller memory footprint and shorter compilation times, this
functionality enables a library of modules to be reused by many higher-level modules
without penalty.

MASCall Methods
Here are the package MASCall methods:

• allocParms(module_name, method_name)

This method creates a parameter list for the latest revision of the specified method.

84 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

• allocRevParms(module_name, revision_number, method_name)

This method is similar to allocParms, but it enables you to specify a revision number.

Important: The called module name is case-sensitive on UNIX systems. It is not case-
sensitive on Windows systems.

After allocParms() or allocRevParms() is called, the parameter setter methods operate on
the newly created parameter list.

Note that for both the setter and getter methods, arg_index is zero-based. The
argument takes a numeric index value, not a method parameter name.

Here are the setter methods:

• Scalar argument setters are of the form:

return_code = set<type>(arg_index, value)

• Array argument setters are of the form:

return_code = set<type>Array(arg_index, array_value)

After the input values are set, you can execute the target method by making the
following call, which calls the external module method that was previously specified by
allocParms() or allocRevParms():

callModule()

Note: Because the method to execute was previously specified, callModule() has no
parameters.

Output values returned by the method execution can be retrieved using the MASCall
getter methods, which are as follows:

• Scalar argument getters are of the form:

value = get<type>(arg_index)

• Array argument getters are of the following form.

get<type>Array(arg_index, array_value, rc)

Note: DS2 passes arrays and output values by reference.

After the output values are retrieved, call releaseParms() to release the parameters and
other resources used for the method. This releases the memory resources used for
memory execution and prevents memory leaks.

Examples
Here are DS2 MASCall package example method calls, where mc is the DS2 MASCall
instance variable that is created by calling the package constructor, which takes no
arguments. Here are two ways to construct a MASCall package instance named mc:

• Example 1:

declare package mascall mc();

• Example 2:

declare package mascall mc;
mc = _new_ mascall();

General example:

rc = mc.allocParms(module_name, method_name);
rc = mc.setDouble(0, additionalDiscount);

Performing Calls between SAS Micro Analytic Service Modules 85

rc = mc.setString(1, currentPhone);
rc = mc.setString(2, currentPlan);
rc = mc.callModule();
treatments = mc.getString(3);
mc.releaseParms();

The complete set of DS2 package methods follows, where rc is the integer return code,
and mc is the package instance. Note that arg_index is zero-based. The argument
takes a numeric index value, not a method parameter name.

Parameter resource management:

rc = mc.allocParms(module_name, method_name);
rc = mc.allocRevParms(module_name, revision, method_name);
 mc.releaseParms();

Scalar argument setters:

rc = mc.setString(arg_index, value);
rc = mc.setLong(arg_index, value);
rc = mc.setInt(arg_index, value);
rc = mc.setDouble(arg_index, value);

Array argument setters:

rc = mc.setStringArray(arg_index, string_array);
rc = mc.setLongArray(arg_index, bigint_array);
rc = mc.setIntArray(arg_index, integer_array);
rc = mc.setDoubleArray(arg_index, double_array);

Execute or call a module's method:

rc = mc.callModule();

Scalar argument getters:

string_var = mc.getString(arg_index);
long_var = mc.getLong(arg_index);
int_var = mc.getInt(arg_index);
double_var = mc.getDouble(arg_index);

Array argument getters:

mc.getStringArray(arg_index, string_array, rc);
mc.getLongArray(arg_index, bigint_array, rc);
mc.getIntArray(arg_index, integer_array, rc);
mc.getDoubleArray(arg_index, double_array, rc);

Managing Large DS2 Modules

Overview
SAS Micro Analytic Service compiles DS2 code and retains that compiled code in
memory (known as the repository). Thus, SAS Micro Analytic Service can execute code
and return responses in near real-time. A large DS2 module requires a lot of time to
compile. Subsequently, this affects the time that it takes to load the module from the
repository which, in turn, affects server start-up time.

Large modules also require more memory to host in a server. Memory usage is
approximately proportional to the number of core threads. Determining the number of

86 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

core threads to assign is an exercise in balancing the memory and the throughput
requirements of the system.

SAS Micro Analytic Service includes several features to support and manage large DS2
modules. These features enable a system administrator to balance the size and
complexity of the modules against system memory, system responsiveness, and
availability. This balancing process includes asynchronous calls to create or update
modules, as well as time-outs on operations that create or update modules. It can also
include disallowing a module to the persistence store if it takes too long to compile or
there is insufficient available memory.

The topics in this section describe all these features.

Asynchronous Module Creation and Update
Calls to the SAS Micro Analytic Service REST service are governed by the time-out
value that is configured for the SAS Viya web server. If the time to compile the content
exceeds that value, a call times out for the client.

The SAS Micro Analytic Service jobs endpoint allows the caller to submit a Create
request or an Update request that is longer than the SAS Viya web server time-out value.
Some benefits include the following:

• The caller can check the status of a job and monitor its progress.

• The caller can delete jobs before they are executed or after completion.

• Outdated jobs are automatically purged. By default, this occurs after 24 hours.

For complete details about the jobs API, see the REST API documentation.

SAS Micro Analytic Service Time-Out Values

Compiling DS2 Modules
SAS Micro Analytic Service imposes a time limit for compiling DS2 modules. If the
compilation time exceeds this time-out value, the module is not compiled and therefore
is not persisted in the repository. Keep in mind that because extremely large modules
take a long time to compile, they might not be suitable for deployment in SAS Micro
Analytic Service.

This compilation time-out value is configurable. You can modify it by using the
service.timeouts.maxmodulecompiletimemillis property in SAS Environment Manager.

For more information, see “supplementalProperties” on page 129.

Creating and Updating Synchronous Modules
In addition to the previously mentioned asynchronous methods, you can also create or
update modules synchronously. To configure a time-out value for these methods, use the
service.timeouts.maxloadwaitnonexecmillis property in SAS Environment Manager.

For more information, see “supplementalProperties” on page 129.

Loading Modules On-Demand
If a call to access a module is made, and it has not been loaded from the repository, SAS
Micro Analytic Service attempts to compile the module. This might occur following a

Managing Large DS2 Modules 87

https://developer.sas.com/apis/rest/DecisionManagement/#micro-analytic-score

restart if the server is still loading modules from the library or if the module was created
or updated on another cluster node.

This also might occur in cases in which a module is compiled because of a query request
for detailed information that can be retrieved only from a compiled module, or a request
to execute that module.

Both of these situations have a corresponding configurable time-out value that you can
modify by using the following configuration items:

• query operation time-out: service.timeouts.maxloadwaitnonexecmillis

• execution operation time-out: service.timeouts.maxloadwaitexecmillis

For more information, see “supplementalProperties” on page 129.

Verifying Minimum Memory
If a minimum amount of memory is not available on the server, SAS Micro Analytic
Service does not compile a module. In this case, an internal error is returned to the caller.
If the low memory condition occurs during the loading of the module from the
repository, the messages are logged and the module is not loaded.

The logged message contains the details of available and used memory.

You can modify the minimum value limit by using the core.minfreememoryfloor
configuration item.

For more information, see “supplementalProperties” on page 129.

Loading Modules from the Repository at Start-Up
When a cluster node starts, it attempts to load all the modules that are in the repository.
These modules are already in the system, so loading them is prioritized over processing
any job requests to create or update modules.

Because these modules were validated before they were added to the repository, errors
are not expected when they load. In the rare case that a specific module fails to load,
possibly because of an environmental factor (for example, a memory issue), that module
is not loaded. There are no subsequent attempts to load the module unless the node is
restarted.

Understanding Eventual Consistency and Module Availability
Some special considerations apply to clustered deployments with regard to large
modules.

In a clustered multi-node system, modules must be compiled on all nodes of the cluster
that host SAS Micro Analytic Service. The first node that receives a Create or Update
request compiles the module and responds to the caller with any compilation errors. If
there are no errors, SAS Micro Analytic Service saves the module code to the repository
and loads it to the other nodes for compilation.

Depending on any other modules that are in the process of compiling, some nodes might
not be ready to load this module. During this time, a request to execute that module
succeeds only if it is serviced by a node in which the module is compiled and loaded.
Modules that were previously loaded are available and requests to execute are serviced.

If a module is compiled synchronously (by using the create module or update module
API) control returns to the caller as soon as the module is compiled on one node of the

88 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

cluster. Similarly, if a module is compiled asynchronously, a job status of completed is
returned as soon as the module is compiled on one node of the cluster. The other nodes
continue to compile the module. Eventually, all the nodes compile and load the module.
However, before that happens, requests to execute that module might fail. In this case,
you need to resubmit the request.

Composite Modules
A composite module is a module that contain zero or more submodules. Only a top-level
module can contain public methods that are available for execution through the REST
interface.

Submodules are similar to private modules in the following ways:

• they are not available for execution through the REST interface

• they are available for use only by other submodules and by the top-level module

Unlike private modules, which must have unique names across the system, a submodule
name must be unique only for that composite module.

The top-level module of a composite module must contain DS2 source code.
Submodules can contain DS2 source code or refer to a file that contains an analytic store
model. Note that this is the only way to execute analytic store models.

Referencing Modules and Composite
Submodules

A module can reference other DS2 packages or analytic store models.

When a module is compiled, the system is searched to satisfy these dependencies in the
following order:

1. the submodules in any of the supplied module definition

2. the modules in the repository

The included submodules or modules can contain further dependencies. These are
resolved in the same order as specified above.

Using Analytic Store Models

About Analytic Store Models
An analytic store file, called an ASTORE file, is a system that allows the state of a
trained analytical model to be saved in a transportable form. This enables it to
subsequently be used to score new data in a variety of environments. Many SAS
analytical procedures save the results from the training phase of model development as
analytic store models. A key feature of an ASTORE file is that it can be easily
transported from one platform to another. When an analytic store is published to SAS

Using Analytic Store Models 89

Micro Analytic Service, the state of the predictive model is restored and is available for
scoring new data.

Publishing an Analytic Store Model
Unlike DS2 and Python modules, analytic store models are not published to SAS Micro
Analytic Service as source code. Instead, analytic store models consist of binary code
and metadata. Client applications deliver analytic store models to SAS Micro Analytic
Service as ASTORE disk files.

Note: For information about calling an analytic store model by a DS2 module, see the
next section.

Calling Analytic Store Models Using DS2
If an analytic store model has been registered with SAS Micro Analytic Service, it can
be called by a DS2 module.

A DS2 module that calls an analytic store model must include an init() method that
invokes the score package's setvars() and setkey() methods.

Note: Failure to set this option can cause the system to stop responding on module
deletion or on shutdown.

The setvars() method is used by the DS2 score package to map variables to the analytic
store model's input and output parameters. The setkey() method takes a SHA-1
hexadecimal key as input and uses it to look up the analytic store model.

SAS Micro Analytic Service automatically calls the init() method, if present, when a
DS2 module is published.

Example
ds2_options sas;
package astoretest/overwrite=yes;
dcl package score sc();
dcl double CLAGE;
dcl double CLNO;
dcl double DEBTINC;
dcl double DELINQ;
dcl double NINQ;
dcl double VALUE;
dcl double _P_;
dcl double P__EVENT_0;
dcl double P__EVENT_1;
dcl nchar(32) I__EVENT_;
dcl nchar(4) _WARN_;
varlist allvars [_all_];

method init();
 sc.setvars(allvars);
 sc.setkey(n'EB3D1CA20AA0CB74465D25EEE2290E13692AF750');
end;

method preCode();
 P = 0.999;

90 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

end;

method postCode();
end;

method term();
end;

method astoreScore(double inCLAGE, double inCLNO, double inDEBTINC,
 double inDELINQ, double inNINQ, double inVALUE,
 in_out double out_P_, in_out double outP__EVENT_0,
 in_out double outP__EVENT_1, in_out nchar outI__EVENT_,
 in_out nchar out_WARN_);
 CLAGE = inCLAGE;
 CLNO = inCLNO;
 DEBTINC = inDEBTINC;
 DELINQ = inDELINQ;
 NINQ = inNINQ;
 VALUE = inVALUE;

 preCode();
 sc.scoreRecord();
 postCode();

 out_P_ = _P_;
 outP__EVENT_0 = P__EVENT_0;
 outP__EVENT_1 = P__EVENT_1;
 outI__EVENT_ = I__EVENT_;
 out_WARN_ = _WARN_;
end;

endpackage;

Configuring ASTORE File System Paths
In order to publish decisions that use analytic store models to a SAS Micro Analytic
Service destination, you must configure access to the location where the ASTORE files
are located. Also, users who need to work with analytic store models must have Read
and Write access to ASTORE directories. For more information, see “Configuring
Access to Analytic Store Model Files” in SAS Viya Administration: Models.

Using Analytic Store Models 91

http://documentation.sas.com/?docsetId=calmodels&docsetVersion=3.4&docsetTarget=n10916nn7yro46n119nev9sb912c.htm&locale=en
http://documentation.sas.com/?docsetId=calmodels&docsetVersion=3.4&docsetTarget=n10916nn7yro46n119nev9sb912c.htm&locale=en

92 Chapter 10 • DS2 Programming for SAS Micro Analytic Service

Chapter 11

State Sharing between
Modules

Overview . 93

Shared Vectors . 94
Overview . 94
State Vector Types . 94
Local State Vector Methods . 96
Shared State Vector Methods . 96
Setter and Getter Examples . 98

Shared Hash Tables . 100
Overview . 100
About Using Shared Hash Tables in DS2 . 100
Methods That Operate on the Default Shared Hash Table 102
Default Shared Hash Table Example . 103
Methods That Operate on Non-default Shared Hash Tables 103

Overview
SAS Micro Analytic Service provides two ways to share data between modules that are
executing within a user context: shared vectors and shared hash tables. Shared vectors
are collections of data values. Shared hash tables are containers of stored vectors; the
vectors accessed by using keys.

When it is possible to represent the data, or state, that you want to share across modules
by a small number of vectors, the vectors can be shared with other modules by name.
However, vector lookup by name is a linear search and is therefore inefficient when
larger numbers of vectors are present. In such cases, shared hash tables are highly
recommended because of their efficiency.

When using shared hash tables, an efficient non-cryptographic hashing function is
applied to a key to quickly compute the desired vector's location within the hash table.
Shared hash tables also use non-locking synchronization mechanisms to further increase
efficiency.

Whether using shared vectors or shared hash tables, DS2 authors can use the MASState
package to create, share, retrieve, and delete data.

Important: SAS Micro Analytic Service shared state vectors and shared hash tables are
available only for DS2 modules. They are not supported for Python modules.

93

Important: These features support in-memory state sharing. They are not intended for
state-sharing across cluster nodes.

Shared Vectors

Overview
Collections of state data fields that are managed as a unit are referred to as state vectors.
Here are some key points about state vectors:

• A state vector contains one or more values, which are referred to by vector name and
a zero-based index.

• The data values in a state vector can contain the same data types or a mix of data
types.

• The number of data elements that is contained in a state vector is limited only by the
available memory.

• A state vector is similar to a database record in that it can contain multiple data
values of various types. However, it differs from a database record in that data values
are positional, rather than organized in named columns.

• You can initialize a shared state vector from a DS2 package method, including the
init() and constructor methods.

• A shared state vector name must be unique within the current user context. State
vector values can have any of the following DS2 data types:

• BIGINT

• BINARY

• DOUBLE

• DOUBLE ARRAY

• INTEGER

• INTEGER ARRAY

• VARCHAR

• VARCHAR ARRAY

Note: Binary data handling requires that you work within the limitations that are
briefly discussed in a note in “Scalar Setters Example” on page 98. In SAS
Micro Analytic Service, binary data typically refers to binary or character long
objects. These can be expressed as pointer and length pairs or as character
strings. Because DS2 does not support pointers directly, operations on binary
data are typically performed with string manipulation functions.

State Vector Types
There are two categories of MASState package methods— those that operate on local
state vectors and those that control state vector sharing.

94 Chapter 11 • State Sharing between Modules

Setting and retrieving individual values is always performed using local state vectors.
When a shared state vector is fetched, a local copy of that vector is created and returned
to the caller.

Similarly, when a state vector is shared, a copy of the local vector is created and made
centrally available for fetching by other modules and transactions.

Working with local state vectors has the advantage of allowing a set of values to be
updated and shared as a unit. This eliminates race conditions that could otherwise occur,
and enables consistent and complete state representations.

Figure 11.1 The State Vector Sharing Process

1 Module 1 creates a local values array.

2 Module 1 sets the values for the array.

3 These values are published as a shared state vector and assigned the name MyState.
This makes a deep copy of the vector.

4 Module 2 retrieves the MyState local vector. This makes a deep copy of the vector.

5 Module 2 updates the values and replaces the values in the local values array.

6 Module 2 replaces the values in the MyState shared state vector.

7 External clients retrieve and replace values for the MyState shared state vector.

8 Module 3 attempts to create a shared state vector called MyState. This is rejected
because a shared state vector with that name already exists.

Shared Vectors 95

The MASState package includes 28 methods. The following sections contain usage
examples for each of these methods.

Note that each example assumes that an instance of the MASState package, called st, has
been created:

dcl package masstate st()

Local State Vector Methods
The following methods control the creation and deletion of local vectors.

createVector(name, size)
This method creates a local state vector with the specified name, and space for the
number of values that is indicted by the specified size. The following example creates a
local state vector named MyVector with a size of 4:

rc = st.createVector('MyVector', 4);

deleteVector(name)
This method deletes the local state vector referenced by name. The following example
deletes the local vector created above:

rc = st.deleteVector('MyVector');

deleteAllVectors()
This method deletes all local vectors. The following example deletes all local vectors
managed by the current MASState package instance:

rc = st.deleteAllVectors();

Shared State Vector Methods
The following methods control the sharing and unsharing of state vectors with other
modules, and across transaction boundaries.

shareVector(name)
This method creates a copy of the named local state vector and makes it accessible to
other modules within the current user context. The name passed to shareVector() must be
unique within the user context. Otherwise, a duplicate name error is returned and the
vector is not shared. To update an existing shared state vector, call
replaceSharedVector().

method setValuesAndShareVector(in_out int rc);

 /* Create local vector */
 rc = st.createVector('MyVector', 4);

 /* Populate it with values*/
 rc = st.setInt('MyVector', 0, 100);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 1, 200);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 2, 300);
 if (rc ne 0) then return;

96 Chapter 11 • State Sharing between Modules

 rc = st.setInt('MyVector', 3, 400);
 if (rc ne 0) then return;

 /* Share vector with other modules */
 rc = st.shareVector('MyVector');
end;

fetchSharedVector(name)
This method fetches the shared state vector referenced by name and returns a local copy
of it. It is used to retrieve stateful data that has been published or updated by other
modules. After calling this method, the MASState package instance holds a local copy of
the shared state vector, which can be referenced by name.

method fetchSharedVector(in_out int rc);
 rc = st.fetchSharedVector('MyVector');
end;

unshareVector(name)
This method removes sharing for the vector referenced by name. The shared copy of the
vector is deleted from the current user context, and modules are no longer able to access
it. If no shared vector with the given name exists, this is considered a valid condition and
unshareVector() does not return an error. The unshareVector() method does not affect a
local state vector.

method unshareVector(in_out int rc);
 rc = st.unshareVector('MyVector');
end;

replaceSharedVector(name)
This method creates a copy of the named local state vector and replaces the existing
shared state vector of the same name, making the updated data accessible to other
modules within the user context. The name that is passed to replaceSharedVector() must
refer to an existing shared state vector. Otherwise, a not found error is returned and
the data is not shared.

method setNewValuesAndReplaceSharedVector(in_out int rc);

 /* Populate vector */
 rc = st.setInt('MyVector', 0, 111);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 1, 222);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 2, 333);
 if (rc ne 0) then return;
 rc = st.setInt('MyVector', 3, 444);
 if (rc ne 0) then return;

 /* Share vector with other modules */
 rc = st.replaceSharedVector('MyVector');
end;

isVectorShared(name)
This method returns integer 1 (TRUE) if a shared state vector with the given name exists
within the current user context. Otherwise, it returns integer 0 (FALSE).

method isVectorShared(in_out int result);

Shared Vectors 97

 result = st.isVectorShared('MyVector');
end;

Setter and Getter Examples
Setter and getter methods are provided for each data type. These methods operate on
local vectors only. Individual data items are referenced by local vector name and by the
zero-based index of the data value.

The examples in this section illustrate each type-specific setter method. The MASState
package guards against errors such as index out of range and invalid data. As a best
practice, you should check return codes, and if applicable, return them to the caller.

Scalar Setters Example
method testScalarSetters(varchar(32) strVal,
 int intVal,
 bigint longVal,
 double dblVal,
 bigint refVal,
 bigint refSize,
 in_out int rc);
 rc = -1;

 /* Populate the vector with scalars of each type */
 rc = st.setString('AllScalarsVector', 0, strVal);
 if (rc ne 0) then return;
 rc = st.setInt('AllScalarsVector', 1, intVal);
 if (rc ne 0) then return;
 rc = st.setLong('AllScalarsVector', 2, longVal);
 if (rc ne 0) then return;
 rc = st.setDouble('AllScalarsVector', 3, dblVal);
 if (rc ne 0) then return;
 rc = st.setReference('AllScalarsVector', 4, refVal, refSize);
 if (rc ne 0) then return;
end;

Note: setReference() accepts a bigint reference value (for example, a pointer to a BLOB
or other binary data in memory) and a size (BLOB size in bytes or length of other
binary data). This is due to current limitations of the DS2 BINARY data type. The
getReference method returns a DS2 BINARY data type. (See “Scalar Getters
Example” on page 99.) The asymmetrical nature of this setter/getter pair is due to
limitations with BINARY processing that exist only on the setter side. With the
exception of BINARY, all other data types are handled symmetrically.

Array Setters Example
method testArraySetters(varchar(32) strVal[3],
 int intVal[3],
 bigint longVal[3],
 double dblVal[3],
 in_out int rc);
 rc = -1;

 /* Populate the vector with arrays of each type */
 rc = st.setStringArray('AllArraysVector', 0, strVal);
 if (rc ne 0) then return;

98 Chapter 11 • State Sharing between Modules

 rc = st.setIntArray('AllArraysVector', 1, intVal);
 if (rc ne 0) then return;
 rc = st.setLongArray('AllArraysVector', 2, longVal);
 if (rc ne 0) then return;
 rc = st.setDoubleArray('AllArraysVector', 3, dblVal);
 if (rc ne 0) then return;
end;

Scalar Getters Example
method testScalarGetters(in_out varchar strVal,
 in_out int intVal,
 in_out bigint longVal,
 in_out double dblVal,
 in_out binary refVal,
 in_out int rc);

 /* Retrieve scalars of each type from the vector */
 strVal = st.getString('AllScalarsVector', 0);
 if (missing(strVal)) then do;
 rc = -1;
 return;
 end;
 intVal = st.getInt('AllScalarsVector', 1);
 if (missing(intVal)) then do;
 rc = -1;
 return;
 end;
 longVal = st.getLong('AllScalarsVector', 2);
 if (missing(longVal)) then do;
 rc = -1;
 return;
 end;
 dblVal = st.getDouble('AllScalarsVector', 3);
 if (missing(dblVal)) then do;
 rc = -1;
 return;
 end;
 refVal = st.getReference('AllScalarsVector', 4);
end;

Note that the reference value is returned as a DS2 BINARY type, as indicated in “Scalar
Setters Example” on page 98.

Array Getters Example
method testArrayGetters(in_out varchar strVal[3],
 in_out int intVal[3],
 in_out bigint longVal[3],
 in_out double dblVal[3],
 in_out int rc);

 /* Retrieve arrays of each type from the vector */
 st.getStringArray('AllArraysVector', 0, strVal, rc);
 if (rc ne 0) then return;
 st.getIntArray('AllArraysVector', 1, intVal, rc);
 if (rc ne 0) then return;

Shared Vectors 99

 st.getLongArray('AllArraysVector', 2, longVal, rc);
 if (rc ne 0) then return;
 st.getDoubleArray('AllArraysVector', 3, dblVal, rc);
end;

Shared Hash Tables

Overview
SAS Micro Analytic Service shared hash tables enable high-performance sharing of in-
memory stateful data between modules and across transactions. Shared hash tables
consist of key/value pairs, where the keys are strings and the values are state vectors. For
more information about state vectors, see the previous section “Shared Vectors”.

Here are some key points about shared hash tables:

• State vectors with different sizes can reside within the same shared hash table.

• Shared hash tables are visible to all modules within the same user context.

• Up to eight hash tables can exist per user context, and each hash table can contain up
to 2,147,483,659 state vectors. Each state vector can contain any number of data
elements.

• You can initialize a shared state vector from a DS2 package method, including the
init() and constructor methods.

About Using Shared Hash Tables in DS2
The MASState package contains all the methods that are required for DS2 modules to
share data across SAS Micro Analytic Service modules and transaction boundaries.
These methods include operations on local state vectors and on shared hash tables.

Data can be shared among modules when you do either of the following:

• call methods that create a local state vector, populating it with values, and then
putting it in a shared hash table.

• call methods that get an existing vector from a shared hash table (which makes a
local copy), modifying its contents, and then replacing the vector in the hash table.

Shared hash tables are accessible by all DS2 modules within a user context.

When you create a new local state vector, you assign it a name. The name must be
unique within the hash table in which the vector will be stored. This name is used as
follows:

• as a key when subsequently storing the vector in a shared hash table.

That is, the name is used internally as input to a hashing algorithm that quickly
computes the hash table location where the vector will be stored.

• when deleting the state vector.

• when storing or retrieving state vector data values.

• when retrieving the vector from a shared hash table.

• when replacing the vector within a shared hash table.

100 Chapter 11 • State Sharing between Modules

Up to eight shared hash tables can be defined per user context. Hash tables are
referenced by index numbers zero through seven, where index zero refers to the default
hash table. The default hash table is created automatically when a new user context is
created. It is operated on by convenience methods that omit the table index argument.
The convenience methods are clear(), isEmpty(), size(), containsKey(), put(), get(),
replace(), and remove(). They are described in “Methods That Operate on the Default
Shared Hash Table” on page 102.

Figure 11.2 The Shared Hash Table Process

1 Module 1 creates a local state vector.

2 Module 1 sets the values for the local state vector.

3 Module 1 puts these values, contained in the MyState vector, into a shared hash
table.

4 Module 3 gets the MyState vector.

5 Module 3 updates the values in its local state vector.

6 Module 3 replaces the MyState state vector in the shared hash table.

7 External applications access the shared hash table to retrieve and replace the MyState
state vector.

8 Module 2 attempts to store a state vector called MyState in the shared hash table.
This is rejected because a state vector with that name already exists in the table.

Shared Hash Tables 101

Methods That Operate on the Default Shared Hash Table

Method Signature Description

int clear() Removes all state vectors from the default hash table. Returns
zero if successful, and nonzero otherwise.

int isEmpty() Returns 1 if the default hash table contains no state vectors,
and zero otherwise.

bigint size() Returns the number of state vectors currently in the default
hash table.

int containsKey(key) Returns 1 if the default hash table contains a state vector with
a name matching key, and zero otherwise.

int put(key) Inserts the state vector with the name indicated by the key into
the default shared hash table.

Returns zero if successful. Nonzero result codes are returned
if a duplicate key exists in the default hash table or if a local
state vector with a name matching key does not exist.

int get(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, a local copy of the state vector is made, and a zero
result code is returned. If not found, a nonzero result code is
returned.

Note: If a local state vector with a name matching key
already exists, and a state vector matching the key is found in
the default hash table, then the existing local state vector is
overwritten with the data values that are retrieved from the
default shared hash table.

int replace(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, the state vector in the default hash table is replaced
with a copy of the corresponding local state vector and a zero
result code is returned.

Nonzero result codes are returned if the key is not found in the
default hash table, or if a local state vector with a name
matching key does not exist.

int Remove(key) Finds a state vector in the default shared hash table with a
name matching key.

If found, removes it and returns a zero result code. A nonzero
result code is returned if the key does not exist in the default
hash table.

102 Chapter 11 • State Sharing between Modules

Default Shared Hash Table Example
In the following example, method createAndPutVector() inserts a new state vector
containing two integer values into the default shared hash table. Method
incrementSharedValue() retrieves a state vector, named MyVector, from the default
shared hash table, making a local copy. It increments the integer data value within the
vector and then replaces the MyVector state vector in the default shared hash table.

ds2_options sas;
package statepkgtest/overwrite=yes;
dcl package masstate st();

 method createAndPutVector(varchar(32) key, in_out int rc);
 rc = st.createVector(key, 2);
 rc = st.setInt(key, 0, 100);
 if (rc ne 0) then return;
 rc = st.setInt(key, 1, 200);
 if (rc ne 0) then return;
 rc = st.put(key);
 rc = st.deleteVector(key);
end;
method incrementSharedValue(in_out int rc, in_out int int0Val);
 rc = st.get('MyVector');
 if (rc eq 0) then do;
 int0Val = st.getInt('MyVector', 0);
 int0Val = int0Val + 1;
 rc = st.setInt('MyVector', 0, int0Val);
 rc = st.replace('MyVector');
 end;
end;
endpackage;

Methods That Operate on Non-default Shared Hash Tables
Note: For the methods in the table, the following arguments apply:

• tableIndex indicates the hash table (0-7) on which to operate.

• key is a string value that uniquely identifies a vector within the hash table.

Method Signature Description

int hashTblCreate(tableIndex) Creates a new empty hash table, which can be
referenced by the given table index. Returns zero
if successful, and nonzero otherwise.

int hashTblDestroy(tableIndex) Removes all state vectors from the indicated hash
table, and then deletes the table. Returns zero if
successful, and nonzero otherwise.

int hashTblClear(tableIndex) Removes all state vectors from the indicated hash
table. Returns zero if successful, and nonzero
otherwise.

Shared Hash Tables 103

Method Signature Description

int hashTblIsEmpty(tableIndex) Returns 1 if the indicated hash table contains no
state vectors, and zero otherwise.

bigint hashTblSize(tableIndex) Returns the number of state vectors currently in
the indicated hash table.

int hashTblContainsKey(tableIndex,
key)

Returns 1 if the indicated hash table contains a
state vector with a name matching key, and zero
otherwise.

int hashTblPut(tableIndex, key) Inserts the state vector into the indicated hash
table at the position indicated by key.

Returns zero if successful.

Nonzero result codes are returned if a duplicate
key already exists in the indicated hash table, or if
a local state vector with a name matching key
does not exist.

int hashTblGet(tableIndex, key) Finds a state vector in the indicated hash table
with a name matching key.

If found, a local copy of the state vector is made,
and a zero result code is returned.

If not found, a nonzero result code is returned.

Note: If a local state vector with a name matching
key already exists, and a state vector matching the
key is found in the indicated hash table, then the
existing local state vector is overwritten with the
data values that are retrieved from the hash table.

int hashTblReplace(tableIndex,
key)

Finds a state vector in the indicated hash table
with a name matching key.

If found, the state vector in the indicated hash
table is replaced with a copy of the corresponding
local state vector and a zero result code is
returned.

Nonzero result codes are returned if the key is not
found in the hash table, or if a local state vector
with a name matching key does not exist.

int hashTblRemove(tableIndex,
key)

Finds a state vector in the indicated hash table
with a name matching key and, if found, removes
it and returns a zero result code.

A nonzero result code is returned if the key does
not exist in the hash table.

104 Chapter 11 • State Sharing between Modules

Chapter 12

Best Practices for DS2
Programming in SAS
Intelligent Decisioning

Overview . 105

Return Results . 105

Global Packages versus Local Packages . 106
Overview . 106
Example of Optimized Code . 106
Example of Poorly Optimized Code . 106

Replacing SCAN (and TRANWRD) with DS2 Code . 107

Hash Package . 109

Character-to-Numeric Conversions . 109

Passing Character Values to Methods . 109

Performing the Computation Once . 110

Moving Invariant Computations Out of Loops . 110

Overview
This section describes best practices that are recommended when programming in DS2
for any environment. They are not unique to SAS Micro Analytic Service.

Return Results
If a DS2 method, or any method it calls, can result in a status code or failure, always
include a method output argument for returning the result to the caller.

105

Global Packages versus Local Packages

Overview
The scope of a package instance makes a difference. Package instances that are created
in the global scope typically are created and deleted (allocated and freed) once and used
over and over again. Package instances that are created in a local scope are created and
deleted each time the scope is entered and exited. For example, a package instance that is
created in a method's scope is created and deleted each time a method is called. The
creation and deletion time can be costly for some packages.

The following examples use the hash package. This technique can be used for all
packages.

Example of Optimized Code
This example creates a hash package instance that is global, created and deleted with the
package instance, and reused between calls to load_and_clear.

/** FAST **/
package mypack;
 dcl double k d;
 dcl package hash h([k], [d]);

 method load_and_clear();
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;
endpackage;

Example of Poorly Optimized Code
This example creates a hash package instance that is local to the method and created and
deleted for each call to load_and_clear.

/** SLOW **/
package mypack;
 dcl double k d;

 method load_and_clear();
 dcl package hash h([k], [d]);
 dcl double i;
 do k = 1 to 100;
 d = 2*k;
 h.add();
 end;
 h.clear();
 end;

106 Chapter 12 • Best Practices for DS2 Programming in SAS Intelligent Decisioning

endpackage;

Replacing SCAN (and TRANWRD) with DS2 Code
Consider the following code:

i = 1;
onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
do while (onerow ~= '');
 j = 1;
 elt = scan(onerow, j, ';');
 do while (elt ~= '');
 * processing of each element in the row;
 j = j+1;
 elt = SCAN(onerow, j, ';');
 end;
 i = i+1;
 onerow = TRANWRD(SCAN(full_table, i, '|'), ';;', ';-;');
end;

You can make the following observations:

• SCAN consumes adjacent delimiters. Therefore, TRANWRD is required to
manipulate each row into a form that can be traversed element by element.

• SCAN starts at the front of the string each time. Therefore, the aggregate cost is
O(N^2).

• SCAN and TRANWRD require NCHAR or NVARCHAR input. If full_table is
declared as a CHAR or VARCHAR input, it must be converted to NVARCHAR,
then processed, and then converted back to VARCHAR in order to be captured into
the onerow value.

Here is code that replaces this type of loop with a native DS2 solution and that thus
avoids these problems by collecting the necessary details into a package:

dcl package STRTOK row_iter();
dcl package STRTOK col_iter();
row_iter.load(full_table, '|');
do while (row_iter.hasmore());
 row_iter.getnext(onerow);
 col_iter.load(onerow, ';');
 do while (col_iter.hasmore());
 col_iter.getnext(elt)
 * processing of each element;
 end;
end;

The supporting package, STRTOK, is shown below. It can be used to replace SCAN and
TRANWRD pairs anywhere in DS2.

/** STRTOK package - extract subsequent tokens from a string.
 * So named because it mirrors (in a safe way) what is done by the original
 * strtok(1) function available in C.
 */
package sasuser.strtok/overwrite=yes;
 dcl varchar(32767) _buffer;
 dcl int strt blen;

Replacing SCAN (and TRANWRD) with DS2 Code 107

 dcl char(1) _delim;

 /* Loads the current object with the supplied buffer and delimiter
 * information. This avoids the cost of constructing and destructing the
 * object, and allows the declaration of a STRTOK outside of the loop in which
 * it is used.
 */
 method load(in_out varchar bufinit, char(1) delim);
 _buffer = bufinit .. delim;
 _delim = delim;
 strt = 1;
 blen = length(_buffer);
 end;

 /* Are there more fields? 1 means there are more fields. 0 means there are
 * no more fields.
 */
 method hasmore() returns integer;
 if (strt >= blen) then return 0;
 return 1;
 end;

 /* The void-returning GETNEXT method places the next token in the supplied
 * variable, tok.
 */
 method getnext(in_out varchar tok);
 dcl char(1) c;
 dcl int e;
 tok = '';
 if (hasmore()) then do;
 e = strt;
 c = substr(_buffer,e,1);
 do while (c ~= _delim);
 tok = tok .. c;
 e = e + 1;
 c = substr(_buffer,e,1);
 end;
 strt = e + 1;
 end;
 end;

 /* The value-returning GETNEXT method returns the next token. This version is
 * more computationally expensive because it requires an extra copy, as opposed to
 * the void-returning version, above.
 */
 method getnext() returns varchar(32767);
 dcl varchar(32767) tok;
 getnext(tok);
 return tok;
 end;

 /* Construct a STRTOK object using the parameters as initial values.
 */
 method strtok(varchar(32766) bufinit, char(1) delim);
 load(bufinit, delim);
 end;

108 Chapter 12 • Best Practices for DS2 Programming in SAS Intelligent Decisioning

 /* Construct a STRTOK object without an initial buffer to be consumed.
 */
 method strtok();
 strt = 0; blen = 0;
 end;
endpackage; run;

Using STRTOK instead of SCAN and TRANWRD avoids the CHAR to NCHAR
conversions and reduces the CPU load due to how STRTOK retains the intermediate
state between calls to the getnext() methods. Therefore, it is O(N) instead of O(N^2).

Hash Package
With both the DATA step and DS2, note the size of the key. A recent program carried out
many hash lookups with a 356-byte key. Hashing is an O(1) algorithm; the "1" with the
hash package is the length of the key. The longer the key, the longer the hash function
takes to operate.

dcl char(200) k1 k2;
dcl double d1 d2;

/* If k1 and k2 are always smaller than 200, then */
/* size them smaller to reduce the time spent in */
/* the hash function when adding and finding values */
/* in the hash package. */
dcl package hash([k1 k2], [d1 d2]);

Character-to-Numeric Conversions
When converting a string to a numeric value, note the encoding of the string. When the
string is a single-byte encoding, DS2 translates the value to a TKChar (UCS-2 or
UCS-4) for conversion. The longer the string, the longer the time it takes to do the
conversion.

dcl char(512) s;
dcl nchar(512) ns;
dcl double x;
s = '12.345';
ns = '12.345';

x = s; /* slow */
x = substr(s,1,16); /* faster */
x = substr(ns,1,16); /* even faster, avoids transcoding */

Passing Character Values to Methods
In SAS Micro Analytic Service, DS2 method input parameters are passed by value.
What this means is that a copy of the value is passed to the method. When passing
character parameters, a copy of the parameter is made to ensure that the original value is

Passing Character Values to Methods 109

not modified. Making sure that character data is sized appropriately ensures that less
copying occurs.

DS2 method output parameters, which are specified by the in_out keyword, are passed
by reference. Therefore, no copy is made.

method copy_made(char(256) x);
 ...
end;

method no_copy(in_out char x);
 ...
end;

Performing the Computation Once
If a computation is repeated multiple times to compute the same value, you can perform
the computation once and save the computed value. For example, the following code
block performs the computation, compute(x), four times:

if compute(x) > computed_max then computed_max = compute(x);
if compute(x) < computed_min then computed_min = compute(x);

If compute(x) always computes the same value for a given value of x, then the code
block can be modified to perform the computation once and save the computed value:

computed_x = compute(x);
if computed_x > computed_max then computed_max = computed_x;
if computed_x < computed_min then computed_min = computed_x;

Moving Invariant Computations Out of Loops
If a computation inside a loop computes the same value for each iteration, improve
performance by moving the computation outside the loop. Compute the value once
before the loop begins and use the computed value in the loop. For example, in the
following code block, compute(x) is evaluated during each iteration of the DO loop:

do i = 1 to dim(a);
 if (compute(x) eq a[i]) then ...;
end;

If compute(x) is invariant (meaning that it always computes the same value for each
iteration of the loop), then the code block can be modified to perform the computation
once outside the loop:

computed_x = compute(x);
do i = 1 to dim(a);
 if (computed_x eq a[i]) then ...;
end;

110 Chapter 12 • Best Practices for DS2 Programming in SAS Intelligent Decisioning

Chapter 13

Python Support in SAS Micro
Analytic Service

Introduction . 111

About Creating Python Modules . 112

Public and Private Methods . 113
Overview . 113
About Private Methods . 113
About Public Methods . 114
Return Values . 114
Examples: Public and Private Methods . 115

Working with Python and SAS Micro Analytic Service . 116

Compiling Python Modules . 117

Configuring Python for SAS Intelligent Decisioning . 118
Environment Configuration . 118

Introduction
SAS Micro Analytic Service supports modules that are written in the Python
programming language. A Python module represents a group of related Python
functions.

Input arguments are given in the function's argument list. The objects, variables, and
expressions listed in a Python function's return statement are positional with respect to
the output variables.

The output variables are listed in the function’s "Output:" docstring that is specified in
the first statement of the function. Any method that includes the "Output:" docstring is
considered a public method. Otherwise, it is considered a private method. For
information, see the sections later in this chapter.

Input and output argument names live in a single namespace and therefore cannot be the
same. This means that update arguments are not supported. This is true for all module
types in SAS Micro Analytic Service, even though the Python language does not enforce
such a restriction.

Here is an example of a Python public function that can be hosted by SAS Micro
Analytic Service.

import sys
import math

111

import pandas as pd
import numpy as np
def nppd(a):
 "Output: ser1"
 npa = np.array([[1,2,3],[4,5,6]])
 ser1 = pd.Series([212, a, -273])
 return ser1.tolist()

def trucks(Eng_Load, Oil_Temp, Eng_RPM):
 "Output: ser1, x, syspath"
 inputs = pd.Series([Eng_Load, Oil_Temp, Eng_RPM])
 b = np.arange(100)
 number = 0
 for index, item in enumerate(inputs):
 number += item + b[index + 7]
 # is it even or odd?
 x = math.fmod(number, 2)
 return nppd(Oil_Temp), x, getsyspath()

def getsyspath():
 "Output: p"
 p = [None] * 50
 # print(sys.path)
 syspaths = sys.path
 i = 0
 for path in syspaths:
 p[i] = path
 i = i + 1
 return p

Here is an example of a Python public function that has input arguments a and b, and no
output.

def calcATimesB(a, b):
 "Output: "
 print ("Function with no output variables.")
 c = a * b
 print ("Result is: ", c, ", but is not returned")
 return None

After Python is configured, see Appendix 1, “Executing Python Modules in DS2
Modules,” on page 139 for additional information.

About Creating Python Modules
There are two ways that you can create Python modules in SAS Micro Analytic Service:

• Create a DS2 module that uses the DS2 PyMAS package to publish the module.

This is useful when you intend to use a Python module from other DS2 modules. For
information, see Appendix 1, “Executing Python Modules in DS2 Modules,” on page
139.

• Directly create a Python module using the REST interface without using any DS2
code.

112 Chapter 13 • Python Support in SAS Micro Analytic Service

In this case, the type field of the module definition JSON is set to text/x-python, and
the source contains the Python code. This is useful when you need SAS Micro
Analytic Service to execute only Python code.

See the REST API documentation for details about how to create the module
definition JSON representation.

Both approaches support the same data types and require that the Python code comply
with the same rules and restrictions.

Note the following information about the two Python approaches:

• Here are key differences that you should be aware of:

• When you use the PyMAS package, the Python code is compiled during the
execution of the module. It is important to check any error codes that are
generated from the publish call before you execute the code.

• When you use Python modules directly, the Python code is compiled (using the
SAS Micro Analytic Service REST service) when the module is created or
updated.

• Python modules are stand-alone—submodules are not supported and inter-module
dependencies are not handled.

• Python modules can use other Python modules that have been published to SAS
Micro Analytic Service. A DS2 PyMAS package instance can use the useModule
method to specify a previously published module instead of publishing a new
revision of the Python module.

Public and Private Methods

Overview
SAS Micro Analytic Service enables the use of hosting public and private methods,
where a method is a Python function. Note that public and private methods are SAS
Micro Analytic Service concepts, and are not Python features.

In general, any method that includes the "Output:" docstring is considered a public
method. If a method does not have the "Output:" docstring, then it is considered a private
method. However, there are syntax requirements that must be followed for the docstring
and the output arguments. For details, see “About Public Methods” on page 114.

Python modules can be published containing all public methods, or a mixture of public
and private methods.

Both public and private methods can call other functions that either exist within the
module internally or in external Python packages, including third-party libraries.

About Private Methods
Here are details about using a private method:

• A private method can be called internally by other methods (either public or private).

• A private method cannot be called directly (externally).

• Private methods are useful when used as utility functions within a package.

Public and Private Methods 113

https://developer.sas.com/apis/rest/DecisionManagement/#micro-analytic-score

About Public Methods
Here are details about using a public method:

• For a function that has at least one output argument, there must be a space between
"Output:" and the first output argument name. For examples, see the next section
“Examples: Public and Private Methods” on page 115.

• When there is more than one output argument, the output argument names must be
comma separated.

• Line two of the function must begin with a docstring, and the first non-whitespace
token must be "Output:".

• All public functions that return more than one output argument must return a tuple
containing all of the output arguments.

This can be done by returning all of the arguments separated by commas.

• When returning zero arguments from a public function you are still required to
include the "Output:" docstring to indicate a public function. It should simply be
"Output:", with no output arguments listed.

• Order does matter. Therefore, the order in the return statement must match the order
in the "Output:" line. A best practice is to copy and paste from one to the other.

Return Values
When Python integers are returned, they are converted to int64_t. If the Python integer is
too large for the int64_t type, a run-time error is reported.

Although Python packages might support abstract types that provide an additional layer
on top of the built-in scalar types, such as integer and float, they cannot be returned from
SAS Micro Analytic Service public functions. Packages that have these abstract types
provide functions that can be used to extract the built-in type. Here is an example:

return numpy.float(x), numpy.int(y)

Note the following information about the return statement for Python functions:

• Functions that return nothing do not require a return statement. Python returns the
NoneType object. Therefore, an empty return statement (return) and returning
None (return None) are equivalent.

• Functions that return a single argument can return None. SAS Micro Analytic
Service maps the None value to the specific Missing value for the expected static
type.

• Functions that return multiple values can be formatted with or without parentheses
(for example, return a,b,c or return (a,b,c)).

Note: An attempt to return None from a function that expects multiple values is
invalid.

When return values are transferred between Python and SAS Micro Analytic Service, the
following rules are enforced by SAS Micro Analytic Service:

• A singleton value (non-tuple) is mapped to a tuple with a single value.

• Tuples map to multiple return arguments.

114 Chapter 13 • Python Support in SAS Micro Analytic Service

• Arrays and tuples cannot be used interchangeably. The Python tuple type is used to
return multiple values. The Python list type is used for SAS Micro Analytic Service
arrays.

• The argument count must match.

The following code sample and table show some examples that illustrate the application
of these rules.

def one(a):
"output: b"
return oneVal

def two(a,b)
"output: a,b"
return twoVal

Python Value Assignment SAS Micro Analytic Service Value Assignment

oneVal = 1 oneVal = (1)

(one integer value)

oneVal = 1, oneVal = (1)

(one integer value)

oneVal = (1,) oneVal = (1)

(one integer value)

oneVal = (1, 2) An error occurs. It indicates that the expected output
variables do not match the actual output variables.

twoVal = 1,2 twoVal = (1,2)

(two integer values)

twoVal = (1,2), An error occurs. It indicates that an unknown tuple type is
present.

twoVal = ([1],[2]) twoVal = ([1],[2])

(two integer arrays)

Examples: Public and Private Methods
As mentioned previously in this chapter, for a method to be public, the output variables
must be listed in the function’s "Output:" docstring that is specified on the first statement
of the function. This is the second line of the method, immediately following the "def"
line.

Here are some examples. Note that the fun2 function would be considered private
because the docstring does not begin with "Output:".

def fun1(a, b):
 "Output:"
 """ This is a public function,

Public and Private Methods 115

 but has no output args."""
 return

def fun2(a, b):
 """This will be private since the docstring doesn't begin with Output:
 Output: x, y, z"""
 return a+2, b*4, a/b

def fun3(a, b):
 ' Output: x, y, z'
 ''' multi
 Line
 doc string'''
 return a+2, b*4, a/b

def fun4(a, b):
 ''' Output: x, y, z'''
 """ multi
 Line
 doc string"""
 return a+2, b*4, a/b

def fun5(a, b):
 '''Output: q, r, s,
 t, u,
 v,
 w'''
 return a+2, b*4, a/b

Working with Python and SAS Micro Analytic
Service

When you work with Python and SAS Micro Analytic Service, note the following:

• Multi-tenant deployments are not supported.

• When sharing modules across other modules, because all modules belong to the
same tenant, you should understand the following logic:

If module A and module B each import module C, updates to module C affect both
module A and module B.

• All client requests are passed to SAS Micro Analytic Service with an OAuth access
token. This token is not passed to the Python subprocess. Therefore, Python code
cannot connect to a SAS service that requires an access token.

Note: This is a SAS Micro Analytic Service limitation on Python modules.

• SAS Micro Analytic Service Python interface usage is prohibited when any of the
following situations exist:

• The application enabled MASHostAccessDeny when initializing SAS Micro
Analytic Service.

• The MASHostAccess=DENY environment variable is set.

• The application provides MASHostOSID credentials that fail to authenticate.

116 Chapter 13 • Python Support in SAS Micro Analytic Service

• The CAS session is not running under a host operating system identity and it
attempts to run an action that uses SAS Micro Analytic Service.

• In this release of SAS Micro Analytic Service, maintaining multiple revisions of a
Python module is not supported. A subsequent publish request on the same Python
module context replaces the existing revision. This means that the revision number
always remains at 1.

For example, consider the following two Python modules:

test.py:

 def execute(a,b):
 "Output: c"
 c = (a+b)
 return c

def score(x):
 "Output: y"
 return x * 0.5;

test2.py:

 def execute(a,b,c):
 "Output: d"
 d = (a+b+c)
 return d;

If you publish test.py and then publish test2.py to the same module context, the first
execute function is replaced by the second one. The new execute function has an
additional input argument (c) and a different output argument (d). Also, the new
revision no longer includes the score function.

• The SAS Micro Analytic Service Python interface usage is prohibited by default
when a SAS session is in lockdown mode.

To enable it, you can use the LOCKDOWN statement with the ENABLE_AMS
argument on the server. Set the argument value to PYTHON. If you want to use the
DS2 PyMAS package, you also need to set the PYTHON_EMBED argument value.
For example:

LOCKDOWN ENABLE_AMS=PYTHON ENABLE_AMS=PYTHON_EMBED

For more information, see “Configuring SAS to Run External Languages” in SAS
Viya Administration: Programming Run-Time Servers.

• SAS Micro Analytic Service applications can specify a host operating system
account to use as the owner of Python subprocesses that are launched when using
SAS Micro Analytic Service modules. For details, see the next section, “Compiling
Python Modules”.

Compiling Python Modules

A Python module is compiled and run in its own process. For security reasons, you
might need to limit the access of Python processes to the file system or other resources
of the host server. You can accomplish this by using SAS Viya external credentials
functionality. The account associated with the credentials that you specify should have a
scope that is valid for running Python processes.

Compiling Python Modules 117

http://documentation.sas.com/?docsetId=calsrvpgm&docsetVersion=3.4&docsetTarget=n02nl0i7rwzkvin1s2julds76gdy.htm&locale=en
http://documentation.sas.com/?docsetId=calsrvpgm&docsetVersion=3.4&docsetTarget=n02nl0i7rwzkvin1s2julds76gdy.htm&locale=en

It is important to understand that the account that you configure to run Python processes
is not a SAS Viya account. Rather, it is a host server account that you specify using the
external credentials functionality in SAS Environment Manager. For more information,
see “Manage Credentials” in SAS Viya Administration: External Credentials.

For SAS Micro Analytic Service to launch Python processes using this account, you use
SAS Environment Manager to configure the following properties:

• core.mashostuser: specifies the user ID that is associated with the account

• core.mashostdomain: specifies the Authentication domain that is associated with
the account

You must re-start SAS Micro Analytic Service to enable the use of the specified
credentials.

For more information about configuring these properties, see “supplementalProperties”
on page 129.

If you do not configure these properties, Python processes are run under the account of
the SAS Micro Analytic Service process.

Configuring Python for SAS Intelligent
Decisioning

Environment Configuration
SAS Micro Analytic Service does not require a specific version of Python. However, it is
possible that Python code that you publish to SAS Micro Analytic Service might have
dependencies to a specific version of Python or Python packages. To configure Python
for use within SAS Micro Analytic Service, note the following requirements:

• The MAS_PYPATH environment variable must be set. It specifies the absolute path
to the Python executable file. This path must be the same on all machines where the
SAS Micro Analytic Service REST API is deployed. Here are some examples:

• UNIX platform:

MAS_PYPATH=/usr/bin/python
export MAS_PYPATH

• Windows platform:

set MAS_PYPATH=c:\python\python.exe

Note: You are prompted to supply this value during the installation and
configuration of SAS Micro Analytic Service. Therefore, it should be
configured for you following that process. However, if the value was not
specified at that time, you must add it to the wrapper.conf (Windows
platform) or setenv.sh (UNIX platform) file. If you have other Python
configuration commands that are required by your Python distribution, you
should also add those.

• When SAS Micro Analytic Service launches the Python client, it waits for the
environment to reconnect. By default, this wait time is 30 seconds. To change the
wait time, you can set the MAS_PYWAIT environment variable and assign the
applicable value (in milliseconds).

• Note the following important information about using Python:

118 Chapter 13 • Python Support in SAS Micro Analytic Service

http://documentation.sas.com/?docsetId=calcredentials&docsetVersion=3.4&docsetTarget=n0m5q0mpko6owcn1w7o35x6lpvrh.htm&docsetTargetAnchor=p1lk6ii1i3lh42n1uqg9xrsu9740&locale=en

• You must add the environment configuration commands to the following file:

/opt/sas/viya/config/etc/sysconfig/
microanalyticservice.conf

If this file does not exist, you must create it.

• Python 2.x uses ASCII as the default encoding. Therefore, you must specify
another encoding at the top of the file to use non-ASCII Unicode characters in
literals. As a best practice, when using Python 2.x, always use the following as
the first line of your Python script:

-*- coding: utf-8 -*-

• In Python 2.x, the Unicode literal must be preceded by the letter u. Therefore,
literal strings should be written using the following form:

u”xxxxx”

• Python 3.x uses UTF-8 as the default encoding. Therefore, the encoding issues
noted above affect Python 2.x only. When using Python 3.x, you can use the
default encoding, and you can simply enclose literals in quotation marks.

• For Python environments prior to version 3.7, ensure that the LANG environment
variable is set as follows:

LANG=*.UTF-8

The asterisk (*) corresponds to the applicable locale value for your environment.
Some examples are en_US.UTF-8 (English United States), fr-FR.UTF-8 (French
France), or de-CH.UTF-8 (German Switzerland).

Note: If the LANG environment variable is not defined, SAS Micro Analytic
Service sets its value to en_US.UTF-8.

• Note the following information when you set environment variables (such as
PYTHONPATH) in the sub-processes that are launched to run on Python:

• In a UNIX environment, exported shell environment variables are inherited by
the sub-processes.

• In a Windows environment, you must define system and user environment
variables in Control Panel ð System and Security ð System ð Advanced
system settings ð Environment Variables.

Configuring Python for SAS Intelligent Decisioning 119

120 Chapter 13 • Python Support in SAS Micro Analytic Service

Chapter 14

Administration

SAS Micro Analytic Service Administration . 121

Database Access with DS2 . 122
Architectural Considerations . 122
Connection Strings and Configuration . 122
Using Third-Party Database Drivers . 123

Starting and Stopping SAS Micro Analytic Service . 124

Synchronous, Asynchronous, and Timed Execution . 124

SAS Micro Analytic Service Configuration . 125
Overview . 125
jvm . 125
logging.level . 126
sas.microanalyticservice Sections . 126
supplementalProperties . 129

SAS Micro Analytic Service Logging . 131
Overview . 131
Loggers and Logging Levels . 131

SAS Micro Analytic Service Security and Authorization . 133

Secure DS2 HTTP Package Usage . 134

Moving Objects by Using the SAS Viya Transfer Service 134

SAS Micro Analytic Service Administration
SAS Micro Analytic Service is implemented as a SAS Viya microservice. Most of the
administrative tasks and capabilities are described in SAS Viya Administration:
Orientation.

Because SAS Micro Analytic Service is implemented using both Java and SAS threaded
kernel technology, there are some areas in which it differs from a standard SAS Viya
microservice.

The items that are implemented using SAS threaded kernel technology are referred to as
the Micro Analytic Service core component. The items that are implemented using Java
are referred to as the REST service.

121

http://documentation.sas.com/?docsetId=calchkcfg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calchkcfg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Database Access with DS2
SAS Micro Analytic Service supports database I/O through the DS2 SQLStmt package.
Supported databases include DB2, Oracle, Postgres, SQL Server, and Teradata.

Architectural Considerations
If the SQLSTMT package is used to access third-party databases, the associated
SAS/ACCESS products and third-party client libraries are required on each system that
is running SAS Micro Analytic Service. For more information, see the SAS Viya
deployment documentation on support.sas.com.

Vendor libraries are provided by the database vendor, such as IBM (for DB2) or Oracle
Corporation (for an Oracle database). They must be installed separately according to the
instructions that are provided by the vendor. In addition, SAS Micro Analytic Service
must be configured to use these vendor libraries by setting appropriate environment
variables. For information, see “Using Third-Party Database Drivers” on page 123.

SAS Micro Analytic Service is a multi-threaded service in which each thread requires
concurrent access to the database. Access to SAS data sets is supported. However, since
SAS data sets use file-level locking, they are not suitable for writing from multiple
threads. It is recommended that you carefully set appropriate connection options before
reading SAS data sets from multiple threads, since problems can lead to a deadlock
situation. For these reasons, the use of a third-party database management system is
highly recommended.

Connection Strings and Configuration

Overview
Connection strings are used to specify database connection information such as host,
port, driver, database, catalog, schema, credentials, and options. The SQLSTMT package
supports the FedSQL dialect. Therefore, the connection string should begin with the
following information:

DRIVER=SQL;CONOPTS=(

In the above string, SQL specifies the FedSQL language driver as the managing driver,
and one or more target driver connection strings are specified within the CONOPTS=
option.

The following example illustrates a federated connection string that includes Oracle and
PostgreSQL data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=scott;
pwd=tiger;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=postgres;catalog=bcat;uid=myid;pwd='mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

Passwords can be encoded values that are produced by PROC PWENCODE. For more
information about connection string structure, see the SQLSTMT package information in
SAS DS2 Language Reference and Appendix 4, “Table Service Driver Reference,” on
page 167.

122 Chapter 14 • Administration

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Defining and Configuring Connection Strings
SAS Micro Analytic Service allows the connection string to be supplied through a
configuration process. Although the SQLSTMT package allows specifying a connection
string in code, SAS recommends that it be supplied using the SAS Micro Analytic
Service configuration. The benefits to doing this are as follows:

• When connection information is not included in the code, the module is more
portable. This enables it to be moved to other SAS Micro Analytic Service
deployments without requiring code modifications. This can help implement
strategies for environment promotion (Development-Test-Production) as well as for
hot standby failover.

• When SAS Micro Analytic Service manages the database connection, it can detect
whether connectivity to the database is lost, and automatically tries to reconnect on a
periodic basis.

• If severe errors occur during database access, SAS Micro Analytic Service
automatically attempts to recover from the error by recompiling the DS2 packages.

The connection string for SAS Micro Analytic Service deployments is configured by
setting the sas.microanalyticservice.service.connectionstring property in SAS
Environment Manager. For more information, see “core” on page 126.

This property is configured on a per-tenant property basis. This means that every tenant
has its own private copy of the property. It is not shared with other tenants.

Note: Although only one connection string can be specified per tenant, the connection
string itself can be federated, which allows multiple databases to be accessed using
catalog and schema names.

Using Third-Party Database Drivers
As mentioned in the “Overview”, database vendor-specific libraries (often referred to as
database driver software) must be installed according to the instructions that are
provided by the database vendor. As part of the installation, these drivers provide either
manual instructions or scripts that set up environment variables (for example, PATH and
LD_LIBRARY_PATH). To use these libraries, client software such as SAS Micro
Analytic Service must have access to these environment variables.

To enable access to these environment variables, edit the following file to include the
definitions of the required environment variables:

/opt/sas/viya/config/etc/sysconfig/microanalyticservice.conf

In the path above, viya is the deployment ID.

Important: This file does not exist in a standard installation and must be created. Each
node of a cluster deployment that has a deployment of SAS Micro Analytic Service
must be updated with the third-party driver installation and this file.

After installing the drivers and updating the file with the appropriate values, you must
restart SAS Micro Analytic Service to apply the changes.

T I P To set this configuration, it can be helpful to view all environment variables that
are available to SAS Micro Analytic Service. To accomplish this, enable TRACE
logging for com.sas.mas.impl.MASFactoryImpl.

SAS Micro Analytic Service enables access to HTTP and HTTPS web services through
the DS2 HTTP package. This package can execute HTTP requests to, and receive
responses from, HTTP and HTTPS web services. Direct file I/O is not supported. As a
result, DS2 hash packages cannot be populated from the contents of a file. For more

Database Access with DS2 123

information, see SAS DS2 Language Reference and SAS Viya: FedSQL Programming for
SAS Cloud Analytic Services.

Starting and Stopping SAS Micro Analytic Service
To start or stop SAS Micro Analytic Service, use the service start or stop commands
as described in SAS Viya Administration: General Servers and Services.

The following commands are examples that are specific to SAS Micro Analytic Service.
In these examples, viya is the deployment ID and default is the instance ID.

These commands start and stop the service:

sudo service sas-viya-microanalyticservice-default start

sudo service sas-viya-microanalyticservice-default stop

This command verifies whether the service is running:

sudo service sas-viya-microanalyticservice-default status

Note: For a multi-machine deployment, you must start and stop the service on each
deployment server.

Synchronous, Asynchronous, and Timed
Execution

A SAS Micro Analytic Service module contains one or more steps. Each step is executed
by passing input parameter values to the server.

By default, this execution is processed synchronously. This means that the client makes
the SAS Micro Analytic Service REST call, and the call returns when the execution is
complete. Upon successful execution, the outputs variable in the reply contains the
output of the execution, and the executionState variable is assigned the value
completed.

Depending on your requirements, it might be beneficial for SAS Micro Analytic Service
to use asynchronous execution. When you use asynchronous execution, the input
parameter values are passed to the server and the execution occurs in a separate thread.
Any errors in execution are logged on the server. If logging is set at the TRACE level,
the result of the execution is also logged.

To use asynchronous execution, include the waitTime query parameter with an
assigned value (in milliseconds). Here is an example of a POST request that includes the
waitime query parameter:

POST https://www.example.com/microanalyticScore/modules/{moduleId}/steps/{stepId}?waitTime=6000

When you include the waitTime query parameter, the executionState variable
with an assigned value is included in the reply. Here are the possible values:

• completed: the execution completed within the specified waitTime value. The
result is returned.

• timedOut: the execution did not complete within the specified waitTime value.
The outputs variable in the reply is empty.

124 Chapter 14 • Administration

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

• submitted: the assigned waitTime query parameter value is 0 (zero). The
outputs variable in the reply is empty.

T I P Assigning waitTime=0 is useful when a call does not generate output (for
example, when executing a step that fires an event).

SAS Micro Analytic Service Configuration

Overview
You use SAS Environment Manager to configure SAS Micro Analytic Service Score
service property settings. SAS Environment Manager is a web application for managing
a SAS Viya environment. It includes a dashboard view, which provides a quick overall
look of your environment’s health and status, as well as detailed views that enable you to
examine and manage your environment in detail. For more information, see SAS Viya
Administration: Using SAS Environment Manager.

In SAS Environment Manager, the SAS Micro Analytic Service Score service
configuration parameters are organized into sections. Here are the key configuration
sections:

• jvm

• logging.level

• sas.microanalyticservice.properties and sas.microanalyticservice.system

• supplementalProperties

The following sections describe the properties that are contained in each section.

jvm
The jvm section contains the properties to configure the Java virtual machine to run SAS
Micro Analytic Service.

Important: If you change the value for any of these properties, you must restart SAS
Micro Analytic Service for the change to take effect.

Property Type Default Value Description

java_option_xmx String -Xmx1024m

Note: This represents 1GB.

The Java maximum heap space size.

Note: You might need to increase this
value depending on the number and size
of the modules.

java_option_xss String -Xss512k

Note: This represents 512K.

The Java thread stack size.

Note: The assigned value should not be
less than 512K.

SAS Micro Analytic Service Configuration 125

http://documentation.sas.com/?docsetId=evfun&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=evfun&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Property Type Default Value Description

java_option_xms String -Xms1024m

Note: This represents 1GB.

The Java minimum heap space size.

By default, this property does not appear
SAS Environment Manager. You can add
it by using the Add property option in
the jvm section.

Note: You might need to increase this
value depending on the number and size
of the modules. It is recommended that
you do not assign a value smaller than
1GB.

logging.level
There are multiple logging.level sections, each that sets the logging level for a specific
area of functionality. For information, see “Logging Levels” on page 133.

sas.microanalyticservice Sections
The sas.microanalyticservice.system section contains items that are specific to system-
wide configuration of SAS Micro Analytic Service. The
sas.microanalyticservice.properties section contains tenant-specific items for use in a
multi-tenant deployment. Configuration items that are tenant-specific are noted as such
in their description. Each sas.microanalyticservice section contains configuration items
organized by the following sub-sections, as applicable.

asynchronousexecution
This section contains properties that configure asynchronous execution.

Property Type
Default
Value Description

corepoolsize Integer 5 The number of core worker threads for asynchronous
requests.

maxpoolsize Integer 10 The number of maximum worker threads for
asynchronous requests.

queuecapacity Integer 100 The maximum number of asynchronous requests that can
be queued for execution.

core
This section contains properties that affect the Micro Analytic Service core component.

Important: Unless otherwise noted, if you change the value for any of these properties,
you must restart SAS Micro Analytic Service for the change to take effect.

126 Chapter 14 • Administration

Property Type
Default
Value Description

connectionstring String The FedSQL connection string used to connect to a
database.

Note: This item is tenant-specific. Therefore, it is
configured in the sas.microanalyticservice.properties
section.

Note: You do not need to restart SAS Micro Analytic
Service if you change the value that is assigned to this
property.

dbconnretries Integer 10 The number of times that the system attempts to connect
to a database.

dbconnretryintervalseconds Integer 5 The amount of time, in seconds, that the system waits
before retrying to connect to a database.

ds2maxrecompilecount Integer 0 If there is an error because of failing database
connections, the maximum number of times that the
system tries to recompile DS2 code before ejecting the
module.

gcintervalseconds Integer 60 The time, in seconds, between garbage collection runs.

graceperiodseconds Integer 10 The amount of time to wait, in seconds, before cleaning
up the assets that are associated with a deleted revision.

Note: A request to execute a deleted revision, even
during the grace period, is rejected with an error message
that indicates the revision has been deleted.

nativebuffersize Integer 512 The size of the buffer, in bytes, to exchange data between
the REST service and SAS Micro Analytic Service core.

numthreads Integer 4 Specifies the number of threads in the SAS Micro
Analytic Service core.

The amount of memory that is used by SAS Micro
Analytic Service core is determined by the number of
threads.

Note the following information when setting a value:

• The compilation time for modules is proportional to
the number of threads.

• You can increase or decrease the value, depending on
the availability of system memory.

• Setting the value to 0 causes the SAS Micro Analytic
Service core to use all possible cores on the system.
For a system in which SAS Micro Analytic Service is
the primary application, this is recommended.

historyharvester
This section contains the properties that are associated with the extraction and publishing
of the history record tasks map.

SAS Micro Analytic Service Configuration 127

Property Type
Default
Value Description

maxrecordsinmessage Integer 100 The maximum number of history records that are
included in a message.

Note: This property is tenant-specific. Therefore, it is
configured in the sas.microanalyticservice.properties
section.

ratemilliseconds Integer 5000 The number of milliseconds to wait between extracting
history records.

Note: This property is tenant-specific. Therefore, it is
configured in the sas.microanalyticservice.properties
section.

historyscheduler
This section contains a property that configures the number of threads available for
scheduling the extraction and publishing jobs.

Property Type
Default
Value Description

poolsize Integer 5 The number of threads available for scheduling the
extraction and publishing jobs.

service
This section contains the properties that configure the REST service component.

Property Type Default Value Description

defaultmasuserctxname String defaultMASUserCtx
Name

The default value of the user context
name, if the tenant name is not used.

moduleidgeneration A sub-category containing two
properties that control how the module
ID is determined. The properties are
factorytype and forcelowercase.

factorytype One of the following:

• GUID

• ModuleName

• ModuleNameOverri
dePackage

• PackageName

ModuleNameOverrid
ePackage

This value determines how the module
ID is created for a new module. The
module name is the one that is passed
to the system during module creation.

forcelowercase Boolean True If this property is set to True, the
module ID returned is always
lowercase.

128 Chapter 14 • Administration

Property Type Default Value Description

sasmode Boolean True If this is set to True, the DS2 code is
compiled with ds2_options sas.

supplementalProperties
This section contains optional properties that, by default, do not appear in SAS
Environment Manager. When you add them, they appear in the supplementalProperties
section. For information about creating additional property configuration instances, see
SAS Viya Administration: Using SAS Environment Manager.

Property Type Default Value Description

core.mashostuser String Not applicable The user ID for Python processes to use to access the
host server.

If not specified, Python processes are run under the
account of the SAS Micro Analytic Service process.

For information, see “Manage Credentials” in SAS
Viya Administration: External Credentials.

core.mashostdomain String Not applicable The Authentication domain to use to authenticate the
user ID that is specified for core.mashostuser.

If not specified, the Python processes are run under
the account of the SAS Micro Analytic Service
process.

For information, see “Manage Credentials” in SAS
Viya Administration: External Credentials.

core.minfreememoryfloor Integer 500000000 The minimum amount of memory, in bytes, that is
allocated to compile a module. The default value is
equal to 500MB.

core.tktstacksizekbytes Integer 8192 Sets stack size, in kilobytes, for worker threads in
SAS Micro Analytic Service core. The default value
is sufficient for most purposes.

You might need to increase the value to compile
large DS2 packages that contain numerous (for
example, more than 5,000) IF-THEN/ELSE
statements.

Important: If you change the value for this property,
you must restart SAS Micro Analytic Service for the
change to take effect.

core.profilesamplefrequency Integer 2000 Used in conjunction with profile logging. Specifies
the sample rate to log the execution time of the
module code.

SAS Micro Analytic Service Configuration 129

http://documentation.sas.com/?docsetId=evfun&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calcredentials&docsetVersion=3.4&docsetTarget=n0m5q0mpko6owcn1w7o35x6lpvrh.htm&docsetTargetAnchor=p1lk6ii1i3lh42n1uqg9xrsu9740&locale=en
http://documentation.sas.com/?docsetId=calcredentials&docsetVersion=3.4&docsetTarget=n0m5q0mpko6owcn1w7o35x6lpvrh.htm&docsetTargetAnchor=p1lk6ii1i3lh42n1uqg9xrsu9740&locale=en
http://documentation.sas.com/?docsetId=calcredentials&docsetVersion=3.4&docsetTarget=n0m5q0mpko6owcn1w7o35x6lpvrh.htm&docsetTargetAnchor=p1lk6ii1i3lh42n1uqg9xrsu9740&locale=en
http://documentation.sas.com/?docsetId=calcredentials&docsetVersion=3.4&docsetTarget=n0m5q0mpko6owcn1w7o35x6lpvrh.htm&docsetTargetAnchor=p1lk6ii1i3lh42n1uqg9xrsu9740&locale=en

Property Type Default Value Description

service.cache.refresh.ratemillisec
onds

Integer 10000 Specifies the rate, in milliseconds, at which the
database is monitored for changes, in microseconds.
The default value is equal to 10 seconds.

This is relevant only for a clustered deployment that
contains multiple SAS Micro Analytic Service nodes.
Note the following information when setting a value:

• For a system to which few changes will be made,
this parameter can be set to a very large value,
such as 30 minutes or more. An execution-only
system is an example of a system with infrequent
updates.

• For a system to which many updates will be
made, this parameter can be set to a lower value,
such as 5 seconds.

service.alwayscheckdatabaseone
xecute

Boolean False Specifies whether the execute call checks the
database for the latest copy of the module, before
every invocation.

This is relevant only for a clustered deployment that
contains multiple SAS Micro Analytic Service nodes.
Note the following information when setting a value:

• The default value (False) results in efficient
execution.

• Set the value to True if modules are updated
frequently. It is important to execute the latest
copy in a clustered deployment.

service.removetrailingunderscore
sfrominputs

Boolean False SAS Micro Analytic Service requires separate
parameters for input and output. However, DS2 does
not allow the same parameter to be listed twice for a
method. To ensure that this does not happen, SAS
Intelligent Decisioning generates code in which input
variables are named with a trailing underscore (_).
You can use this property to manage this behavior.

This property specifies whether the trailing
underscore is retained (False) or discarded (True)
from the input variable names in the following
situations:

• when returning the list of parameters for a method
through the REST interface

• when accepting input for the execute call

You might need to set this to True if your site uses a
repository of data items with which all applications
must comply.

service.timeouts.maxloadwaitexe
cmillis

Integer 10000 Specifies the time-out value, in milliseconds, for
execution operations. The default value is equal to 10
seconds.

service.timeouts.maxloadwaitnon
execmillis

Integer 120000 Specifies the time-out value, in milliseconds, for
query operations. The default value is equal to 2
minutes.

130 Chapter 14 • Administration

Property Type Default Value Description

service.timeouts.maxmodulecom
piletimemillis

Integer 600000 Specifies the time-out value, in milliseconds, when
compiling DS2 modules. The default value is equal
to 10 minutes.

This time-out value applies to both asynchronous and
synchronous compilation requests.

SAS Micro Analytic Service Logging

Overview
The SAS Micro Analytic Service core and the REST service each create log files. A new
log file is created according to the resource logging configuration. This might include
the occurrence of any of the following:

• a new day begins (rollover at midnight)

• the log file size exceeds the maximum value

• the service starts

The SAS Micro Analytic Service log files are typically created in the following folder:

/opt/sas/viya/config/var/log/microanalyticservice/default

In the path above, viya is the deployment ID, and default is the instance ID.

The following table provides default logging information for each service:

Service Default naming convention
Default file rollover
configuration

SAS Micro Analytic
Service core

sas-microanalyticservice-
core_yyyy-MM-dd_HH-mm-
ss.log

When either of the following
occur:

• the log file size exceeds 100K

• the service starts

REST sas-microanalyticservice_yyyy-
MM-dd_HH-mm-ss.log

each day at midnight

For complete information about logging, see SAS Viya Administration: Logging.

Loggers and Logging Levels
Loggers are split into two groups: those that apply to SAS Micro Analytic Service core
and those that apply to the REST service.

SAS Micro Analytic Service Core
Logger names that start with the following prefixes apply to the SAS Micro Analytic
Service core: Admin, App, Audit, Perf.

SAS Micro Analytic Service Logging 131

http://documentation.sas.com/?docsetId=callogging&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Here are some important SAS Micro Analytic Service core loggers:

Name Events Logged Default Value

App.tk.MAS Method execution events INFO

App.tk.MAS.Service Start-up and shutdown events and the SAS
Micro Analytic Service version number

INFO

App.tk.MAS.Python Python events INFO

App.tk.MAS.CodeGen Compilation messages produced during an
attempt to publish. When a publish request
fails, error information is logged regardless of
the App.tk.MAS.CodeGen logger level.

FATAL

App.SQLServices.license

App.license

DataFlux.Licensing

Licensing events ERROR

Audit.Table.Connection Database connection events INFO

Loggers that start with App.TableServices.DS2.Runtime. or
App.TableServices.DS2.Config. can be used to diagnose DS2 problems. Module code
might also use other loggers.

When diagnosing DS2 problems, it is important to note that the
App.TableServices.DS2.Runtime.* and App.TableServices.DS2.Config.* loggers do not
inherit configuration from their ancestors. They must be configured explicitly, if you
want to capture logging events that are directed to those loggers. It is recommended that
you configure them only when diagnosing a DS2 problem since the additional logging
traffic affects performance. For more information about those DS2 loggers, see the “DS2
Loggers” section of SAS DS2 Programmer’s Guide.

Detailed information about operations such as compilation start and finish is logged at
the DEBUG level. Warning and error conditions are logged at the WARN or ERROR
levels, as appropriate.

Note: When App.tk.MAS.Service logger’s level is set to DEBUG or TRACE, you see a
message logging event that provides the SAS Micro Analytic Service version
number in the log. Here is an example:

May14 15:12:49 [00000007] DEBUG App.tk.MAS.Service -
Micro Analytic Service version information: 5.3, V.03.04M0P05052019,
Mon May 6 03:00:21 EDT 2019

Important: If you change the value for any SAS Micro Analytic Service core loggers,
you must restart SAS Micro Analytic Service for the change to take effect.

REST Service
Logger names that start with a Java domain, such as org or com, apply to the SAS Micro
Analytic Service REST service. In addition, other loggers exist that log information
about memory usage and profiling.

Some important SAS Micro Analytic Service REST service loggers include the
following:

132 Chapter 14 • Administration

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

• com.sas.mas.service.rest.controllers.ModulesController: Logs all REST calls to
SAS Micro Analytic Service.

• com.sas.mas.impl.MASFactoryImpl: Logs environment variables that are
presented to SAS Micro Analytic Service core.

• MAS_MEM.NATIVE: Logs memory usage by SAS Micro Analytic Service core
when executing module code.

• MAS_MEM.CODE: Logs memory usage by SAS Micro Analytic Service core
when compiling module code.

• MAS_PROFILE: Logs sampled timings for compilation and execution of module
code.

Logging Levels
The logging levels FATAL, ERROR, WARN, INFO, DEBUG, and TRACE are
supported. Consider the following when you are setting logging levels:

• Normal operations, such as start-up and shutdown, are logged at the INFO level.
Detailed information is logged at the DEBUG and TRACE level.

• For normal operations, it is recommended that you enable either the ERROR level or
the WARN level.

• More verbose and frequent information, such as memory and profile logging, is
logged only at the TRACE level.

• Enabling DEBUG and TRACE typically affects performance. Therefore, it is
recommended that the DEBUG and TRACE levels are used only during system
sizing, performance tuning, or when troubleshooting issues.

SAS Micro Analytic Service Security and
Authorization

Access to the REST API endpoints in SAS Micro Analytic Service is determined by
authorization rules. For information about how to modify authorization rules, see SAS
Viya Administration: General Authorization.

Upon installation, authorization rules are created for each SAS Micro Analytic Service
endpoint. For each rule, permissions are granted to all authenticated users for specific
operations, such as CREATE, READ, UPDATE, and DELETE.

It is recommended that your system administrator perform the following tasks to control
access to the SAS Micro Analytic Service, according to your site requirements:

• create new groups of users or update existing groups

• modify the Principal value to assign the applicable group

• modify the Setting value (if necessary)

For example, the following settings show the default Create and Delete permissions for
the SAS Micro Analytic Service:

Object URI Principal Setting Permissions

/microanalyticScore/modules/* Authenticated Users Grant Create, Delete

SAS Micro Analytic Service Security and Authorization 133

http://documentation.sas.com/?docsetId=calauthzgen&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calauthzgen&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

You can isolate Create and Delete access to the service by creating a new group and
assigning that group as the Principal value. For example, the following settings show
that a new group, called MAS Administrators, is the only group with Create and Delete
permissions for the SAS Micro Analytic Service:

Object URI Principal Setting Permissions

/microanalyticScore/modules/* MAS Administrators Grant Create, Delete

For information about creating new user groups, see SAS Viya Administration: Identity
Management.

Secure DS2 HTTP Package Usage
The DS2 HTTP package supports HTTP and HTTPS endpoints. If the default list of
trusted CA certificates does not enable access to all of the secure endpoints that you
want to reach, refer to Encryption in SAS Viya: Data in Motion for more information. If
environment variables such SSLCALISTLOC are needed, they can be added to
the /opt/sas/viya/config/etc/sysconfig/microanalyticservice.conf
file.

When an HTTP endpoint requires client authentication, it responds to the client with its
list of supported authentication mechanisms. The DS2 HTTP package currently supports
two of the three most common authentication mechanisms—Basic and Negotiate. It does
not support the Digest mechanism. Because Basic authentication does not provide any
credential confidentiality, it should be used only when the data is being encrypted
through TLS.

The DS2 HTTP package supports certain security-related methods (for example,
setOAuthToken, addSASOAuthToken, setUsername, setPassword, setProxyURL,
setProxyUsername, and setProxyPassword). For more information, see“DS2 HTTP
Package Methods, Operators, and Statements” in SAS DS2 Language Reference.

The Negotiate mechanism supports Kerberos and, when it is used on Windows, NTLM
is also supported. For more information, see “Using the HTTP Package” in SAS DS2
Programmer’s Guide.

Moving Objects by Using the SAS Viya Transfer
Service

You can use the SAS Viya transfer service command-line interface (CLI) to move SAS
Micro Analytic Service content from one environment to another. To use the CLI, you
must be logged in to SAS Viya at the command line. To use the transfer commands, you
must be logged in to the source and target environments with an account that has
administrator privileges. For more information about the CLI and the transfer service,
see SAS Viya Administration: Using the Command-Line Interfaces.

This section contains an example that shows how to transfer modules from a source
environment to a target environment. The commands in this example use the named
profiles “Source” and “Target”. For specific information about how to use a named

134 Chapter 14 • Administration

http://documentation.sas.com/?docsetId=calids&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calids&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=3.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calcli&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

profile, see “Use a Profile to Sign In” in SAS Viya Administration: Using the Command-
Line Interfaces.

To move content using the transfer service:

1. Create a JSON file of type ExportRequest that includes the IDs of the objects to be
exported from the source environment. For example, this sample file contains
module IDs exec_module and decision_08c8c3b3_bdb8_4be5_967. The name of the
file is export.json.

{
 "name": "myTransfer",
 "items": [
 "/microanalyticScore/modules/exec_module",
 "/microanalyticScore/modules/decision_08c8c3b3_bdb8_4be5_967"
]
}

2. Create the package file in the source environment:

sas-admin --profile Source transfer export --request @export.json

Note: Be sure to note the transfer package ID that is returned by this command.

3. Download the package file from source environment using the transfer package ID
obtained in step 2. The following command downloads the package file to the
TransferPackage.json file:

sas-admin --profile Source transfer download --id transfer-package-ID --file TransferPackage.json

4. Upload the package file to the target environment:

sas-admin --profile Target transfer upload --file TransferPackage.json

Note: Be sure to note the transfer package ID.

5. Create an import request to promote the transfer package to the target environment
using the transfer package ID obtained in step 4:

sas-admin --profile Target transfer import --id transfer-package-ID

6. (Optional) You can use the following REST API request to confirm that the
transferred modules are available:

GET service_endpoint/microanalyticScore/modules

Note: service_endpoint represents the service endpoint in the “Target” profile (for
example, http://localhost).

Moving Objects by Using the SAS Viya Transfer Service 135

http://documentation.sas.com/?docsetId=calcli&docsetVersion=3.4&docsetTarget=n1e2dehluji7jon1gk69yggc6i28.htm&docsetTargetAnchor=n0npe77gdcwebsn1npqvifz4buu8&locale=en
http://documentation.sas.com/?docsetId=calcli&docsetVersion=3.4&docsetTarget=n1e2dehluji7jon1gk69yggc6i28.htm&docsetTargetAnchor=n0npe77gdcwebsn1npqvifz4buu8&locale=en

136 Chapter 14 • Administration

Part 4

Appendixes

Appendix 1
Executing Python Modules in DS2 Modules . 139

Appendix 2
SAS Micro Analytic Service Return Codes . 149

Appendix 3
REST Server Error Messages and Resolutions 161

Appendix 4
Table Service Driver Reference . 167

Appendix 5
SAS Micro Analytic Service Tuning Guidelines 203

Appendix 6
Applying a New License . 205

137

138

Appendix 1

Executing Python Modules in
DS2 Modules

DS2 Interface to Python . 139
Overview . 139
About Using a PyMAS Package . 140

Sample DS2 Module Operations . 141

Configuring Support for a DS2 PyMAS Package . 146
About Using the PyMAS Package . 146
Enabling PyMAS Package Support . 146

DS2 Interface to Python

Overview
DS2 modules, running in SAS Micro Analytic Service, can publish and execute Python
modules. Note that Python must be available for SAS Micro Analytic Service to publish
and execute Python modules. For information about the environment variables that are
required to enable Python to run in SAS Micro Analytic Service, see “Enabling PyMAS
Package Support” on page 146.

DS2 packages that execute outside SAS Micro Analytic Service, such as those within a
PROC DS2 program block, can also publish and execute Python modules by using
interfaces that are provided via the DS2 PyMAS package.

For information about enabling support for PyMAS, see “Configuring Support for a DS2
PyMAS Package” on page 146.

For information about configuring the environment variables necessary to enable Python
to run in SAS Micro Analytic Service, see the resource for your environment:

• SAS Event Stream Processing: Chapter 8, “Python Support in SAS Micro Analytic
Service,” on page 59

• SAS Intelligent Decisioning: Chapter 13, “Python Support in SAS Micro Analytic
Service,” on page 111

Note: Python code that is supplied to the PyMAS publish method is not compiled when
the DS2 package is published to SAS Micro Analytic Service. Instead, the Python
code is compiled when the DS2 module code is executing the PyMAS publish
method. The useModule method can be used to specify a Python module that has

139

been previously published. This enables multiple PyMAS package instances to share
the same Python module.

About Using a PyMAS Package
Each PyMAS package instance represents exactly one Python module revision. You can
create as many instances as you require, allowing multiple modules to be used.

As is the case when calling any package from DS2, it is recommended that you always
check return codes where available, and return any error codes by using an output
argument from your DS2 method.

Important: When a DS2 module is executing in SAS Micro Analytic Service, you must
conditionally initialize a package-scoped PyMAS package variable and publish the
Python module once. Here is an example:

package pyscore;
 dcl package pymas py;
 dcl package logger logr('App.tk.MAS');
 dcl varchar(4096) character set utf8 pycode;
 dcl int revision;
 method score(double a, double b,
 in_out int rc,
 in_out double c,
 in_out double d);
 if null(py) then do;
 py = _new_ pymas();
 rc = py.useModule('mypymodule', 1);
 if rc then do;
 rc = py.appendSrcLine('# The first Python function:');
 rc = py.appendSrcLine('def domath1(w, x):');
 rc = py.appendSrcLine(' "Output: y, z"');
 rc = py.appendSrcLine(' y = w * x');
 rc = py.appendSrcLine(' z = w / x');
 rc = py.appendSrcLine(' return y, z');
 pycode = py.getSource();
 revision = py.publish(pycode, 'mypymodule');
 if revision lt 1 then do;
 logr.log('e', 'py.publish() failed.');
 rc = -1;
 return;
 end; /* End of if revision less than 1 */
 end; /* End of if useModule failed */
 rc = py.useMethod('domath1');
 if rc then return;
 end; /* End of if null(py)*/
 rc = py.setDouble('w',a); rc = py.setDouble('x', b);
 rc = py.execute();
 c = py.getDouble('y');
 d = py.getDouble('z');
 end;
endpackage;

140 Appendix 1 • Executing Python Modules in DS2 Modules

Sample DS2 Module Operations
Here are some operations that a DS2 module would typically perform.

Calling publish() compiles your Python module and sets it as the module that is
represented by this PyMAS instance. Subsequent PyMAS function calls, such as setting
values and executing methods, operate on this module. The Python code is passed as a
string in the first argument. Pass the name that you want to give to your new Python
module in the second argument. publish() returns the revision number that SAS Micro
Analytic Service assigned to your new module. You could use this revision number later
to execute or delete a specific revision of your module. If you do not specify a revision
number, the latest revision is assumed. If your Python code fails to publish (because of
syntax errors, for example), then -1 is returned for the revision number.

revision = py.publish(pgm, moduleName);

Rather than publishing a Python module from DS2, you might need to specify a
previously published Python module. In this case, you can call useModule() instead of
publish(). If a module was already associated with your PyMAS instance before calling
useModule(), then useModule() disassociates the current module from the instance
before making the specified module current.

rc = py.useModule(moduleName, revision);

Before calling Python, you must tell the PyMAS instance which method to execute. This
is accomplished by calling useMethod(). In addition to specifying the method (Python
function) to call, useMethod() also validates that the method exists within the current
module, prepares the PyMAS instance to receive the input values for the specific method
arguments, and prepares to return any output values from the method execution.

rc = py.useMethod(methodName);

Call the type-specific setter methods to set input values before executing the method.
Because these setters store arguments by name, they can be called in any order, and they
insert the values in the correct positions:

py.setDouble('airflow', sensor_maf);

Since the DS2 package instance represents a single revision, the execute() method needs
no arguments.

rc = py.execute();

After execution, call getters to retrieve the results.

score = py.getDouble('credit_score');

Scalar argument setters are of the form:

return_code = set<type>(name, value)

Scalar argument getters are of the form:

value = get<type>(name)

Array argument setters are of the form:

rc = set<type>Array(name, array-value)

Array argument getters are of the following form.

Note: DS2 passes arrays and output values by reference.

Sample DS2 Module Operations 141

get<type>Array(name, array-value, rc)

The example below assumes that you have declared your package as py. The character
string variables python_source_code and my_module_name contain the Python source
code and the name that will be associated with the published module.

dcl package pymas py;
dcl int rc;
dcl bigint result;
py = _new_ pymas();
rc = py.publish(python_source_code, my_module_name);
rc = py.useMethod('func1');
py.setString('inString', 'A string');

py.execute()

bigintVar = py.getLong('outLongVar');

The complete set of DS2 package methods follows, where rc is the integer return code,
and py is the package instance.

Methods for Python module management and execution:

rc = py.appendSrcLine(python_src_line);
python_source_code = py.getSource();
rc = py.publish(python_source_code, 'module_name');
rc = py.remove();
rc = py.isLoaded(); // returns true is Python is available and false otherwise
revision = py.getRevisionNumber();
rc = py.setTimeZone(time_zone_identifier);
rc = py.execute();

Scalar argument setters:

rc = py.setString(argument_name, value);
rc = py.setBool(argument_name, value);
rc = py.setLong(argument_name, value);
rc = py.setInt(argument_name, value);
rc = py.setDouble(argument_name, value);
rc = py.setDateTime(argument_name, value);
rc = py.setDate(argument_name, value);
rc = py.setTime(argument_name, value);

Scalar argument getters:

string_value = py.getString(argument_name);
int_value = py.getBool(argument_name);
long_value = py.getLong(argument_name);
int_value = py.getInt(argument_name);
double_value = py.getDouble(argument_name);
date_time_value = py.getDateTime(argument_name);
date_value = py.getDate(argument_name);
time_value = py.getTime(argument_name);

Array argument setters:

rc = py.setStringArray(argument_name, string_array);
rc = py.setBoolArray(argument_name, integer_array);
rc = py.setLongArray(argument_name, bigint_array);
rc = py.setIntArray(argument_name, integer_array);
rc = py.setDoubleArray(argument_name, double_array);

142 Appendix 1 • Executing Python Modules in DS2 Modules

rc = py.setDateTimeArray(argument_name, date_time_array);
rc = py.setDateArray(argument_name, date_array);
rc = py.setTimeArray(argument_name, time_array);

Array argument getters:

py.getStringArray(argument_name, string_array, rc);
py.getBoolArray(argument_name, integer_array, rc);
py.getLongArray(argument_name, bigint_array, rc);
py.getIntArray(argument_name, integer_array, rc);
py.getDoubleArray(argument_name, double_array, rc);
py.getDateTimeArray(argument_name, date_time_array, rc);
py.getDateArray(argument_name, date_array, rc);
py.getTimeArray(argument_name, time_array, rc);

Note the following important information about Python and SAS Micro Analytic
Service:

• For Python 2.x, SAS Micro Analytic Service supports only the use of ASCII
characters.

• For Python 3.x, if SAS Micro Analytic Service attempts to publish a Python module
that includes syntax to define the source code encoding, the encoding must be
UTF-8. This type of encoding is known as a Python magic comment.

• The PyMAS package method getters do not support converting the value that is
returned from Python to the type named in the getter method. The value of the output
argument that is returned from Python must be consistent with the PyMAS getter
method that is called. For example, consider the getDouble method example:

myintvar = py.getDouble('pyoutarg1');

The pyoutarg1 output argument that is returned from Python function must be of
type double, but the assignment statement can coerce the value to an integer.

Although Python packages might support abstract types that provide an additional
layer on top of the built-in scalar types, such as integer and float, they cannot be
returned from SAS Micro Analytic Service public functions. Packages that have
these abstract types provide functions that can be used to extract the built-in type.
Here is an example:

return numpy.float(x), numpy.int(y)

• Python modules can use other Python modules that are published to SAS Micro
Analytic Service. DS2 PyMAS package instances can use the useModule method to
specify a previously published module, instead of publishing a revised Python
module.

When using PROC DS2 in a SAS session to create a PyMAS package instance, you
cannot provide the Python program as one quoted literal string. The reason is that the
SAS tokenizer strips out the embedded line-ending characters, causing indention
problems in the Python code. In this situation, a PyMAS package's appendSrcLine() and
getSource() methods can be used. When used together, these two methods produce a
DS2 character variable containing the lines of code concatenated together with
embedded linefeed characters separating the lines of Python code. Once you have added
each line of your Python code to the PyMAS package instance using the
appendSrcLine() method, then use the getSource() method to retrieve the complete
program into a DS2 character variable. The variable can then be provided as the first
input argument to the PyMAS publish() method. An error is logged when you use the
PyMAS useModule method to specifya module that has not been published. The
following PROC DS2 example encounters the error on the first execution of the score

Sample DS2 Module Operations 143

method. The score method checks the return code and publishes the module. Subsequent
executions of the score method do not generate the error.

%macro chkrc; if rc then put rc=; %mend;
%macro addln(line); rc = pm.appendSrcLine(&line); %chkrc; %mend;

/* Input data for the test.*/
data tstinput; a = 8; b = 4; output; a = 10; b = 2; output;
run;

proc ds2;
 ds2_options sas;
 package mypkg;
 dcl package pymas pm;
 dcl package logger logr('App.tk.MAS');
 dcl varchar(67108864) character set utf8 pycode;
 dcl int revision;

 method usefunc(varchar(256) pyfuncname, in_out int rc);
 rc = pm.useMethod(pyfuncname);
 if rc then logr.log('E', 'pm.useMethod() failed.');
 end;

 method score(double a, double b,
 in_out int rc,
 in_out double c, in_out double d);
 if null(pm) then do;
 pm = _new_ pymas();
 rc = pm.useModule('mypymodule', 1);
 if rc then do;
 %addln('# The first Python function:')
 %addln('def domath1(a, b):')
 %addln(' "Output: c, d"')
 %addln(' c = a * b')
 %addln(' d = a / b')
 %addln(' return c, d')
 %addln('')
 %addln('# Here is the second function:')
 %addln('def domath2(a, b):')
 %addln(' "Output: c, d"')
 %addln(' c,d = domath1(a, b)')
 %addln(' return c, d')
 if rc then do;
 logr.log('E', 'pm.appendSrcLine() failed.');
 pm = null;
 return;
 end;
 pycode = pm.getSource();
 revision = pm.publish(pycode, 'mypymodule');
 if (revision < 1) then do;
 logr.log('E', 'pm.publish() failed.');
 rc = -1;
 pm = null;
 return;
 end;
 end;

144 Appendix 1 • Executing Python Modules in DS2 Modules

 rc = pm.useMethod('domath1');
 if rc then do;
 logr.log('E', 'pm.useMethod() failed.');
 return;
 end;
 end;
 rc = pm.setDouble('a', a); if rc then return;
 rc = pm.setDouble('b', b); if rc then return;
 rc = pm.execute(); if rc then return;
 c = pm.getDouble('c');
 d = pm.getDouble('d');
 end;
 endpackage;

 data _null_;
 dcl package logger logr();
 dcl package mypkg t();
 dcl int rc;
 dcl double a b c d;

 method run();
 rc = 0;
 c = d = .;
 set tstinput;
 t.score(a, b, rc, c, d);
 if rc then do;
 logr.log('E', 'rc=$s', rc);
 stop;
 end;
 logr.log('I', 'Results: a=$s b=$s c=$s d=$s',
 a, b, c, d);
 end;

 method term();
 if not rc then do;
 t.usefunc('domath2', rc);
 if rc then do;
 logr.log('E', 'rc=$s', rc);
 return;
 end;
 a = 6; b = 3;
 t.score(a, b, rc, c, d);
 if rc then
 logr.log('E', 'rc=$s', rc);
 else
 logr.log('I', 'Results: a=$s b=$s c=$s d=$s',
 a, b, c, d);
 end;
 end;
 enddata;
 run;
quit;

Sample DS2 Module Operations 145

Configuring Support for a DS2 PyMAS Package

About Using the PyMAS Package
Here are some examples of how a PyMAS package might be used:

• In SAS Intelligent Decisioning, you have DS2 code that uses a PyMAS package that
is executed using the microanalyticScore microservice.

• In SAS Model Manager, you have DS2 code that uses a PyMAS package that is
executed using the Compute server or the CAS server.

• In SAS Studio, you use PROC DS2, and the PROC uses a PyMAS package that is
executed using the Workspace server.

Enabling PyMAS Package Support
To enable support of a PyMAS package in environments that execute DS2 packages, you
must add Python environment configuration commands to the appropriate scripts that are
used by those services or servers during initialization.

These are the SAS Micro Analytic Service environment variables that must be set, with
examples for both UNIX and Windows platforms:

• MAS_M2PATH: Specifies the absolute path to the mas2py.py file. This file is
included with SAS Micro Analytic Service. It is used to execute Python code within
a Python process that is launched by SAS Micro Analytic Service. Here are some
examples:

• UNIX platform:

MAS_M2PATH=/opt/sas/viya/home/SASFoundation/misc/embscoreeng/mas2py.py
export MAS_M2PATH

or

MAS_M2PATH=/opt/sas/spre/home/SASFoundation/misc/embscoreeng/mas2py.py
export MAS_M2PATH

• Windows platform:

set MAS_M2PATH=C:\Program Files\SAS\VIYA\SASFoundation\misc\
embscoreeng\mas2py.py

or

set MAS_M2PATH=C:\Program Files\SAS\SPRE\SASFoundation\misc\
embscoreeng\mas2py.py

• MAS_PYPATH: Indicates the absolute path to the Python executable. Here are some
examples:

• UNIX platform:

MAS_PYPATH=/usr/bin/python
export MAS_PYPATH

• Windows platform:

set MAS_PYPATH=c:\python\python.exe

146 Appendix 1 • Executing Python Modules in DS2 Modules

The scripts are as follows:

• microanalyticScore microservice: /opt/sas/viya/config/etc/sysconfig/
microanalyticservice.conf

Note: If this file does not exist, you must create it.

• Compute server: /opt/sas/viya/config/etc/sysconfig/compsrv/
default/sas-compsrv

• Workspace server: /opt/sas/viya/config/etc/workspaceserver/
default/workspaceserver_usermods.sh

• SAS Cloud Analytic Services (CAS server): /opt/sas/viya/
config/etc/cas/default/cas_usermods.settings

Note: The user’s identity must exist in the CASHostAccountRequired group. For
information, see “The CASHostAccountRequired Custom Group” in SAS Viya
Administration: Identity Management.

Configuring Support for a DS2 PyMAS Package 147

http://documentation.sas.com/?docsetId=calids&docsetVersion=3.4&docsetTarget=p0ata1oqy9v7nan188h1k254doxq.htm&docsetTargetAnchor=p1b0uixk221q3jn19ztuitir62gm&locale=en
http://documentation.sas.com/?docsetId=calids&docsetVersion=3.4&docsetTarget=p0ata1oqy9v7nan188h1k254doxq.htm&docsetTargetAnchor=p1b0uixk221q3jn19ztuitir62gm&locale=en

148 Appendix 1 • Executing Python Modules in DS2 Modules

Appendix 2

SAS Micro Analytic Service
Return Codes

The SAS Micro Analytic Service core component, tkmas, supports the following return
codes. Depending on logging settings, an associated message might be logged. When a
message is logged, any substitution parameters (indicated by %s for string and %d for
number) are filled in. The other SAS Micro Analytic Service interface layers, such as the
Java interface and the REST interface, might log additional messages that are not listed
below.

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958744063 0x8b3ff001U MASBadArgs Invalid arguments.

-1958744062 0x8b3ff002U MASInternalError Internal error.

-1958744061 0x8b3ff003U MASFailure SAS Micro Analytic Service encountered a
failure.

-1958744060 0x8b3ff004U MASFail %s encountered a failure.

-1958744059 0x8b3ff005U MASUnexFail %s encountered an unexpected failure.

-1958744058 0x8b3ff006U MASUnexInternal %s encountered an unexpected internal failure.

-1958744057 0x8b3ff007U MASUnexFailIn %s encountered an unexpected failure in %s.

-1958744056 0x8b3ff008U MASFailIn %s encountered a failure in %s.

-1958744055 0x8b3ff009U MASFailWithText %s encountered a failure in %s: %s.

-1958744054 0x8b3ff00aU MASSFGCBLock Failed to obtain the SFGCB lock.

-1958744053 0x8b3ff00bU MASExeLock Failed to obtain the .exe lock.

-1958744052 0x8b3ff00cU MASLockCreate Failed to create the %s lock.

-1958744051 0x8b3ff00dU MASEventCreate Failed to create the %s event for thread %d.

-1958744050 0x8b3ff00eU MASThreadCreate Failed to create SAS Micro Analytic Service
worker thread %d of %d.

149

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958744049 0x8b3ff00fU MASCPUCount Failed to determine the number of CPUs.
Setting the number of worker threads to %d.

-1958744048 0x8b3ff010U MASThreadCount The number of threads requested, %d, exceeds
the limit. The maximum allowable threads =
%d times the number of CPUs = %d.

-1958744047 0x8b3ff011U MASThreadPoolSize Worker thread pool size is set to: %d.

-1958744046 0x8b3ff012U MASInitAlready SAS Micro Analytic Service was already
initialized.

-1958744045 0x8b3ff013U MASInitFailed SAS Micro Analytic Service failed to
initialize.

-1958744044 0x8b3ff014U MASNotLicensed SAS Micro Analytic Service is not licensed.

-1958744043 0x8b3ff015U MASLicSvcInitFailed License service failed to initialize.

-1958744042 0x8b3ff016U MASNotInitialized SAS Micro Analytic Service is not initialized.

-1958744041 0x8b3ff017U MASTermFailed SAS Micro Analytic Service failed to
terminate successfully.

-1958744040 0x8b3ff018U MASArgTrunc The maximum size of parameter %d in the %s
call is not large enough, and the value has
been truncated at %d characters.

-1958744039 0x8b3ff019U MASCompStatus Compiler encountered status 0x%X.

-1958744038 0x8b3ff01aU MASUnsupportedType Unsupported type.

-1958744037 0x8b3ff01bU MASUnknownType Unknown type.

-1958744036 0x8b3ff01cU MASNoSuchPackage Package not found.

-1958744035 0x8b3ff01dU MASNoSuchMethod Method not found.

-1958744034 0x8b3ff01eU MASNoSuchRevision Revision not found.

-1958744033 0x8b3ff01fU MASRevisionGet Failed to get revision.

-1958744032 0x8b3ff020U MASNoSuchModule Module not found.

-1958744031 0x8b3ff021U MASNoSuchUserContext User context not found.

-1958744030 0x8b3ff022U MASModuleCtxtCreate Failed to create module context.

-1958744029 0x8b3ff023U MASUserCtxtCreate Failed to create user context.

150 Appendix 2 • SAS Micro Analytic Service Return Codes

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958744028 0x8b3ff024U MASArgTypeMismatch Argument type mismatch.

-1958744027 0x8b3ff025U MASArgCoutMismatch Argument count mismatch.

-1958744026 0x8b3ff026U MASClientCodegenError Code generation error.

-1958744025 0x8b3ff027U MASDS2CompileError DS2 compilation error.

-1958744024 0x8b3ff028U MASDS2RuntimeError DS2 run-time error.

-1958744023 0x8b3ff029U MASTKGNoEntryPoint Code generation did not find an entry point.

-1958744022 0x8b3ff02aU MASTKGGenericError Code generation generic error.

-1958744021 0x8b3ff02bU MASInvalidRequest Invalid request.

-1958744020 0x8b3ff02cU MASMissingEntryPoints Missing entry points.

-1958744019 0x8b3ff02dU MASUnassignedInput Unassigned input.

-1958744018 0x8b3ff02eU MASInternalOnly Internal only.

-1958744017 0x8b3ff02fU MASOnlyValidForDS2 Valid only for DS2 code.

-1958744016 0x8b3ff030U MASOnlyValidForC Valid only for C code.

-1958744015 0x8b3ff031U MASExecutionException Exception occurred during execution.

-1958744014 0x8b3ff032U MASCompilationException Exception occurred during compilation.

-1958744013 0x8b3ff033U MASDS2ThreadUnsupported DS2 thread unsupported.

-1958744012 0x8b3ff034U MASTKEDSError DS2 error.

-1958744011 0x8b3ff035U MASUnrecognizedLanguage Unrecognized language.

-1958744010 0x8b3ff036U MASUnspecifiedDataType Unspecified data type.

-1958744009 0x8b3ff037U MASTKThreadingError Threading error.

-1958744008 0x8b3ff038U MASFatalProgRepoLost Program repository lost.

-1958744007 0x8b3ff039U MASSaveToRepo Failed to save to repository.

-1958744006 0x8b3ff03aU MASLog4SASCfgFailed Logging configuration failed.

-1958744005 0x8b3ff03bU MASDS2CompileStart User context '%s' compiling module '%s' on
thread %d.

SAS Micro Analytic Service Return Codes 151

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958744004 0x8b3ff03cU MASDS2CompileFinish User context '%s' module '%s' thread %d
compilation succeeded.

-1958744003 0x8b3ff03dU MASDS2CompileFailed User context '%s' module '%s' thread %d new
revision failed, RC = %d.

-1958744002 0x8b3ff03eU MASStartup *** SAS Micro Analytic Service Started ***

-1958744001 0x8b3ff03fU MASShutdown service Micro Analytic Score Service
shutdown

-1958744000 0x8b3ff040U MASAsyncException SAS Micro Analytic Service received async
exception code %d.

-1958743999 0x8b3ff041U MASAsyncInitFailed SAS Micro Analytic Service failed to install
async exception handler.

-1958743998 0x8b3ff042U MASShutdownJNI SAS Micro Analytic Service calling JVM
System.exit(0).

-1958743997 0x8b3ff043U MASExecDeletePending Attempt to execute method %s while deletion
pending for module context %s revision %d.

-1958743996 0x8b3ff044U MASMTXDeletePending Attempt to add module context &s while
deletion pending for user context %s.

-1958743995 0x8b3ff045U MASRevDeletePending Attempt to create revision while deletion
pending for module context %s.

-1958743994 0x8b3ff046U MASRevDelDeletePending Attempt to delete revision while deletion
pending for module context %s.

-1958743993 0x8b3ff047U MASRevDelRefCount Pending delete called for module context %s
with ref count %d.

-1958743992 0x8b3ff048U MASRevDelRefCountError Delete called for module context %s with ref
count %d.

-1958743991 0x8b3ff049U MASMTXDelete Garbage collection is deleting module context
%s.

-1958743990 0x8b3ff04aU MASCTXDeletePending Attempt to delete user context %s while being
deleted by another thread.

-1958743989 0x8b3ff04bU MASCTXGetCDTDelPending Attempt to retrieve creation time from user
context %s while deletion pending.

-1958743988 0x8b3ff04cU MASCTXGetMDTDelPending Attempt to retrieve modified time from user
context %s while deletion pending.

152 Appendix 2 • SAS Micro Analytic Service Return Codes

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743987 0x8b3ff04dU MASMTXGetCDTDelPending Attempt to retrieve creation time from module
context %s while deletion pending.

-1958743986 0x8b3ff04eU MASMTXGetMDTDelPending Attempt to retrieve modified time from
module context %s while deletion pending.

-1958743985 0x8b3ff04fU MASMTXGetRevDelPending Attempt to retrieve highest revision from
module context %s while deletion pending.

-1958743984 0x8b3ff050U MASMTXGetIUODelPending Attempt to retrieve internal use flag from
module context %s while deletion pending.

-1958743983 0x8b3ff051U MASRevGetCDTDelPending Attempt to retrieve revision %d creation time
from module context %s while deletion
pending.

-1958743982 0x8b3ff052U MASMTXGetMsgDelPending Attempt to retrieve compilation messages
from module context %s while deletion
pending.

-1958743981 0x8b3ff053U MASMTXRegDeletePending Attempt to register name while deletion
pending for module context %s.

-1958743980 0x8b3ff054U MASMTXLangDelPending Attempt to retrieve language of module
context %s while deletion pending.

-1958743979 0x8b3ff055U MASMTXGetDispDelPending Attempt to retrieve display name from module
context %s while deletion pending.

-1958743978 0x8b3ff056U MASMTXGetCSrcDelPending Attempt to retrieve C source code from
module context %s revision %d while deletion
pending.

-1958743977 0x8b3ff057U MASCTXGetPkgsDelPending Attempt to retrieve packages from user
context %s while deletion pending.

-1958743976 0x8b3ff058U MASMTXGetMthsDelPending Attempt to retrieve methods from module
context %s while deletion pending.

-1958743975 0x8b3ff059U MASNoSuchEntryPoint Entry point not found.

-1958743974 0x8b3ff05aU MASMTXGetSigDelPending Attempt to retrieve method %s signature from
module context %s while deletion pending.

-1958743973 0x8b3ff05bU MASCTXLdOOTBDelPending Private load out-of-the-box packages for user
context %s while deletion pending.

-1958743972 0x8b3ff05cU MASCTXRegIntDelPending Attempt to publish internal package %s to user
context %s while deletion pending.

-1958743971 0x8b3ff05dU MASCTXRemIntDelPending Attempt to remove internal package %s from
user context %s while deletion pending.

SAS Micro Analytic Service Return Codes 153

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743970 0x8b3ff05eU MASCreateGCAFailed Attempt to create garbage collection control
structures failed.

-1958743969 0x8b3ff05fU MASGarbageCollection Garbage collection interval.

-1958743968 0x8b3ff060U MASGarbageCollectionDel Garbage collection found assets ready to
delete.

-1958743967 0x8b3ff061U MASGCException Exception occurred during garbage collection
run.

-1958743966 0x8b3ff062U MASProgRepoUpdateError Error obtaining exclusive lock to update DS2
program repository.

-1958743965 0x8b3ff063U MASCTXDelete Garbage collection is deleting user context
%s.

-1958743964 0x8b3ff064U MASRevDelete Garbage collection is deleting module context
%s revision %d.

-1958743963 0x8b3ff065U MASDS2Fatal Module context %s revision %d generated
fatal run-time exception. Deleting revision.

-1958743962 0x8b3ff066U MASGarbageCollectionTerm Garbage collection is freeing control assets
during shut down.

-1958743961 0x8b3ff067U MASShutdownHang Worker thread did not interrupt after %d
seconds during shutdown.

-1958743960 0x8b3ff068U MASGCInvalidIntervalHigh Specifies that the garbage collection interval is
above the maximum. Setting to default value.

-1958743959 0x8b3ff069U MASGCInvalidIntervalLow Specifies that the garbage collection interval is
below the minimum. Setting to default value.

-1958743958 0x8b3ff06aU MASGCInvalidGraceHigh Specifies that the grace period is above the
maximum. Setting to default value.

-1958743957 0x8b3ff06bU MASGCInvalidGraceLow Specifies that the grace period is below the
minimum. Setting to default value.

-1958743956 0x8b3ff06cU MASGCMissingInterval Garbage collection interval is not specified.
Setting to default value.

-1958743955 0x8b3ff06dU MASGCMissingGracePeriod Grace period is not specified. Setting to
default value.

-1958743954 0x8b3ff06eU MASModuleStats Check the log for module statistics.

-1958743953 0x8b3ff06fU MASInvalidDS2Connection Attempt to create TKTS driver connection
failed.

154 Appendix 2 • SAS Micro Analytic Service Return Codes

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743952 0x8b3ff070U MASDS2FatalRecompiled DS2 package fatal error. Auto-recompile
succeeded.

-1958743951 0x8b3ff071U MASDS2FatalRecompFailed DS2 package fatal error. Transaction failed.
Recompile failed. Ejecting revision.

-1958743950 0x8b3ff072U MASDS2RevisionEjected DS2 package fatal error. Max retry exceeded.
Ejecting revision. Correct and republish.

-1958743949 0x8b3ff073U MASDBConnLost Connection to the database lost. Check the log
for details.

-1958743948 0x8b3ff074U MASDBConnReestablished Lost connection reestablished for user context.

-1958743947 0x8b3ff075U MASDBConnRetryLimit Maximum connection retry attempts exceeded
for user context.

-1958743946 0x8b3ff076U MASDBConnDoesNotExist Attempt to execute SQLSTMT, when no
connection exists.

-1958743945 0x8b3ff077U MASDBConnRetryThreadErr Error while creating database connection retry
thread.

-1958743944 0x8b3ff078U MASDBConnRetryAttempt Connection retry attempt unsuccessful.

-1958743943 0x8b3ff079U MASNameRegisterFailed Unable to register tkmas in the threaded kernel
named registry. DS2 programs that call Python
scripts will not function.

-1958743942 0x8b3ff07aU MASDS2PythonNameRequired AS DS2 Python constructor missing Python
module name.

-1958743941 0x8b3ff07bU MASDS2PythonCreateError Unable to create SAS Micro Analytic Service
DS2 Python package.

-1958743940 0x8b3ff07cU MASDS2PythonInitError Unable to initialize support for SAS Micro
Analytic Service DS2 Python package.

-1958743939 0x8b3ff07dU MASUnsupportedFunction Unsupported function.

-1958743938 0x8b3ff07eU MASDS2NotInitialized Attempt to perform action on uninitialized
SAS Micro Analytic Service DS2 Python
package.

-1958743937 0x8b3ff07fU MASDS2PythonParmError SAS Micro Analytic Service DS2 Python
package parameter mismatch.

-1958743936 0x8b3ff080U MASDS2PythonArgNameReqd SAS Micro Analytic Service DS2 Python
missing argument name.

-1958743935 0x8b3ff081U MASDS2PythonArgValueReqd AS DS2 Python missing argument value.

SAS Micro Analytic Service Return Codes 155

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743934 0x8b3ff082U MASDS2PythonArgInvalid SAS Micro Analytic Service DS2 Python
invalid argument value.

-1958743933 0x8b3ff083U MASDS2PythonThreadError Invalid operation: DS2 callback into SAS
Micro Analytic Service received an
unrecognized thread.

-1958743932 0x8b3ff084U MASPythonCompileEx Exception thrown while initializing Python or
compiling Python script.

-1958743931 0x8b3ff085U MASDS2InvalidMaxRecomp Invalid maximum DS2 recompile count given.
Setting to default value.

-1958743930 0x8b3ff086U MASDBInvalidIntervalHigh Specified DBMS connection retry interval is
above the maximum. Setting to default value.

-1958743929 0x8b3ff087U MASDBInvalidIntervalLow Specified DBMS connection retry interval is
below the minimum. Setting to default value.

-1958743928 0x8b3ff088U MASDBInvalidMaxRetry Invalid setting for maximum DBMS
reconnection attempts. Setting to default
value.

-1958743927 0x8b3ff089U MASDBCreateConnErr SAS Micro Analytic Service failed to create a
connection.

-1958743926 0x8b3ff08aU MASDBCreateConn SAS Micro Analytic Service created a
connection.

-1958743925 0x8b3ff08bU MASGCCanBeDeleted Garbage collection is checking module
context for deletion pending.

-1958743924 0x8b3ff08cU MASRepoLockRemovePriv Locking program repository to remove
internal package.

-1958743923 0x8b3ff08dU MASRepoUnlockRemovePriv Released program repository lock after
removing internal package.

-1958743922 0x8b3ff08eU MASRepoLockRemoveRev Locking program repository to remove
module context.

-1958743921 0x8b3ff08fU MASRepoUnlockRemoveRev Released program repository lock, after
removing module context.

-1958743920 0x8b3ff090U MASRepoLockCreate Creating a lock for user context.

-1958743919 0x8b3ff091U MASRepoLockDestroy Destroying a lock for user context.

-1958743918 0x8b3ff092U MASRepoLockPackageComp Locking program repository during
compilation of package.

156 Appendix 2 • SAS Micro Analytic Service Return Codes

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743917 0x8b3ff093U MASRepoUnlockPackageComp Released program repository lock after
compilation of package.

-1958743916 0x8b3ff094U MASRepoUnlockCompCrash Released program repository lock due to DS2
compiler crash while compiling package.

-1958743915 0x8b3ff095U MASRepoLockPackageSave Locking program repository to save package
after successful compilation.

-1958743914 0x8b3ff096U MASRepoUnlockPackageSave Released program repository after saving
package.

-1958743913 0x8b3ff097U MASRepoLockPackagePriv Locking program repository to save internal
package.

-1958743912 0x8b3ff098U MASRepoUnlockPackagePriv Released program repository after saving
internal package.

-1958743911 0x8b3ff099U MASPythonNotLoaded Python extension not loaded. Python must be
installed in order to execute Python within
SAS Micro Analytic Service.

-1958743910 0x8b3ff09aU MASTKTSConnHndlFail Failed to create a table services connection
handle.

-1958743909 0x8b3ff09bU MASDBDisconnected SAS Micro Analytic Service disconnected
database from user context.

-1958743908 0x8b3ff09cU MASDBDisconnect SAS Micro Analytic Service encountered a
failure when attempting to disconnect the
database from the user context.

-1958743907 0x8b3ff09dU MASPercentS Internal error. Check the SAS Micro Analytic
Service Core log.

-1958743906 0x8b3ff09eU MASPythonCompileErr Error compiling the Python script for the
module.

-1958743905 0x8b3ff09fU MASDS2MissingArray A missing array argument is not supported
with DS2.

-1958743904 0x8b3ff0a0U MASDS2EmptyArray An empty array argument is not supported
with DS2.

-1958743903 0x8b3ff0a1U MASDS2ArrayReplaced Missing or insufficiently sized DS2 array
argument has been replaced with new array of
size %d.

-1958743902 0x8b3ff0a2U MASDS2OutputTransError Error %d when converting CHAR string of
length %d to TKChar string.

SAS Micro Analytic Service Return Codes 157

Return Code
Hexadecimal
Code #define Symbol Message or Description

-1958743901 0x8b3ff0a3U MASDS2InputTransError Error %d when converting TKChar string of
length %d to CHAR string.

-1958743900 0x8b3ff0a4U MASDS2PythonOutputTrans Error %d when converting Python CHAR
string of length %d to TKChar string.

-1958743899 0x8b3ff0a5U MASDS2PythonInputTrans Error %d when converting TKChar string of
length %d to CHAR string for Python.

-1958743898 0x8b3ff0a6U MASDBCr8ConnNoSub SAS Micro Analytic Service created a default
data source connection.

-1958743897 0x8b3ff0a7U MASDBCr8ConnErrNoSub SAS Micro Analytic Service failed to create a
default data source connection.

1958743896 0x8b3ff0a8U MASDBDisconnNoSub SAS Micro Analytic Service disconnected
from the default data source.

1958743895 0x8b3ff0a9U MASDBDisconnErrNoSub SAS Micro Analytic Service encountered a
failure when attempting to disconnect from the
default data source.

1958743894 0x8b3ff0aaU MASDS2ScanError Out of memory or malformed DS2
encountered while scanning the package %s
source code prior to dictionary generation.

1958743893 0x8b3ff0abU MASDS2ParseError Out of memory or malformed DS2
encountered while parsing the package %s
method %s during dictionary generation.

1958743892 0x8b3ff0acU MASMTXGetDictDelPending Attempt to retrieve the dictionary from
module context %s revision %d while deletion
pending.

1958743892 0x8b3ff0adU MASCFuncProtoNotSupp Part of the C function prototype is not
supported.

1958743890 0x8b3ff0aeU MASDupModuleName Module name %s already exists. Module name
must be unique within the user context.

1958743889 0x8b3ff0afU MASDupDS2Package The DS2 package name %s is already bound
to module %s. Separate modules cannot
represent the same DS2 package.

1958743888 0x8b3ff0b0U MASIndexOutOfRangeSet The index is out of range while setting an
argument. Argument %d specified when
number of arguments is %d.

1958743887 0x8b3ff0b1U MASIndexOutOfRangeGet The index is out of range while retrieving an
argument. Argument %d specified when
number of arguments is %d.

158 Appendix 2 • SAS Micro Analytic Service Return Codes

Return Code
Hexadecimal
Code #define Symbol Message or Description

1958743886 0x8b3ff0b2U MASIntTypeExpected The argument %d in method %Us should be
an integral type used to specify the length of
the previous argument, which is an array.

1958743885 0x8b3ff0b3U MASOutArgExpected The argument %d in method %Us should be
an output argument. All input arguments must
precede output arguments.

1958743884 0x8b3ff0b4U MASDS2pymas DS2 PyMAS package encountered a failure.

1958743883 0x8b3ff0b5U MASDS2pymasFailIn DS2 PyMAS package encountered a failure in
%Us.

1958743882 0x8b3ff0b6U MASDS2pymasPubUTF8 DS2 PyMAS package failed to publish module
%Us.

1958743881 0x8b3ff0b7U MASDS2pymasPubTK DS2 PyMAS package failed to publish module
%s.

1958743880 0x8b3ff0b8U MASDS2pymasUsed The DS2 PyMAS package's use method has
already been called on this package instance.
Create a separate PyMAS instances for each
method that is used.

1958743879 0x8b3ff0b9U MASThrdPoolSizeDiff SAS Micro Analytic Service has already been
initialized with a worker thread pool size of
%d.

1958743878 0x8b3ff0baU MASSymbolTableCreateFailed SAS Micro Analytic Service failed to create a
symbol table.

1958743877 0x8b3ff0bbU MASMethodExecutionFailed SAS Micro Analytic Service failed to execute
a method.

SAS Micro Analytic Service Return Codes 159

160 Appendix 2 • SAS Micro Analytic Service Return Codes

Appendix 3

REST Server Error
Messages and Resolutions

The following table contains SAS Micro Analytic Service REST server error messages,
as well as possible causes and remedies.

HTTP
Code Error Message Explanation Remedy

Errors related to missing resources

400 The module module_ID not found. A module with the specified ID does
not exist.

This typically occurs when attempting
to do one of the following for the
specified module:

• view, update, delete the module

• execute a step of the module

• validate data input for the
execution of a step of the module

Specify a module ID that
exists in the system.

404 The step step_ID of module
module_ID was not found.

The specified module exists, but the
referenced step was not found.

This typically occurs when attempting
to do one of the following:

• access the specified module to
execute a step

• validate data input for the
execution of a step

Specify a step ID that
exists in the specified
module ID.

404 The submodule submodule_ID of
module module_ID was not found.

The specified module exists, but the
referenced submodule was not found.
This can occur when attempting to
access the specified submodule to
view its properties or source code.

Specify a submodule ID
that exists in the specified
module ID.

Errors related to create and update operations

400 Cannot create or update the module.
The specified media type type_name
is not supported. The only supported
media type is type_name.

The media type must be text/
vnd.sas.source.ds2 or text/
application.source.ds2.

Specify the correct media
type.

161

HTTP
Code Error Message Explanation Remedy

400 Cannot create or update the module.
DS2 and COMPOSITE are the only
valid values for language.

The programming language is not
DS2 or COMPOSITE.

Supply DS2 or
COMPOSITE modules
only. Other languages
might be supported in the
future.

400 Cannot create or update module. The
specified module ID must not be empty
or missing.

Under certain circumstances, it is
possible to specify the module ID as
part of the module definition.
However, when doing so the module
specification must not be an empty
string or missing.

Specify a valid module ID
string.

400 Cannot create or update the module.
Unable to parse the package name.

The DS2 package must be properly
formed so that the package name can
be parsed.

Supply a properly formed
DS2 package.

400 Cannot create or update module. The
value of field field_name must not
be empty or missing.

When creating or updating a module,
the payload contains certain
mandatory fields, for example, scope,
type, and code.

Mandatory fields cannot be missing
and the associated content must not be
null or an empty string.

Assign a valid value for
the fields that are
referenced in the message.

400 Cannot create or update the module. At
least one of the fields
field_name_1 or
field_name_2 must be present.

Either field_name_1 or
field_name_2 is required input
to create or update the module.

Supply either
field_name_1 or
field_name_2.

400 Cannot create or update the module.
Only one of the fields field_name
or field_name can be present.

Only one field name (either
field_name_1 or
field_name_2) can be present to
create or update the module.

Supply either
field_name_1 or
field_name_2.

400 Cannot create or update module. The
field field_name must not be
repeated.

When creating or updating a module,
the payload can contain multiple
name value pairs called properties.
Property names must be unique.

Ensure that property
names are unique.

400 Cannot create or update module. An
unexpected end of source was
encountered while parsing a comment.

DS2 code that contains comments
must be properly delimited.

Refer to SAS DS2
Language Reference for
information about
comment syntax rules.

400 Cannot create or update module due to
unmatched single quotation marks.

If strings are defined in the DS2
program, they must be enclosed in
single quotation marks.

Refer to SAS DS2
Language Reference for
information about
character constant syntax
rules.

162 Appendix 3 • REST Server Error Messages and Resolutions

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

HTTP
Code Error Message Explanation Remedy

400 Cannot create or update module due to
unmatched double quotation marks.

If delimited variables names are
defined in the DS2 program, they
must be enclosed in matching double
quotation marks.

Refer to SAS DS2
Language Reference for
information about
delimited variable
reference syntax rules.

400 Cannot create or update module. No
DS2 package was found in the source
code.

DS2 source was not found. Refer to SAS DS2
Language Reference for
information about DS2
package syntax rules.

400 Cannot create or update module. More
than one DS2 package found in the
source code.

Only a single DS2 package is
accepted to create a module.

Ensure that only a single
DS2 package is contained
in the source code.
Multiple packages can be
separated and created as
separate modules.

400 Cannot create or update module
module_ID due to the following
compilation errors:
error_messages.

The DS2 source code contains
compilation errors.

Resolve the issues, and
then resubmit the source
code.

For more information, see
SAS DS2 Language
Reference.

400 Cannot create module. The specified
module ID module_ID is already in
use.

When creating a module, the specified
module ID must not already exist in
the system.

Depending on the
configuration, the module
ID is either supplied or
derived from the package
name. To avoid this error,
specify the appropriate
module ID or DS2
package.

400 The module module_ID is not a
COMPOSITE module. Only
COMPOSITE modules can have
submodules.

This is typically returned when the
submodules of a module that does not
support submodules are accessed.

Select a COMPOSITE
module.

400 Cannot create or update the module.
The file file_name is not accessible
from this server.

This is typically returned when the
file containing the analytic store
module is referenced and the server
cannot access the file.

Ensure that the file
file_name exists and
is accessible by the web
service.

400 Cannot create or update the module.
The submodule name name must not
be repeated.

The supplied module definition
contains more than one submodule
with the same name.

Ensure that the submodule
names in the module
definition are unique.

REST Server Error Messages and Resolutions 163

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

HTTP
Code Error Message Explanation Remedy

400 Cannot update the module
module_ID. The language cannot be
changed.

The module definition used for
updating a module contains a different
language value than the original
module.

After a module is created, the
language cannot be changed.

To preserve the same
language, supply the same
language value or remove
the module language field
from the module
definition.

To create a module with a
different language, delete
the original module and
create a new one.

Errors related to accessing or executing the steps of a module, or validating the data needed before execution.

400 Cannot execute step step_ID of
module module_ID.

The input data supplied to execute a
module step is incorrect. Subsequent
error messages will provide further
details.

Refer to the subsequent
messages related to this
issue for more
information.

400 Expected integer_value, input
parameters, but received
integer_value.

An incorrect number of parameters
were supplied to execute a module
step.

Supply the correct number
of parameters.

400 The parameter parameter_name is
not defined.

The named parameter is not defined
for the module step.

Select the correct
parameter name or execute
a different module step.

400 Cannot assign the value
specified_value to the
parameter parameter_name of type
type.

An inappropriate value was received
for the parameter, for example,
supplying a string value to an integer
parameter.

Specify appropriate
matching values.

400 Cannot assign an array of size
integer_value to the array
parameter parameter_name. A
maximum of integer_value
elements can be accepted.

The supplied array is larger than the
maximum array size specified by the
module. SAS Micro Analytic Service
rejects arrays larger than this size.

Supply an array with a
size equal to or smaller
than the maximum size
allowed.

400 Cannot assign the value
specified_value to the array
element parameter_name
[element_number] of type
type.

An inappropriate value was received
for the array parameter, for example,
supplying a string value to an integer
array parameter.

Specify appropriate
matching values.

400 The value of field field_name must
not be empty or missing.

The name and value parts of the
parameter must be available to
execute the module step.

Specify appropriate
matching values.

400 The field field_name must not be
repeated.

You cannot specify more than one
value for a parameter.

Specify a single value.

164 Appendix 3 • REST Server Error Messages and Resolutions

HTTP
Code Error Message Explanation Remedy

400 Cannot parse the value of the data grid
parameter parameter_name.

The value of a data grid parameter
does not match the structure of a data
grid.

Ensure that the supplied
value of the parameter is
appropriate for the data
grid.

403 Cannot access the steps of the
PRIVATE module module_ID.

The steps of private modules are not
accessible.

Re-create the module as a
public module.

403 Source code is only available for
modules or submodules of type DS2.

Returned when trying to access the
source code of a module that does not
have source code.

Access the source code of
a different module or
submodule.

500 Cannot process the value of the data
grid parameter parameter_name
because it exceeds integer_value
characters.

There is a size limit for a data grid.
This is returned when the data grid is
larger than the internal size of the data
grid parameter.

Restructure the request
data into multiple data
grid objects.

500 Error error_message received
when executing the step step_ID of
the module module_ID.

An error was returned by the SAS
Micro Analytic Service core during
execution of the modules.

Search this appendix for
information about the
error message.

Transfer Errors

400 The transfer object content is invalid.
The content should not be modified
after export.

The exported object appears to be
corrupted or modified following the
export.

Export the object from the
source system again, and
then retry the import.

400 The transfer object content is invalid for
module module_ID. The content
should not be modified after export.

The exported object for the given
module appears to be corrupted or
modified following the export.

Export the object from the
source system again, and
then retry the import.

Internal Errors

500 Internal Error: The DS2 compiler
encountered an unrecoverable error
while compiling the module. Please
check the log files for further diagnosis.

In most cases, this error is caused by
insufficient stack space for the SAS
Micro Analytic Service core TK
subsystem.

In SAS Environment
Manager, increase the
value of the configuration
parameter
core.tktstacksizekbytes, as
appropriate.

500 An internal error occurred. Please check
the log files for further diagnosis.

This is a generic error that occurs
during execution. It indicates that an
unrecoverable situation has occurred.

Please contact SAS
Technical Support.

500 An internal error occurred. Cannot load
the file file_name. Please ensure
that the file exists and the server is able
to access it.

This is typically returned when the
file containing the analytic store
model is not accessible during
execution of the module.

Please contact SAS
Technical Support.

REST Server Error Messages and Resolutions 165

166 Appendix 3 • REST Server Error Messages and Resolutions

Appendix 4

Table Service Driver
Reference

DB2 Driver Reference . 167
Understanding the Table Services Driver for DB2 . 167
Data Service Connection Options for DB2 . 168
DB2 Wire Protocol Driver Usage Notes . 172

FedSQL Driver Reference . 173
Overview . 173
Connection Options . 173

ODBC Driver Reference . 176
About ODBC . 176
Understanding the Table Services Driver for ODBC . 176
Data Service Connection Options for ODBC . 176
Wire Protocol Driver Usage Notes . 182

Oracle Reference . 183
Understanding the Table Services Driver for Oracle . 183
Data Service Connection Options for Oracle . 183
Oracle Wire Protocol Driver Usage Notes . 189

PostgreSQL Driver Reference . 189
Understanding the SAS Federation Server Driver for PostgreSQL 189
Data Service Connection Options for PostgreSQL . 190

SAS Data Set Reference . 194
Overview . 194
Understanding the Driver for Base SAS . 194
Data Service Connection Options for SAS Data Sets . 194

Teradata Reference . 198
Understanding the Table Services Driver for Teradata . 198
Data Service Connection Options for Teradata . 198

DB2 Driver Reference

Understanding the Table Services Driver for DB2
The table services driver for DB2 (driver for DB2) enables table services to read and
update legacy DB2 tables. In addition, the driver creates DB2 tables that can be accessed
by both table services and the DB2 database management system (DBMS).

167

The driver for DB2 supports most of the FedSQL functionality. The driver also enables
an application to submit native DB2 SQL statements.

The table services driver for DB2 is a remote driver, which means that it connects to a
server process in order to access data. The process might be running on the same
machine as the table services driver, or it might be running on another machine in the
network.

The table services driver for DB2 uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables and, if necessary, specify the DB2 version that you have installed.
Before setting the environment variables, as shown in the examples below, you must also
set the following environment variables:

• The INSTHOME environment variable must be set to your DB2 home directory.

• The DB2DIR environment variable should also be set to the value of INSTHOME.

• The DB2INSTANCE environment variable should be set to the DB2 instance that
was configured by the administrator.

AIX
Bourne Shell
$ LIBPATH=$INSTHOME/lib:$LIBPATH
$ export LIBPATH
C Shell
$ setenv LIBPATH $INSTHOME/lib:$LIBPATH
HP-UX and HP-UX for the Itanium Processor
 Family Architecture
Bourne Shell
$ SHLIB_PATH=$INSTHOME/lib:$SHLIB_PATH
$ export SHLIB_PATH
C Shell
$ setenv SHLIB_PATH $INSTHOME/lib:$SHLIB_PATH
Linux for Intel Architecture, Linux for x64, Solaris,
 and Solaris for x64
Bourne Shell
$LD_LIBRARY_PATH=$INSTHOME/lib:$LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH
C Shell
$ setenv LD_LIBRARY_PATH $INSTHOME/lib:$LD_LIBRARY_PATH

Data Service Connection Options for DB2

Overview
The data service connection arguments for DB2 include connection options and
advanced options.

Note: When performing connections through DSNs or connection strings, the FedSQL
language processor automatically quotes SQL identifiers that do not meet the regular
naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud
Analytic Services.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=db2;uid=myuid;

168 Appendix 4 • Table Service Driver Reference

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

pwd=Blue31;conopts=(DSN=MYDSN);CATALOG=TSSQL)

The table services driver for DB2 supports the following connection options for DB2
data sources.

Option Description

CATALOG CATALOG=catalog‑identifer;
Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=DB2). You must specify a catalog. For the DB2
database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud Analytic
Services.

DATABASE|DB DATABASE=database‑specification;
Specifies the name of the DB2 database (for example, database=sample, DB=sample).

Note: You must specify a database name.

DRIVER DRIVER=DB2;

Identifies the DB2 data source to which you want to connect.

Note: You must specify the driver.

DB2 Driver Reference 169

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Advanced Connection Options
The table services driver for DB2 supports the following advanced connection options
for DB2 data sources.

Option Description

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding‑value
Used to specify the encoding of the DB2CODEPAGE to the DB2 driver. When using this
option, you must also set the DB2CODEPAGE environment variable on the client.

When the encoding of the DB2 client layer (stored in DBCODEPAGE) is different from the
encoding value of the DB2 operating system value, the DB2 client layer attempts to convert
incoming data to the DB2 encoding value that is stored in DB2CODEPAGE. To prevent the
client layer from converting data incorrectly, you must first determine the correct value for
DB2CODEPAGE and then set the CLIENT_ENCODING= option to match the corresponding
encoding value in DB2CODEPAGE.

For example, suppose you are storing Japanese characters in a DB2 database, and the client
machine where the DB2 driver is executing is a Windows machine that is running CP1252
encoding. When the application tries to extract the data into the table services driver, the DB2
client layer attempts to convert these Japanese characters into Latin1 representation, which does
not contain Japanese characters. As a result, a garbage character appears in order to indicate a
failure in transcoding.

To resolve this situation, you must first set the DB2CODEPAGE environment variable value to
1208 (the IBM code page value that matches UTF-8 encoding). That enables you to specify that
the DB2 client layer send the data to the application in UTF-8 instead of converting it into
Latin1. In addition, you must specify the corresponding encoding value of DB2CODEPAGE
because the table services driver for DB2 cannot derive this information from a DB2 session.
For this particular Windows case, set the CLIENT_ENCODING= option to the UTF-8 encoding
in order to match the DB2CODEPAGE value (1208) and also to specify the DB2CODEPAGE
value to the DB2 driver.

However, changing the value of DB2CODEPAGE affects all applications that run on that
machine. You should reset the value to the usual DB2CODEPAGE value, which was derived
when the database was created.

Note: Setting the DB2CODEPAGE value or the CLIENT_ENCODING= value incorrectly can
cause unpredictable results. You should set these values only when a situation such as the
example above occurs.

Note: You can specify any valid encoding value for CLIENT_ENCODING=option.

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure that all characters can be stored in
the new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

170 Appendix 4 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

• ALL Activates all trace levels.

• DRIVER Specifies that driver-specific information be sent to the trace log.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DB2 Driver Reference 171

Option Description

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the file name and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative file name, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PWD=password

Specifies the password for DB2.

UID UID=user‑id;
Specifies the DB2 login user ID.

DB2 Wire Protocol Driver Usage Notes
There are a number of third-party wire protocol ODBC drivers that communicate
directly with a database server, without having to communicate through a client library.
When you configure the ODBC drivers on Windows or UNIX, you can set certain
options. SAS runs best when these options are selected. Some, but not all, are selected
by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

When configuring an ODBC DSN using the DB2 Wire Protocol driver, set the following
advanced option:

172 Appendix 4 • Table Service Driver Reference

• Application Using Threads

FedSQL Driver Reference

Overview
The FedSQL language driver supports the FedSQL dialect, as documented in SAS Viya:
FedSQL Programming for SAS Cloud Analytic Services. When loaded, the FedSQL
driver parses SQL requests, and then sends the parsed query to the appropriate data
source driver to determine whether the functionality can be handled by the data service.
The FedSQL driver includes an SQL processor that supports the FedSQL dialect. The
main emphasis of the FedSQL driver is to support federation of data sources. For
example, if an SQL submission is requesting data from DB2 to be joined with data from
Oracle, the SQL processor requests the data from the data sources and then performs the
join. The FedSQL driver supports the FedSQL dialect regardless of the data source that
it comes from. For example, if the SQL request is from a single data source that does not
support a particular SQL function, the FedSQL processor guarantees implementation of
the request.

Connection Options
• CONOPTS=((connection string 1);(connection string 2); ... (connection string <n>))

- Specifies one or more data source connection strings. For example, the following
illustrates a federated connection string including Oracle, Teradata, Netezza, and
Base SAS data sources:

driver=sql;conopts=((driver=oracle;catalog=acat;uid=myuid;
pwd=myPass9;path=oraclev11.abc.123.com:1521/ORA11G);
(driver=teradata;catalog=bcat;uid=model;
pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model);(driver=netezza;uid=myuid;
pwd=myPass2;server=mysrvr;database=testdb;catalog=(ccat={TEST}));
(driver=base;catalog=dcat;schema=(name=dblib;primarypath=/u/mypath/mydir)))

• DEFAULT_CATALOG=catalog-name - Used to specify the name of the catalog to
set as the current catalog upon connecting. This option is useful for SQL Server
connections and federated connections.

• DEFAULT_ATTR=(attr=value;...) - Used to specify connection handle or statement
handle attributes supported for initial connect-time configuration., where
attr=value corresponds to any of the following options:

FedSQL Driver Reference 173

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

SQL_CURSORS=n

FedSQL connection handle option. This option controls the driver’s use of client-side, result
set cursors. The possible values are 0, 1, or 2.

• A value of 0 causes the driver to use client-side static cursor emulation if a scrollable
cursor is requested but the database server cannot provide one.

• A value of 1 causes the driver to always use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is never used.

• A value of 2 (default) causes the driver to never use client-side static cursor emulation if a
scrollable cursor is requested. The database server’s native cursor is used if available,
otherwise the cursor is forward only.

DEFAULT_ATTR=(SQL_CURSORS=2)

SQL_AC_BEHAVIOR=n

FedSQL connection handle option. Specifies whether FedSQL should use transactions when
processing complex operations (for example, “CREATE TABLE xxx AS SELECT
yyy FROM zzz” or a multi-row delete statement that requires multiple operations to delete
the underlying rows). Possible values are 0 (default), 1, and 2.

• A value of 0 (default) means that no transactions are attempted under-the-covers and
operations such as emulated UPDATE, DELETE, or INSERT are not guaranteed to be
atomic.

• A value of 1 means that FedSQL tries to use transactions to better support the correct
behavior when AUTOCOMMIT is set to ON (where individual operations like UPDATE,
DELETE, and INSERT should be atomic).

• A value of 2 means that transactions are required. This option fails if the underlying
drivers do not support transactions.

DEFAULT_ATTR=(SQL_AC_BEHAVIOR=0)

SQL_MAX_COL_SIZE=n

FedSQL statement handle option. Enables a user to specify the size of the varchar or
varbinary that is used for potentially truncated long data when direct bind is not possible.

• The default value is 32767.

• The limit for this size is 1 MG. If the value exceeds 1 MG, FedSQL resets the value and
returns an Option value changed warning.

DEFAULT_ATTR=(SQL_MAX_COL_SIZE=1048576)

SQL_PUSHDOWN=n

FedSQL statement handle option. This option tells FedSQL if and when it should try to push
down SQL to the underlying driver. The values are 8, 2, or 0 (default).

• A value of 8: (PLAN_FORCE_PUSHDOWN_SQL) - Complete statement pushdown is
required. If that is not possible, the INSERT, UPDATE, DELETE, or CREATE TABLE AS
statement fails.

• A value of 2: (PLAN_DISABLE_PUSHDOWN_SQL) - Specifies that the INSERT,
UPDATE, DELETE, or CREATE TABLE AS statement not be pushed down to the
underlying driver.

• A value of 0 (default): Specifies that the FedSQL processor determine whether the
INSERT, UPDATE, DELETE, or CREATE TABLE AS statement should be pushed down
to the underlying driver.

DEFAULT_ATTR=(SQL_PUSHDOWN=0)

174 Appendix 4 • Table Service Driver Reference

SQL_STMT_MEM_LIMIT=n

FedSQL statement handle option. Used to control the amount of memory that is available to
FedSQL to answer SQL requests.

• (n) is treated as an integer and is specified in bytes.

• The following example allows 200 MB of memory:

DEFAULT_ATTR=(SQL_STMT_MEM_LIMIT=209715200)

SQL_TXN_EXCEPTIONS=n

FedSQL connection handle option. Supports dynamic connections regardless of the specified
transaction isolation. Possible values are 0 or 2 (default).

• Specify a value of 0 to disable support for dynamic connections.

• Specify a value of 2 to enable support for dynamic connections.

DEFAULT_ATTR=(SQL_TXN_EXCEPTIONS=2)

SQL_USE_EVP=n

FedSQL statement handle option. This option optimizes the driver for large result sets. The
possible values are 0 or 1 (default) and are used as follows:

• Specify 0 to turn optimization OFF.

• Specify 1 to enable optimization (ON).

DEFAULT_ATTR=(SQL_USE_EVP=0)

SQL_VDC_DISABLE=n

FedSQL statement handle option. This option is used to allow or disallow use of cached data
for a statement. The possible values are 0 (default) or 1 and are used as follows:

• Specify a value of 0 to enable cached data.

• Specify a value of 1 to disable cached data.

DEFAULT_ATTR=(SQL_VDC_DISABLE=1)

SQL_XCODE_WARN=n

FedSQL statement handle option. Used to warn when there is an error while transcoding data
during row input or output operations. Possible values are 0 (default), 1, or 2 and are used as
follows:

• Specify 0 to return an error if data cannot be transcoded.

• Specify 1 to return a warning if data cannot be transcoded.

• Specify 2 to ignore transcoding errors.

DEFAULT_ATTR=(SQL_XCODE_WARN=1)

FedSQL Driver Reference 175

ODBC Driver Reference

About ODBC
This section provides functionality details and guidelines for the open database
connectivity (ODBC) databases that are supported by the table services driver for ODBC
(driver for ODBC).

ODBC standards provide a common interface to a variety of databases, including
dBASE, Microsoft Access, Oracle, Paradox, and Microsoft SQL Server databases.
Specifically, ODBC standards define APIs that enable an application to access a
database if both the application and the database conform to the specification. ODBC
also provides a mechanism to enable dynamic selection of a database that an application
is accessing. As a result, users can select databases other than those that are specified by
the application developer.

Understanding the Table Services Driver for ODBC
The driver for ODBC enables table services to read and update legacy ODBC database
tables. In addition, the driver creates tables that can be accessed by both table services
and an ODBC database.

The driver for ODBC supports most of the FedSQL functionality. The driver also
enables an application to submit native database-specific SQL statements.

The driver for ODBC is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as table
services, or it might be running on another machine in the network.

Data Service Connection Options for ODBC

Overview
To access data that is hosted on table services, a client must submit a connection string,
which defines how to connect to the data. The data service connection arguments for an
ODBC-compliant database include connection options and advanced connection options.

To configure ODBC data sources, you might have to edit the .odbc.ini file in your home
directory. Some ODBC driver vendors allow system administrators to maintain a
centralized copy, by setting the environment variable ODBCINI. For specific
configuration information, see your vendor documentation. The table services driver for
ODBC uses shared libraries that are referenced as shared objects in UNIX. You must add
the location of the shared libraries to one of the system environment variables, so that
drivers for ODBC are loaded dynamically at run time. You must also set the
ODBCHOME environment variable to your ODBC home directory before setting the
environment variables, as shown in the following example.

export ODBCHOME=/dbi/odbc/dd7.1.4
 export ODBCINI=/ODBC/odbc_714_MASTER.ini
 LD_LIBRARY_PATH=/dbi/odbc/dd7.1.4/lib:${LD_LIBRARY_PATH}
 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}

176 Appendix 4 • Table Service Driver Reference

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=odbc;
catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2))

The driver for ODBC supports the following connection options.

Option Description

CATALOG CATALOG=catalog‑identifier;
Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. For
databases that do not support native catalogs, any identifier is valid (for example,
catalog=myodbc). For databases like Microsoft SQL Server that do support native catalogs,
CATALOG= is not required. The connection defaults to CATALOG=* unless you specify a
logical name for the catalog and map it to the native catalog name in the database. For example,
to map the logical catalog mycat to the native catalog named newusers, use the following
command: catalog=(mycat=newusers);. Catalog name maps can be used only with
FedSQL. They are not valid with native SQL.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud
Analytic Services.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These
options, combined with the ODBC_DSN option, must specify a complete connection string to the
data source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option,
do not use the ODBC_DSN= connection option. However, you can specify the ODBC database-
specific connection options by using CONOPTS=. Then you can specify an ODBC DSN that
contains other connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

DRIVER DRIVER=ODBC;

Calls the table services driver for ODBC. This specifies that the data service to which you want
to connect must be an ODBC-compliant database.

Note: DRIVER is a required option. You must specify the driver.

ODBC_DSN ODBC_DSN=odbc dsn name

Specifies a valid ODBC-compliant database DSN that contains connection information for
connecting to the ODBC-compliant database. You can use the CONOPTS= option in addition to
ODBC_DSN= option to specify database-specific connection options not provided by table
services. Do not specify the ODBC DSN in both CONOPTS= and ODBC_DSN=.

ODBC Driver Reference 177

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Advanced Connection Options
The driver for ODBC supports the following advanced connection options for an
ODBC-compliant database.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure that all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

ENABLE_MARS ENABLE_MARS= NO|YES

Enables or disables the use of multiple active result sets (MARS) on Microsoft SQL Server.
FedSQL cannot permit transactions on top of Microsoft SQL Server because Microsoft SQL
Server allows only one cursor per transaction. Set this option to YES so that FedSQL can allow
transactions under a given Microsoft SQL Server connection.

178 Appendix 4 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

ODBC Driver Reference 179

Option Description

DEFAULT_CURSO
R_TYPE

DEFAULT_CURSOR_TYPE=FORWARD_ONLY | KEYSET_DRIVEN | DYNAMIC |
STATIC;

Specifies a valid default cursor type for new statements. These options are valid:

FORWARD_ONLY
Specifies a non-scrollable cursor that moves only forward through the result set. Forward-only
cursors are dynamic in that all changes are detected as the current row is processed. If an
application does not require scrolling, the forward-only cursor retrieves data quickly, with the
least amount of overhead processing.

KEYSET_DRIVEN
Specifies a scrollable cursor that detects changes that are made to the values of rows in the
result set but that does not always detect changes to deletion of rows and changes to the order
of rows in the result set. A keyset-driven cursor is based on row keys, which are used to
determine the order and set of rows that are included in the result set. As the cursor scrolls the
result set, it uses the keys to retrieve the most recent values in the table.

It is sometimes helpful to have a cursor that can detect changes in the rows of a result set. A
keyset-driven cursor uses a row identifier rather than caching the entire row into memory. It
therefore uses much less disk space than other row caching mechanisms. Deleted rows can be
detected when a SELECT statement that references the bookmark, row ID, or key column
values fails to return a row.

DYNAMIC
Specifies a scrollable cursor that detects changes that are made to the rows in the result set.
All INSERT, UPDATE, and DELETE statements that are made by all users are visible
through the cursor. The dynamic cursor is good for an application that must detect all
concurrent updates that are made by other users.

STATIC
Specifies a scrollable cursor that displays the result set as it existed when the cursor was first
opened. The static cursor provides forward and backward scrolling. If the application does not
need to detect changes but requires scrolling, the static cursor is a good choice.

Note: The application can still override this value, but if the application does not explicitly set a
cursor type, this value will be in effect

180 Appendix 4 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE='filename';

Used to specify the name of the text file for the trace log. Include the file name and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative file name, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

USER USER=user‑ID;
Specifies the user ID for logging on to the ODBC-compliant database, such as Microsoft SQL
Server, with a user ID that differs from the default ID.

Note: The alias is UID=.

ODBC Driver Reference 181

Option Description

PASSWORD PASSWORD=password;

Specifies the password that corresponds to the user ID in the database.

Note: The alias is PWD=.

Here are example connection strings that use the table services driver for ODBC:

driver=sql;conopts=((driver=odbc;catalog=acat;
conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid;pwd='123pass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))

This connection string specifies catalog name maps to access multiple catalogs on
Microsoft SQL Server:

driver=odbc; uid=jfox; pw=mypw; odbc_dsn=mySQLdsn;
 catalog=(cat1=mycat; cat2=testcat; cat3=users;

Wire Protocol Driver Usage Notes

Overview
There are a number of wire protocol ODBC drivers that communicate directly with a
database server, without having to communicate through a client library. When you
configure the ODBC drivers on Windows or UNIX, you can set certain options. SAS
runs best when these options are selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator window.

UNIX The options are available when configuring data sources using the ODBC
Administrator tool. Values can also be set by editing the odbc.ini file in
which their data sources are defined.

Note: A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

SQL Server and SQL Server Legacy
Configure the following Advanced options for the SQL Server Wire Protocol driver and
the SQL Server Legacy Wire Protocol driver:

• Application Using Threads

• Enable Quoted Identifiers

• Fetch TWFS as Time

• Fetch TSWTZ as Timestamp

Note:

1. Significant performance improvements have been realized when using the SQL
Server Legacy Wire Protocol driver, as compared to the SQL Server Wire
Protocol driver.

182 Appendix 4 • Table Service Driver Reference

2. The SQL Server Legacy Wire Protocol driver does not support transactions when
it is used with FedSQL enabled because the driver allows only a single statement
per connection while FedSQL requires multiple statements per connection when
using transactions.

Oracle Reference

Understanding the Table Services Driver for Oracle
The table services driver for Oracle enables table services to read and update legacy
Oracle tables. In addition, the driver creates Oracle tables that can be accessed by both
table services and Oracle.

The driver for Oracle supports most of the FedSQL functionality. The driver also enables
an application to submit native Oracle SQL statements.

The driver for Oracle is a remote driver, which means that it connects to a server process
in order to access data. The process might be running on the same machine as the table
services, or it might be running on another machine in the network.

The table services driver for Oracle uses shared libraries that are referenced as shared
objects in UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables required by the Oracle
client libraries. The following Bourne shell commands provide an example:

ORAENV_ASK=NO; export ORAENV_ASK
ORACLE_HOME=/dbi/oracle/11g; export ORACLE_HOME
SASORA=V9; export SASORA
PATH=$ORACLE_HOME/bin:/bin:/usr/bin:/usr/ccs/
 bin:/opt/bin:$PATH; export PATH
TMPDIR=/var/tmp; export TMPDIR
LD_LIBRARY_PATH=/usr/openwin/lib:$ORACLE_HOME/
 lib:$LD_LIBRARY_PATH; export LD_LIBRARY_PATH
TWO_TASK=oraclev11; export TWO_TASK

Data Service Connection Options for Oracle

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for an Oracle server include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options. Here is an example:

driver=sql;conopts=(driver=oracle;
catalog=acat;uid=myuid;pwd=myPass9;
path=oraclev11.abc.123.com:1521/ORA11G)

Oracle Reference 183

The driver for Oracle supports the following connection options.

Option Description

CATALOG CATALOG=catalog—identifier;

Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid such as catalog=oracle_test. You must specify a catalog. For the
Oracle database, this is a logical catalog name to use as an SQL catalog identifier.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud
Analytic Services.

DRIVER DRIVER=ORACLE;

Identifies the data service to which you want to connect, which is an Oracle database.

Note: You must specify the driver.

PATH PATH=database‑specification;
Specifies the Oracle connect identifier. A connect identifier can be a net service name, a database
service name, or a net service alias.

UID UID=user‑id;
Specifies an optional Oracle user ID. If the user ID contains blanks or national characters,
enclose it in quotation marks. If you omit an Oracle user ID and password, the default Oracle
user ID OPS$sysid is used, if it is enabled.

PWD PWD=password;

Specifies an optional Oracle database password that is associated with the Oracle user ID. PWD=
is always used with UID= and the associated password is case-sensitive. If you omit PWD=, the
password for the default Oracle user ID OPS$sysid is used, if it is active.

184 Appendix 4 • Table Service Driver Reference

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Advanced Connection Options
The driver for Oracle supports the following advanced connection options.

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure all characters can be stored in the new
encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

Oracle Reference 185

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL'

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the file name and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative file name, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

ORA_ENCODING ORA_ENCODING=UNICODE;

Specifies that the Oracle data be returned in Unicode to table services. UNICODE is the default
setting and is independent of the NLS_LANG environment variable setting.

186 Appendix 4 • Table Service Driver Reference

Option Description

ORNUMERIC ORANUMERIC=NO | YES

Specifies how numbers that are read from or inserted into the Oracle NUMBER column are
treated. This option defaults to YES so that a NUMBER column with precision or scale is
described as TKTS_NUMERIC. This option can be specified as both a connection option and a
table option. When specified as both a connection and table option, the table option value
overrides the connection option.

• NO Indicates that the numbers are treated as TKTS_DOUBLE values. They might not have
precision beyond 14 digits.

• YES Indicates that non-integer values with explicit precision are treated as TKTS_NUMERIC
values. This is the default setting.

USE_CACHED_CA
TALOG

USE_CACHED_CATALOG=YES | NO;

Specifies whether to use the cached catalog rather than compiling a new catalog on every run.
Setting this option to YES can improve the performance of the TKTSForeignKeys API. The
default setting is YES.

Note: Before you can use this option, you must complete the following steps:

1. Create a materialized view. See the example code in “Creating
a Materialized View (USE_CACHED_CATALOG)” on page
188.

2. Use the ALTER DSN statement to add the
USE_CACHED_CATALOG connection option.

Oracle Reference 187

Creating a Materialized View (USE_CACHED_CATALOG)
The following example shows you how to create a materialized view. Use this script if
USE_CACHED_CATALOG is set to YES above.

/*-----------------------SAS_CACHED_CATALOG.SQL--------------------------------*/
/* This script is used to create the materialized and the synonym needed to
 get the ForeignKey metadata. Work with your DBA to set this up.
 Materialized views can be complex and so thorough understanding will help us
 use them effectively. Especially deciding how to do the refreshes.
 Here we provide the simplest possible steps to create the required materialized
 view and the command to refresh it manually. The materialized view below can
 be created in any schema with any name. Feel free to add whatever REFRESH
 options suits your purpose. Note that you might need additional steps based
 on the REFRESH option setting. Here we provide the simplest possible way to
 do this. The PUBLIC synonym pointing to this Materialized view must be
 named "SAS_CACHED_FK_CATALOG_PSYN". This synonym must be visible to
 PUBLIC (or the set of users who will be needing Foreignkey metadata) so that
 it is accessible from any schema.
*/

Create materialized view SAS_CACHED_FK_CATALOG_MATVIEW REFRESH ON DEMAND as SELECT
PKAC.OWNER as PKTABLE_SCHEM,
PKAC.TABLE_NAME as PKTABLE_NAME,
PKACC.COLUMN_NAME as PKCOLUMN_NAME,
FKAC.OWNER as FKTABLE_SCHEM,
FKAC.TABLE_NAME as FKTABLE_NAME,
FKACC.COLUMN_NAME as FKCOLUMN_NAME,
FKACC.POSITION as KEY_SEQ,
FKAC.CONSTRAINT_NAME as FK_NAME,
PKAC.CONSTRAINT_NAME as PK_NAME
from
sys.all_constraints PKAC, sys.all_constraints FKAC,
sys.all_cons_columns PKACC, sys.all_cons_columns FKACC

where

FKAC.r_constraint_name=PKAC.constraint_name and
FKAC.constraint_name=FKACC.constraint_name and
PKAC.constraint_name=PKACC.constraint_name and PKAC.constraint_type='P' and
FKAC.constraint_type='R' and FKAC.owner=FKACC.owner and PKAC.owner=PKACC.owner
and PKAC.table_name=PKACC.table_name and FKAC.table_name=FKACC.table_name and
FKACC.position = PKACC.position ;

/* The synonym name *must* be SAS_CACHED_FK_CATALOG_PUBLIC_SYNONYM */
create public synonym SAS_CACHED_FK_CATALOG_PSYN for SAS_CACHED_FK_CATALOG_MATVIEW;
grant all on SAS_CACHED_FK_CATALOG_PSYN to PUBLIC;

/*---------Manual REFRESH of the Materialized View----------------------------*/
/* Note there are several ways to do this, consult with your DBA.
 Here are a couple of ways:
*/
execute DBMS_MVIEW.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW');
execute DBMS_SNAPSHOT.REFRESH('SAS_CACHED_FK_CATALOG_MATVIEW', '?');

188 Appendix 4 • Table Service Driver Reference

Oracle Wire Protocol Driver Usage Notes
Wire protocol ODBC drivers communicate directly with a database server without
having to communicate through a client library. When you configure the ODBC drivers
on Windows or UNIX, you can set certain options. SAS runs best when these options are
selected. Some, but not all, are selected by default.

Windows The options are located on the Advanced or Performance tabs in the ODBC
Administrator.

UNIX The options are available when you are configuring data sources using the
ODBC Administrator tool. Values can also be set by editing the odbc.ini file
in which their data sources are defined.

Note: When you use a wire protocol driver to create an ODBC connection, the
following special considerations apply:

1. A DSN configuration that uses a wire protocol driver with the catalog option
selected returns only the schemas that have associated tables or views. To list all
existing schemas, create a DSN without selecting the catalog option.

2. Verify that the Enable Bulk Load option is active in the ODBC DSN for
databases that support this option. The Enable Bulk Load option is not enabled
by default in the newer wire protocol drivers. As a result, insert performance
suffers.

When configuring an ODBC DSN using the Oracle Wire Protocol driver, set the
following advanced options:

• Application Using Threads

• Enable SQLDescribeParam

• Describe at Prepare

• Enable N-CHAR Support

• Enable Scrollable Cursors

PostgreSQL Driver Reference

Understanding the SAS Federation Server Driver for PostgreSQL
The table services driver for PostgreSQL enables table services to read and update
legacy PostgreSQL tables. In addition, the driver creates PostgreSQL tables that can be
accessed by both the table services and the PostgreSQL data management system.

The driver for PostgreSQL supports most of the FedSQL functionality. The driver also
enables an application to submit native SQL statements.

The driver for PostgreSQL is a remote driver, which means that it connects to a server
process in order to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

PostgreSQL Driver Reference 189

The table services driver for PostgreSQL uses shared libraries that are referenced as
shared objects in UNIX. You must add the location of the shared libraries to one of the
system environment variables, and set any other environment variables required by the
PostgreSQL client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/dbi/odbc/unixodbc2310/lib:/dbi/
 postgres/9.03.04/lib:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export ODBCSYSINI=/dbi/postgres/9.03.04
export PATH=/dbi/postgres/9.03.04/bin:$PATH
unset LANG
export PGCLIENTENCODING=UTF8

Data Service Connection Options for PostgreSQL

Overview
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for PostgreSQL include connection options and advanced options.

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=postgres;catalog=acat;
uid=myuid;pwd='123pass';server=sv.abc.123.com;
port=5432;DB=mydb;schema=public)

The following connection options are supported for PostgreSQL data sources.

Option Description

CATALOG CATALOG=catalog‑identifier;
Specifies an arbitrary identifier for an SQL catalog, which groups schemas that are logically related
(for example, catalog=ptgtest).

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud Analytic
Services.

CONOPTS CONOPTS=(ODBC—compliant database connection string);

Specifies an ODBC-compliant database connection string using ODBC-style syntax. These options,
combined with the ODBC_DSN option, must specify a complete connection string to the data
source. If you include a DSN= or FILEDSN= specification within the CONOPTS= option, do not
use the ODBC_DSN= connection option. However, you can specify the ODBC database-specific
connection options by using CONOPTS=. Then you can specify an ODBC DSN that contains other
connection information by using the ODBC_DSN= connection option.

Here is an example string using the CONOPTS option:

driver=sql;conopts=
((driver=odbc;catalog=acat;conopts=(dsn=ODBCPgresDD;pwd=Tester2));
(driver=postgres;catalog=bcat;uid=myuid2;pwd='123mypass';
server=sv.abc.123.com;port=5432;DB=mydb;schema=public))"

190 Appendix 4 • Table Service Driver Reference

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Option Description

DRIVER DRIVER=postgres;

Specifies the data service for the PostgreSQL database to which you want to connect.

Note: DRIVER is a required option. You must specify a driver.

DATABASE DATABASE=database‑name;
Specifies the name of the PostgreSQL database. Enclose the database name in single quotation
marks if it contains spaces or non-alphanumeric characters. You can also specify DATABASE= with
the DB= alias.database=sample, DB=sample.

DSN DSN=data‑source‑identifier;
Specifies the data source name to which you want to connect.

PWD PWD=password;

Specifies the password associated with the user ID. Enclose password in single quotation marks if it
contains spaces or non-alphanumeric characters. You can also specify PASSWORD= with the
PWD=, PASS=, and PW= aliases.

PORT PORT=port_number

Specifies the port number that is used to connect to the specified PostgreSQL Server. If you do not
specify a port, the default is 5432.

SERVER SERVER=‘server‑name’
Specifies the server name or IP address of the PostgreSQL server to which you want to connect.
Enclose the server name in single quotation marks if the name contains spaces or non-alphanumeric
characters: SERVER=’server name’.

USER USER=user‑name
Specifies the PostgreSQL user name (also called the user ID) that you use to connect to your
database. If the user name contains spaces or non-alphanumeric characters, you must enclose it in
quotation marks.

Advanced Options
The following advanced options are supported for PostgreSQL data sources.

Option Description

ALLOW_UNQUOTE
D_NAMES

ALLOW_UNQUOTED_NAMES=NO|YES

Specifies whether to enclose table and column names in quotation marks. Tables and columns
are quoted when this option is set at NO. If set to YES, the driver does not automatically add
quotation marks to table and column names if they are not specified. This allows PostgreSQL
tables and columns to be created in the default lowercase. The default option is NO.

CLIENT_ENCODIN
G

CLIENT_ENCODING=cei

Used to specify encoding for the client.

PostgreSQL Driver Reference 191

Option Description

CT_PRESERVE CT_PRESERVE=STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings
are changed, the new column size is recalculated to ensure all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-
side, result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The
database server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result
sets. The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

192 Appendix 4 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE=’API | SQL | ALL’;

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the database
to the trace log based on the specified tracing level, which determines the type of tracing
information. Here are the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if
you are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system
(DBMS) be sent to the trace log. Tracing information is DBMS specific, but most table
services drivers log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's
content root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by
including the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFIL
E

DRIVER_TRACEFILE=’filename’;

Used to specify the name of the text file for the trace log. Include the file name and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative file name, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with
DRIVER_TRACEOPTIONS=.

DRIVER_TRACEOP
TIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

MAX_BINARY_LEN MAX_BINARY_LEN=value;

Specifies a value, in bytes, that limits the length of long binary fields (LONG VARBINARY).
Unlike other databases, PostgreSQL does not have a size limit for long binary fields. The
default is 1048576.

PostgreSQL Driver Reference 193

Option Description

MAX_CHAR_LEN MAX_CHAR_LEN=value;

Specifies a value that limits the length of character fields (CHAR and VARCHAR). The default
is 2000.

MAX_TEXT_LEN MAX_TEXT_LEN=value;

Specifies a value that limits the length of long character fields (LONG VARCHAR). The default
is 409500.

SCHEMA SCHEMA=value;

Specifies the default schema for the connection. If not specified, the schema, or list of schemas,
is determined based on the value of the schema search path that is defined on the database
server.

STRIP_BLANKS STRIP_BLANKS=YES|NO;

Specifies whether to strip blanks from character fields.

SAS Data Set Reference

Overview
The SAS data set is a SASProprietary file format, which contains data values that are
organized as a table of rows (SAS observations) and columns (SAS variables). A
supported SAS data set uses the extension .sas7bdat.

Understanding the Driver for Base SAS
The table services driver for Base SAS is a SASProprietary driver that provides Read
and Update access to legacy SAS data sets. With the table services driver for Base, you
can create SAS data sets that can be accessed by both the legacy and the table services
data access services.

The driver supports much of the Base SAS functionality, such as SAS indexing and
general integrity constraints, as well as much of the Federated Query Language
(FedSQL) functionality.

The table services driver for Base SAS is an in-process driver, which means that it
accesses data in the same process that executes the data access services. All server
connections that are made with the table services driver for Base SAS use
LOCKTABLE=SHARED and PATH_BIND=ACCESS connection options.

Data Service Connection Options for SAS Data Sets

Connection Options
To access data that is hosted on the table services, a client must submit a connection
string, which defines how to connect to the data. The data service connection arguments
for a SAS data set include connection options and advanced options. Here is an example:

194 Appendix 4 • Table Service Driver Reference

driver=sql;conopts=(driver=base;catalog=acat;
schema=(name=dblib;primarypath=/u/path/mydir))

The following connection options are supported for SAS data sets:

Option Description

CATALOG CATALOG=catalog‑identifier;
Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. A
catalog name can be up to 32 characters long. You must specify a catalog.

Note: The FedSQL language processor automatically quotes SQL identifiers that do not meet the
regular naming convention as defined in SAS Viya: FedSQL Programming for SAS Cloud
Analytic Services.

DRIVER DRIVER=BASE;

Identifies the data service to which you want to connect, which is a SAS data set.

Note: You must specify DRIVER=BASE to access a SAS data set.

(SCHEMA) NAME NAME=schema‑identifier;
Specifies an arbitrary identifier for an SQL schema. Any identifier is valid (for example,
name=myfiles). The schema identifier is an alias for the physical location of the SAS library,
which is much like the Base SAS libref. A schema name must be a valid SAS name and can be
up to 32 characters long. You must specify a schema identifier.

PRIMARY PATH PRIMARYPATH=physical‑location;
Specifies the physical location for the SAS library, which is a collection of one or more SAS
files. For example, in directory-based operating environments, a SAS library is a group of SAS
files that are stored in the same directory.

Note: You must specify a primary path.

SCHEMA
(ATTRIBUTES)

SCHEMA=(attributes);

Specifies schema attributes that are specific to a SAS data set. A schema is a data container
object that groups tables. The schema contains a name, which is unique within the catalog that
qualifies table names. For a SAS data set, a schema is similar to a SAS library, which is a
collection of tables with assigned attributes.

Advanced Options
Advanced driver options are additional options that are not required in order to connect
to the data source. They are used to establish connections to catalogs, data source names
(DSNs), and schemas. Although advanced options can also be used when connecting to a
data service, doing so causes the specified options to apply to all data service
connections.

SAS Data Set Reference 195

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

The following advanced options are supported for SAS data sets:

Option Description

ACCESS ACCESS=READONLY | TEMP;

• READONLY Assigns a read-only attribute to the schema. You cannot open a SAS data set to
update or write new information.

• TEMP specifies that the SAS data sets be treated as scratch files. That is, the system will not
consume CPU cycles to ensure that the files do not become corrupted.

T I P Use ACCESS=TEMP to save resources only when the data
is recoverable. If TEMP is specified, data in memory might not
be written to disk on a regular basis. This saves I/O, but could
cause a loss of data if there is a crash.

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

COMPRESS COMPRESS=NO | YES | CHAR | BINARY;

Controls the compression of rows in created SAS data sets.

• NO Specifies that the rows in a newly created SAS data set are uncompressed (fixed-length
records). This setting is the default.

• YES | CHAR Specifies that the rows in a newly created SAS data set are compressed
(variable-length records) by using RLE (Run Length Encoding). RLE compresses rows by
reducing repeated consecutive characters (including blanks) to two- or three-byte
representations.

T I P Use this compression algorithm for character data.

• BINARY Specifies that the rows in a newly created SAS data set are compressed (variable-
length records) by using RDC (Ross Data Compression). RDC combines run-length encoding
and sliding-window compression to compress the file.

T I P This method is highly effective for compressing medium to
large (several hundred bytes or larger) blocks of binary data
(numeric columns). Because the compression function operates
on a single record at a time, the record length must be several
hundred bytes or larger for effective compression.

196 Appendix 4 • Table Service Driver Reference

Option Description

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes that are supported for initial
connect-time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

ENCODING ENCODING=encoding‑value;
Overrides and transcodes the encoding for input or output processing of SAS data sets.

Note: The default value is the current operating system setting.

LOCKTABLE LOCKTABLE=SHARED|EXCLUSIVE

Places exclusive or shared locks on SAS data sets. You can lock tables only if you are the owner
or have been granted the necessary privilege. The default value for the table services is
SHARED.

• SHARED Locks tables in shared mode, allowing other users or processes to read data from
the tables, but preventing other users from updating.

• EXCLUSIVE Locks tables exclusively, preventing other users from accessing any table that
you open.

PATH_BIND PATH_BIND=CONNECT|ACCESS

Specifies when and how schemas are validated during connection. CONNECT validates the
entire connection string at the time of connection and returns an error if one or more schemas is
invalid. ACCESS validates schemas when they are accessed so that processing continues
regardless of errors in the schema portion of the connection string. ACCESS is the default for the
table services.

SAS Data Set Reference 197

Teradata Reference

Understanding the Table Services Driver for Teradata
The table services driver for Teradata provides Read and Update access to Teradata
database tables and creates tables that can be accessed by both table services and
Teradata.

The table services driver for Teradata supports most of the FedSQL functionality. The
driver also enables an application to submit native Teradata SQL statements.

The table services driver for Teradata is a remote driver, which means that it connects to
a server process to access data. The process might be running on the same machine as
the table services, or it might be running on another machine in the network.

The table services driver for uses shared libraries that are referenced as shared objects in
UNIX. You must add the location of the shared libraries to one of the system
environment variables, and set any other environment variables that are required by the
Teradata client libraries. The following Korn shell commands provide an example:

LD_LIBRARY_PATH=/opt/teradata/client/14.10/
 lib64:/opt/teradata/client/14.10/tbuild/lib64:/
 opt/teradata/client/14.10/tdicu/lib64:${LD_LIBRARY_PATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH%:}
export COPERR=/opt/teradata/client/14.10/lib
export COPLIB=/opt/teradata/client/14.10/lib
export NLSPATH=/opt/teradata/client/14.10/tbuild/msg64/%N

Data Service Connection Options for Teradata

Connection Options
Connection options are used to establish a connection to a data source. Specify one or
more connection options when defining a data service. Here is an example:

driver=sql;conopts=(driver=teradata;catalog=acat;
uid=myuid;pwd='{sas002}C5DDFFF91B5D31DFFFCE9FFF';
server=terasoar;database=model)

The following connection options are supported for a Teradata database.

Option Description

CATALOG CATALOG=catalog‑identifier;
Specifies an arbitrary identifier for an SQL catalog, which groups logically related schemas. Any
identifier is valid (for example, catalog=tera).

Note: You must specify a catalog.

DATABASE DATABASE=database‑name;
Specifies the Teradata database. If you do not specify DATABASE=, you connect to the default
Teradata database, which is often named the same as your user ID. If the database value that you
specify contains spaces or non-alphanumeric characters, you must enclose it in quotation marks.

198 Appendix 4 • Table Service Driver Reference

Option Description

DRIVER DRIVER=TERA;

Identifies the data service to which you want to connect, which is a Teradata database.

Note: You must specify the driver.

SERVER SERVER=server‑name;
Specifies the Teradata server identifier.

Advanced Connection Options
The following advanced options are supported for Teradata database.

Option Description

ACCOUNT ACCOUNT=account‑ID;
Specifies an optional account number that you want to charge for the Teradata session.

CLIENT_ENCODIN
G

CLIENT_ENCODING=encoding‑value
Used to specify the character set for the session. UTF8 is the default if encoding is not specified.
These character sets are supported:

ASCII
EBCDIC
EBCDIC037_0E
KATAKANAEBCDIC
KANJIEUC_0U
LATIN9_0A
THAI874_4A0
LATIN1250_1A0
CYRILLIC1251_2A0
LATIN1254_7A0
HEBREW1255_5A0
ARABIC1256_6A0
LATIN1258_8A0
TCHBIG5_1R0
SCHINESE936_6R0
KANJI932_1S0
HANGUL949_7R0
TCHINESE950_8R0
LATIN1252_3A0
SCHEBCDIC935_2IJ
TCHEBCDIC937_3IB
HANGULEBCDIC933_1II
EBCDIC273_0E
EBCDIC277_0E
KANJIEBCDIC5035_0I
KANJIEBCDIC5026_0I
UTF8
UTF16

Teradata Reference 199

Option Description

CT_PRESERVE CT_PRESERVE = STRICT | SAFE | FORCE | FORCE_COL_SIZE

Enables users to control how data types are mapped. Note that data type mapping is disabled
when CT_PRESERVE is set to STRICT. If the requested type does not exist on the target
database, an error is returned. Here are the options:

• STRICT The requested type must exist in the target database. No type promotion occurs. If
the type does not exist, an error is returned.

• SAFE Target data types are upscaled only if they do not result in a loss of precision or scale.
When character encodings are changed, the new column size is recalculated to ensure all
characters can be stored in the new encoding.

• FORCE This is the default for all drivers. The best corresponding target data type is chosen,
even if it could potentially result in a loss of precision or scale. When character encodings are
changed, the new column size is recalculated to ensure that all characters can be stored in the
new encoding.

• FORCE_COL_SIZE This option is the same as FORCE, except that the column size for the
new encoding is the same as the original encoding. This option can be used to avoid column
size creep. However, the resulting column might be too large or too small for the target data.

DEFAULT_ATTR DEFAULT_ATTR=(attr=value;...)

Used to specify connection handle or statement handle attributes supported for initial connect-
time configuration, where attr=value corresponds to any of the following options:

• CURSORS=n- Connection handle option. This option controls the driver’s use of client-side,
result set cursors. The possible values are 0, 1, or 2.

0 Causes the driver to use client-side static cursor
emulation if a scrollable cursor is requested but the
database server cannot provide one.

1 Causes the driver to always use client-side static cursor
emulation if a scrollable cursor is requested. The database
server’s native cursor is not used.

2 (Default) Causes the driver to never use client-side static
cursor emulation if a scrollable cursor is requested. The
database server’s native cursor is used if available.
Otherwise, the cursor is forward-only.

Example: DEFAULT_ATTR=(CURSORS=2)

• USE_EVP=n - Statement handle option. This option optimizes the driver for large result sets.
The possible values are 0 (OFF) or 1 (ON), which is the default. Example:
DEFAULT_ATTR=(USE_EVP=0)

• XCODE_WARN=n - Statement handle option. Used to warn about possible character
transcoding errors that occur during row input or output operations. Possible values are 0
(returns an error), 1 (returns a warning), or 2 (ignore transaction errors). 0 is the default.
Example: DEFAULT_ATTR=(XCODE_WARN=1)

200 Appendix 4 • Table Service Driver Reference

Option Description

DRIVER_TRACE DRIVER_TRACE='API | SQL | ALL';

Requests tracing information, which logs transaction records to an external file that can be used
for debugging purposes. The driver writes a record of each command that is sent to the trace log
based on the specified tracing level, which determines the type of tracing information. Here are
the tracing levels:

• ALL Activates all trace levels.

• API Specifies that API method calls be sent to the trace log. This option is most useful if you
are having a problem and need to send a trace log to SAS Technical Support for
troubleshooting.

• DRIVER Specifies that driver-specific information be sent to the trace log.

• SQL Specifies that SQL statements that are sent to the database management system (DBMS)
be sent to the trace log. Tracing information is DBMS specific, but most table services drivers
log SQL statements such as SELECT and COMMIT.

Default: Tracing is not activated.

Note: If you activate tracing, you must also specify the location of the trace log with
DRIVER_TRACEFILE=. Note that DRIVER_TRACEFILE= is resolved against the
TRACEFILEPATH set in ALTER SERVER. TRACEFILEPATH is relative to the server's content
root location.

(Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

Interaction: You can specify one trace level, or you can concatenate more than one by including
the | (OR) symbol. For example, driver_trace='api|sql' generates tracing
information for API calls and SQL statements.

DRIVER_TRACEFI
LE

DRIVER_TRACEFILE=‘filename';

Used to specify the name of the text file for the trace log. Include the file name and extension in
single or double quotation marks (for example,
driver_tracefile='\mytrace.log').

Default: The default TRACEFILE location applies to a relative file name, and it is placed
relative to TRACEFILEPATH.

Requirement: DRIVER_TRACEFILE is required when activating tracing using
DRIVER_TRACE.

Interaction: (Optional) You can control trace log formatting with DRIVER_TRACEOPTIONS=.

DRIVER_TRACEO
PTIONS

DRIVER_TRACEOPTIONS=APPEND | THREADSTAMP | TIMESTAMP;

Specifies options in order to control formatting and other properties for the trace log:

• APPEND Adds trace information to the end of an existing trace log. The contents of the file
are not overwritten.

• THREADSTAMP Prepends each line of the trace log with a thread identification.

• TIMESTAMP Prepends each line of the trace log with a time stamp.

Default: The trace log is overwritten with no thread identification or time stamp.

PASSWORD PASSWORD=password;

Specifies a Teradata password. The password must match your USER= value. The alias is
PWD=.

Note: You must specify the PASSWORD= option.

Teradata Reference 201

Option Description

ROLE ROLE=security‑role;
Specifies a security role for the session.

USER USER=user‑id;
Specifies a Teradata user ID. If the ID contains blanks or national characters, enclose it in
quotation marks. The alias is UID=.

Note: You must specify the USER= option.

202 Appendix 4 • Table Service Driver Reference

Appendix 5

SAS Micro Analytic Service
Tuning Guidelines

Proper tuning can significantly improve the performance of SAS Micro Analytic
Service. However, there is no single set of configuration recommendations that is ideal
for all the models that SAS Micro Analytic Service can execute. This appendix explains
the principles that you can apply to tune for optimal performance.

SAS Micro Analytic Service Configuration

Eventing and Authorization
To achieve high performance with SAS Micro Analytic Service, you should disable
eventing and authorization. When these options are enabled, the throughput performance
(transactions per second or TPS) is dramatically reduced. Disabling these options is the
most beneficial configuration change that you can make to improve performance.

To disable eventing and authorization, apply the values shown to the following settings
in SAS Environment Manager:

• java_option_auth: -Dsas.authorization=false

• java_option_auth_remote: —Dsas.authorization.remote=false

• java_option_eventing: -Dsas.event.enabled=false

Core Threads
In general, adding core threads increases throughput for a given load. However, for each
core thread that is added, the marginal gains in throughput diminish sharply.

For optimal performance, it is recommended that you set the number of core threads
equal to the number of cores on the server.

SAS Micro Analytic Service instances with a greater number of core threads tend to be
more resilient to sub-optimal Apache Tomcat tuning conditions. Because of this, tuning
is particularly important for SAS Micro Analytic Service instances with fewer than 40
threads.

Apache Tomcat Tuning
Most of the default Apache Tomcat settings are sufficient to achieve high throughput
with SAS Micro Analytic Service. However, there is one setting that you can adjust to
help increase performance—the maxThreads setting.

The maxThreads value is influenced by both the number of SAS Micro Analytic Service
core threads and the nature of the workload.

203

SAS Micro Analytic Service instances with a low number of core threads (fewer than
20) typically perform best with a low maxThreads value. In this case, an appropriate
value could be between 20 and 100.

Alternatively, the maxThreads value is not as important when executing complex models
with many SAS Micro Analytic Service core threads (more than 20).

Note: This is the case for the BigDecision2 model shown in the example table below.

Here are some examples of optimal maxThread tunings:

Model Model Complexity Core Threads
Optimal
MaxThreads Value

BigDecision1 complex 5 30

BigDecision2 complex 80 100

SimpleEcho1 trivial 5 50

SimpleEcho2 trivial 80 75

Apache HTTP Server Configuration

Multi-Processing Modules
The Apache HTTP server multi-processing modules (MPM) bind network ports on the
system, accept requests, and dispatch child processes to handle the requests.

By default, MPMs are set to prefork mode, which corresponds to one process per
connection. This is not ideal for SAS Micro Analytic Service performance.

Therefore, it is recommended that you set MPMs to worker mode, which enables each
child process to have multiple threads. This setting has demonstrated better average
throughput with less variance.

ServerLimit and MaxClients
The ServerLimit and MaxClients settings determine the number of Apache processes
and the number of threads for each process, respectively.

Increasing either of these parameters causes Apache to use more memory. This is not a
problem unless Apache exceeds the available memory and writes to disk, which is
detrimental to performance.

It is recommended that you scale both settings to the largest values that will not exceed
the available RAM at load time.

204 Appendix 5 • SAS Micro Analytic Service Tuning Guidelines

Appendix 6

Applying a New License

You must apply a new SAS license when your current SAS Micro Analytic Service
license expires.

1. On the machine where the SAS Micro Analytic Service is deployed, log on with a
user account that meets the requirements to deploy software. Those requirements are
specified in “User and Group Requirements” in SAS Viya for Linux: Deployment
Guide.

2. Move the current license files into a backup location. Your current license file
(named setinit.txt) resides in the following location:

/opt/sas/viya/config/etc/SASMicroAnalyticService

3. SAS distributes renewal licenses to customers as file attachments in a renewal order
email (ROE). Make sure that your new license files (a .txt file and a .jwt file) reside
in location that is accessible from your SAS Micro Analytic Service machine.

Note: Some SAS Viya products use the text file (.txt). Other products use the JSON
web token file (.jwt). SAS Micro Analytic Service uses the .txt file.

4. Copy the new license file to the following location:

/opt/sas/viya/config/etc/SASMicroAnalyticService

5. Restart SAS Micro Analytic Service to apply the new license file.

205

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.4&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.4&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en

206 Appendix 6 • Applying a New License

Recommended Reading

• SAS Intelligent Decisioning: User’s Guide

• SAS Intelligent Decisioning: Administrator’s Guide

• SAS Event Stream Processing: Overview

• SAS Event Stream Processing: Using Streaming Analytics

• SAS Event Stream Processing: Using SAS Event Stream Processing with Other
Applications

• SAS Event Stream Processing: Visualizing Event Streams with Streamviewer

• SAS Event Stream Processing: Connectors and Adapters

• SAS Event Stream Processing: Publish/Subscribe API

• SAS Event Stream Processing: Programming Reference

• SAS Event Stream Processing: XML Language Dictionary

• SAS Event Stream Processing: Creating and Using Windows

• SAS Event Stream Processing: Using the ESP Server

• SAS Event Stream Processing: Using SAS Event Stream Processing Studio

• SAS Event Stream Processing: Tutorials and Examples

• SAS DS2 Programmer’s Guide

• SAS DS2 Language Reference

• SAS Viya Administration: Tuning

• SAS Viya Administration: Logging

• Encryption in SAS Viya: Data in Motion

• Encryption in SAS Viya: Data at Rest

• SAS Viya: FedSQL Programming for SAS Cloud Analytic Services

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com

207

http://documentation.sas.com/?docsetId=edmug&docsetVersion=5.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=edmag&docsetVersion=5.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espov&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espan&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espvisualize&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espca&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espmdlgobj&docsetVersion=5.2&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espxmllang&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espcreatewindows&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espxmllayer&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=espstudio&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=esptex&docsetVersion=6.1&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caltuning&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=callogging&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=3.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=calencryptrest&docsetVersion=3.3&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://www.sas.com/store/books
mailto:sasbook@sas.com

Web address: sas.com/store/books

208 Recommended Reading

http://sas.com/store/books

Index

A
analytic store models

and Event Stream Processing 35
and Intelligent Decisioning 89

architecture, SAS Micro Analytic Service
8

array, data type conversions 32
asynchronous execution 124

C
component hierarchy 7
composite modules 37
content, moving 134
contexts 6

D
database access

DS2 122
deploying SAS Micro Analytic Service

SAS Event Stream Processing 70
drivers

Base SAS 194
DB2 167
FedSQL 173
ODBC 176, 182
Oracle 183
PostgreSQL 189
Teradata 198
wire protocol 182

DS2
calls between modules 33, 84
character restrictions 28, 78
connection strings 122
database access 122
database drivers 123
executing in SAS Micro Analytic

Service 33, 84
HTTP package 134
I/O 122
managing large modules 86
module compilation clustered

environment 88

module compilation minimum memory
88

module compilation time-out value 87
module loading time-out value 87
stateful data 39, 93
user-defined formats 28, 79

DS2 argument types
SAS Event Stream Processing 31
SAS Intelligent Decisioning 82

DS2 best practices
SAS Event Stream Processing 51
SAS Intelligent Decisioning 105

DS2 character-to-numeric conversions
SAS Event Stream Processing 55
SAS Intelligent Decisioning 109

DS2 global packages
SAS Event Stream Processing 52
SAS Intelligent Decisioning 106

DS2 hash package
SAS Event Stream Processing 55
SAS Intelligent Decisioning 109

DS2 invariant computations
SAS Event Stream Processing 56
SAS Intelligent Decisioning 110

DS2 local packages
SAS Event Stream Processing 52
SAS Intelligent Decisioning 106

DS2 methods
SAS Intelligent Decisioning 79

DS2 methods and packages
SAS Event Stream Processing 28

DS2 passing character values to methods
SAS Event Stream Processing 56
SAS Intelligent Decisioning 109

DS2 programming
SAS Event Stream Processing 26
SAS Intelligent Decisioning 76

DS2 return results
SAS Event Stream Processing 51
SAS Intelligent Decisioning 105

DS2 single computation
SAS Event Stream Processing 56
SAS Intelligent Decisioning 110

209

G
global packages, DS2

SAS Event Stream Processing 52
SAS Intelligent Decisioning 106

L
license, updating 205
local packages, DS2

SAS Event Stream Processing 52
SAS Intelligent Decisioning 106

lockdown mode 117
logging SAS Micro Analytic Service

SAS Event Stream Processing 69
SAS Intelligent Decisioning 131

M
MASCall package 33, 84
MASState package 39, 93

categories of 40, 94
number of methods in 42, 96

MAStktstacksize environment variable
70

microanalyticservice.conf file 123
modules

context 6
create and update time-out 86
Python 112
understanding 5

N
NULL key fields, derived event

suppression rules 21, 23

P
packages

MASCall 33, 84
MASState 39, 93
PyMAS 140

publishing DS2 source code
SAS Event Stream Processing 26
SAS Intelligent Decisioning 76

Python
and SAS lockdown mode 117
compiling modules 117
configuring for Intelligent Decisioning

118
configuring for SAS Event Stream

Processing 66
modules 112
return values 63, 114

Python, public and private methods
SAS Event Stream Processing 62

SAS Intelligent Decisioning 113

R
REST server error messages 161
restricted characters, DS2 28, 78
return codes 149
revisions 7

S
SAS Environment Manager 125
SAS Event Stream Processing

environment
analytic store models 35
data type mappings 15
DS2 argument types 31
DS2 methods and packages 28
elements 12
event operation codes and flags 19
generating multiple derived events 21
overview 3

SAS Intelligent Decisioning environment
analytic store models 89
DS2 argument types 82
DS2 methods 79
overview 3

SAS Micro Analytic Score service 3
SAS Micro Analytic Service

architecture 8
authorization 133
component hierarchy 7
concepts 5
configuration 125
contexts 6
logging, in SAS Event Stream

Processing 69
logging, in SAS Intelligent Decisioning

131
modules 6
REST server error messages 161
return codes 149
revision, for a module 7
starting and stopping 124

SAS Model Manger 3
scalar, data type conversions 32
SCAN, replacing in DS2 code

SAS Event Stream Processing 53
SAS Intelligent Decisioning 107

stateful data
methods 40, 94
operations 39, 93

synchronous execution 124

210 Index

T
timed execution 124
transfer service 134
TRANWRD, replacing in DS2 code

SAS Event Stream Processing 53
SAS Intelligent Decisioning 107

tuning 203

U
user-defined formats

DS2 28, 79

Index 211

212 Index

	Contents
	About This Book
	Audience

	What’s New in SAS Micro Analytic Service 5.3
	Overview
	No Restrictions on Python Version
	Perform Calls between SAS Micro Analytic Service Modules
	Support for Direct Python Module Usage
	Compile and Execute Python Modules Using Alternate Credentials
	Execute Modules Asynchronously
	Publish Modules Asynchronously
	Resource Management Improvements
	Batch Recording for the SAS Intelligent Decisioning Subject-Contact
Service
	SAS Lockdown Support for Controlling Python Execution

	Accessibility
	Understanding SAS Micro Analytic Service
	Introduction to SAS Micro Analytic Service
	What Is SAS Micro Analytic Service?
	Overview
	About Using SAS Micro Analytic Service

	Concepts
	Overview
	User or Business Context
	Module Context
	Revision
	Architecture

	Using SAS Micro Analytic Service with SAS Event Stream Processing
	Publishing to SAS Micro Analytic Service in SAS Event Stream
Processing
	Overview
	Object Hierarchy
	XML Example
	Data Type Mappings

	Generating Derived Events
	Processing Event Opcodes and Flags
	Overview
	Operation Codes and Flags
	DS2 Opcodes Example

	Derived Event Suppression and NULL Key Fields
	Generating Multiple Derived Events from a Single Source Event
	Overview
	Unique Keys
	Setting Opcodes and Flags on Multiple Derived Events

	Multiple Derived Events and NULL Key Fields

	DS2 Programming for SAS Micro Analytic Service
	Overview
	DS2 Source Code Prerequisites
	DS2 Identifiers
	SAS Micro Analytic Service and SAS Foundation
	Programming Blocks
	Restrictions When Working with DS2 and SAS Micro Analytic Service
	Character Restrictions
	User-Defined Formats

	Public and Private Methods and Packages
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types

	Implicit Data Type Conversions
	Determining Whether DS2 Code Is Executing in SAS Micro Analytic
Service
	Performing Calls between SAS Micro Analytic Service Modules
	Overview
	MASCall Methods
	Examples

	Using Analytic Store Models
	About Analytic Store Models
	Publishing an Analytic Store Model
	Calling Analytic Store Models Using DS2
	Example
	Configuring ASTORE File System Paths
	Composite Modules

	State Sharing between Modules
	Overview
	Shared Vectors
	Overview
	State Vector Types
	Local State Vector Methods
	Shared State Vector Methods
	Setter and Getter Examples

	Shared Hash Tables
	Overview
	About Using Shared Hash Tables in DS2
	Methods That Operate on the Default Shared Hash Table
	Default Shared Hash Table Example
	Methods That Operate on Non-default Shared Hash Tables

	Best Practices for DS2 Programming in SAS Event Stream Processing
	Overview
	Return Results
	Global Packages versus Local Packages
	Overview
	Example of Optimized Code
	Example of Poorly Optimized Code

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Data Type Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Python Support in SAS Micro Analytic Service
	Introduction
	Example
	Public and Private Methods
	Overview
	About Private Methods
	About Public Methods
	Return Values
	Examples: Public and Private Methods

	Working with Python and SAS Micro Analytic Service
	Configuring Python for SAS Event Stream Processing
	Environment Configuration

	SAS Micro Analytic Service Logging and Deployment
	SAS Micro Analytic Service Logging
	Overview
	Loggers

	Deployment

	Using SAS Micro Analytic Service with SAS Intelligent Decisioning
or SAS Model Manager
	DS2 Programming for SAS Micro Analytic Service
	Overview
	DS2 Source Code Prerequisites
	DS2 Identifiers
	SAS Micro Analytic Service and SAS Foundation
	Programming Blocks
	Restrictions When Working with DS2 and SAS Micro Analytic Service
	Character Restrictions
	User-Defined Formats

	Public and Private Modules and Methods
	Overview
	Public Method Rules
	Public Method Example
	Private Method Example
	Method Overloading

	Argument Types Supported in Public Methods
	Overview
	Supported DS2 Data Types
	Unsupported DS2 Data Types
	Data Grid Support

	Determining Whether DS2 Code Is Executing in SAS Micro Analytic
Service
	Performing Calls between SAS Micro Analytic Service Modules
	Overview
	MASCall Methods
	Examples

	Managing Large DS2 Modules
	Overview
	Asynchronous Module Creation and Update
	SAS Micro Analytic Service Time-Out Values
	Loading Modules On-Demand
	Verifying Minimum Memory
	Loading Modules from the Repository at Start-Up
	Understanding Eventual Consistency and Module Availability

	Composite Modules
	Referencing Modules and Composite Submodules
	Using Analytic Store Models
	About Analytic Store Models
	Publishing an Analytic Store Model
	Calling Analytic Store Models Using DS2
	Example
	Configuring ASTORE File System Paths

	State Sharing between Modules
	Overview
	Shared Vectors
	Overview
	State Vector Types
	Local State Vector Methods
	Shared State Vector Methods
	Setter and Getter Examples

	Shared Hash Tables
	Overview
	About Using Shared Hash Tables in DS2
	Methods That Operate on the Default Shared Hash Table
	Default Shared Hash Table Example
	Methods That Operate on Non-default Shared Hash Tables

	Best Practices for DS2 Programming in SAS Intelligent Decisioning
	Overview
	Return Results
	Global Packages versus Local Packages
	Overview
	Example of Optimized Code
	Example of Poorly Optimized Code

	Replacing SCAN (and TRANWRD) with DS2 Code
	Hash Package
	Character-to-Numeric Conversions
	Passing Character Values to Methods
	Performing the Computation Once
	Moving Invariant Computations Out of Loops

	Python Support in SAS Micro Analytic Service
	Introduction
	About Creating Python Modules
	Public and Private Methods
	Overview
	About Private Methods
	About Public Methods
	Return Values
	Examples: Public and Private Methods

	Working with Python and SAS Micro Analytic Service
	Compiling Python Modules
	Configuring Python for SAS Intelligent Decisioning
	Environment Configuration

	Administration
	SAS Micro Analytic Service Administration
	Database Access with DS2
	Architectural Considerations
	Connection Strings and Configuration
	Using Third-Party Database Drivers

	Starting and Stopping SAS Micro Analytic Service
	Synchronous, Asynchronous, and Timed Execution
	SAS Micro Analytic Service Configuration
	Overview
	jvm
	logging.level
	sas.microanalyticservice Sections
	supplementalProperties

	SAS Micro Analytic Service Logging
	Overview
	Loggers and Logging Levels

	SAS Micro Analytic Service Security and Authorization
	Secure DS2 HTTP Package Usage
	Moving Objects by Using the SAS Viya Transfer Service

	Appendixes
	Executing Python Modules in DS2 Modules
	DS2 Interface to Python
	Overview
	About Using a PyMAS Package

	Sample DS2 Module Operations
	Configuring Support for a DS2 PyMAS Package
	About Using the PyMAS Package
	Enabling PyMAS Package Support

	SAS Micro Analytic Service Return Codes
	REST Server Error Messages and Resolutions
	Table Service Driver Reference
	DB2 Driver Reference
	Understanding the Table Services Driver for DB2
	Data Service Connection Options for DB2
	DB2 Wire Protocol Driver Usage Notes

	FedSQL Driver Reference
	Overview
	Connection Options

	ODBC Driver Reference
	About ODBC
	Understanding the Table Services Driver for ODBC
	Data Service Connection Options for ODBC
	Wire Protocol Driver Usage Notes

	Oracle Reference
	Understanding the Table Services Driver for Oracle
	Data Service Connection Options for Oracle
	Oracle Wire Protocol Driver Usage Notes

	PostgreSQL Driver Reference
	Understanding the SAS Federation Server Driver for PostgreSQL
	Data Service Connection Options for PostgreSQL

	SAS Data Set Reference
	Overview
	Understanding the Driver for Base SAS
	Data Service Connection Options for SAS Data Sets

	Teradata Reference
	Understanding the Table Services Driver for Teradata
	Data Service Connection Options for Teradata

	SAS Micro Analytic Service Tuning Guidelines
	Applying a New License

	Recommended Reading
	Index

