The Four Types of Estimable Functions

Estimability

Given a response or dependent variable bold upper Y, predictors or independent variables bold upper X, and a linear expectation model normal upper E left-bracket bold upper Y right-bracket equals bold upper X bold-italic beta relating the two, a primary analytical goal is to estimate or test for the significance of certain linear combinations of the elements of bold-italic beta. For least squares regression and analysis of variance, this is accomplished by computing linear combinations of the observed bold upper Ys. An unbiased linear estimate of a specific linear function of the individual betas, say bold upper L bold-italic beta, is a linear combination of the bold upper Ys that has an expected value of bold upper L bold-italic beta. Hence, the following definition:

A linear combination of the parameters bold upper L bold-italic beta is estimable if and only if a linear combination of the bold upper Ys exists that has expected value bold upper L bold-italic beta.

Any linear combination of the bold upper Ys, for instance bold upper K bold upper Y, will have expectation normal upper E left-bracket bold upper K bold upper Y right-bracket equals bold upper K bold upper X bold-italic beta. Thus, the expected value of any linear combination of the bold upper Ys is equal to that same linear combination of the rows of bold upper X multiplied by bold-italic beta. Therefore,

bold upper L bold-italic beta is estimable if and only if there is a linear combination of the rows of bold upper X that is equal to bold upper L—that is, if and only if there is a bold upper K such that bold upper L equals bold upper K bold upper X.

Thus, the rows of bold upper X form a generating set from which any estimable bold upper L can be constructed. Since the row space of bold upper X is the same as the row space of bold upper X prime bold upper X, the rows of bold upper X prime bold upper X also form a generating set from which all estimable bold upper Ls can be constructed. Similarly, the rows of left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper X prime bold upper X also form a generating set for bold upper L.

Therefore, if bold upper L can be written as a linear combination of the rows of bold upper X, bold upper X prime bold upper X, or left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper X prime bold upper X, then bold upper L bold-italic beta is estimable.

In the context of least squares regression and analysis of variance, an estimable linear function bold upper L bold-italic beta can be estimated by bold upper L ModifyingAbove bold-italic beta With caret, where ModifyingAbove bold-italic beta With caret equals left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper X prime bold upper Y. From the general theory of linear models, the unbiased estimator bold upper L ModifyingAbove bold-italic beta With caret is, in fact, the best linear unbiased estimator of bold upper L bold-italic beta, in the sense of having minimum variance as well as maximum likelihood when the residuals are normal. To test the hypothesis that bold upper L bold-italic beta equals bold 0, compute the sum of squares

normal upper S normal upper S left-parenthesis upper H 0 colon bold upper L bold-italic beta equals bold 0 right-parenthesis equals left-parenthesis bold upper L ModifyingAbove bold-italic beta With caret right-parenthesis prime left-parenthesis bold upper L left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper L prime right-parenthesis Superscript negative 1 Baseline bold upper L ModifyingAbove bold-italic beta With caret

and form an F test with the appropriate error term. Note that in contexts more general than least squares regression (for example, generalized and/or mixed linear models), linear hypotheses are often tested by analogous sums of squares of the estimated linear parameters left-parenthesis bold upper L ModifyingAbove bold-italic beta With caret right-parenthesis prime left-parenthesis normal upper V normal a normal r left-bracket bold upper L ModifyingAbove bold-italic beta With caret right-bracket right-parenthesis Superscript negative 1 Baseline bold upper L ModifyingAbove bold-italic beta With caret.

Last updated: March 08, 2022