Introduction to Statistical Modeling with SAS/STAT Software

Estimable Functions

A function bold upper L bold-italic beta is said to be estimable if there exists a linear combination of the expected value of bold upper Y, such as bold upper K normal upper E left-bracket bold upper Y right-bracket, that equals bold upper L bold-italic beta. Since normal upper E left-bracket bold upper Y right-bracket equals bold upper X bold-italic beta, the definition of estimability implies that bold upper L bold-italic beta is estimable if there is a matrix bold upper K such that bold upper L equals bold upper K bold upper X. Another way of looking at this result is that the rows of bold upper X form a generating set from which all estimable functions can be constructed.

The concept of estimability of functions is important in the theory and application of linear models because hypotheses of interest are often expressed as linear combinations of the parameter estimates (for example, hypotheses of equality between parameters, beta 1 equals beta 2 left right double arrow beta 1 minus beta 2 equals 0). Since estimability is not related to the particular value of the parameter estimate, but to the row space of bold upper X, you can test only hypotheses that consist of estimable functions. Further, because estimability is not related to the value of bold-italic beta (Searle 1971, p. 181), the choice of the generalized inverse in a situation with rank-deficient bold upper X prime bold upper X matrix is immaterial, since

bold upper L ModifyingAbove bold-italic beta With caret equals bold upper K bold upper X ModifyingAbove bold-italic beta With caret equals bold upper K bold upper X left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper X prime bold upper Y

where bold upper X left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold upper X is invariant to the choice of generalized inverse.

bold upper L bold-italic beta is estimable if and only if bold upper L left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline left-parenthesis bold upper X prime bold upper X right-parenthesis equals bold upper L (see, for example, Searle 1971, p. 185). If bold upper X is of full rank, then the Hermite matrix left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline left-parenthesis bold upper X prime bold upper X right-parenthesis is the identity, which implies that all linear functions are estimable in the full-rank case.

See ChapterĀ 16, The Four Types of Estimable Functions, for many details about the various forms of estimable functions in SAS/STAT.

Last updated: March 08, 2022