The MIXED Procedure

Residuals and Influence Diagnostics

Residual Diagnostics

Consider a residual vector of the form bold e overTilde equals bold upper P bold upper Y, where bold upper P is a projection matrix, possibly an oblique projector. A typical element e overTilde Subscript i with variance v Subscript i and estimated variance ModifyingAbove v With caret Subscript i is said to be standardized as

StartFraction e overTilde Subscript i Baseline Over StartRoot normal upper V normal a normal r left-bracket e overTilde Subscript i Baseline right-bracket EndRoot EndFraction equals StartFraction e overTilde Subscript i Baseline Over StartRoot v Subscript i Baseline EndRoot EndFraction

and studentized as

StartFraction e overTilde Subscript i Baseline Over StartRoot ModifyingAbove v With caret Subscript i Baseline EndRoot EndFraction

External studentization uses an estimate of normal upper V normal a normal r left-bracket e overTilde Subscript i Baseline right-bracket that does not involve the ith observation. Externally studentized residuals are often preferred over internally studentized residuals because they have well-known distributional properties in standard linear models for independent data.

Residuals that are scaled by the estimated variance of the response, i.e., e overTilde Subscript i Baseline slash StartRoot ModifyingAbove normal upper V normal a normal r With caret left-bracket upper Y Subscript i Baseline right-bracket EndRoot, are referred to as Pearson-type residuals.

Marginal and Conditional Residuals

The marginal and conditional means in the linear mixed model are normal upper E left-bracket bold upper Y right-bracket equals bold upper X bold-italic beta and normal upper E left-bracket bold upper Y vertical-bar bold-italic gamma right-bracket equals bold upper X bold-italic beta plus bold upper Z bold-italic gamma, respectively. Accordingly, the vector bold r Subscript m of marginal residuals is defined as

bold r Subscript m Baseline equals bold upper Y minus bold upper X ModifyingAbove bold-italic beta With caret

and the vector bold r Subscript c of conditional residuals is

bold r Subscript c Baseline equals bold upper Y minus bold upper X ModifyingAbove bold-italic beta With caret minus bold upper Z ModifyingAbove bold-italic gamma With caret equals bold r Subscript m Baseline minus bold upper Z ModifyingAbove bold-italic gamma With caret

Following Gregoire, Schabenberger, and Barrett (1995), let bold upper Q equals bold upper X left-parenthesis bold upper X prime ModifyingAbove bold upper V With caret Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus Baseline bold upper X prime and bold upper K equals bold upper I minus bold upper Z ModifyingAbove bold upper G With caret bold upper Z prime ModifyingAbove bold upper V With caret Superscript negative 1. Then

StartLayout 1st Row 1st Column ModifyingAbove normal upper V normal a normal r With caret left-bracket bold r Subscript m Baseline right-bracket 2nd Column equals ModifyingAbove bold upper V With caret minus bold upper Q 2nd Row 1st Column ModifyingAbove normal upper V normal a normal r With caret left-bracket bold r Subscript c Baseline right-bracket 2nd Column equals bold upper K left-parenthesis ModifyingAbove bold upper V With caret minus bold upper Q right-parenthesis bold upper K prime EndLayout

For an individual observation the raw, studentized, and Pearson-type residuals computed by the MIXED procedure are given in Table 25.

Table 25: Residual Types Computed by the MIXED Procedure

Type of Residual Marginal Conditional
Raw r Subscript m i Baseline equals upper Y Subscript i Baseline minus bold x prime Subscript i Baseline ModifyingAbove bold-italic beta With caret r Subscript c i Baseline equals r Subscript m i Baseline minus bold z prime Subscript i Baseline ModifyingAbove bold-italic gamma With caret
Studentized r Subscript m i Superscript s t u d e n t Baseline equals StartFraction r Subscript m i Baseline Over StartRoot ModifyingAbove normal upper V normal a normal r With caret left-bracket r Subscript m i Baseline right-bracket EndRoot EndFraction r Subscript c i Superscript s t u d e n t Baseline equals StartFraction r Subscript c i Baseline Over StartRoot ModifyingAbove normal upper V normal a normal r With caret left-bracket r Subscript c i Baseline right-bracket EndRoot EndFraction
Pearson r Subscript m i Superscript p e a r s o n Baseline equals StartFraction r Subscript m i Baseline Over StartRoot ModifyingAbove normal upper V normal a normal r With caret left-bracket upper Y Subscript i Baseline right-bracket EndRoot EndFraction r Subscript c i Superscript p e a r s o n Baseline equals StartFraction r Subscript c i Baseline Over StartRoot ModifyingAbove normal upper V normal a normal r With caret left-bracket upper Y Subscript i Baseline vertical-bar bold-italic gamma right-bracket EndRoot EndFraction


When the OUTPM= option is specified in addition to the RESIDUAL option in the MODEL statement, r Subscript m i Superscript s t u d e n t and r Subscript m i Superscript p e a r s o n are added to the data set as variables Resid, StudentResid, and PearsonResid, respectively. When the OUTP= option is specified, r Subscript c i Superscript s t u d e n t and r Subscript c i Superscript p e a r s o n are added to the data set. Raw residuals are part of the OUTPM= and OUTP= data sets without the RESIDUAL option.

Scaled Residuals

For correlated data, a set of scaled quantities can be defined through the Cholesky decomposition of the variance-covariance matrix. Since fitted residuals in linear models are rank-deficient, it is customary to draw on the variance-covariance matrix of the data. If normal upper V normal a normal r left-bracket bold upper Y right-bracket equals bold upper V and bold upper C prime bold upper C equals bold upper V, then bold upper C Superscript prime negative 1 Baseline bold upper Y has uniform dispersion and its elements are uncorrelated.

Scaled residuals in a mixed model are meaningful for quantities based on the marginal distribution of the data. Let ModifyingAbove bold upper C With caret denote the Cholesky root of ModifyingAbove bold upper V With caret, so that ModifyingAbove bold upper C With caret prime ModifyingAbove bold upper C With caret equals ModifyingAbove bold upper V With caret, and define

StartLayout 1st Row 1st Column bold upper Y Subscript c 2nd Column equals ModifyingAbove bold upper C With caret Superscript prime negative 1 Baseline bold upper Y 2nd Row 1st Column bold r Subscript m left-parenthesis c right-parenthesis 2nd Column equals ModifyingAbove bold upper C With caret Superscript prime negative 1 Baseline bold r Subscript m EndLayout

By analogy with other scalings, the inverse Cholesky decomposition can also be applied to the residual vector, ModifyingAbove bold upper C With caret Superscript prime negative 1 Baseline bold r Subscript m, although bold upper V is not the variance-covariance matrix of bold r Subscript m.

To diagnose whether the covariance structure of the model has been specified correctly can be difficult based on bold upper Y Subscript c, since the inverse Cholesky transformation affects the expected value of bold upper Y Subscript c. You can draw on bold r Subscript m left-parenthesis c right-parenthesis as a vector of (approximately) uncorrelated data with constant mean.

When the OUTPM= option in the MODEL statement is specified in addition to the VCIRY option, bold upper Y Subscript c is added as variable ScaledDep and bold r Subscript m left-parenthesis c right-parenthesis is added as ScaledResid to the data set.

Influence Diagnostics

Basic Idea and Statistics

The general idea of quantifying the influence of one or more observations relies on computing parameter estimates based on all data points, removing the cases in question from the data, refitting the model, and computing statistics based on the change between full-data and reduced-data estimation. Influence statistics can be coarsely grouped by the aspect of estimation that is their primary target:

  • overall measures compare changes in objective functions: (restricted) likelihood distance (Cook and Weisberg 1982, Ch. 5.2)

  • influence on parameter estimates: Cook’s D (Cook 1977, 1979), MDFFITS (Belsley, Kuh, and Welsch 1980, p. 32)

  • influence on precision of estimates: CovRatio and CovTrace

  • influence on fitted and predicted values: PRESS residual, PRESS statistic (Allen 1974), DFFITS (Belsley, Kuh, and Welsch 1980, p. 15)

  • outlier properties: internally and externally studentized residuals, leverage

For linear models for uncorrelated data, it is not necessary to refit the model after removing a data point in order to measure the impact of an observation on the model. The change in fixed effect estimates, residuals, residual sums of squares, and the variance-covariance matrix of the fixed effects can be computed based on the fit to the full data alone. By contrast, in mixed models several important complications arise. Data points can affect not only the fixed effects but also the covariance parameter estimates on which the fixed-effects estimates depend. Furthermore, closed-form expressions for computing the change in important model quantities might not be available.

This section provides background material for the various influence diagnostics available with the MIXED procedure. See the section Mixed Models Theory for relevant expressions and definitions. The parameter vector bold-italic theta denotes all unknown parameters in the bold upper R and bold upper G matrix.

The observations whose influence is being ascertained are represented by the set U and referred to simply as "the observations in U." The estimate of a parameter vector, such as bold-italic beta, obtained from all observations except those in the set U is denoted ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis. In case of a matrix bold upper A, the notation bold upper A Subscript left-parenthesis upper U right-parenthesis represents the matrix with the rows in U removed; these rows are collected in bold upper A Subscript upper U. If bold upper A is symmetric, then notation bold upper A Subscript left-parenthesis upper U right-parenthesis implies removal of rows and columns. The vector upper Y Subscript upper U comprises the responses of the data points being removed, and bold upper V Subscript left-parenthesis upper U right-parenthesis is the variance-covariance matrix of the remaining observations. When k = 1, lowercase notation emphasizes that single points are removed, such as bold upper A Subscript left-parenthesis u right-parenthesis.

Managing the Covariance Parameters

An important component of influence diagnostics in the mixed model is the estimated variance-covariance matrix bold upper V equals bold upper Z bold upper G bold upper Z Superscript prime Baseline plus bold upper R. To make the dependence on the vector of covariance parameters explicit, write it as bold upper V left-parenthesis bold-italic theta right-parenthesis. If one parameter, sigma squared, is profiled or factored out of bold upper V, the remaining parameters are denoted as bold-italic theta Superscript asterisk. Notice that in a model where bold upper G is diagonal and bold upper R equals sigma squared bold upper I, the parameter vector bold-italic theta Superscript asterisk contains the ratios of each variance component and sigma squared (see Wolfinger, Tobias, and Sall 1994). When ITER=0, two scenarios are distinguished:

  1. If the residual variance is not profiled, either because the model does not contain a residual variance or because it is part of the Newton-Raphson iterations, then ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline identical-to ModifyingAbove bold-italic theta With caret.

  2. If the residual variance is profiled, then ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Superscript asterisk Baseline identical-to ModifyingAbove bold-italic theta With caret Superscript asterisk and ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline not-equals ModifyingAbove sigma With caret squared. Influence statistics such as Cook’s D and internally studentized residuals are based on bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis, whereas externally studentized residuals and the DFFITS statistic are based on bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript upper U Baseline right-parenthesis equals sigma Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Superscript asterisk Baseline right-parenthesis. In a random components model with uncorrelated errors, for example, the computation of bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript upper U Baseline right-parenthesis involves scaling of ModifyingAbove bold upper G With caret and ModifyingAbove bold upper R With caret by the full-data estimate ModifyingAbove sigma With caret squared and multiplying the result with the reduced-data estimate ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2.

Certain statistics, such as MDFFITS, CovRatio, and CovTrace, require an estimate of the variance of the fixed effects that is based on the reduced number of observations. For example, bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript upper U Baseline right-parenthesis is evaluated at the reduced-data parameter estimates but computed for the entire data set. The matrix bold upper V Subscript left-parenthesis upper U right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis, on the other hand, has rows and columns corresponding to the points in U removed. The resulting matrix is evaluated at the delete-case estimates.

When influence analysis is iterative, the entire vector bold-italic theta is updated, whether the residual variance is profiled or not. The matrices to be distinguished here are bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis, bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis, and bold upper V Subscript left-parenthesis upper U right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis, with unambiguous notation.

Predicted Values, PRESS Residual, and PRESS Statistic

An unconditional predicted value is ModifyingAbove y With caret Subscript i Baseline equals bold x prime Subscript i Baseline ModifyingAbove bold-italic beta With caret, where the vector bold x Subscript i is the ith row of bold upper X. The (raw) residual is given as ModifyingAbove epsilon With caret Subscript i Baseline equals y Subscript i Baseline minus ModifyingAbove y With caret Subscript i, and the PRESS residual is

ModifyingAbove epsilon With caret Subscript i left-parenthesis upper U right-parenthesis Baseline equals y Subscript i Baseline minus bold x prime Subscript i Baseline ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis

The PRESS statistic is the sum of the squared PRESS residuals,

upper P upper R upper E upper S upper S equals sigma-summation Underscript i element-of upper U Endscripts ModifyingAbove epsilon With caret Subscript i left-parenthesis upper U right-parenthesis Superscript 2

where the sum is over the observations in U.

If EFFECT=, SIZE=, or KEEP= is not specified, PROC MIXED computes the PRESS residual for each observation selected through SELECT= (or all observations if SELECT= is not given). If EFFECT=, SIZE=, or KEEP= is specified, the procedure computes PRESS.

Leverage

For the general mixed model, leverage can be defined through the projection matrix that results from a transformation of the model with the inverse of the Cholesky decomposition of bold upper V, or through an oblique projector. The MIXED procedure follows the latter path in the computation of influence diagnostics. The leverage value reported for the ith observation is the ith diagonal entry of the matrix

bold upper H equals bold upper X left-parenthesis bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus Baseline bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis Superscript negative 1

which is the weight of the observation in contributing to its own predicted value, bold upper H equals d ModifyingAbove bold upper Y With caret slash d bold upper Y.

While bold upper H is idempotent, it is generally not symmetric and thus not a projection matrix in the narrow sense.

The properties of these leverages are generalizations of the properties in models with diagonal variance-covariance matrices. For example, ModifyingAbove bold upper Y With caret equals bold upper H bold upper Y, and in a model with intercept and bold upper V equals sigma squared bold upper I, the leverage values

h Subscript i i Baseline equals bold x prime Subscript i Baseline left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus Baseline bold x Subscript i

are h Subscript i i Superscript l Baseline equals 1 slash n less-than-or-equal-to h Subscript i i Baseline less-than-or-equal-to 1 equals h Subscript i i Superscript u and sigma-summation Underscript i equals 1 Overscript n Endscripts h Subscript i i Baseline equals normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis. The lower bound for h Subscript i i is achieved in an intercept-only model, and the upper bound is achieved in a saturated model. The trace of bold upper H equals the rank of bold upper X.

If nu Subscript i j denotes the element in row i, column j of bold upper V Superscript negative 1, then for a model containing only an intercept the diagonal elements of bold upper H are

h Subscript i i Baseline equals StartFraction sigma-summation Underscript j equals 1 Overscript n Endscripts nu Subscript i j Baseline Over sigma-summation Underscript i equals 1 Overscript n Endscripts sigma-summation Underscript j equals 1 Overscript n Endscripts nu Subscript i j Baseline EndFraction

Because sigma-summation Underscript j equals 1 Overscript n Endscripts nu Subscript i j is a sum of elements in the ith row of the inverse variance-covariance matrix, h Subscript i i can be negative, even if the correlations among data points are nonnegative. In case of a saturated model with bold upper X equals bold upper I, h Subscript i i Baseline equals 1.0.

Internally and Externally Studentized Residuals

See the section Residual Diagnostics for the distinction between standardization, studentization, and scaling of residuals. Internally studentized marginal and conditional residuals are computed with the RESIDUAL option of the MODEL statement. The INFLUENCE option computes internally and externally studentized marginal residuals.

The computation of internally studentized residuals relies on the diagonal entries of bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis minus bold upper Q left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis, where bold upper Q left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis equals bold upper X left-parenthesis bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus Baseline bold upper X prime. Externally studentized residuals require iterative influence analysis or a profiled residual variance. In the former case the studentization is based on bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript upper U Baseline right-parenthesis; in the latter case it is based on sigma Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Superscript asterisk Baseline right-parenthesis.

Cook’s D

Cook’s D statistic is an invariant norm that measures the influence of observations in U on a vector of parameter estimates (Cook 1977). In case of the fixed-effects coefficients, let

bold-italic delta Subscript left-parenthesis upper U right-parenthesis Baseline equals ModifyingAbove bold-italic beta With caret minus ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis

Then the MIXED procedure computes

upper D left-parenthesis bold-italic beta right-parenthesis equals bold-italic delta prime Subscript left-parenthesis upper U right-parenthesis Baseline ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic beta With caret right-bracket Superscript minus Baseline bold-italic delta Subscript left-parenthesis upper U right-parenthesis Baseline slash normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis

where ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic beta With caret right-bracket Superscript minus is the matrix that results from sweeping left-parenthesis bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus.

If bold upper V is known, Cook’s D can be calibrated according to a chi-square distribution with degrees of freedom equal to the rank of bold upper X (Christensen, Pearson, and Johnson 1992). For estimated bold upper V the calibration can be carried out according to an upper F left-parenthesis normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis comma n minus normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis right-parenthesis distribution. To interpret D on a familiar scale, Cook (1979) and Cook and Weisberg (1982, p. 116) refer to the 50th percentile of the reference distribution. If D is equal to that percentile, then removing the points in U moves the fixed-effects coefficient vector from the center of the confidence region to the 50% confidence ellipsoid (Myers 1990, p. 262).

In the case of iterative influence analysis, the MIXED procedure also computes a D-type statistic for the covariance parameters. If bold upper Gamma is the asymptotic variance-covariance matrix of ModifyingAbove bold-italic theta With caret, then MIXED computes

upper D Subscript bold-italic theta Baseline equals left-parenthesis ModifyingAbove bold-italic theta With caret minus ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis right-parenthesis Baseline right-parenthesis prime ModifyingAbove bold upper Gamma With caret Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic theta With caret minus ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis
DFFITS and MDFFITS

A DFFIT measures the change in predicted values due to removal of data points. If this change is standardized by the externally estimated standard error of the predicted value in the full data, the DFFITS statistic of Belsley, Kuh, and Welsch (1980, p. 15) results:

normal upper D normal upper F normal upper F normal upper I normal upper T normal upper S Subscript i Baseline equals left-parenthesis ModifyingAbove y With caret Subscript i Baseline minus ModifyingAbove y With caret Subscript i left-parenthesis u right-parenthesis Baseline right-parenthesis slash normal e normal s normal e left-parenthesis ModifyingAbove y With caret Subscript i Baseline right-parenthesis

The MIXED procedure computes DFFITS when the EFFECT= or SIZE= modifier of the INFLUENCE option is not in effect. In general, an external estimate of the estimated standard error is used. When ITER > 0, the estimate is

normal e normal s normal e left-parenthesis ModifyingAbove y With caret Subscript i Baseline right-parenthesis equals StartRoot bold x prime Subscript i Baseline left-parenthesis bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Subscript left-parenthesis u right-parenthesis Baseline right-parenthesis Superscript minus Baseline bold upper X right-parenthesis Superscript negative 1 Baseline bold x Subscript i Baseline EndRoot

When ITER=0 and sigma squared is profiled, then

normal e normal s normal e left-parenthesis ModifyingAbove y With caret Subscript i Baseline right-parenthesis equals ModifyingAbove sigma With caret Subscript left-parenthesis u right-parenthesis Baseline StartRoot bold x prime Subscript i Baseline left-parenthesis bold upper X prime bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Superscript asterisk Baseline right-parenthesis Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus Baseline bold x Subscript i Baseline EndRoot

When the EFFECT=, SIZE=, or KEEP= modifier is specified, the MIXED procedure computes a multivariate version suitable for the deletion of multiple data points. The statistic, termed MDFFITS after the MDFFIT statistic of Belsley, Kuh, and Welsch (1980, p. 32), is closely related to Cook’s D. Consider the case bold upper V equals sigma squared bold upper V left-parenthesis bold-italic theta Superscript asterisk Baseline right-parenthesis so that

normal upper V normal a normal r left-bracket ModifyingAbove bold-italic beta With caret right-bracket equals sigma squared left-parenthesis bold upper X prime bold upper V left-parenthesis bold-italic theta Superscript asterisk Baseline right-parenthesis Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus

and let ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket be an estimate of normal upper V normal a normal r left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket that does not use the observations in U. The MDFFITS statistic is then computed as

normal upper M normal upper D normal upper F normal upper F normal upper I normal upper T normal upper S left-parenthesis bold-italic beta right-parenthesis equals bold-italic delta prime Subscript left-parenthesis upper U right-parenthesis Baseline ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket Superscript minus Baseline bold-italic delta Subscript left-parenthesis upper U right-parenthesis Baseline slash normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis

If ITER=0 and sigma squared is profiled, then ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket Superscript minus is obtained by sweeping

ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline left-parenthesis bold upper X prime Subscript left-parenthesis upper U right-parenthesis Baseline bold upper V Subscript left-parenthesis upper U right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic theta With caret Superscript asterisk Baseline right-parenthesis Superscript minus Baseline bold upper X Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis Superscript minus

The underlying idea is that if bold-italic theta Superscript asterisk were known, then

left-parenthesis bold upper X prime Subscript left-parenthesis upper U right-parenthesis Baseline bold upper V Subscript left-parenthesis upper U right-parenthesis Baseline left-parenthesis bold-italic theta Superscript asterisk Baseline right-parenthesis Superscript negative 1 Baseline bold upper X Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis Superscript minus

would be normal upper V normal a normal r left-bracket ModifyingAbove bold-italic beta With caret right-bracket slash sigma squared in a generalized least squares regression with all but the data in U.

In the case of iterative influence analysis, ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket is evaluated at ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis. Furthermore, a MDFFITS-type statistic is then computed for the covariance parameters:

normal upper M normal upper D normal upper F normal upper F normal upper I normal upper T normal upper S left-parenthesis bold-italic theta right-parenthesis equals left-parenthesis ModifyingAbove bold-italic theta With caret minus ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis prime ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic theta With caret minus ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis
Covariance Ratio and Trace

These statistics depend on the availability of an external estimate of bold upper V, or at least of sigma squared. Whereas Cook’s D and MDFFITS measure the impact of data points on a vector of parameter estimates, the covariance-based statistics measure impact on their precision. Following Christensen, Pearson, and Johnson (1992), the MIXED procedure computes

StartLayout 1st Row 1st Column normal upper C normal o normal v normal upper T normal r normal a normal c normal e left-parenthesis bold-italic beta right-parenthesis 2nd Column equals StartAbsoluteValue normal t normal r normal a normal c normal e left-parenthesis ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic beta With caret right-bracket Superscript minus Baseline ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket right-parenthesis minus normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis EndAbsoluteValue 2nd Row 1st Column normal upper C normal o normal v normal upper R normal a normal t normal i normal o left-parenthesis bold-italic beta right-parenthesis 2nd Column equals StartFraction normal d normal e normal t Subscript n s Baseline left-parenthesis ModifyingAbove normal upper V normal a normal r With tilde left-bracket ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket right-parenthesis Over normal d normal e normal t Subscript n s Baseline left-parenthesis ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic beta With caret right-bracket right-parenthesis EndFraction EndLayout

where normal d normal e normal t Subscript n s Baseline left-parenthesis bold upper M right-parenthesis denotes the determinant of the nonsingular part of matrix bold upper M.

In the case of iterative influence analysis these statistics are also computed for the covariance parameter estimates. If q denotes the rank of normal upper V normal a normal r left-bracket ModifyingAbove bold-italic theta With caret right-bracket, then

StartLayout 1st Row 1st Column normal upper C normal o normal v normal upper T normal r normal a normal c normal e left-parenthesis bold-italic theta right-parenthesis 2nd Column equals StartAbsoluteValue normal t normal r normal a normal c normal e left-parenthesis ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic theta With caret right-bracket Superscript minus Baseline ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket right-parenthesis minus q EndAbsoluteValue 2nd Row 1st Column normal upper C normal o normal v normal upper R normal a normal t normal i normal o left-parenthesis bold-italic theta right-parenthesis 2nd Column equals StartFraction normal d normal e normal t Subscript n s Baseline left-parenthesis ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-bracket right-parenthesis Over normal d normal e normal t Subscript n s Baseline left-parenthesis ModifyingAbove normal upper V normal a normal r With caret left-bracket ModifyingAbove bold-italic theta With caret right-bracket right-parenthesis EndFraction EndLayout
Likelihood Distances

The log-likelihood function l and restricted log-likelihood function l Subscript upper R of the linear mixed model are given in the section Estimating Covariance Parameters in the Mixed Model. Denote as bold-italic psi the collection of all parameters, i.e., the fixed effects bold-italic beta and the covariance parameters bold-italic theta. Twice the difference between the (restricted) log-likelihood evaluated at the full-data estimates ModifyingAbove bold-italic psi With caret and at the reduced-data estimates ModifyingAbove bold-italic psi With caret Subscript left-parenthesis upper U right-parenthesis is known as the (restricted) likelihood distance:

StartLayout 1st Row 1st Column normal upper R normal upper L normal upper D Subscript left-parenthesis upper U right-parenthesis 2nd Column equals 2 StartSet l Subscript upper R Baseline left-parenthesis ModifyingAbove bold-italic psi With caret right-parenthesis minus l Subscript upper R Baseline left-parenthesis ModifyingAbove bold-italic psi With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis EndSet 2nd Row 1st Column normal upper L normal upper D Subscript left-parenthesis upper U right-parenthesis 2nd Column equals 2 StartSet l left-parenthesis ModifyingAbove bold-italic psi With caret right-parenthesis minus l left-parenthesis ModifyingAbove bold-italic psi With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis EndSet EndLayout

Cook and Weisberg (1982, Ch. 5.2) refer to these differences as likelihood distances, Beckman, Nachtsheim, and Cook (1987) call the measures likelihood displacements. If the number of elements in bold-italic psi that are subject to updating following point removal is q, then likelihood displacements can be compared against cutoffs from a chi-square distribution with q degrees of freedom. Notice that this reference distribution does not depend on the number of observations removed from the analysis, but rather on the number of model parameters that are updated. The likelihood displacement gives twice the amount by which the log likelihood of the full data changes if one were to use an estimate based on fewer data points. It is thus a global, summary measure of the influence of the observations in U jointly on all parameters.

Unless METHOD=ML, the MIXED procedure computes the likelihood displacement based on the residual (=restricted) log likelihood, even if METHOD=MIVQUE0 or METHOD=TYPE1, TYPE2, or TYPE3.

Noniterative Update Formulas

Update formulas that do not require refitting of the model are available for the cases where bold upper V equals sigma squared bold upper I, bold upper V is known, or bold upper V Superscript asterisk is known. When ITER=0 and these update formulas can be invoked, the MIXED procedure uses the computational devices that are outlined in the following paragraphs. It is then assumed that the variance-covariance matrix of the fixed effects has the form left-parenthesis bold upper X prime bold upper V Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus. When DDFM=KENWARDROGER or DDFM=KENWARDROGER2, this is not the case; the estimated variance-covariance matrix is then inflated to better represent the uncertainty in the estimated covariance parameters. Influence statistics when DDFM=KENWARDROGER should iteratively update the covariance parameters (ITER > 0). The dependence of bold upper V on bold-italic theta is suppressed in the sequel for brevity.

Updating the Fixed Effects

Denote by bold upper U the left-parenthesis n times k right-parenthesis matrix that is assembled from k columns of the identity matrix. Each column of bold upper U corresponds to the removal of one data point. The point being targeted by the ith column of bold upper U corresponds to the row in which a 1 appears. Furthermore, define

StartLayout 1st Row 1st Column bold upper Omega 2nd Column equals left-parenthesis bold upper X prime bold upper V Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus Baseline 2nd Row 1st Column bold upper Q 2nd Column equals bold upper X bold upper Omega bold upper X Superscript prime Baseline 3rd Row 1st Column bold upper P 2nd Column equals bold upper V Superscript negative 1 Baseline left-parenthesis bold upper V minus bold upper Q right-parenthesis bold upper V Superscript negative 1 EndLayout

The change in the fixed-effects estimates following removal of the observations in U is

ModifyingAbove bold-italic beta With caret minus ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline equals bold upper Omega bold upper X prime bold upper V Superscript negative 1 Baseline bold upper U left-parenthesis bold upper U prime bold upper P bold upper U right-parenthesis Superscript negative 1 Baseline bold upper U prime bold upper V Superscript negative 1 Baseline left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret right-parenthesis

Using results in Cook and Weisberg (1982, A2) you can further compute

bold upper Omega overTilde equals left-parenthesis bold upper X prime Subscript left-parenthesis upper U right-parenthesis Baseline bold upper V Subscript left-parenthesis upper U right-parenthesis Superscript negative 1 Baseline bold upper X Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis Superscript minus Baseline equals bold upper Omega plus bold upper Omega bold upper X prime bold upper V Superscript negative 1 Baseline bold upper U left-parenthesis bold upper U prime bold upper P bold upper U right-parenthesis Superscript negative 1 Baseline bold upper U prime bold upper V Superscript negative 1 Baseline bold upper X bold upper Omega

If bold upper X is left-parenthesis n times p right-parenthesis of rank m less-than p, then bold upper Omega is deficient in rank and the MIXED procedure computes needed quantities in bold upper Omega overTilde by sweeping (Goodnight 1979). If the rank of the left-parenthesis k times k right-parenthesis matrix bold upper U prime bold upper P bold upper U is less than k, the removal of the observations introduces a new singularity, whether bold upper X is of full rank or not. The solution vectors ModifyingAbove bold-italic beta With caret and ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis then do not have the same expected values and should not be compared. When the MIXED procedure encounters this situation, influence diagnostics that depend on the choice of generalized inverse are not computed. The procedure also monitors the singularity criteria when sweeping the rows of left-parenthesis bold upper X prime bold upper V Superscript negative 1 Baseline bold upper X right-parenthesis Superscript minus and of left-parenthesis bold upper X prime Subscript left-parenthesis upper U right-parenthesis Baseline bold upper V Subscript left-parenthesis upper U right-parenthesis Superscript negative 1 Baseline bold upper X Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis Superscript minus. If a new singularity is encountered or a former singularity disappears, no influence statistics are computed.

Residual Variance

When sigma squared is profiled out of the marginal variance-covariance matrix, a closed-form estimate of sigma squared that is based on only the remaining observations can be computed provided bold upper V Superscript asterisk Baseline equals bold upper V left-parenthesis ModifyingAbove bold-italic theta With caret Superscript asterisk Baseline right-parenthesis is known. Hurtado (1993, Thm. 5.2) shows that

left-parenthesis n minus q minus r right-parenthesis ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline equals left-parenthesis n minus q right-parenthesis ModifyingAbove sigma With caret squared minus ModifyingAbove bold-italic epsilon With caret prime Subscript upper U Baseline left-parenthesis ModifyingAbove sigma With caret squared bold upper U prime bold upper P bold upper U right-parenthesis Superscript negative 1 Baseline ModifyingAbove bold-italic epsilon With caret Subscript upper U

and ModifyingAbove bold-italic epsilon With caret Subscript upper U Baseline equals bold upper U prime bold upper V Superscript asterisk Baseline Superscript negative 1 Baseline left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret right-parenthesis. In the case of maximum likelihood estimation q = 0 and for REML estimation q equals normal r normal a normal n normal k left-parenthesis bold upper X right-parenthesis. The constant r equals the rank of left-parenthesis bold upper U prime bold upper P bold upper U right-parenthesis for REML estimation and the number of effective observations that are removed if METHOD=ML.

Likelihood Distances

For noniterative methods the following computational devices are used to compute (restricted) likelihood distances provided that the residual variance sigma squared is profiled.

The log likelihood function l left-parenthesis ModifyingAbove bold-italic theta With caret right-parenthesis evaluated at the full-data and reduced-data estimates can be written as

StartLayout 1st Row 1st Column l left-parenthesis ModifyingAbove bold-italic psi With caret right-parenthesis 2nd Column equals minus StartFraction n Over 2 EndFraction log left-parenthesis ModifyingAbove sigma With caret squared right-parenthesis minus one-half log StartAbsoluteValue bold upper V Superscript asterisk Baseline EndAbsoluteValue minus one-half left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret right-parenthesis prime bold upper V Superscript asterisk Baseline Superscript negative 1 Baseline left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret right-parenthesis slash ModifyingAbove sigma With caret squared minus StartFraction n Over 2 EndFraction log left-parenthesis 2 pi right-parenthesis 2nd Row 1st Column l left-parenthesis ModifyingAbove bold-italic psi With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis 2nd Column equals minus StartFraction n Over 2 EndFraction log left-parenthesis ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline right-parenthesis minus one-half log StartAbsoluteValue bold upper V Superscript asterisk Baseline EndAbsoluteValue minus one-half left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis prime bold upper V Superscript asterisk Baseline Superscript negative 1 Baseline left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis slash ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline minus StartFraction n Over 2 EndFraction log left-parenthesis 2 pi right-parenthesis EndLayout

Notice that l left-parenthesis ModifyingAbove bold-italic theta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis evaluates the log likelihood for n data points at the reduced-data estimates. It is not the log likelihood obtained by fitting the model to the reduced data. The likelihood distance is then

normal upper L normal upper D Subscript left-parenthesis upper U right-parenthesis Baseline equals n log left-brace StartFraction ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2 Baseline Over ModifyingAbove sigma With caret squared EndFraction right-brace minus n plus left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis prime bold upper V Superscript asterisk Baseline Superscript negative 1 Baseline left-parenthesis bold y minus bold upper X ModifyingAbove bold-italic beta With caret Subscript left-parenthesis upper U right-parenthesis Baseline right-parenthesis slash ModifyingAbove sigma With caret Subscript left-parenthesis upper U right-parenthesis Superscript 2

Expressions for normal upper R normal upper L normal upper D Subscript left-parenthesis upper U right-parenthesis in noniterative influence analysis are derived along the same lines.

Last updated: March 08, 2022