The PHREG Procedure

Using the TEST Statement to Test Linear Hypotheses

Linear hypotheses for bold-italic beta are expressed in matrix form as

upper H 0 colon bold upper L bold-italic beta equals bold c

where L is a matrix of coefficients for the linear hypotheses, and c is a vector of constants. The Wald chi-square statistic for testing upper H 0 is computed as

chi Subscript upper W Superscript 2 Baseline equals left-parenthesis bold upper L ModifyingAbove bold-italic beta With caret minus bold c right-parenthesis prime left-bracket bold upper L ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis bold upper L prime right-bracket Superscript negative 1 Baseline left-parenthesis bold upper L ModifyingAbove bold-italic beta With caret minus bold c right-parenthesis

where ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis is the estimated covariance matrix. Under upper H 0, chi Subscript upper W Superscript 2 has an asymptotic chi-square distribution with r degrees of freedom, where r is the rank of bold upper L.

Optimal Weights for the AVERAGE Option in the TEST Statement

Let bold-italic beta 0 equals left-parenthesis beta Subscript i 1 Baseline comma ellipsis comma beta Subscript i Sub Subscript s Subscript Baseline right-parenthesis prime, where StartSet beta Subscript i 1 Baseline comma ellipsis comma beta Subscript i Sub Subscript s Subscript Baseline EndSet is a subset of s regression coefficients. For any vector bold e equals left-parenthesis e 1 comma ellipsis comma e Subscript s Baseline right-parenthesis prime of length s,

bold e prime ModifyingAbove bold-italic beta With caret Subscript 0 Baseline tilde upper N left-parenthesis bold e prime bold-italic beta 0 comma bold e prime ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta 0 With caret right-parenthesis bold e right-parenthesis

To find bold e such that bold e prime ModifyingAbove bold-italic beta With caret Subscript 0 has the minimum variance, it is necessary to minimize bold e prime ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta 0 With caret right-parenthesis bold e subject to sigma-summation Underscript i equals 1 Overscript k Endscripts e Subscript i Baseline equals 1. Let bold 1 Subscript s be a vector of 1’s of length s. The expression to be minimized is

bold e prime ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret Subscript 0 Baseline right-parenthesis bold e minus lamda left-parenthesis bold e prime bold 1 Subscript s Baseline minus 1 right-parenthesis

where lamda is the Lagrange multiplier. Differentiating with respect to bold e and lamda, respectively, yields

StartLayout 1st Row 1st Column ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret Subscript 0 Baseline right-parenthesis bold e minus lamda bold 1 Subscript s 2nd Column equals 3rd Column bold 0 2nd Row 1st Column bold e prime bold 1 Subscript s minus 1 2nd Column equals 3rd Column 0 EndLayout

Solving these equations gives

bold e equals left-bracket bold 1 prime Subscript s Baseline ModifyingAbove bold upper V With caret Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript 0 Baseline right-parenthesis bold 1 Subscript s Baseline right-bracket Superscript negative 1 Baseline ModifyingAbove bold upper V With caret Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript 0 Baseline right-parenthesis bold 1 Subscript s

This provides a one degree-of-freedom test for testing the null hypothesis upper H 0 colon beta Subscript i 1 Baseline equals ellipsis equals beta Subscript i Sub Subscript s Subscript Baseline equals 0 with normal test statistic

upper Z equals StartFraction bold e prime ModifyingAbove bold-italic beta With caret Subscript 0 Baseline Over StartRoot bold e prime ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret Subscript 0 Baseline right-parenthesis bold e EndRoot EndFraction

This test is more sensitive than the multivariate test specified by the TEST statement

Multivariate: test X1, ..., Xs;

where X1, …, Xs are the variables with regression coefficients beta Subscript i 1 Baseline comma ellipsis comma beta Subscript i Sub Subscript s Subscript Baseline, respectively.

Last updated: March 08, 2022