The PHREG Procedure

Survivor Function Estimators

Three estimators of the survivor function are available: the Breslow (1972) estimator, which is based on the empirical cumulative hazard function, the Fleming and Harrington (1984) estimator, which is a tie-breaking modification of the Breslow estimator, and the product-limit estimator (Kalbfleisch and Prentice 1980, pp. 84–86).

Let StartSet t 1 less-than midline-horizontal-ellipsis less-than t Subscript k Baseline EndSet be the distinct uncensored times of the survival data.

Breslow Estimator

To select this estimator, specify the METHOD=BRESLOW option in the BASELINE statement or OUTPUT statement. For the jth subject, let StartSet left-parenthesis upper X Subscript j Baseline comma normal upper Delta Subscript j Baseline comma bold upper Z Subscript j Baseline left-parenthesis period right-parenthesis right-parenthesis EndSet represent the failure time, the event indicator, and the vector of covariate values, respectively. For t greater-than-or-equal-to 0, let

StartLayout 1st Row 1st Column upper Y Subscript j Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper I left-parenthesis upper X Subscript j Baseline greater-than-or-equal-to t right-parenthesis 2nd Row 1st Column normal upper Delta Subscript j Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column 1 2nd Column upper X Subscript j Baseline equals t normal a normal n normal d normal upper Delta Subscript j Baseline equals 1 2nd Row 1st Column 0 2nd Column otherwise EndLayout 3rd Row 1st Column d left-parenthesis t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j Endscripts normal upper Delta Subscript j Baseline left-parenthesis t right-parenthesis EndLayout

Note that d left-parenthesis t right-parenthesis is the number of subjects that have an event at t. Let

StartLayout 1st Row 1st Column upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j Endscripts upper Y Subscript j Baseline left-parenthesis t right-parenthesis normal e Superscript bold-italic beta prime bold upper Z Super Subscript j Superscript left-parenthesis t right-parenthesis 2nd Row 1st Column upper S Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j Endscripts upper Y Subscript j Baseline left-parenthesis t right-parenthesis normal e Superscript bold-italic beta prime bold upper Z Super Subscript j Superscript left-parenthesis t right-parenthesis Baseline bold upper Z Subscript j Baseline left-parenthesis t right-parenthesis 3rd Row 1st Column ModifyingAbove bold upper Z With bar left-parenthesis bold-italic beta comma t right-parenthesis 2nd Column equals 3rd Column StartFraction upper S Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta comma t right-parenthesis Over upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta comma t right-parenthesis EndFraction EndLayout

For a given realization of the explanatory variables bold-italic xi, the cumulative hazard function estimator at bold-italic xi is

ModifyingAbove normal upper Lamda With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals normal e Superscript ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis EndFraction

with variance estimated by

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove normal upper Lamda With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis equals normal e Superscript 2 ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over left-bracket upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis right-bracket squared EndFraction plus upper H left-parenthesis t comma bold-italic xi right-parenthesis prime left-bracket script upper I left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis right-bracket Superscript negative 1 Baseline upper H left-parenthesis t comma bold-italic xi right-parenthesis

where

upper H left-parenthesis t comma bold-italic xi right-parenthesis equals normal e Superscript ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis EndFraction left-parenthesis ModifyingAbove bold upper Z With bar left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis minus bold-italic xi right-parenthesis

For the marginal model, the variance estimator computation follows Spiekerman and Lin (1998).

The Breslow estimate of the survivor function for bold upper Z equals bold-italic xi is

ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals exp left-parenthesis minus ModifyingAbove normal upper Lamda With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis

By the delta method, the standard error of ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis is approximated by

ModifyingAbove sigma With caret left-parenthesis ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis equals ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis ModifyingAbove sigma With caret left-parenthesis ModifyingAbove normal upper Lamda With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis

Fleming-Harrington Estimator

To select this estimator, specify the METHOD=FH option in the BASELINE statement or OUTPUT statement. With upper Y Subscript j Baseline left-parenthesis t right-parenthesis and d left-parenthesis t right-parenthesis as defined in the section Breslow Estimator and for 1 less-than-or-equal-to k less-than-or-equal-to d left-parenthesis t right-parenthesis, let

StartLayout 1st Row 1st Column upper S Subscript upper E Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta comma k comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j Endscripts upper Y Subscript j Baseline left-parenthesis t right-parenthesis StartSet 1 minus StartFraction k minus 1 Over d left-parenthesis t right-parenthesis EndFraction normal upper Delta Subscript j Baseline left-parenthesis t right-parenthesis EndSet normal e Superscript bold-italic beta prime bold upper Z Super Subscript j Superscript left-parenthesis t right-parenthesis 2nd Row 1st Column upper S Subscript upper E Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta comma k comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j Endscripts upper Y Subscript j Baseline left-parenthesis t right-parenthesis StartSet 1 minus StartFraction k minus 1 Over d left-parenthesis t right-parenthesis EndFraction normal upper Delta Subscript j Baseline left-parenthesis t right-parenthesis EndSet normal e Superscript bold-italic beta prime bold upper Z Super Subscript j Superscript left-parenthesis t right-parenthesis Baseline bold upper Z Subscript j Baseline left-parenthesis t right-parenthesis 3rd Row 1st Column bold upper Z overbar Subscript upper E Baseline bold-italic beta comma k comma t right-parenthesis 2nd Column equals 3rd Column StartFraction upper S Subscript upper E Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta comma k comma t right-parenthesis Over upper S Subscript upper E Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta comma k comma t right-parenthesis EndFraction EndLayout

For a given realization of the explanatory variables, the Fleming-Harrington adjustment of the cumulative hazard function is

ModifyingAbove normal upper Lamda With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals normal e Superscript ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartSet sigma-summation Underscript k equals 1 Overscript d left-parenthesis t Subscript i Baseline right-parenthesis Endscripts StartFraction 1 Over upper S Subscript upper E Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma k comma t Subscript i Baseline right-parenthesis EndFraction EndSet

with variance estimated by

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove normal upper Lamda With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis equals normal e Superscript 2 ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartSet sigma-summation Underscript k equals 1 Overscript d left-parenthesis t Subscript i Baseline right-parenthesis Endscripts StartFraction 1 Over left-bracket upper S Subscript upper E Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma k comma t Subscript i Baseline right-parenthesis right-bracket squared EndFraction EndSet plus upper H Subscript upper E Baseline left-parenthesis t comma bold-italic xi right-parenthesis prime left-bracket script upper I left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis right-bracket Superscript negative 1 Baseline upper H Subscript upper E Baseline left-parenthesis t comma bold-italic xi right-parenthesis

where

upper H Subscript upper E Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals normal e Superscript ModifyingAbove bold-italic beta With caret prime bold-italic xi Baseline StartSet left-bracket sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts sigma-summation Underscript k equals 1 Overscript d left-parenthesis t Subscript i Baseline right-parenthesis Endscripts StartFraction 1 Over upper S Subscript upper E Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma k comma t Subscript i Baseline right-parenthesis EndFraction ModifyingAbove bold upper Z With bar Subscript upper E Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma k comma t Subscript i Baseline right-parenthesis right-bracket minus ModifyingAbove normal upper Lamda With caret Subscript upper F Baseline left-parenthesis t comma bold 0 right-parenthesis bold-italic xi EndSet

The Fleming-Harrington estimate of the survivor function for bold upper Z equals bold-italic xi is

ModifyingAbove upper S With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals exp left-parenthesis minus ModifyingAbove normal upper Lamda With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis

By the delta method, the standard error of ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis is approximated by

ModifyingAbove sigma With caret left-parenthesis ModifyingAbove upper S With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis equals ModifyingAbove upper S With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis ModifyingAbove sigma With caret left-parenthesis ModifyingAbove normal upper Lamda With caret Subscript upper F Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis

Product-Limit Estimator

To select this estimator, specify the METHOD=PL option in the BASELINE statement or OUTPUT statement. Let script upper D Subscript i denote the set of individuals that fail at t Subscript i. Let script upper C Subscript i denote the set of individuals that are censored in the half-open interval left-bracket t Subscript i Baseline comma t Subscript i plus 1 Baseline right-parenthesis, where t 0 equals 0 and t Subscript k plus 1 Baseline equals normal infinity. Let gamma Subscript l denote the censoring times in left-bracket t Subscript i Baseline comma t Subscript i plus 1 Baseline right-parenthesis, where l ranges over script upper C Subscript i.

The likelihood function for all individuals is given by

script upper L equals product Underscript i equals 0 Overscript k Endscripts StartSet product Underscript l element-of script upper D Subscript i Baseline Endscripts left-parenthesis left-bracket upper S 0 left-parenthesis t Subscript i Baseline right-parenthesis right-bracket Superscript normal e normal x normal p left-parenthesis bold upper Z prime Super Subscript l Superscript bold-italic beta right-parenthesis Baseline minus left-bracket upper S 0 left-parenthesis t Subscript i Baseline plus 0 right-parenthesis right-bracket Superscript normal e normal x normal p left-parenthesis bold upper Z prime Super Subscript l Superscript bold-italic beta right-parenthesis Baseline right-parenthesis product Underscript l element-of script upper C Subscript i Baseline Endscripts left-bracket upper S 0 left-parenthesis gamma Subscript l Baseline plus 0 right-parenthesis right-bracket Superscript normal e normal x normal p left-parenthesis bold upper Z prime Super Subscript l Superscript bold-italic beta right-parenthesis Baseline EndSet

where script upper D 0 is empty. The likelihood script upper L is maximized by taking upper S 0 left-parenthesis t right-parenthesis equals upper S 0 left-parenthesis t Subscript i Baseline plus 0 right-parenthesis for t Subscript i Baseline less-than t less-than-or-equal-to t Subscript i plus 1 and allowing the probability mass to fall only on the observed event times t 1, ellipsis, t Subscript k. By considering a discrete model with hazard contribution 1 minus alpha Subscript i at t Subscript i, you take upper S 0 left-parenthesis t Subscript i Baseline right-parenthesis equals upper S 0 left-parenthesis t Subscript i minus 1 Baseline plus 0 right-parenthesis equals product Underscript j equals 0 Overscript i minus 1 Endscripts alpha Subscript j, where alpha 0 equals 1. Substitution into the likelihood function produces

script upper L equals product Underscript i equals 0 Overscript k Endscripts StartSet product Underscript j element-of script upper D Subscript i Baseline Endscripts left-parenthesis 1 minus alpha Subscript i Superscript normal e normal x normal p left-parenthesis bold upper Z prime Super Subscript j Superscript bold-italic beta right-parenthesis Baseline right-parenthesis product Underscript l element-of script upper R Subscript i Baseline minus script upper D Subscript i Baseline Endscripts alpha Subscript i Superscript normal e normal x normal p left-parenthesis bold z prime Super Subscript l Superscript bold-italic beta right-parenthesis Baseline EndSet

If you replace bold-italic beta with ModifyingAbove bold-italic beta With caret estimated from the partial likelihood function and then maximize with respect to alpha 1 comma ellipsis comma alpha Subscript k Baseline, the maximum likelihood estimate ModifyingAbove alpha With caret Subscript i of alpha Subscript i becomes a solution of

sigma-summation Underscript j element-of script upper D Subscript i Baseline Endscripts StartFraction normal e normal x normal p left-parenthesis bold upper Z prime Subscript j Baseline ModifyingAbove bold-italic beta With caret right-parenthesis Over 1 minus ModifyingAbove alpha With caret Subscript i Superscript normal e normal x normal p left-parenthesis bold upper Z prime Super Subscript j Superscript ModifyingAbove bold-italic beta With caret right-parenthesis Baseline EndFraction equals sigma-summation Underscript l element-of script upper R Subscript i Baseline Endscripts normal e normal x normal p left-parenthesis bold upper Z prime Subscript l Baseline ModifyingAbove bold-italic beta With caret right-parenthesis

When only a single failure occurs at t Subscript i, ModifyingAbove alpha With caret Subscript i can be found explicitly. Otherwise, an iterative solution is obtained by the Newton method.

The baseline survival function is estimated by

ModifyingAbove upper S With caret Subscript 0 Baseline left-parenthesis t right-parenthesis equals ModifyingAbove upper S With caret Subscript 0 Baseline left-parenthesis t Subscript i minus 1 Baseline plus 0 right-parenthesis equals product Underscript j equals 0 Overscript i minus 1 Endscripts ModifyingAbove alpha With caret Subscript j Baseline comma t Subscript i minus 1 Baseline less-than t less-than-or-equal-to t Subscript i Baseline

For a given realization of the explanatory variables bold-italic xi, the product-limit estimate of the survival function at bold upper Z equals bold-italic xi is

ModifyingAbove upper S With caret Subscript upper P Baseline left-parenthesis t comma bold-italic xi right-parenthesis equals left-bracket ModifyingAbove upper S With caret Subscript 0 Baseline left-parenthesis t right-parenthesis right-bracket Superscript normal e normal x normal p left-parenthesis bold-italic beta prime bold-italic xi right-parenthesis

Approximating the variance of minus log left-parenthesis upper S Subscript upper P Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis by the variance estimate of the Breslow estimator of the cumulative hazard function, the variance of the product-limit estimator at bold upper Z equals bold-italic xi is given by

ModifyingAbove sigma With caret left-parenthesis ModifyingAbove upper S With caret Subscript upper P Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis equals ModifyingAbove upper S With caret Subscript upper P Baseline left-parenthesis t comma bold-italic xi right-parenthesis ModifyingAbove sigma With caret left-parenthesis ModifyingAbove normal upper Lamda With caret Subscript upper B Baseline left-parenthesis t comma bold-italic xi right-parenthesis right-parenthesis

Direct Adjusted Survival Curves

Consider the Breslow estimator of the survival function. For j equals 1 comma ellipsis comma n, let bold-italic xi Subscript j represent the covariate set of the jth patient. The direct adjusted survival curve averages the estimated survival curves for each patient:

ModifyingAbove upper S With bar left-parenthesis t right-parenthesis equals StartFraction 1 Over n EndFraction sigma-summation Underscript j equals 1 Overscript n Endscripts ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis

The variance of ModifyingAbove upper S With bar left-parenthesis t right-parenthesis can be estimated by

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove upper S With bar left-parenthesis t right-parenthesis right-parenthesis equals StartFraction 1 Over n squared EndFraction left-parenthesis upper V Superscript left-parenthesis 1 right-parenthesis Baseline t right-parenthesis plus upper V Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis right-parenthesis

where

StartLayout 1st Row 1st Column upper V Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts normal e Superscript ModifyingAbove bold-italic beta With caret prime bold-italic xi Super Subscript j Superscript Baseline ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis right-parenthesis squared sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over left-bracket upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis right-bracket squared EndFraction 2nd Row 1st Column upper V Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis right-parenthesis prime left-bracket script upper I left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis right-bracket Superscript negative 1 Baseline left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis right-parenthesis EndLayout
Comparison of Direct Adjusted Probabilities of Two Strata

For a stratified Cox model, let k index the strata. For the jth patient, let ModifyingAbove upper S With caret Subscript k Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis and upper H Subscript k Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis be the estimated survival function and the bold upper H vector for the kth stratum. The direct adjusted survival curve for the kth stratum is

ModifyingAbove upper S With bar Subscript k Baseline left-parenthesis t right-parenthesis equals StartFraction 1 Over n EndFraction sigma-summation Underscript j equals 1 Overscript n Endscripts ModifyingAbove upper S With caret Subscript k Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis

The variance of ModifyingAbove upper S With bar Subscript 1 Baseline left-parenthesis t right-parenthesis minus ModifyingAbove upper S With bar Subscript 2 Baseline left-parenthesis t right-parenthesis can be estimated by

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove upper S With bar Subscript 1 Baseline left-parenthesis t right-parenthesis minus ModifyingAbove upper S With bar Subscript 2 Baseline left-parenthesis t right-parenthesis right-parenthesis equals StartFraction 1 Over n squared EndFraction left-parenthesis upper U 1 Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis t right-parenthesis plus upper U 2 Superscript left-parenthesis 1 right-parenthesis Baseline plus upper U 12 Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis right-parenthesis

where

StartLayout 1st Row 1st Column upper U Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column left-parenthesis sigma-summation Underscript j equals 1 Overscript n Endscripts normal e Superscript bold-italic beta prime bold-italic xi Super Subscript j Superscript Baseline ModifyingAbove upper S With caret Subscript k Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis right-parenthesis squared sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over left-bracket upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis right-bracket squared EndFraction comma k equals 1 comma 2 2nd Row 1st Column upper U 12 Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartSet sigma-summation Underscript j equals 1 Overscript n Endscripts left-bracket ModifyingAbove upper S With caret Subscript 1 Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H 1 left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis minus ModifyingAbove upper S With caret Subscript 2 Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H 2 left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis right-bracket EndSet prime script upper I Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis 3rd Row 1st Column Blank 2nd Column Blank 3rd Column StartSet sigma-summation Underscript j equals 1 Overscript n Endscripts left-bracket ModifyingAbove upper S With caret Subscript 1 Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H 2 left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis minus ModifyingAbove upper S With caret Subscript 1 Baseline left-parenthesis t comma bold-italic xi Subscript j Baseline right-parenthesis upper H left-parenthesis Subscript 2 Baseline t comma bold-italic xi Subscript j Baseline right-parenthesis right-bracket EndSet EndLayout
Comparison of Direct Adjusted Survival Probabilities of Two Treatments

For j equals 1 comma ellipsis comma n, let bold-italic xi Subscript j k represent the covariate set of the jth patient with the kth treatment, k equals 1 comma 2. The direct adjusted survival curve for the kth treatment is

ModifyingAbove upper S With bar Subscript k Baseline left-parenthesis t right-parenthesis equals StartFraction 1 Over n EndFraction sigma-summation Underscript i equals j Overscript n Endscripts ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript j k Baseline right-parenthesis

The variance of ModifyingAbove upper S With bar Subscript 1 Baseline left-parenthesis t right-parenthesis minus ModifyingAbove upper S With bar Subscript 2 Baseline left-parenthesis t right-parenthesis can be estimated by

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove upper S With bar Subscript 1 Baseline left-parenthesis t right-parenthesis minus ModifyingAbove upper S With bar Subscript 2 Baseline left-parenthesis t right-parenthesis right-parenthesis equals StartFraction 1 Over n squared EndFraction left-parenthesis upper V 12 Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis t right-parenthesis plus upper V 12 Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis right-parenthesis

where

StartLayout 1st Row 1st Column upper V 12 Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartSet sigma-summation Underscript j equals 1 Overscript n Endscripts left-bracket normal e Superscript bold-italic beta prime bold-italic xi Super Subscript 1 j Superscript Baseline ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 1 j Baseline right-parenthesis minus normal e Superscript bold-italic beta prime bold-italic xi Super Subscript 2 j Superscript Baseline ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 2 j Baseline right-parenthesis right-bracket EndSet squared sigma-summation Underscript t Subscript i Baseline less-than-or-equal-to t Endscripts StartFraction d left-parenthesis t Subscript i Baseline right-parenthesis Over left-bracket upper S Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma t Subscript i Baseline right-parenthesis right-bracket squared EndFraction 2nd Row 1st Column upper V 12 Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartSet sigma-summation Underscript j equals 1 Overscript n Endscripts left-bracket ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 1 j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript 1 j Baseline right-parenthesis minus ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 2 j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript 2 j Baseline right-parenthesis right-bracket EndSet prime script upper I Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis 3rd Row 1st Column Blank 2nd Column Blank 3rd Column StartSet sigma-summation Underscript j equals 1 Overscript n Endscripts left-bracket ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 1 j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript 1 j Baseline right-parenthesis minus ModifyingAbove upper S With caret left-parenthesis t comma bold-italic xi Subscript 2 j Baseline right-parenthesis upper H left-parenthesis t comma bold-italic xi Subscript 2 j Baseline right-parenthesis right-bracket EndSet EndLayout

Confidence Intervals for the Survivor Function

When the computation of confidence limits for the survivor function upper S left-parenthesis t right-parenthesis is based on the asymptotic normality of the survival estimator ModifyingAbove upper S With caret left-parenthesis t right-parenthesis—which can be the Breslow estimator ModifyingAbove upper S With caret Subscript upper B Baseline left-parenthesis t right-parenthesis, the Fleming-Harrington estimator ModifyingAbove upper S With caret Subscript upper F Baseline left-parenthesis t right-parenthesis, or the product-limit estimator ModifyingAbove upper S With caret Subscript upper P Baseline left-parenthesis t right-parenthesis—the approximate confidence interval might include impossible values outside the range [0,1] at extreme values of t. This problem can be avoided by applying the asymptotic normality to a transformation of upper S left-parenthesis t right-parenthesis for which the range is unrestricted. In addition, certain transformed confidence intervals for upper S left-parenthesis t right-parenthesis perform better than the usual linear confidence intervals (Borgan and Liestøl 1990). The CLTYPE= option in the BASELINE statement enables you to choose one of the following transformations: the log-log function, the log function, and the linear function.

Let g be the transformation that is being applied to the survivor function upper S left-parenthesis t right-parenthesis. By the delta method, the standard error of g left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis is estimated by

tau left-parenthesis t right-parenthesis equals ModifyingAbove sigma With caret left-bracket g left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis right-bracket equals g prime left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis ModifyingAbove sigma With caret left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket

where g prime is the first derivative of the function g. The 100(1–alpha)% confidence interval for upper S left-parenthesis t right-parenthesis is given by

g Superscript negative 1 Baseline StartSet g left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket plus-or-minus z Subscript StartFraction alpha Over 2 EndFraction Baseline g prime left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket ModifyingAbove sigma With caret left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket EndSet

where g Superscript negative 1 is the inverse function of g. The choices for the transformation g are as follows:

  • CLTYPE=NORMAL specifies linear transformation, which is the same as having no transformation in which g is the identity. The 100(1–alpha)% confidence interval for upper S left-parenthesis t right-parenthesis is given by

    ModifyingAbove upper S With caret left-parenthesis t right-parenthesis minus z Subscript StartFraction alpha Over 2 EndFraction Baseline ModifyingAbove sigma With caret left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket less-than-or-equal-to upper S left-parenthesis t right-parenthesis less-than-or-equal-to ModifyingAbove upper S With caret left-parenthesis t right-parenthesis plus z Subscript StartFraction alpha Over 2 EndFraction Baseline ModifyingAbove sigma With caret left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket
  • CLTYPE=LOG specifies log transformation. The estimated variance of log left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis is ModifyingAbove tau With caret squared left-parenthesis t right-parenthesis equals StartFraction ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis Over ModifyingAbove upper S With caret squared left-parenthesis t right-parenthesis EndFraction period The 100(1–alpha)% confidence interval for upper S left-parenthesis t right-parenthesis is given by

    ModifyingAbove upper S With caret left-parenthesis t right-parenthesis exp left-parenthesis minus z Subscript StartFraction alpha Over 2 EndFraction Baseline ModifyingAbove tau With caret left-parenthesis t right-parenthesis right-parenthesis less-than-or-equal-to upper S left-parenthesis t right-parenthesis less-than-or-equal-to ModifyingAbove upper S With caret left-parenthesis t right-parenthesis exp left-parenthesis z Subscript StartFraction alpha Over 2 EndFraction Baseline ModifyingAbove tau With caret left-parenthesis t right-parenthesis right-parenthesis
  • CLTYPE=LOGLOG specifies log-log transformation. The estimated variance of log left-parenthesis minus log left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis is ModifyingAbove tau With caret squared left-parenthesis t right-parenthesis equals StartFraction ModifyingAbove sigma With caret squared left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket Over left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis log left-parenthesis ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-parenthesis right-bracket squared EndFraction period The 100(1–alpha)% confidence interval for upper S left-parenthesis t right-parenthesis is given by

    left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket Superscript exp left-parenthesis z Super Subscript StartFraction alpha Over 2 EndFraction Superscript ModifyingAbove tau With caret left-parenthesis t right-parenthesis right-parenthesis Baseline less-than-or-equal-to upper S left-parenthesis t right-parenthesis less-than-or-equal-to left-bracket ModifyingAbove upper S With caret left-parenthesis t right-parenthesis right-bracket Superscript exp left-parenthesis minus z Super Subscript StartFraction alpha Over 2 EndFraction Superscript ModifyingAbove tau With caret left-parenthesis t right-parenthesis right-parenthesis
Last updated: March 08, 2022