Breslow, N. E., and Clayton, D. G. (1993). “Approximate Inference in Generalized Linear Mixed Models.” Journal of the American Statistical Association 88:9–25.
Brown, H., and Prescott, R. (1999). Applied Mixed Models in Medicine. New York: John Wiley & Sons.
Clayton, D. G., and Kaldor, J. (1987). “Empirical Bayes Estimates of Age-Standardized Relative Risks for Use in Disease Mapping.” Biometrics 43:671–681.
Davidian, M., and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data. New York: Chapman & Hall.
Dias, S., and Ades, A. E. (2016). “Absolute or Relative Effects? Arm-Based Synthesis of Trial Data.” Research Synthesis Methods 7:23–28.
Eilers, P. H. C., and Marx, B. D. (1996). “Flexible Smoothing with B-Splines and Penalties.” Statistical Science 11:89–121. With discussion.
Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: John Wiley & Sons.
Gamerman, D. (1997). “Sampling from the Posterior Distribution in Generalized Linear Models.” Statistics and Computing 7:57–68.
Gelman, A., and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.
Hoffman, M. D., and Gelman, A. (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15:1351–1381.
Huynh, H., and Feldt, L. S. (1970). “Conditions Under Which Mean Square Ratios in Repeated Measurements Designs Have Exact F-Distributions.” Journal of the American Statistical Association 65:1582–1589.
Ibrahim, J. G., and Chen, M.-H. (2000). “Power Prior Distributions for Regression Models.” Statistical Science 15:46–60.
Ibrahim, J. G., Chen, M.-H., Gwon, Y., and Chen, F. (2015). “The Power Prior: Theory and Applications.” Statistics in Medicine 34:3724–3749.
Jennrich, R. I., and Schluchter, M. D. (1986). “Unbalanced Repeated-Measures Models with Structured Covariance Matrices.” Biometrics 42:805–820.
Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). “Markov Chain Monte Carlo in Practice: A Roundtable Discussion.” American Statistician 52:93–100.
Kenward, M. G. (1987). “A Method for Comparing Profiles of Repeated Measurements.” Journal of the Royal Statistical Society, Series C 36:296–308.
Kiernan, K. (2018). “Insights into Using the GLIMMIX Procedure to Model Categorical Outcomes with Random Effects.” In Proceedings of the SAS Global Forum 2018 Conference. Cary, NC: SAS Institute Inc. https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2179-2018.pdf.
Lee, A. W. (2014). “Review of Mixed Treatment Comparisons in Published Systematic Reviews Shows Marked Increase Since 2009.” Journal of Clinical Epidemiology 67:138–143.
Lin, L., Zhang, J., Hodges, J. S., and Chu, H. (2017). “Performing Arm-Based Network Meta-analysis in R with the pcnetmeta Package.” Journal of Statistical Software 80:1–25.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., and Schabenberger, O. (2006). SAS for Mixed Models. 2nd ed. Cary, NC: SAS Institute Inc.
Little, R. J. A., and Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: John Wiley & Sons.
Macchiavelli, R. E., and Arnold, S. F. (1994). “Variable Order Ante-dependence Models.” Communications in Statistics—Theory and Methods 23:2683–2699.
McCullagh, P. (1980). “Regression Models for Ordinal Data.” Journal of the Royal Statistical Society, Series B 42:109–142.
McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.
Neal, R. M. (2011). “MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, 113–161. Boca Raton, FL: CRC Press.
Neuenschwander, B., Branson, M., and Spiegelhalter, D. J. (2009). “A Note on the Power Prior.” Statistics in Medicine 28:3562–3566.
O’Malley, A. J., and Zaslavsky, A. M. (2008). “Domain-Level Covariance Analysis for Multilevel Survey Data with Structured Nonresponse.” Journal of the American Statistical Association 103:1405–1418.
Patel, H. I. (1991). “Analysis of Incomplete Data from a Clinical Trial with Repeated Measurements.” Biometrika 78:609–619.
Pothoff, R. F., and Roy, S. N. (1964). “A Generalized Multivariate Analysis of Variance Model Useful Especially for Growth Curve Problems.” Biometrika 51:313–326.
Rubin, D. B. (1976). “Inference and Missing Data.” Biometrika 63:581–592.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002). “Bayesian Measures of Model Complexity and Fit.” Journal of the Royal Statistical Society, Series B 64:583–616. With discussion.
Stokes, M. E., Davis, C. S., and Koch, G. G. (2012). Categorical Data Analysis Using SAS. 3rd ed. Cary, NC: SAS Institute Inc.
Vonesh, E. F. (2012). Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS. Cary, NC: SAS Institute Inc.
Vonesh, E. F., Chinchilli, V. M., and Pu, K. (1996). “Goodness-of-Fit in Generalized Nonlinear Mixed-Effects Models.” Biometrics 52:572–587.