The CALIS Procedure

Output Data Sets

OUTEST= Data Set

The OUTEST= (or OUTVAR=) data set is of TYPE=EST and contains the final parameter estimates, the gradient, the Hessian, and boundary and linear constraints. For METHOD=ML (with or without the ROBUST option), METHOD=FIML, METHOD=GLS, and METHOD=WLS, the OUTEST= data set also contains the approximate standard errors, the information matrix (crossproduct Jacobian), and the approximate covariance matrix of the parameter estimates ((generalized) inverse of the information matrix). If there are linear or nonlinear equality or active inequality constraints at the solution, the OUTEST= data set also contains Lagrange multipliers, the projected Hessian matrix, and the Hessian matrix of the Lagrange function.

The OUTEST= data set can be used to save the results of an optimization by PROC CALIS for another analysis with either PROC CALIS or another SAS procedure. Saving results to an OUTEST= data set is advised for expensive applications that cannot be repeated without considerable effort.

The OUTEST= data set contains the BY variables, two character variables _TYPE_ and _NAME_, t numeric variables corresponding to the parameters used in the model, a numeric variable _RHS_ (right-hand side) that is used for the right-hand-side value b Subscript i of a linear constraint or for the value f equals f left-parenthesis x right-parenthesis of the objective function at the final point x Superscript asterisk of the parameter space, and a numeric variable _ITER_ that is set to zero for initial values, set to the iteration number for the OUTITER output, and set to missing for the result output.

The _TYPE_ observations in Table 1 are available in the OUTEST= data set, depending on the request.

Table 1: _TYPE_ Observations in the OUTEST= Data Set

_TYPE_ Description
ACTBC

If there are active boundary constraints at the solution x Superscript asterisk, three observations indicate which of the parameters are actively constrained, as follows:

_NAME_ Description
GE indicates the active lower bounds
LE indicates the active upper bounds
EQ indicates the active masks

COV Contains the approximate covariance matrix of the parameter estimates; used in computing the approximate standard errors.
COVRANK contains the rank of the covariance matrix of the parameter estimates.
CRPJ_LF Contains the Hessian matrix of the Lagrange function (based on CRPJAC).
CRPJAC Contains the approximate Hessian matrix used in the optimization process. This is the inverse of the information matrix.
EQ If linear constraints are used, this observation contains the ith linear constraint sigma-summation Underscript j Endscripts a Subscript i j Baseline x Subscript j Baseline equals b Subscript i. The parameter variables contain the coefficients a Subscript i j, j equals 1 comma ellipsis comma n, the _RHS_ variable contains b Subscript i, and _NAME_=ACTLC or _NAME_=LDACTLC.
GE If linear constraints are used, this observation contains the ith linear constraint sigma-summation Underscript j Endscripts a Subscript i j Baseline x Subscript j Baseline greater-than-or-equal-to b Subscript i. The parameter variables contain the coefficients a Subscript i j, j equals 1 comma ellipsis comma n, and the _RHS_ variable contains b Subscript i. If the constraint i is active at the solution x Superscript asterisk, then _NAME_=ACTLC or _NAME_=LDACTLC.
GRAD Contains the gradient of the estimates.
GRAD_LF Contains the gradient of the Lagrange function. The _RHS_ variable contains the value of the Lagrange function.
HESSIAN Contains the Hessian matrix.
HESS_LF Contains the Hessian matrix of the Lagrange function (based on HESSIAN).
INFORMAT Contains the information matrix of the parameter estimates (only for METHOD=ML, METHOD=GLS, or METHOD=WLS).
INITGRAD Contains the gradient of the starting estimates.
INITIAL Contains the starting values of the parameter estimates.
JACNLC Contains the Jacobian of the nonlinear constraints evaluated at the final estimates.
LAGM BC

Contains Lagrange multipliers for masks and active boundary constraints.

_NAME_ Description
GE Indicates the active lower bounds
LE Indicates the active upper bounds
EQ Indicates the active masks

LAGM LC

Contains Lagrange multipliers for linear equality and active inequality constraints in pairs of observations containing the constraint number and the value of the Lagrange multiplier.

_NAME_ Description
LEC_NUM Number of the linear equality constraint
LEC_VAL Corresponding Lagrange multiplier value
LIC_NUM Number of the linear inequality constraint
LIC_VAL Corresponding Lagrange multiplier value

LAGM NLC

contains Lagrange multipliers for nonlinear equality and active inequality constraints in pairs of observations that contain the constraint number and the value of the Lagrange multiplier.

_NAME_ Description
NLEC_NUM Number of the nonlinear equality constraint
NLEC_VAL Corresponding Lagrange multiplier value
NLIC_NUM Number of the linear inequality constraint
NLIC_VAL Corresponding Lagrange multiplier value

LE If linear constraints are used, this observation contains the ith linear constraint sigma-summation Underscript j Endscripts a Subscript i j Baseline x Subscript j Baseline less-than-or-equal-to b Subscript i. The parameter variables contain the coefficients a Subscript i j, j equals 1 comma ellipsis comma n, and the _RHS_ variable contains b Subscript i. If the constraint i is active at the solution x Superscript asterisk, then _NAME_=ACTLC or _NAME_=LDACTLC.
LOWERBD
| LB
If boundary constraints are used, this observation contains the lower bounds. Those parameters not subjected to lower bounds contain missing values. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
NACTBC All parameter variables contain the number n Subscript abc of active boundary constraints at the solution x Superscript asterisk. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
NACTLC All parameter variables contain the number n Subscript alc of active linear constraints at the solution x Superscript asterisk that are recognized as linearly independent. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
NLC_EQ
NLC_GE
NLC_LE

Contains values and residuals of nonlinear constraints. The _NAME_ variable is described as follows:

_NAME_ Description
NLC Inactive nonlinear constraint
NLCACT Linear independent active nonlinear constraint
NLCACTLD Linear dependent active nonlinear constraint

NLDACTBC Contains the number of active boundary constraints at the solution x Superscript asterisk that are recognized as linearly dependent. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
NLDACTLC Contains the number of active linear constraints at the solution x Superscript asterisk that are recognized as linearly dependent. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
_NOBS_ Contains the number of observations.
PARMS Contains the final parameter estimates. The _RHS_ variable contains the value of the objective function.
PCRPJ_LF Contains the projected Hessian matrix of the Lagrange function (based on CRPJAC).
PHESS_LF Contains the projected Hessian matrix of the Lagrange function (based on HESSIAN).
PROJCRPJ Contains the projected Hessian matrix (based on CRPJAC).
PROJGRAD If linear constraints are used in the estimation, this observation contains the n minus n Subscript a c t values of the projected gradient bold g Subscript z Baseline equals bold upper Z prime bold g in the variables corresponding to the first n minus n Subscript a c t parameters. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.
PROJHESS Contains the projected Hessian matrix (based on HESSIAN).
STDERR Contains approximate standard errors (only for METHOD=ML, METHOD=GLS, or METHOD=WLS).
TERMINAT The _NAME_ variable contains the name of the termination criterion.
UPPERBD
| UB
If boundary constraints are used, this observation contains the upper bounds. Those parameters not subjected to upper bounds contain missing values. The _RHS_ variable contains a missing value, and the _NAME_ variable is blank.


If the technique specified by the OMETHOD= option cannot be performed (for example, no feasible initial values can be computed or the function value or derivatives cannot be evaluated at the starting point), the OUTEST= data set can contain only some of the observations (usually only the PARMS and GRAD observations).

OUTMODEL= or OUTRAM= Data Set

The OUTMODEL= (or OUTRAM=) data set is of TYPE=CALISMDL and contains the model specification, the computed parameter estimates, and the standard error estimates. This data set is intended to be reused as an INMODEL= data set to specify good initial values in a subsequent analysis by PROC CALIS.

The OUTMODEL= data set contains the following variables:

  • the BY variables, if any

  • an _MDLNUM_ variable for model numbers, if used

  • a character variable _TYPE_, which takes various values that indicate the type of model specification

  • a character variable _NAME_, which indicates the model type, parameter name, or variable name

  • a character variable _MATNR_, which indicates the matrix number (COSAN models only)

  • a character variable _VAR1_, which is the name or number of the first variable in the specification

  • a character variable _VAR2_, which is the name or number of the second variable in the specification

  • a numerical variable _ESTIM_ for the final estimate of the parameter location

  • a numerical variable _STDERR_ for the standard error estimate of the parameter location

  • a numerical variable _SDEST_ for the final standardized estimate of the parameter location

  • a numerical variable _SDSE_ for the standard error of the standardized estimate of the parameter location

Although the _SDEST_ and _SDSE_ variables are created for COSAN models, the values for these two variables are always missing because there are no rules to carry out the standardization of COSAN models.

Each observation (record) of the OUTMODEL= data set contains a piece of information regarding the model specification. Depending on the type of the specification indicated by the value of the _TYPE_ variable, the meanings of _NAME_, _VAR1_, and _VAR2_ differ. The following tables summarize the meanings of the _NAME_, _MATNR_ (COSAN models only), _VAR1_, and _VAR2_ variables for each value of the _TYPE_ variable, given the type of the model.

COSAN Models

_TYPE_= Description _NAME_ _MATNR_ _VAR1_ _VAR2_
MDLTYPE Model type COSAN
VAR Variable Variable name Matrix number Column location
MATRIX Matrix Matrix name Matrix number Number of rows Number of columns
MODEL Model formula COV or MEAN Matrix number Term number Location in term
ESTIM Parameters Parameter name Matrix number Row number Column number

The value of the _NAME_ variable is COSAN for the _TYPE_=MDLTYPE observation.

The _TYPE_=VAR observations store the information about the column variables in matrices. The _NAME_ variable stores the variable names. The value of _VAR1_ indicates the column location of the variable in the matrix with the matrix number stored in _MATNR_.

The _TYPE_=MATRIX observations store the information about the model matrices. The _NAME_ variable stores the matrix names. The value of _MATNR_ indicates the corresponding matrix number. The values of_VAR1_ and _VAR2_ indicates the numbers of rows and columns, respectively, of the matrix.

The _TYPE_=MODEL observations store the covariance and mean structure formulas. The _NAME_ variable indicates whether the mean (MEAN) or covariance (COV) structure information is stored. The value of _MATNR_ indicates the matrix number in the mean or covariance structure formula. The _VAR1_ variable indicates the term number, and the _VAR2_ variable indicates the location of the matrix in the term.

The _TYPE_=ESTIM observations store the information about the parameters and their estimates. The _NAME_ variable stores the parameter names. The value of _MATNR_ indicates the matrix number. The values of _VAR1_ and _VAR2_ indicate the associated row and column numbers, respectively, of the parameter.

FACTOR Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE Model type Model type
FACTVAR Variable Variable name Variable number Variable type
LOADING Factor loading Parameter name Manifest variable Factor variable
COV Covariance Parameter name First variable Second variable
PVAR (Partial) variance Parameter name Variable
MEAN Mean or intercept Parameter name Variable
ADDCOV Added covariance Parameter name First variable Second variable
ADDPVAR Added (partial) variance Parameter name Variable
ADDMEAN Added mean or intercept Parameter name Variable

For factor models, the value of the _NAME_ variable is either EFACTOR (exploratory factor model) or CFACTOR (confirmatory factor model) for the _TYPE_=MDLTYPE observation.

The _TYPE_=FACTVAR observations store the information about the variables in the model. The _NAME_ variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_ indicates the type of the variable: either DEPV for dependent observed variables or INDF for latent factors.

Other observations specify the parameters and their estimates in the model. The _NAME_ values for these observations are the parameter names. Observation with _TYPE_=LOADING, _TYPE_=COV, or _TYPE_=ADDCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_ values of these two types of observations indicate the variables involved.

Observations with _TYPE_=PVAR, _TYPE_=MEAN, _TYPE_=ADDPVAR, or _TYPE_=ADDMEAN are for parameters that are associated with a single variable. The value of _VAR1_ indicates the variable involved.

LINEQS Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE Model type LINEQS
EQSVAR Variable Variable name Variable number Variable type
EQUATION Path coefficient Parameter Outcome variable Predictor variable
COV Covariance Parameter First variable Second variable
VARIANCE Variance Parameter Variable
MEAN Mean Parameter Variable
ADDCOV Added covariance Parameter First variable Second variable
ADDVARIA Added variance Parameter Variable
ADDINTE Added intercept Parameter Variable
ADDMEAN Added mean Parameter Variable

The value of the _NAME_ variable is LINEQS for the _TYPE_=MDLTYPE observation.

The _TYPE_=EQSVAR observations store the information about the variables in the model. The _NAME_ variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_ indicates the type of the variable. There are six types of variables in the LINEQS model:

  • DEPV for dependent observed variables

  • INDV for independent observed variables

  • DEPF for dependent latent factors

  • INDF for independent latent factors

  • INDD for independent error terms

  • INDE for independent disturbance terms

Other observations specify the parameters and their estimates in the model. The _NAME_ values for these observations are the parameter names. Observation with _TYPE_=EQUATION, _TYPE_=COV, or _TYPE_=ADDCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_ values of these two types of observations indicate the variables involved.

Observations with _TYPE_=VARIANCE, _TYPE_=MEAN, _TYPE_=ADDVARIA, _TYPE_=ADDINTE, or _TYPE_=ADDMEAN are for parameters associated with a single variable. The value of _VAR1_ indicates the variable involved.

LISMOD Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE model type LISMOD
XVAR bold x-variable Variable Variable number
YVAR bold y-variable Variable Variable number
ETAVAR bold-italic eta-variable Variable Variable number
XIVAR bold-italic xi-variable Variable Variable number
ALPHA _ALPHA_ entry Parameter Row number
BETA _BETA_ entry Parameter Row number Column number
GAMMA _BETA_ entry Parameter Row number Column number
KAPPA _KAPPA_ entry Parameter Row number
LAMBDAX _LAMBDAX_ entry Parameter Row number Column number
LAMBDAY _LAMBDAY_ entry Parameter Row number Column number
NUX _NUX_ entry Parameter Row number
NUY _NUY_ entry Parameter Row number
PHI _PHI_ entry Parameter Row number Column number
PSI _PSI_ entry Parameter Row number Column number
THETAX _THETAX_ entry Parameter Row number Column number
THETAY _THETAY_ entry Parameter Row number Column number
ADDALPHA Added _ALPHA_ entry Parameter Row number
ADDKAPPA Added _KAPPA_ entry Parameter Row number
ADDNUX Added _NUX_ entry Parameter Row number
ADDNUY Added _NUY_ entry Parameter Row number
ADDPHI Added _PHI_ entry Parameter Row number Column number
ADDPSI Added _PSI_ entry Parameter Row number Column number
ADTHETAX Added _THETAX_ entry Parameter Row number Column number
ADTHETAY Added _THETAY_ entry Parameter Row number Column number

The value of the _NAME_ variable is LISMOD for the _TYPE_=MDLTYPE observation. Other observations specify either the variables or the parameters in the model.

Observations with _TYPE_ values equal to XVAR, YVAR, ETAVAR, and XIVAR indicate the variables in the respective lists in the model. The _NAME_ variable of these observations stores the names of the variables, and the _VAR1_ variable stores the variable numbers in the respective list. The variable numbers in this data set are not arbitrary—that is, they define the variable orders in the rows and columns of the LISMOD model matrices. The _VAR2_ variable of these observations is not used.

All other observations in this data set specify the parameters in the model. The _NAME_ values of these observations are the parameter names. The corresponding _VAR1_ and _VAR2_ values of these observations indicate the row and column locations of the parameters in the LISMOD model matrices that are specified in the _TYPE_ variable. For example, when the value of _TYPE_ is ADDPHI or PHI, the parameter specified is located in the _PHI_ matrix, with its row and column numbers indicated by the _VAR1_ and _VAR2_ values, respectively. Some observations for specifying parameters do not have values in the _VAR2_ variable. This means that the associated LISMOD matrices are vectors so that the column numbers are always 1 for these observations.

MSTRUCT Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE Model type MSTRUCT
VAR Variable Variable Variable number
COVMAT Covariance Parameter Row number Column number
MEANVEC Mean Parameter Row number
ADCOVMAT Added covariance Parameter Row number Column number
AMEANVEC Added mean Parameter Row number

The value of the _NAME_ variable is MSTRUCT for the _TYPE_=MDLTYPE observation. Other observations specify either the variables or the parameters in the model.

Observations with _TYPE_ values equal to VAR indicate the variables in the model. The _NAME_ variable of these observations stores the names of the variables, and the _VAR1_ variable stores the variable numbers in the variable list. The variable numbers in this data set are not arbitrary—that is, they define the variable orders in the rows and columns of the mean and covariance matrices. The _VAR2_ variable of these observations is not used.

All other observations in this data set specify the parameters in the model. The _NAME_ values of these observations are the parameter names. The corresponding _VAR1_ and _VAR2_ values of these observations indicate the row and column locations of the parameters in the mean or covariance matrix, as specified in the _TYPE_ model. For example, when _TYPE_=COVMAT, the parameter specified is located in the covariance matrix, with its row and column numbers indicated by the _VAR1_ and _VAR2_ values, respectively. For observations with _TYPE_=MEANVEC, the _VAR2_ variable is not used because the column numbers are always 1 for parameters in the mean vector.

PATH Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE Model type PATH
PATHVAR Variable Variable name Variable number Variable type
LEFT Path coefficient Parameter Outcome variable Predictor variable
RIGHT Path coefficient Parameter Predictor variable Outcome variable
PCOV (Partial) covariance Parameter First variable Second variable
PCOVPATH (Partial) covariance path Parameter First variable Second variable
PVAR (Partial) variance Parameter Variable
PVARPATH (Partial) variance path Parameter Variable Variable
MEAN Mean or intercept Parameter Variable
ONEPATH Mean or intercept path Parameter _ONE_ Variable
ADDPCOV Added (partial) covariance Parameter First variable Second variable
ADDPVAR Added (partial) variance Parameter Variable
ADDMEAN Added mean Parameter Variable

The value of the _NAME_ variable is PATH for the _TYPE_=MDLTYPE observation.

The _TYPE_=PATHVAR observations store the information about the variables in the model. The _NAME_ variable stores the variable names. The value of _VAR1_ indicates the variable number. The value of _VAR2_ indicates the type of the variable. There are four types of variables in the PATH model:

  • DEPV for dependent observed variables

  • INDV for independent observed variables

  • DEPF for dependent latent factors

  • INDF for independent latent factors

Other observations specify the parameters in the model. The _NAME_ values for these observations are the parameter names. Observation with _TYPE_=LEFT, _TYPE_=RIGHT, _TYPE_=PCOV, or _TYPE_=ADDPCOV are for parameters that are associated with two variables. The _VAR1_ and _VAR2_ values of these two types of observations indicate the variables involved.

Observations with _TYPE_=PVAR, _TYPE_=MEAN, _TYPE_=ADDPVAR, or _TYPE_=ADDMEAN are for parameters that are associated with a single variable. The value of _VAR1_ indicates the variable involved.

RAM Models

_TYPE_= Description _NAME_ _VAR1_ _VAR2_
MDLTYPE Model type RAM
RAMVAR Variable name Variable Variable number Variable type
_A_ _A_ entry Parameter Row number Column number
_P_ _P_ entry Parameter Row number Column number
_W_ _W_ entry Parameter Row number Column number
ADD_P_ Added _P_ entry Parameter Row number Column number
ADD_W_ Added _W_ entry Parameter Row number Column number

The value of the _NAME_ variable is RAM for the _TYPE_=MDLTYPE observation.

For the _TYPE_=RAMVAR observations, the _NAME_ variable stores the variable names, the _VAR1_ variable stores the variable number, and the _VAR2_ variable stores the variable type. There are four types of variables in the PATH model:

  • DEPV for dependent observed variables

  • INDV for independent observed variables

  • DEPF for dependent latent factors

  • INDF for independent latent factors

Other observations specify the parameters in the model. The _NAME_ variable stores the parameter name. The _TYPE_ variable indicates the associated matrix with the row number indicated in _VAR1_ and column number indicated in _VAR2_.

Reading an OUTMODEL= Data Set As an INMODEL= Data Set in Subsequent Analyses

When the OUTMODEL= data set is treated as an INMODEL= data set in subsequent analyses, you need to pay attention to observations with _TYPE_ values prefixed by "ADD", "AD", or "A" (for example, ADDCOV, ADTHETAY, or AMEANVEC). These observations represent default parameter locations that are generated by PROC CALIS in a previous run. Because the context of the new analyses might be different, these observations for added parameter locations might no longer be suitable in the new runs. Hence, these observations are not read as input model information. Fortunately, after reading the INMODEL= specification in the new analyses, CALIS analyzes the new model specification again. It then adds an appropriate set of parameters in the new context when necessary. If you are certain that the added parameter locations in the INMODEL= data set are applicable, you can force the input of these observations by using the READADDPARM option in the PROC CALIS statement. However, you must be very careful about using the READADDPARM option. The added parameters from the INMODEL= data set might have the same parameter names as those for the generated parameters in the new run. This might lead to unnecessary constraints in the model.

OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=COV, TYPE=UCOV, TYPE=CORR, or TYPE=UCORR data set produced by the CORR procedure. The OUTSTAT= data set contains the following variables:

  • the BY variables, if any

  • the _GPNUM_ variable for groups numbers, if used in the analysis

  • two character variables, _TYPE_ and _NAME_

  • the manifest and the latent variables analyzed

The OUTSTAT= data set contains the following information (when available) in the observations:

  • the mean and standard deviation

  • the skewness and kurtosis (if the DATA= data set is a raw data set and the KURTOSIS option is specified)

  • the number of observations

  • if the WEIGHT statement is used, sum of the weights

  • the correlation or covariance matrix to be analyzed

  • the robust covariances, standard deviations, and means for robust estimation

  • the predicted correlation or covariance matrix

  • the standardized or normalized residual correlation or covariance matrix

  • if the model contains latent variables, the predicted covariances between latent and manifest variables and the latent variable (or factor) score regression coefficients (see the PLATCOV option )

In addition, for FACTOR models the OUTSTAT= data set contains:

  • the unrotated factor loadings, the error variances, and the matrix of factor correlations

  • the standardized factor loadings and factor correlations

  • the rotation matrix, rotated factor loadings, and factor correlations

  • standardized rotated factor loadings and factor correlations

If effects are analyzed, the OUTSTAT= data set also contains:

  • direct, indirect, and total effects and their standard error estimates

  • standardized direct, indirect, and total effects and their standard error estimates

Each observation in the OUTSTAT= data set contains some type of statistic as indicated by the _TYPE_ variable. The values of the _TYPE_ variable are shown in the following tables:

Basic Descriptive Statistics

Value of _TYPE_ Contents
ADJCOV Adjusted covariances
ADJSTD Adjusted standard deviations
CORR Correlations
COV Covariances
KURTOSIS Univariate kurtosis
MEAN Means
N Sample size
NPARTIAL Number of partial variables
PARTCOV Covariances after partialling
PARTCORR Correlations after partialling
PARTMEAN Means after partialling
PARTSTD Standard deviations after partialling
ROBCOV Robust covariances
ROBMEAN Robust means
ROBSTD Robust standard deviations
SKEWNESS Univariate skewness
STD Standard deviations
SUMWGT Sum of weights (if the WEIGHT statement is used)
VARDIV Variance divisor
VARDIVAJ Variance divisor adjustment

For the _TYPE_=CORR or COV observations, the _NAME_ variable contains the name of the manifest variable that corresponds to each row for the covariance or correlation. For other observations, _NAME_ is blank.

Predicted Moments and Residuals

Value of _TYPE_ Contents
METHOD=DWLS
DWLSPRED DWLS predicted moments
DWLSRES DWLS raw residuals
DWLSSRES DWLS variance standardized residuals
METHOD=GLS
GLSASRES GLS asymptotically standardized residuals
GLSNRES GLS normalized residuals
GLSPRED GLS predicted moments
GLSRES GLS raw residuals
GLSSRES GLS variance standardized residuals
METHOD=ML or FIML
MAXASRES ML asymptotically standardized residuals
MAXNRES ML normalized residuals
MAXPRED ML predicted moments
MAXRES ML raw residuals
MAXSRES ML variance standardized residuals
METHOD=ULS
ULSPRED ULS predicted moments
ULSRES ULS raw residuals
ULSSRES ULS variance standardized residuals
METHOD=WLS
WLSASRES WLS asymptotically standardized residuals
WLSNRES WLS normalized residuals
WLSPRED WLS predicted moments
WLSRES WLS raw residuals
WLSSRES WLS variance standardized residuals

For residuals or predicted moments of means, the _NAME_ variable is a fixed value denoted by _Mean_. For residuals or predicted moments for covariances or correlations, the _NAME_ variable is used for names of variables.

Effects and Latent Variable Scores Regression Coefficients

Value of _TYPE_ Contents
Unstandardized Effects
DEFFECT Direct effects
DEFF_SE Standard error estimates for direct effects
IEFFECT Indirect effects
IEFF_SE Standard error estimates for indirect effects
TEFFECT Total effects
TEFF_SE Standard error estimates for total effects
Standardized Effects
SDEFF Standardized direct effects
SDEFF_SE Standard error estimates for standardized direct effects
SIEFF Standardized indirect effects
SIEFF_SE Standard error estimates for standardized indirect effects
STEFF Standardized total effects
STEFF_SE Standard error estimates for standardized total effects
Latent Variable Scores Coefficients
LSSCORE Latent variable (or factor) scores regression coefficients for ULS method
SCORE Latent variable (or factor) scores regression coefficients other than ULS method

For latent variable or factor scores coefficients, the _NAME_ variable contains factor or latent variables in the observations. For other observations, the _NAME_ variable contains manifest or latent variable names.

You can use the latent variable score regression coefficients with PROC SCORE to compute factor scores. If the analyzed matrix is a covariance rather than a correlation matrix, the _TYPE_=STD observation is not included in the OUTSTAT= data set. In this case, the standard deviations can be obtained from the diagonal elements of the covariance matrix. Dropping the _TYPE_=STD observation prevents PROC SCORE from standardizing the observations before computing the factor scores.

Factor Analysis Results

Value of _TYPE_ Contents
ERRVAR Error variances
FCOV Factor correlations or covariances
LOADINGS Unrotated factor loadings
RFCOV Rotated factor correlations or covariances
RLOADING Rotated factor loadings
ROTMAT Rotation matrix
STDERVAR Error variances in standardized solutions
STDFCOV Standardized factor correlations
STDLOAD Standardized factor loadings
STDRFCOV Standardized rotated factor correlations or covariances
STDRLOAD Standardized rotated factor loadings

For the _TYPE_=ERRVAR observation, the _NAME_ variable is blank. For all other observations, the _NAME_ variable contains factor names.

OUTWGT= Data Set

You can create an OUTWGT= data set that is of TYPE=WEIGHT and contains the weight matrix used in generalized, weighted, or diagonally weighted least squares estimation. The OUTWGT= data set contains the weight matrix on which the WRIDGE= and the WPENALTY= options are applied. However, if you input the inverse of the weight matrix with the INWGT= and INWGTINV options (or the INWGT(INV)= option alone) in the same analysis, the OUTWGT= data set contains the same elements of the inverse of the weight matrix. For unweighted least squares or maximum likelihood estimation, no OUTWGT= data set can be written. The weight matrix used in maximum likelihood estimation is dynamically updated during optimization. When the ML solution converges, the final weight matrix is the same as the predicted covariance or correlation matrix, which is included in the OUTSTAT= data set (observations with _TYPE_ =MAXPRED).

For generalized and diagonally weighted least squares estimation, the weight matrices bold upper W of the OUTWGT= data set contain all elements w Subscript i j, where the indices i and j correspond to all manifest variables used in the analysis. Let v a r n a m Subscript i be the name of the ith variable in the analysis. In this case, the OUTWGT= data set contains n observations with the variables shown in the following table:

Variable Contents
_TYPE_ WEIGHT (character)
_NAME_ Name of variable v a r n a m Subscript i (character)
v a r n a m Subscript 1 Weight w Subscript i Baseline 1 for variable v a r n a m Subscript 1 (numeric)
vertical-ellipsis vertical-ellipsis
v a r n a m Subscript n Weight w Subscript i n for variable v a r n a m Subscript n (numeric)

For weighted least squares estimation, the weight matrix bold upper W of the OUTWGT= data set contains only the nonredundant elements w Subscript i j comma k l. In this case, the OUTWGT= data set contains n left-parenthesis n plus 1 right-parenthesis left-parenthesis 2 n plus 1 right-parenthesis slash 6 observations with the variables shown in the following table:

Variable Contents
_TYPE_ WEIGHT (character)
_NAME_ Name of variable v a r n a m Subscript i (character)
_NAM2_ Name of variable v a r n a m Subscript j (character)
_NAM3_ Name of variable v a r n a m Subscript k (character)
v a r n a m Subscript 1 Weight w Subscript i j comma k Baseline 1 for variable v a r n a m Subscript 1 (numeric)
vertical-ellipsis vertical-ellipsis
v a r n a m Subscript n Weight w Subscript i j comma k n for variable v a r n a m Subscript n (numeric)

Symmetric redundant elements are set to missing values.

OUTFIT= Data Set

You can create an OUTFIT= data set that is of TYPE=CALISFIT and that contains the values of the fit indices of your analysis. If you use two estimation methods such as LSML or LSWLS, the fit indices are for the second analysis. An OUTFIT=data set contains the following variables:

  • a character variable _TYPE_ for the types of fit indices

  • a numerical variable IndexCode for the codes of the fit indices

  • a character variable FitIndex for the names of the fit indices

  • a numerical variable FitValue for the numerical values of the fit indices

  • a character variable PrintChar for the character-formatted fit index values.

The possible values of _TYPE_ are:

ModelInfo:

basic modeling statistics and information

Absolute:

stand-alone fit indices

Parsimony:

fit indices that take model parsimony into account

Incremental:

fit indices that are based on comparison with a baseline model

Possible Values of FitIndex When _TYPE_=ModelInfo

Value of FitIndex Description
Number of Observations Number of observations used in the analysis
Number of Complete Observations Number of complete observations (METHOD=FIML)
Number of Incomplete Observations Number of incomplete observations (METHOD=FIML)
Number of Variables Number of variables
Number of Moments Number of mean or covariance elements
Number of Parameters Number of parameters
Number of Active Constraints Number of active constraints in the solution
Saturated Model Estimation Estimation status of the saturated model (METHOD=FIML)
Saturated Model Function Value Saturated model function value (METHOD=FIML)
Saturated Model -2 Log-Likelihood Saturated model –2 log-likelihood function value (METHOD=FIML)
Baseline Model Estimation Estimation status of the baseline model (METHOD=FIML)
Baseline Model Function Value Baseline model function value
Baseline Model -2 Log-Likelihood Baseline model –2 log-likelihood function value (METHOD=FIML)
Baseline Model Chi-Square Baseline model chi-square value
Baseline Model Chi-Square DF Baseline model chi-square degrees of freedom
Baseline Model DF Baseline model degrees of freedom (METHOD=ULS or METHOD=DWLS)
Pr > Baseline Model Chi-Square p-value of the baseline model chi-square
SB-Scaled Base Model Chi-Square Satorra-Bentler scaled chi-square for the baseline model
Pr > SB-Scaled Base Model Chi-Square p-value of the Satorra-Bentler scaled chi-square for the baseline model

Possible Values of FitIndex When _TYPE_=Absolute

Value of FitIndex Description
Fit Function Fit function value
-2 Log-Likelihood –2 log-likelihood function value for the model (METHOD=FIML)
Chi-Square Model chi-square value
Chi-Square DF Degrees of freedom for the model chi-square test
Model DF Degrees of freedom for model (METHOD=ULS or METHOD=DWLS)
Pr > Chi-Square Probability of obtaining a larger chi-square than the observed value
SB-Scaled Model Chi-Square Satorra-Bentler scaled chi-square for the model
Pr > SB-Scaled Model Chi-Square Probability of obtaining a larger chi-square than the observed Satorra-Bentler scaled chi-square value
Elliptic Corrected Chi-Square Elliptic-corrected chi-square value
Pr > Elliptic Corr. Chi-Square Probability of obtaining a larger elliptic-corrected chi-square value
Z-test of Wilson and Hilferty Z-test of Wilson and Hilferty
Hoelter Critical N N value that makes a significant chi-square when multiplied to the fit function value
Root Mean Square Residual (RMR) Root mean square residual
Standardized RMR (SRMR) Standardized root mean square residual
Goodness of Fit Index (GFI) Jöreskog and Sörbom goodness-of-fit index

Possible Values of FitIndex When _TYPE_=Parsimony

Value of FitIndex Description
Adjusted GFI (AGFI) Goodness-of-fit index adjusted for the degrees of freedom of the model
Parsimonious GFI Mulaik et al. (1989) modification of the GFI
RMSEA Estimate Steiger and Lind (1980) root mean square error of approximation
RMSEA Lower r% Confidence Limit Lower r%Superscript 1 confidence limit for RMSEA
RMSEA Upper r% Confidence Limit Upper r%Superscript 1 confidence limit for RMSEA
Probability of Close Fit Browne and Cudeck (1993) test of close fit
ECVI Estimate Expected cross-validation index
ECVI Lower r% Confidence Limit Lower r%squared confidence limit for ECVI
ECVI Upper r% Confidence Limit Upper r%squared confidence limit for ECVI
Akaike Information Criterion Akaike information criterion
Bozdogan CAIC Bozdogan (1987) consistent AIC
Schwarz Bayesian Criterion Schwarz (1978) Bayesian criterion
McDonald Centrality McDonald and Marsh (1988) measure of centrality

1. The value of r is one minus the ALPHARMS= value. By default, r=90. 2. The value of r is one minus the ALPHAECV= value. By default, r=90.

Possible Values of FitIndex When _TYPE_=Incremental

Value of FitIndex Description
Bentler Comparative Fit Index Bentler (1985) comparative fit index
Bentler-Bonett NFI Bentler and Bonett (1980) normed fit index
Bentler-Bonett Non-normed Index Bentler and Bonett (1980) nonnormed fit index
Bollen Normed Index Rho1 Bollen normed rho 1
Bollen Non-normed Index Delta2 Bollen nonnormed delta 2
James et al. Parsimonious NFI James, Mulaik, and Brett (1982) parsimonious normed fit index

Last updated: December 09, 2022