/*-----------------------------------------------------------------
S A S S A M P L E L I B R A R Y
NAME: fmmgs1
TITLE: First Getting Started Example for PROC FMM
Mixtures of binomial distributions
PRODUCT: STAT
SYSTEM: ALL
KEYS: Student's yeast cell counts
Maximum likelihood and Bayesian analysis
PROCS: FMM
DATA:
SUPPORT: Dave Kessler
REF: Pearson, K. (1915), On certain types of compound
frequency distributions in which the components
can be individually described by binomial series.
Biometrika, 11, 139--144.
MISC:
-----------------------------------------------------------------*/
data yeast;
input count f;
n = 5;
datalines;
0 213
1 128
2 37
3 18
4 3
5 1
;
proc fmm data=yeast;
model count/n = / k=2;
freq f;
run;
proc fmm data=yeast;
model count/n = / k=2;
freq f;
output out=fmmout pred(components) posterior;
run;
data fmmout;
set fmmout;
PredCount_1 = post_1 * f;
PredCount_2 = post_2 * f;
run;
proc print data=fmmout;
run;
ods graphics on;
proc fmm data=yeast seed=12345;
model count/n = / k=2;
freq f;
performance cpucount=2;
bayes;
run;
ods graphics off;