/*-----------------------------------------------------------------
S A S S A M P L E L I B R A R Y
NAME: hpfmmgs1
TITLE: First Getting Started Example for PROC HPFMM
Mixtures of binomial distributions
PRODUCT: STAT
SYSTEM: ALL
KEYS: Student's yeast cell counts
Maximum likelihood and Bayesian analysis
PROCS: HPFMM
DATA:
SUPPORT: Dave Kessler
REF: Pearson, K. (1915), On certain types of compound
frequency distributions in which the components
can be individually described by binomial series.
Biometrika, 11, 139--144.
MISC:
-----------------------------------------------------------------*/
data yeast;
input count f;
n = 5;
datalines;
0 213
1 128
2 37
3 18
4 3
5 1
;
proc hpfmm data=yeast;
model count/n = / k=2;
freq f;
run;
proc hpfmm data=yeast;
model count/n = / k=2;
freq f;
id f n;
output out=hpfmmout pred(components) posterior;
run;
data hpfmmout;
set hpfmmout;
PredCount_1 = post_1 * f;
PredCount_2 = post_2 * f;
run;
proc print data=hpfmmout;
run;
ods graphics on;
proc hpfmm data=yeast seed=12345;
model count/n = / k=2;
freq f;
performance nthreads=2;
bayes;
run;
ods graphics off;