The GENMOD Procedure

ODS Table Names

PROC GENMOD assigns a name to each table that it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed separately in Table 13 for a maximum likelihood analysis, in Table 14 for a Bayesian analysis, and in Table 15 for an Exact analysis. For more information about ODS, see ChapterĀ 23, Using the Output Delivery System.

Table 13: ODS Tables Produced in PROC GENMOD for a Classical Analysis

ODS Table Name Description Statements Option
AssessmentSummary Model assessment summary ASSESS Default
ClassLevels Classification variable levels CLASS Default
Contrasts Tests of contrasts CONTRAST Default
ContrastCoef Contrast coefficients CONTRAST E
ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate correlation matrix MODEL CORRB
CovB Parameter estimate covariance matrix MODEL COVB
Estimates Estimates of contrasts ESTIMATE Default
EstimateCoef Contrast coefficients ESTIMATE E
GEEEmpPEst GEE parameter estimates with empirical standard errors REPEATED Default
GEEExchCorr GEE exchangeable working correlation value REPEATED TYPE=EXCH
GEEFitCriteria GEE QIC fit criteria REPEATED Default
GEELogORInfo GEE log odds ratio model information REPEATED LOGOR=
GEEModInfo GEE model information REPEATED Default
GEEModPEst GEE parameter estimates with model-based standard errors REPEATED MODELSE
GEENCorr GEE model-based correlation matrix REPEATED MCORRB
GEENCov GEE model-based covariance matrix REPEATED MCOVB
GEERCorr GEE empirical correlation matrix REPEATED ECORRB
GEERCov GEE empirical covariance matrix REPEATED ECOVB
GEEWCorr GEE working correlation matrix REPEATED CORRW
IterContrasts Iteration history for contrasts MODEL CONTRAST ITPRINT
IterLRCI Iteration history for likelihood ratio confidence intervals MODEL LRCI ITPRINT
IterParms Iteration history for parameter estimates MODEL ITPRINT
IterParmsGEE Iteration history for GEE parameter estimates MODEL REPEATED ITPRINT
IterType3 Iteration history for Type 3 statistics MODEL TYPE3 ITPRINT
LRCI Likelihood ratio confidence intervals MODEL LRCI ITPRINT
Coef Coefficients for least squares means LSMEANS E
Diffs Least squares means differences LSMEANS DIFF
LSMeans Least squares means LSMEANS Default
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
LastGEEGrad Last evaluation of the generalized gradient and Hessian MODEL REPEATED ITPRINT
LastGradHess Last evaluation of the gradient and Hessian MODEL ITPRINT
LinDep Linearly dependent rows of contrasts CONTRAST Default
ModelANOVA Type 3 tests or joint tests MODEL TYPE3 without REPEATED | ZEROMODEL
ModelInfo Model information MODEL Default
Modelfit Goodness-of-fit statistics MODEL Default without REPEATED
NObs Number of observations summary Default
NonEst Nonestimable rows of contrasts CONTRAST Default
ObStats Observation-wise statistics MODEL OBSTATS | CL |
PREDICTED |
RESIDUALS | XVARS
ParameterEstimates Parameter estimates MODEL Default without REPEATED |
PRINTMLE with REPEATED
ParmInfo Parameter indices MODEL Default
ResponseProfile Frequency counts for multinomial and binary models MODEL DIST=MULTINOMIAL |
DIST=BINOMIAL
Type1 Type 1 tests MODEL TYPE1
Type3 Type 3 tests or joint tests for GEE model MODEL REPEATED TYPE3
Type3Zero Type 3 tests or joint tests for zero-inflated model MODEL ZEROMODEL TYPE3
ZeroParameterEstimates Parameter estimates for zero-inflated model ZEROMODEL Default


Table 14: ODS Tables Produced in PROC GENMOD for a Bayesian Analysis

ODS Table Name Description Statement Option
AutoCorr Autocorrelations of the posterior samples BAYES Default
ClassLevels Classification variable levels CLASS Default
CoeffPrior Prior distribution of the regression coefficients BAYES Default
ConvergenceStatus Convergence status of maximum likelihood estimation MODEL Default
Corr Correlation matrix of the posterior samples BAYES SUMMARY=CORR
ESS Effective sample size BAYES Default
FitStatistics Fit statistics BAYES Default
Gelman Gelman and Rubin convergence diagnostics BAYES DIAG=GELMAN
Geweke Geweke convergence diagnostics BAYES Default
Heidelberger Heidelberger and Welch convergence diagnostics BAYES DIAG=HEIDELBERGER
InitialValues Initial values of the Markov chains BAYES Default
IterParms Iteration history for parameter estimates MODEL ITPRINT
LastGradHess Last evaluation of the gradient and Hessian for maximum likelihood estimation MODEL ITPRINT
MCSE Monte Carlo standard errors BAYES DIAG=MCSE
ModelInfo Model information PROC Default
NObs Number of observations Default
ParameterEstimates Maximum likelihood estimates of model parameters MODEL Default
ParmInfo Parameter indices MODEL Default
ParmPrior Prior distribution for scale and shape BAYES Default
PostIntervals HPD and equal-tail intervals of the posterior samples BAYES Default
PosteriorSample Posterior samples (for ODS output data set only) BAYES
PostSummaries Summary statistics of the posterior samples BAYES Default
Raftery Raftery and Lewis convergence diagnostics BAYES DIAG=RAFTERY


Table 15: ODS Tables Produced in PROC GENMOD for an Exact Analysis

ODS Table Name Description Statement Option
ExactParmEst Parameter estimates EXACT ESTIMATE, ESTIMATE=PARM, ESTIMATE=BOTH
ExactTests Conditional exact tests EXACT Default
ExpExactParmEst Exact odds ratios EXACT ESTIMATE=ODDS,
ESTIMATE=BOTH
NStrataIgnored Number of uninformative strata STRATA Default
StrataSummary Number of strata with specific response frequencies STRATA Default
StrataInfo Event and nonevent frequencies for each stratum STRATA INFO
SuffStats Sufficient statistics EXACT OUTDIST=


Last updated: December 09, 2022