The GLIMMIX Procedure

Example 52.16 Diallel Experiment with Multimember Random Effects

(View the complete code for this example.)

Cockerham and Weir (1977) apply variance component models in the analysis of reciprocal crosses. In these experiments, it is of interest to separate genetically determined variation from variation determined by parentage. This example analyzes the data for the diallel experiment in Cockerham and Weir (1977, Appendix C). A diallel is a mating design that consists of all possible crosses of a set of parental lines. It includes reciprocal crossings, but not self-crossings.

The basic model for a cross is upper Y Subscript i j k Baseline equals beta plus alpha Subscript i j Baseline plus epsilon Subscript i j k, where upper Y Subscript i j k is the observation for offspring k from maternal parent i and paternal parent j. The various models in Cockerham and Weir (1977) are different decompositions of the term alpha Subscript i j, the total effect that is due to the parents. Their "bio model" (model (c)) decomposes alpha Subscript i j into

alpha Subscript i j Baseline equals eta Subscript i Baseline plus eta Subscript j Baseline plus mu Subscript i Baseline plus phi Subscript j Baseline plus left-parenthesis eta eta right-parenthesis Subscript i j Baseline plus kappa Subscript i j

where eta Subscript i and eta Subscript j are contributions of the female and male parents, respectively. The term left-parenthesis eta eta right-parenthesis Subscript i j captures the interaction between maternal and paternal effects. In contrast to usual interaction effects, this term must obey a symmetry because of the reciprocals: left-parenthesis eta eta right-parenthesis Subscript i j Baseline equals left-parenthesis eta eta right-parenthesis Subscript j i. The terms mu Subscript i and phi Subscript j in the decomposition are extranuclear maternal and paternal effects, and the remaining interactions are captured by the kappa Subscript i j term.

The following DATA step creates a SAS data set for the diallel example in Appendix C of Cockerham and Weir (1977):

data diallel;
   label time = 'Flowering time in days';
   do p = 1 to 8;
      do m = 1 to 8;
         if (m ne p) then do;
            sym = trim(left(min(m,p))) || ',' || trim(left(max(m,p)));
            do block = 1 to 2;
               input time @@;
               output;
            end;
         end;
      end;
   end;
   datalines;
14.4 16.2 27.2 30.8 17.2 27.0 18.3 20.2 16.2 16.8 18.6 14.4 16.4 16.0
15.4 16.5 14.8 14.6 18.6 18.6 15.2 15.3 17.0 15.2 14.4 14.8 10.8 13.2
31.8 30.4 21.0 23.0 24.6 25.4 19.2 20.0 29.8 28.4 12.8 14.2 13.0 14.4
16.2 17.8 11.4 13.0 16.8 16.3 12.4 14.2 16.8 14.8 12.6 12.2  9.6 11.2
14.6 18.8 12.2 13.6 15.2 15.4 15.2 13.8 18.0 16.0 10.4 12.2 13.4 20.0
20.2 23.4 14.2 14.0 18.6 14.8 22.2 17.0 14.3 17.3  9.0 10.2 11.8 12.8
14.0 16.6 12.2  9.2 13.6 16.2 13.8 14.4 15.6 15.6 15.6 11.0 13.0  9.8
15.2 17.2 10.0 11.6 17.0 18.2 20.8 20.8 20.0 17.4 17.0 12.6 13.0  9.8
;

The observations represent mean flowering times of Nicotiana rustica (Aztec tobacco) from crosses of inbred varieties grown in two blocks. The variables p and m identify the eight paternal and maternal lines, respectively. The variable sym is used to model the interaction between the parents, subject to the symmetry condition left-parenthesis eta eta right-parenthesis Subscript i j Baseline equals left-parenthesis eta eta right-parenthesis Subscript j i. For example, the first two observations, 14.4 and 16.2 days, represent the observations from blocks 1 and 2 where paternal line 1 was crossed with maternal line 2.

The following PROC GLIMMIX statements fit the "bio model" in Cockerham and Weir (1977):

proc glimmix data=diallel outdesign(z)=zmat;
   class block sym p m;
   effect line = mm(p m);
   model  time = block;
   random line sym p m p*m;
run;

The EFFECT statement defines the nuclear parental contributions as a multimember effect based on the CLASS variables p and m. Each observation has two nonzero entries in the design matrix for the effect that identifies the paternal and maternal lines. The terms in the RANDOM statement model the variance components as follows: line right-arrow sigma Subscript n Superscript 2, sym right-arrow sigma Subscript left-parenthesis eta eta right-parenthesis Superscript 2, p right-arrow sigma Subscript phi Superscript 2, m right-arrow sigma Subscript mu Superscript 2, p*m right-arrow sigma Subscript kappa Superscript 2. The OUTDESIGN= option in the PROC GLIMMIX statement writes the bold upper Z matrix to the SAS data set zmat. The EFFECT statement alleviates the need for complex coding, as in Section 2.3 of Saxton (2004).

FigureĀ 129 displays the "Class Level Information" table of the diallel model. Because the interaction terms are symmetric, there are only 8 times 7 slash 2 equals 28 levels for the 8 lines. The estimates of the variance components and the residual variance in FigureĀ 129 agree with the results in Table 7 of Cockerham and Weir (1977).

Figure 129: Class Levels and Covariance Parameter Estimates in Diallel Example

The GLIMMIX Procedure

Class Level Information
Class Levels Values
block 2 1 2
sym 28 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,3 2,4 2,5 2,6 2,7 2,8 3,4 3,5 3,6 3,7 3,8 4,5 4,6 4,7 4,8 5,6 5,7 5,8 6,7 6,8 7,8
p 8 1 2 3 4 5 6 7 8
m 8 1 2 3 4 5 6 7 8

Covariance Parameter Estimates
Cov Parm Estimate Standard
Error
line 5.1047 4.0021
sym 2.3856 1.9025
p 3.3080 3.4053
m 1.9134 2.9891
p*m 4.0196 1.8323
Residual 3.6225 0.6908


The following statements print the bold upper Z matrix columns that correspond to the multimember line effect for the first 10 observations in block 1 (Output 52.16.1). For each observation there are two nonzero entries, and their column index corresponds to the index of the paternal and maternal line.

proc print data=zmat(where=(block=1) obs=10);
   var p m time _z1-_z8;
run;

Output 52.16.1: Z Matrix for Line Effect of the First 10 Observations in Block 1

Obs p m time _Z1 _Z2 _Z3 _Z4 _Z5 _Z6 _Z7 _Z8
1 1 2 14.4 1 1 0 0 0 0 0 0
3 1 3 27.2 1 0 1 0 0 0 0 0
5 1 4 17.2 1 0 0 1 0 0 0 0
7 1 5 18.3 1 0 0 0 1 0 0 0
9 1 6 16.2 1 0 0 0 0 1 0 0
11 1 7 18.6 1 0 0 0 0 0 1 0
13 1 8 16.4 1 0 0 0 0 0 0 1
15 2 1 15.4 1 1 0 0 0 0 0 0
17 2 3 14.8 0 1 1 0 0 0 0 0
19 2 4 18.6 0 1 0 1 0 0 0 0


Last updated: December 09, 2022