Bowman, A. W., and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press.
Craven, P., and Wahba, G. (1979). “Smoothing Noisy Data with Spline Functions.” Numerical Mathematics 31:377–403.
Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). “An Adaptive Nonlinear Least-Squares Algorithm.” ACM Transactions on Mathematical Software 7:348–368.
Dennis, J. E., and Mei, H. H. W. (1979). “Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values.” Journal of Optimization Theory and Applications 28:453–482.
Duchon, J. (1976). “Fonctions-spline et espérances conditionnelles de champs gaussiens [Spline functions and conditional expectations of Gaussian fields].” Annales scientifiques de l’Université de Clermont-Ferrand 2, Série Mathématique 14:19–27.
Duchon, J. (1977). “Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces.” In Constructive Theory of Functions of Several Variables, edited by W. Schempp and K. Zeller, 85–100. New York: Springer-Verlag.
Eskow, E., and Schnabel, R. B. (1991). “Algorithm 695: Software for a New Modified Cholesky Factorization.” ACM Transactions on Mathematical Software 17:306–312.
Fletcher, R. (1987). Practical Methods of Optimization. 2nd ed. Chichester, UK: John Wiley & Sons.
Gay, D. M. (1983). “Subroutines for Unconstrained Minimization.” ACM Transactions on Mathematical Software 9:503–524.
Gu, C., and Wahba, G. (1991). “Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method.” SIAM Journal on Scientific Computing 12:383–398.
Moré, J. J., and Sorensen, D. C. (1983). “Computing a Trust-Region Step.” SIAM Journal on Scientific and Statistical Computing 4:553–572.
Nelder, J. A., and Wedderburn, R. W. M. (1972). “Generalized Linear Models.” Journal of the Royal Statistical Society, Series A 135:370–384.
Nychka, D. (1988). “Bayesian Confidence Intervals for Smoothing Splines.” Journal of the American Statistical Association 83:1134–1143.
Pace, R. K., and Barry, R. (1997). “Quick Computation of Spatial Autoregressive Estimators.” Geographical Analysis 29:232–247.
Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge: Cambridge University Press.
Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Johannes, R. S. (1988). “Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus.” In Proceedings of the Symposium on Computer Applications and Medical Care, 261–265. Los Alamitos, CA: IEEE Computer Society Press.
Smyth, G. K. (1996). “Regression Analysis of Quantity Data with Exact Zeros.” In Proceedings of the Second Australia-Japan Workshop on Stochastic Models in Engineering, Technology, and Management, edited by R. J. Wilson, S. Osaki, and D. N. P. Murthy, 572–580. Queensland, Australia: Technology Management Centre, University of Queensland.
Vlachos, P. (1998). “StatLib—Datasets Archive.” http://lib.stat.cmu.edu/datasets/.
Wahba, G. (1983). “Bayesian 'Confidence Intervals' for the Cross Validated Smoothing Spline.” Journal of the Royal Statistical Society, Series B 45:133–150.
Wood, S. (2003). “Thin Plate Regression Splines.” Journal of the Royal Statistical Society, Series B 65:95–114.
Wood, S. (2004). “Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models.” Journal of the American Statistical Association 99:673–686.
Wood, S. (2006). Generalized Additive Models. Boca Raton, FL: Chapman & Hall/CRC.
Wood, S. (2008). “Fast Stable Direct Fitting and Smoothness Selection for Generalized Additive Models.” Journal of the Royal Statistical Society, Series B 70:495–518.
Wood, S. (2011). “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models.” Journal of the Royal Statistical Society, Series B 73:3–36.
Wood, S. (2012). “On p-Values for Smooth Components of an Extended Generalized Additive Model.” Biometrika 1–8. http://biomet.oxfordjournals.org/content/early/2012/10/18/biomet.ass048.abstract.
Xiang, D., and Wahba, G. (1996). “A Generalized Approximate Cross Validation for Smoothing Splines with Non-Gaussian Data.” Statistica Sinica 6:675–692.