The HPGENSELECT Procedure

Response Probability Distribution Functions

Binary Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column p 2nd Column for y equals 1 2nd Row 1st Column 1 minus p 2nd Column for y equals 0 EndLayout 2nd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column p 3rd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column p left-parenthesis 1 minus p right-parenthesis EndLayout

Binomial Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartBinomialOrMatrix n Choose r EndBinomialOrMatrix mu Superscript r Baseline left-parenthesis 1 minus mu right-parenthesis Superscript n minus r Baseline for y equals StartFraction r Over n EndFraction comma r equals 0 comma 1 comma 2 comma ellipsis comma n 2nd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 3rd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column StartFraction mu left-parenthesis 1 minus mu right-parenthesis Over n EndFraction EndLayout

Gamma Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over normal upper Gamma left-parenthesis nu right-parenthesis y EndFraction left-parenthesis StartFraction y nu Over mu EndFraction right-parenthesis Superscript nu Baseline exp left-parenthesis minus StartFraction y nu Over mu EndFraction right-parenthesis for 0 less-than y less-than normal infinity 2nd Row 1st Column phi 2nd Column equals 3rd Column StartFraction 1 Over nu EndFraction 3rd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 4th Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column StartFraction mu squared Over nu EndFraction EndLayout

For the gamma distribution, nu equals StartFraction 1 Over phi EndFraction is the estimated dispersion parameter that is displayed in the output. The parameter nu is also sometimes called the gamma index parameter.

Inverse Gaussian Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over StartRoot 2 pi y cubed EndRoot sigma EndFraction exp left-bracket minus StartFraction 1 Over 2 y EndFraction left-parenthesis StartFraction y minus mu Over mu sigma EndFraction right-parenthesis squared right-bracket for 0 less-than y less-than normal infinity 2nd Row 1st Column phi 2nd Column equals 3rd Column sigma squared 3rd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column phi mu cubed EndLayout

Multinomial Distribution

StartLayout 1st Row 1st Column f left-parenthesis y 1 comma y 2 comma ellipsis comma y Subscript k Baseline right-parenthesis 2nd Column equals 3rd Column StartFraction m factorial Over y 1 factorial y 2 factorial midline-horizontal-ellipsis y Subscript k Baseline factorial EndFraction p 1 Superscript y 1 Baseline p 2 Superscript y 2 Baseline midline-horizontal-ellipsis p Subscript k Superscript y Super Subscript k EndLayout

Negative Binomial Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartFraction normal upper Gamma left-parenthesis y plus 1 slash k right-parenthesis Over normal upper Gamma left-parenthesis y plus 1 right-parenthesis normal upper Gamma left-parenthesis 1 slash k right-parenthesis EndFraction StartFraction left-parenthesis k mu right-parenthesis Superscript y Baseline Over left-parenthesis 1 plus k mu right-parenthesis Superscript y plus 1 slash k Baseline EndFraction for y equals 0 comma 1 comma 2 comma ellipsis 2nd Row 1st Column phi 2nd Column equals 3rd Column k 3rd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 4th Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu plus phi mu squared EndLayout

For the negative binomial distribution, k is the estimated dispersion parameter that is displayed in the output.

Normal Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over StartRoot 2 pi EndRoot sigma EndFraction exp left-bracket minus one-half left-parenthesis StartFraction y minus mu Over sigma EndFraction right-parenthesis squared right-bracket for negative normal infinity less-than y less-than normal infinity 2nd Row 1st Column phi 2nd Column equals 3rd Column sigma squared 3rd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 4th Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column phi EndLayout

Poisson Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartFraction mu Superscript y Baseline normal e Superscript negative mu Baseline Over y factorial EndFraction for y equals 0 comma 1 comma 2 comma ellipsis 2nd Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 3rd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu EndLayout

Tweedie Distribution

The Tweedie model is a generalized linear model from the exponential family. The Tweedie distribution is characterized by three parameters: the mean parameter mu, the dispersion phi, and the power p. The variance of the distribution is phi mu Superscript p. For values of p in the range 1 less-than p less-than 2, a Tweedie random variable can be represented as a Poisson sum of gamma distributed random variables. That is,

upper Y equals sigma-summation Underscript i equals 1 Overscript upper N Endscripts upper Y Subscript i

where N has a Poisson distribution that has mean lamda equals StartFraction mu Superscript 2 minus p Baseline Over phi left-parenthesis 2 minus p right-parenthesis EndFraction and the upper Y Subscript i Baseline normal s have independent, identical gamma distributions, each of which has an expected value normal upper E left-parenthesis upper Y Subscript i Baseline right-parenthesis equals phi left-parenthesis 2 minus p right-parenthesis mu Superscript p minus 1 and an index parameter nu Subscript i Baseline equals StartFraction 2 minus p Over p minus 1 EndFraction.

In this case, Y has a discrete mass at 0, normal upper P normal r left-parenthesis upper Y equals 0 right-parenthesis equals normal upper P normal r left-parenthesis upper N equals 0 right-parenthesis equals exp left-parenthesis negative lamda right-parenthesis, and the probability density of Y f left-parenthesis y right-parenthesis is represented by an infinite series for y greater-than 0. The HPGENSELECT procedure restricts the power parameter to satisfy 1.1 less-than equals p for numerical stability in model fitting. The Tweedie distribution does not have a general closed form representation for all values of p. It can be characterized in terms of the distribution mean parameter mu, dispersion parameter phi, and power parameter p. For more information about the Tweedie distribution, see Frees (2010).

The distribution mean and variance are given by:

StartLayout 1st Row 1st Column normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column mu 2nd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column phi mu Superscript p EndLayout

Zero-Inflated Negative Binomial Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column omega plus left-parenthesis 1 minus omega right-parenthesis left-parenthesis 1 plus k lamda right-parenthesis Superscript minus StartFraction 1 Over k EndFraction 2nd Column for y equals 0 2nd Row 1st Column left-parenthesis 1 minus omega right-parenthesis StartFraction normal upper Gamma left-parenthesis y plus 1 slash k right-parenthesis Over normal upper Gamma left-parenthesis y plus 1 right-parenthesis normal upper Gamma left-parenthesis 1 slash k right-parenthesis EndFraction StartFraction left-parenthesis k lamda right-parenthesis Superscript y Baseline Over left-parenthesis 1 plus k lamda right-parenthesis Superscript y plus 1 slash k Baseline EndFraction 2nd Column for y equals 1 comma 2 comma ellipsis EndLayout 2nd Row 1st Column phi 2nd Column equals 3rd Column k 3rd Row 1st Column mu equals normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 minus omega right-parenthesis lamda 4th Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 minus omega right-parenthesis lamda left-parenthesis 1 plus omega lamda plus k lamda right-parenthesis 5th Row 1st Column Blank 2nd Column equals 3rd Column mu plus left-parenthesis StartFraction omega Over 1 minus omega EndFraction plus StartFraction k Over 1 minus omega EndFraction right-parenthesis mu squared EndLayout

For the zero-inflated negative binomial distribution, k is the estimated dispersion parameter that is displayed in the output.

Zero-Inflated Poisson Distribution

StartLayout 1st Row 1st Column f left-parenthesis y right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column omega plus left-parenthesis 1 minus omega right-parenthesis normal e Superscript negative lamda 2nd Column for y equals 0 2nd Row 1st Column left-parenthesis 1 minus omega right-parenthesis StartFraction lamda Superscript y Baseline normal e Superscript negative lamda Baseline Over y factorial EndFraction 2nd Column for y equals 1 comma 2 comma ellipsis EndLayout 2nd Row 1st Column mu equals normal upper E left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 minus omega right-parenthesis lamda 3rd Row 1st Column normal upper V normal a normal r left-parenthesis upper Y right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 minus omega right-parenthesis lamda left-parenthesis 1 plus omega lamda right-parenthesis 4th Row 1st Column Blank 2nd Column equals 3rd Column mu plus StartFraction omega Over 1 minus omega EndFraction mu squared EndLayout
Last updated: December 09, 2022