Box, G. E. P., and Tiao, G. C. (1992). Bayesian Inference in Statistical Analysis. New York: John Wiley & Sons.
Chen, M.-H., Shao, Q.-M., and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Computation. New York: Springer-Verlag.
Gelman, A., and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.
Goldstein, M., and Wooff, D. A. (2007). Bayes Linear Statistics: Theory and Methods. Chichester, UK: John Wiley & Sons.
Harney, H. L. (2016). Bayesian Inference: Data Evaluation and Decisions. 2nd ed. Berlin: Springer-Verlag.
Kadane, J. B. (2011). Principles of Uncertainty. London: Chapman & Hall/CRC.
Leonard, T., and Hsu, J. S. J. (1999). Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers. Cambridge: Cambridge University Press.
Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. New York: Springer-Verlag.
Marin, J.-M., and Robert, C. P. (2007). Bayesian Core: A Practical Approach to Computational Bayesian Statistics. New York: Springer-Verlag.
Press, S. J. (2002). Subjective and Objective Bayesian Statistics: Principles, Models, and Applications. 2nd ed. New York: Wiley-Interscience.
Robert, C. P. (2001). The Bayesian Choice. 2nd ed. New York: Springer-Verlag.
Robert, C. P., and Casella, G. (2004). Monte Carlo Statistical Methods. 2nd ed. New York: Springer-Verlag.
Tanner, M. A. (1996). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions. 3rd ed. New York: Springer-Verlag.