The IRT Procedure

Approximating the Marginal Likelihood

As discussed in the section Marginal Likelihood, integrations that are involved in the marginal likelihood for IRT model cannot be solved analytically and need to be approximated by using numerical integration, mostly Gauss-Hermite quadrature.

Gauss-Hermite (G-H) Quadrature

In general, the Gauss-Hermite (G-H) quadrature can be presented as

integral Subscript negative normal infinity Superscript normal infinity Baseline g left-parenthesis x right-parenthesis d x equals integral Subscript negative normal infinity Superscript normal infinity Baseline f left-parenthesis x right-parenthesis phi left-parenthesis x right-parenthesis d x almost-equals sigma-summation Underscript g equals 1 Overscript upper G Endscripts f left-parenthesis x Subscript g Baseline right-parenthesis w Subscript g

where G is the number of quadrature points and x Subscript g and w Subscript g are the integration points and weights, respectively, which are uniquely determined by the integration domain and the weighting kernel phi left-parenthesis x right-parenthesis. Traditional G-H quadrature often uses e Superscript minus x squared as the weighting kernel. In the field of statistics, the density of standard normal distribution is more widely used instead, because for estimating various statistical models, the Gaussian density is often a factor of the integrand. In the case in which the Gaussian density is not a factor of the integrand, the integral is transformed into the form by dividing and multiplying the original integrand by the standard normal density.

Adaptive Gauss-Hermite Quadrature

The G order G-H quadrature is exact if f left-parenthesis x right-parenthesis is a 2 upper K minus 1 degree polynomial in x. However, as many researchers (Lesaffre and Spiessens 2001; Rabe-Hesketh, Skrondal, and Pickles 2002) point out, integrands f left-parenthesis u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis phi left-parenthesis bold-italic eta semicolon bold-italic mu comma bold upper Sigma right-parenthesis often have sharp peaks and cannot be well approximated by low-degree polynomials in bold-italic eta. Furthermore, the peak might be far from zero or be located between adjacent quadrature points so that substantial contributions to the integral are lost.

Note that the integrands in the marginal likelihood are a product of the prior density of bold-italic eta, phi left-parenthesis bold-italic eta semicolon bold-italic mu comma bold upper Sigma right-parenthesis and the joint probability of responses given bold-italic eta, f left-parenthesis bold u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis. After normalization with respect to bold-italic eta, the integrand, f left-parenthesis u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis phi left-parenthesis bold-italic eta semicolon bold-italic mu comma bold upper Sigma right-parenthesis, is just the posterior density of bold-italic eta, given the observed responses bold u Subscript i. This posterior density is approximately normal when the number of items is large. Let bold-italic mu Subscript i and bold upper Sigma Subscript i be the mean and covariance matrix, respectively, of the posterior density. Then the ratio StartFraction f left-parenthesis bold u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis phi left-parenthesis bold-italic eta semicolon bold-italic mu comma bold upper Sigma right-parenthesis Over phi left-parenthesis bold-italic eta semicolon bold-italic mu Subscript i Baseline comma bold upper Sigma Subscript i Baseline right-parenthesis EndFraction can be well approximated by a low-degree polynomial if the number of items is relatively large. This suggests that the integral should be transformed as

integral f left-parenthesis bold u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis phi left-parenthesis bold-italic eta right-parenthesis d bold-italic eta equals integral StartFraction f left-parenthesis bold u Subscript i Baseline vertical-bar bold-italic eta right-parenthesis phi left-parenthesis bold-italic eta semicolon bold-italic mu comma bold upper Sigma right-parenthesis Over phi left-parenthesis bold-italic eta semicolon bold-italic mu Subscript i Baseline comma bold upper Sigma Subscript i Baseline right-parenthesis EndFraction phi left-parenthesis bold-italic eta semicolon bold-italic mu Subscript i Baseline comma bold upper Sigma Subscript i Baseline right-parenthesis d bold-italic eta

The integration points and weights that correspond to phi left-parenthesis bold-italic eta semicolon bold-italic mu Subscript i Baseline comma bold upper Sigma Subscript i Baseline right-parenthesis are

z Subscript g Baseline equals bold upper Sigma Subscript i Superscript 1 slash 2 Baseline x Subscript g Baseline plus bold-italic mu Subscript i
v Subscript g Baseline equals StartAbsoluteValue bold upper Sigma Subscript i Baseline EndAbsoluteValue Superscript 1 slash 2 Baseline w Subscript g

The preceding transformations move and scale the quadrature points to the center of the integrands such that the integrand can be better approximated using many fewer quadrature points.

Last updated: December 09, 2022