The LIFEREG Procedure

Supported Distributions

For most distributions, the baseline survival function (S) and the probability density function(f) are listed for the additive random disturbance (y 0 or log left-parenthesis upper T 0 right-parenthesis) with location parameter mu and scale parameter sigma. See the section Overview: LIFEREG Procedure for more information. These distributions apply when the log of the response is modeled (this is the default analysis). The corresponding survival function (G) and its density function (g) are given for the untransformed baseline distribution (upper T 0).

For the normal and logistic distributions, the response is not log transformed by PROC LIFEREG, and the survival functions and probability density functions listed apply to the untransformed response.

For example, for the WEIBULL distribution, upper S left-parenthesis w right-parenthesis and f left-parenthesis w right-parenthesis are the survival function and the probability density function for the extreme-value distribution (distribution of the log of the response), while upper G left-parenthesis t right-parenthesis and g left-parenthesis t right-parenthesis are the survival function and the probability density function of a Weibull distribution (using the untransformed response).

The chosen baseline functions define the meaning of the intercept, scale, and shape parameters. Only the gamma distribution has a free shape parameter in the following parameterizations. Notice that some of the distributions do not have mean zero and that sigma is not, in general, the standard deviation of the baseline distribution.

For the Weibull distribution, the accelerated failure time model is also a proportional-hazards model. However, the parameterization for the covariates differs by a multiple of the scale parameter from the parameterization commonly used for the proportional hazards model.

The distributions supported in the LIFEREG procedure follow. If there are no covariates in the model, mu = Intercept in the output; otherwise, mu equals bold x prime bold-italic beta. sigma = Scale in the output.

Exponential

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis minus exp left-parenthesis w minus mu right-parenthesis right-parenthesis 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis w minus mu right-parenthesis exp left-parenthesis minus exp left-parenthesis w minus mu right-parenthesis right-parenthesis 3rd Row 1st Column upper G left-parenthesis t right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis minus alpha t right-parenthesis 4th Row 1st Column g left-parenthesis t right-parenthesis 2nd Column equals 3rd Column alpha exp left-parenthesis minus alpha t right-parenthesis EndLayout

where exp left-parenthesis negative mu right-parenthesis equals alpha.

Generalized Gamma

upper S left-parenthesis w right-parenthesis equals upper S prime left-parenthesis u right-parenthesis, f left-parenthesis w right-parenthesis equals sigma Superscript negative 1 Baseline f prime left-parenthesis u right-parenthesis, upper G left-parenthesis t right-parenthesis equals upper G prime left-parenthesis v right-parenthesis, g left-parenthesis t right-parenthesis equals StartFraction v Over t sigma EndFraction g prime left-parenthesis v right-parenthesis, u equals StartFraction w minus mu Over sigma EndFraction, v equals exp left-parenthesis StartFraction log left-parenthesis t right-parenthesis minus mu Over sigma EndFraction right-parenthesis, and

StartLayout 1st Row 1st Column upper S prime left-parenthesis u right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column 1 minus StartFraction normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline comma delta Superscript negative 2 Baseline exp left-parenthesis delta u right-parenthesis right-parenthesis Over normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction 2nd Column Blank 3rd Column normal i normal f delta greater-than 0 2nd Row 1st Column StartFraction normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline comma delta Superscript negative 2 Baseline exp left-parenthesis delta u right-parenthesis right-parenthesis Over normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction 2nd Column Blank 3rd Column normal i normal f delta less-than 0 EndLayout 2nd Row 1st Column f prime left-parenthesis u right-parenthesis 2nd Column equals 3rd Column StartFraction StartAbsoluteValue delta EndAbsoluteValue Over normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction left-parenthesis delta Superscript negative 2 Baseline exp left-parenthesis delta u right-parenthesis right-parenthesis Superscript delta Super Superscript negative 2 Baseline exp left-parenthesis minus exp left-parenthesis delta u right-parenthesis delta Superscript negative 2 Baseline right-parenthesis 3rd Row 1st Column upper G prime left-parenthesis v right-parenthesis 2nd Column equals 3rd Column StartLayout Enlarged left-brace 1st Row 1st Column 1 minus StartFraction normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline comma delta Superscript negative 2 Baseline v Superscript delta Baseline right-parenthesis Over normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction 2nd Column Blank 3rd Column normal i normal f delta greater-than 0 2nd Row 1st Column StartFraction normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline comma delta Superscript negative 2 Baseline v Superscript delta Baseline right-parenthesis Over normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction 2nd Column Blank 3rd Column normal i normal f delta less-than 0 EndLayout 4th Row 1st Column g prime left-parenthesis v right-parenthesis 2nd Column equals 3rd Column StartFraction StartAbsoluteValue delta EndAbsoluteValue Over v normal upper Gamma left-parenthesis delta Superscript negative 2 Baseline right-parenthesis EndFraction left-parenthesis delta Superscript negative 2 Baseline v Superscript delta Baseline right-parenthesis Superscript delta Super Superscript negative 2 Baseline exp left-parenthesis minus v Superscript delta Baseline delta Superscript negative 2 Baseline right-parenthesis EndLayout

where normal upper Gamma left-parenthesis a right-parenthesis denotes the complete gamma function, normal upper Gamma left-parenthesis a comma z right-parenthesis denotes the incomplete gamma function, and delta is a free shape parameter. The delta parameter is called Shape by PROC LIFEREG. See Lawless (2003, p. 240), and Klein and Moeschberger (1997, p. 386) for a description of the generalized gamma distribution.

Logistic

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 plus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis Superscript negative 1 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column StartStartFraction exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis OverOver sigma left-parenthesis 1 plus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis squared EndEndFraction EndLayout

Log-Logistic

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column left-parenthesis 1 plus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis Superscript negative 1 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column StartStartFraction exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis OverOver sigma left-parenthesis 1 plus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis squared EndEndFraction 3rd Row 1st Column upper G left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over 1 plus alpha t Superscript gamma Baseline EndFraction 4th Row 1st Column g left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartFraction alpha gamma t Superscript gamma minus 1 Baseline Over left-parenthesis 1 plus alpha t Superscript gamma Baseline right-parenthesis squared EndFraction EndLayout

where gamma equals 1 slash sigma and alpha equals exp left-parenthesis negative mu slash sigma right-parenthesis.

Lognormal

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column 1 minus normal upper Phi left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over StartRoot 2 pi EndRoot sigma EndFraction exp left-parenthesis minus one-half left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis squared right-parenthesis 3rd Row 1st Column upper G left-parenthesis t right-parenthesis 2nd Column equals 3rd Column 1 minus normal upper Phi left-parenthesis StartFraction log left-parenthesis t right-parenthesis minus mu Over sigma EndFraction right-parenthesis 4th Row 1st Column g left-parenthesis t right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over StartRoot 2 pi EndRoot sigma t EndFraction exp left-parenthesis minus one-half left-parenthesis StartFraction log left-parenthesis t right-parenthesis minus mu Over sigma EndFraction right-parenthesis squared right-parenthesis EndLayout

where normal upper Phi is the cumulative distribution function for the normal distribution.

Normal

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column 1 minus normal upper Phi left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over StartRoot 2 pi EndRoot sigma EndFraction exp left-parenthesis minus one-half left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis squared right-parenthesis EndLayout

where normal upper Phi is the cumulative distribution function for the normal distribution.

Weibull

StartLayout 1st Row 1st Column upper S left-parenthesis w right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis minus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis 2nd Row 1st Column f left-parenthesis w right-parenthesis 2nd Column equals 3rd Column StartFraction 1 Over sigma EndFraction exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis exp left-parenthesis minus exp left-parenthesis StartFraction w minus mu Over sigma EndFraction right-parenthesis right-parenthesis 3rd Row 1st Column upper G left-parenthesis t right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis minus alpha t Superscript gamma Baseline right-parenthesis 4th Row 1st Column g left-parenthesis t right-parenthesis 2nd Column equals 3rd Column gamma alpha t Superscript gamma minus 1 Baseline exp left-parenthesis minus alpha t Superscript gamma Baseline right-parenthesis EndLayout

where sigma equals 1 slash gamma and alpha equals exp left-parenthesis negative mu slash sigma right-parenthesis.

If your parameterization is different from the ones shown here, you can still use the procedure to fit your model. For example, a common parameterization for the Weibull distribution is

StartLayout 1st Row 1st Column g left-parenthesis t semicolon lamda comma beta right-parenthesis 2nd Column equals 3rd Column left-parenthesis StartFraction beta Over lamda EndFraction right-parenthesis left-parenthesis StartFraction t Over lamda EndFraction right-parenthesis Superscript beta minus 1 Baseline exp left-parenthesis minus left-parenthesis StartFraction t Over lamda EndFraction right-parenthesis Superscript beta Baseline right-parenthesis 2nd Row 1st Column upper G left-parenthesis t semicolon lamda comma beta right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis minus left-parenthesis StartFraction t Over lamda EndFraction right-parenthesis Superscript beta Baseline right-parenthesis EndLayout

so that lamda equals exp left-parenthesis mu right-parenthesis and beta equals 1 slash sigma.

Again note that the expected value of the baseline log response is, in general, not zero and that the distributions are not symmetric in all cases. Thus, for a given set of covariates, bold x, the expected value of the log response is not always bold x prime bold-italic beta.

Some relations among the distributions are as follows:

  • The gamma with Shape=1 is a Weibull distribution.

  • The gamma with Shape=0 is a lognormal distribution.

  • The Weibull with Scale=1 is an exponential distribution.

Last updated: December 09, 2022