Alternative Equation Formats

The equation on this page is available in multiple formats. Depending on your browser, some formats might not render correctly.

MathML

h ^ r ( t ) = I ( t τ r ) Y r ( t ) S ^ r ( t ) F ^ 1 0 ( t ) = 0 t d N 1. ( u ) h ^ . ( u ) G ^ 1 0 ( t ) = 1 F ^ 1 0 ( t ) a k r ( t ) = d 1 k r ( t ) + b 1 k r ( t ) b j k r ( t ) = [ I ( j = 1 ) G ^ 1 0 ( t ) S ^ r ( t ) ] [ c k r ( τ k ) c k r ( t ) ] c k r ( t ) = 0 t d 1 k r ( u ) d Γ ^ 1 0 ( u ) d j k r ( t ) = I ( j = 1 ) R k ( t ) I ( k = r ) h ^ r ( t ) h ^ . ( t ) G ^ 1 0 ( t )

Math Rendered as SVG

Math as LaTeX Source

\begin{eqnarray*} \hat{h}_ r(t) & =& \frac{I(t\leq \tau _ r)Y_ r(t)}{\hat{S}_ r(t-)} \\ \hat{F}_1^0(t) & =& \int _0^ t \frac{dN_{1.}(u)}{\hat{h}_{.}(u)}\\ \hat{G}_1^0(t) & =& 1 - \hat{F}_1^0(t)\\ a_{kr}(t) & =& d_{1kr}(t) + b_{1kr}(t) \\ b_{jkr}(t) & =& \left[ I(j=1) - \frac{\hat{G}^0_1(t)}{\hat{S}_ r(t)} \right] \left[ c_{kr}(\tau _ k) - c_{kr}(t) \right] \\ c_{kr}(t) & =& \int _0^ t d_{1kr}(u)d\hat{\Gamma }^0_1(u) \\ d_{jkr}(t) & =& I(j=1)R_ k(t) \frac{I(k=r) - \frac{\hat{h}_ r(t)}{\hat{h}_{.}(t)}}{\hat{G}^0_1(t)} \end{eqnarray*}