The MI Procedure

Monotone and FCS Discriminant Function Methods

The discriminant function method is the default imputation method in the MONOTONE and FCS statements for classification variables.

For a nominal classification variable upper Y Subscript j with responses 1, …, g and a set of effects from its preceding variables, if the covariates upper X 1, upper X 2, …, upper X Subscript k associated with these effects within each group are approximately multivariate normal and the within-group covariance matrices are approximately equal, the discriminant function method (Brand 1999, pp. 95–96) can be used to impute missing values for the variable upper Y Subscript j.

Denote the group-specific means for covariates upper X 1, upper X 2, …, upper X Subscript k by

bold upper X overbar Subscript t Baseline equals left-parenthesis upper X overbar Subscript t Baseline 1 Baseline comma upper X overbar Subscript t Baseline 2 Baseline comma ellipsis comma upper X overbar Subscript t k Baseline right-parenthesis comma t equals 1 comma 2 comma ellipsis comma g

then the pooled covariance matrix is computed as

bold upper S equals StartFraction 1 Over n minus g EndFraction sigma-summation Underscript t equals 1 Overscript g Endscripts left-parenthesis n Subscript t Baseline minus 1 right-parenthesis bold upper S Subscript t

where bold upper S Subscript t is the within-group covariance matrix, n Subscript t is the group-specific sample size, and n equals sigma-summation Underscript t equals 1 Overscript g Endscripts n Subscript t is the total sample size.

In each imputation, new parameters of the group-specific means (bold m Subscript asterisk t), pooled covariance matrix (bold upper S Subscript asterisk), and prior probabilities of group membership (q Subscript asterisk t) can be drawn from their corresponding posterior distributions (Schafer 1997, p. 356).

Pooled Covariance Matrix and Group-Specific Means

For each imputation, the MI procedure uses either the fixed observed pooled covariance matrix (PCOV=FIXED) or a drawn pooled covariance matrix (PCOV=POSTERIOR) from its posterior distribution with a noninformative prior. That is,

StartLayout 1st Row 1st Column bold upper Sigma vertical-bar bold upper X tilde 2nd Column Blank 3rd Column upper W Superscript negative 1 Baseline left-parenthesis n minus g comma left-parenthesis n minus g right-parenthesis bold upper S right-parenthesis EndLayout

where upper W Superscript negative 1 is an inverted Wishart distribution.

The group-specific means are then drawn from their posterior distributions with a noninformative prior

StartLayout 1st Row 1st Column bold-italic mu Subscript t Baseline vertical-bar left-parenthesis bold upper Sigma comma bold upper X overbar Subscript t Baseline right-parenthesis tilde 2nd Column Blank 3rd Column upper N left-parenthesis bold upper X overbar Subscript t Baseline comma StartFraction 1 Over n Subscript t Baseline EndFraction bold upper Sigma right-parenthesis EndLayout

See the section Bayesian Estimation of the Mean Vector and Covariance Matrix for a complete description of the inverted Wishart distribution and posterior distributions that use a noninformative prior.

Prior Probabilities of Group Membership

The prior probabilities are computed through the drawing of new group sample sizes. When the total sample size n is considered fixed, the group sample sizes left-parenthesis n 1 comma n 2 comma ellipsis comma n Subscript g Baseline right-parenthesis have a multinomial distribution. New multinomial parameters (group sample sizes) can be drawn from their posterior distribution by using a Dirichlet prior with parameters left-parenthesis alpha 1 comma alpha 2 comma ellipsis comma alpha Subscript g Baseline right-parenthesis.

After the new sample sizes are drawn from the posterior distribution of left-parenthesis n 1 comma n 2 comma ellipsis comma n Subscript g Baseline right-parenthesis, the prior probabilities q Subscript asterisk t are computed proportionally to the drawn sample sizes.

See Schafer (1997, pp. 247–255) for a complete description of the Dirichlet prior.

Imputation Steps

The discriminant function method uses the following steps in each imputation to impute values for a nominal classification variable upper Y Subscript j with g responses:

  1. Draw a pooled covariance matrix bold upper S Subscript asterisk from its posterior distribution if the PCOV=POSTERIOR option is used.

  2. For each group, draw group means bold m Subscript asterisk t from the observed group mean bold upper X overbar Subscript t and either the observed pooled covariance matrix (PCOV=FIXED) or the drawn pooled covariance matrix bold upper S Subscript asterisk (PCOV=POSTERIOR).

  3. For each group, compute or draw q Subscript asterisk t, prior probabilities of group membership, based on the PRIOR= option:

    • PRIOR=EQUAL, q Subscript asterisk t Baseline equals 1 slash g, prior probabilities of group membership are all equal.

    • PRIOR=PROPORTIONAL, q Subscript asterisk t Baseline equals n Subscript t Baseline slash n, prior probabilities are proportional to their group sample sizes.

    • PRIOR=JEFFREYS=sans-serif-italic c, a noninformative Dirichlet prior with alpha Subscript t Baseline equals c is used.

    • PRIOR=RIDGE=sans-serif-italic d, a ridge prior is used with alpha Subscript t Baseline equals d asterisk n Subscript t Baseline slash n for d greater-than-or-equal-to 1 and alpha Subscript t Baseline equals d asterisk n Subscript t for d less-than 1.

  4. With the group means bold m Subscript asterisk t, the pooled covariance matrix bold upper S Subscript asterisk, and the prior probabilities of group membership q Subscript asterisk t, the discriminant function method derives linear discriminant function and computes the posterior probabilities of an observation belonging to each group

    p Subscript t Baseline left-parenthesis bold x right-parenthesis equals StartFraction normal e normal x normal p left-parenthesis minus 0.5 upper D Subscript t Superscript 2 Baseline left-parenthesis bold x right-parenthesis right-parenthesis Over sigma-summation Underscript u equals 1 Overscript g Endscripts normal e normal x normal p left-parenthesis minus 0.5 upper D Subscript u Superscript 2 Baseline left-parenthesis bold x right-parenthesis right-parenthesis EndFraction

    where upper D Subscript t Superscript 2 Baseline left-parenthesis bold x right-parenthesis equals left-parenthesis bold x minus bold m Subscript asterisk t Baseline right-parenthesis prime bold upper S Subscript asterisk Superscript negative 1 Baseline left-parenthesis bold x minus bold m Subscript asterisk t Baseline right-parenthesis minus 2 normal l normal o normal g left-parenthesis q Subscript asterisk t Baseline right-parenthesis is the generalized squared distance from bold x to group t.

  5. Draw a random uniform variate u, between 0 and 1, for each observation with missing group value. With the posterior probabilities, p 1 left-parenthesis bold x right-parenthesis plus p 2 left-parenthesis bold x right-parenthesis plus ellipsis comma plus p Subscript g Baseline left-parenthesis bold x right-parenthesis equals 1, the discriminant function method imputes upper Y Subscript j Baseline equals 1 if the value of u is less than p 1 left-parenthesis bold x right-parenthesis, upper Y Subscript j Baseline equals 2 if the value is greater than or equal to p 1 left-parenthesis bold x right-parenthesis but less than p 1 left-parenthesis bold x right-parenthesis plus p 2 left-parenthesis bold x right-parenthesis, and so on.

Last updated: December 09, 2022