The NLMIXED Procedure

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can easily lead them to (feasible) points where the objective function f is no longer defined or is difficult to compute. Therefore, PROC NLMIXED provides options restricting the step length alpha or trust region radius normal upper Delta, especially during the first main iterations.

The inner product bold g prime bold s of the gradient bold g and the search direction bold s is the slope of f left-parenthesis alpha right-parenthesis equals f left-parenthesis bold-italic theta plus alpha bold s right-parenthesis along the search direction bold s. The default starting value alpha Superscript left-parenthesis 0 right-parenthesis Baseline equals alpha Superscript left-parenthesis k comma 0 right-parenthesis in each line-search algorithm (min Underscript alpha greater-than 0 Endscripts f left-parenthesis bold-italic theta plus alpha bold s right-parenthesis) during the main iteration k is computed in three steps:

  1. The first step uses either the difference StartAbsoluteValue normal upper Delta f EndAbsoluteValue equals StartAbsoluteValue f Superscript left-parenthesis k right-parenthesis Baseline minus f Superscript left-parenthesis k minus 1 right-parenthesis Baseline EndAbsoluteValue of the function values during the last two consecutive iterations or the final step-size value alpha Superscript normal bar of the last iteration k minus 1 to compute a first value of alpha 1 Superscript left-parenthesis 0 right-parenthesis.

    • If the DAMPSTEP option is not used,

      alpha 1 Superscript left-parenthesis 0 right-parenthesis Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column s t e p 2nd Column if 0.1 less-than-or-equal-to s t e p less-than-or-equal-to 10 2nd Row 1st Column 10 2nd Column if s t e p greater-than 10 3rd Row 1st Column 0.1 2nd Column if s t e p less-than 0.1 EndLayout

      with

      s t e p equals StartLayout Enlarged left-brace 1st Row 1st Column StartAbsoluteValue normal upper Delta f EndAbsoluteValue slash StartAbsoluteValue bold g prime bold s EndAbsoluteValue 2nd Column if StartAbsoluteValue bold g prime bold s EndAbsoluteValue greater-than-or-equal-to epsilon max left-parenthesis 100 times StartAbsoluteValue normal upper Delta f EndAbsoluteValue comma 1 right-parenthesis 2nd Row 1st Column 1 2nd Column otherwise EndLayout

      This value of alpha 1 Superscript left-parenthesis 0 right-parenthesis can be too large and can lead to a difficult or impossible function evaluation, especially for highly nonlinear functions such as the EXP function.

    • If the DAMPSTEP=r option is used,

      alpha 1 Superscript left-parenthesis 0 right-parenthesis Baseline equals min left-parenthesis 1 comma r alpha Superscript normal bar Baseline right-parenthesis

      The initial value for the new step length can be no larger than r times the final step length alpha Superscript normal bar of the former iteration. The default value is r = 2.

  2. During the first five iterations, the second step enables you to reduce alpha 1 Superscript left-parenthesis 0 right-parenthesis to a smaller starting value alpha 2 Superscript left-parenthesis 0 right-parenthesis by using the INSTEP=r option:

    alpha 2 Superscript left-parenthesis 0 right-parenthesis Baseline equals min left-parenthesis alpha 1 Superscript left-parenthesis 0 right-parenthesis Baseline comma r right-parenthesis

    After more than five iterations, alpha 2 Superscript left-parenthesis 0 right-parenthesis is set to alpha 1 Superscript left-parenthesis 0 right-parenthesis.

  3. The third step can further reduce the step length by

    alpha 3 Superscript left-parenthesis 0 right-parenthesis Baseline equals min left-parenthesis alpha 2 Superscript left-parenthesis 0 right-parenthesis Baseline comma min left-parenthesis 10 comma u right-parenthesis right-parenthesis

    where u is the maximum length of a step inside the feasible region.

The INSTEP=r option enables you to specify a smaller or larger radius normal upper Delta of the trust region used in the first iteration of the trust region and double-dogleg algorithms. The default initial trust region radius normal upper Delta Superscript left-parenthesis 0 right-parenthesis is the length of the scaled gradient (Moré 1978). This step corresponds to the default radius factor of r = 1. In most practical applications of the TRUREG and DBLDOG algorithms, this choice is successful. However, for bad initial values and highly nonlinear objective functions (such as the EXP function), the default start radius can result in arithmetic overflows. If this happens, you can try decreasing values of INSTEP=r, 0 < r < 1, until the iteration starts successfully. A small factor r also affects the trust region radius normal upper Delta Superscript left-parenthesis k plus 1 right-parenthesis of the next steps because the radius is changed in each iteration by a factor 0 less-than c less-than-or-equal-to 4, depending on the ratio rho expressing the goodness of quadratic function approximation. Reducing the radius normal upper Delta corresponds to increasing the ridge parameter lamda, producing smaller steps aimed more closely toward the (negative) gradient direction.

Last updated: December 09, 2022