The NLMIXED Procedure

Logistic-Normal Model with Binomial Data

(View the complete code for this example.)

This example analyzes the data from Beitler and Landis (1985), which represent results from a multi-center clinical trial investigating the effectiveness of two topical cream treatments (active drug, control) in curing an infection. For each of eight clinics, the number of trials and favorable cures are recorded for each treatment. The SAS data set is as follows.

data infection;
   input clinic t x n;
   datalines;
1 1 11 36
1 0 10 37
2 1 16 20
2 0 22 32
3 1 14 19
3 0  7 19
4 1  2 16
4 0  1 17
5 1  6 17
5 0  0 12
6 1  1 11
6 0  0 10
7 1  1  5
7 0  1  9
8 1  4  6
8 0  6  7
;

Suppose n Subscript i j denotes the number of trials for the ith clinic and the jth treatment (i equals 1 comma ellipsis comma 8 semicolon j equals 0 comma 1), and x Subscript i j denotes the corresponding number of favorable cures. Then a reasonable model for the preceding data is the following logistic model with random effects:

x Subscript i j Baseline vertical-bar u Subscript i Baseline tilde Binomial left-parenthesis n Subscript i j Baseline comma p Subscript i j Baseline right-parenthesis

and

eta Subscript i j Baseline equals log left-parenthesis StartFraction p Subscript i j Baseline Over 1 minus p Subscript i j Baseline EndFraction right-parenthesis equals beta 0 plus beta 1 t Subscript j Baseline plus u Subscript i

The notation t Subscript j indicates the jth treatment, and the u Subscript i are assumed to be iid upper N left-parenthesis 0 comma sigma Subscript u Superscript 2 Baseline right-parenthesis.

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;
   parms beta0=-1 beta1=1 s2u=2;
   eta    = beta0 + beta1*t + u;
   expeta = exp(eta);
   p      = expeta/(1+expeta);
   model x ~ binomial(n,p);
   random u ~ normal(0,s2u) subject=clinic;
   predict eta out=eta;
   estimate '1/beta1' 1/beta1;
run;

The PROC NLMIXED statement invokes the procedure, and the PARMS statement defines the parameters and their starting values. The next three statements define p Subscript i j, and the MODEL statement defines the conditional distribution of x Subscript i j to be binomial. The RANDOM statement defines u to be the random effect with subjects defined by the clinic variable.

The PREDICT statement constructs predictions for each observation in the input data set. For this example, predictions of eta Subscript i j and approximate standard errors of prediction are output to a data set named eta. These predictions include empirical Bayes estimates of the random effects u Subscript i.

The ESTIMATE statement requests an estimate of the reciprocal of beta 1.

The output for this model is as follows.

Figure 7: Model Information and Dimensions for Logistic-Normal Model

The NLMIXED Procedure

Specifications
Data Set WORK.INFECTION
Dependent Variable x
Distribution for Dependent Variable Binomial
Random Effects u
Distribution for Random Effects Normal
Subject Variable clinic
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian Quadrature

Dimensions
Observations Used 16
Observations Not Used 0
Total Observations 16
Subjects 8
Max Obs per Subject 2
Parameters 3
Quadrature Points 5


The "Specifications" table provides basic information about the nonlinear mixed model (Figure 7). For example, the distribution of the response variable, conditional on normally distributed random effects, is binomial. The "Dimensions" table provides counts of various variables. You should check this table to make sure the data set and model have been entered properly. PROC NLMIXED selects five quadrature points to achieve the default accuracy in the likelihood calculations.

Figure 8: Starting Values of Parameter Estimates

Initial Parameters
beta0 beta1 s2u Negative
Log
Likelihood
-1 1 2 37.5945925


The "Parameters" table lists the starting point of the optimization and the negative log likelihood at the starting values (Figure 8).

Figure 9: Iteration History and Fit Statistics for Logistic-Normal Model

Iteration History
Iteration Calls Negative
Log
Likelihood
Difference Maximum
Gradient
Slope
1 4 37.3622692 0.232323 2.88208 -19.3762
2 6 37.1460375 0.216232 0.92193 -0.82852
3 9 37.0300936 0.115944 0.31590 -0.59175
4 11 37.0223017 0.007792 0.019060 -0.01615
5 13 37.0222472 0.000054 0.001743 -0.00011
6 16 37.0222466 6.57E-7 0.000091 -1.28E-6
7 19 37.0222466 5.38E-10 2.078E-6 -1.1E-9

NOTE: GCONV convergence criterion satisfied.

Fit Statistics
-2 Log Likelihood 74.0
AIC (smaller is better) 80.0
AICC (smaller is better) 82.0
BIC (smaller is better) 80.3


The "Iteration History" table indicates successful convergence in seven iterations (Figure 9). The "Fit Statistics" table lists some useful statistics based on the maximized value of the log likelihood.

Figure 10: Parameter Estimates for Logistic-Normal Model

Parameter Estimates
Parameter Estimate Standard
Error
DF t Value Pr > |t| 95% Confidence Limits Gradient
beta0 -1.1974 0.5561 7 -2.15 0.0683 -2.5123 0.1175 -3.1E-7
beta1 0.7385 0.3004 7 2.46 0.0436 0.02806 1.4488 -2.08E-6
s2u 1.9591 1.1903 7 1.65 0.1438 -0.8555 4.7737 -2.48E-7


The "Parameter Estimates" table indicates marginal significance of the two fixed-effects parameters (Figure 10). The positive value of the estimate of beta 1 indicates that the treatment significantly increases the chance of a favorable cure.

Figure 11: Table of Additional Estimates

Additional Estimates
Label Estimate Standard
Error
DF t Value Pr > |t| Alpha Lower Upper
1/beta1 1.3542 0.5509 7 2.46 0.0436 0.05 0.05146 2.6569


The "Additional Estimates" table displays results from the ESTIMATE statement (Figure 11). The estimate of 1 slash beta 1 equals 1 slash 0.7385 equals 1.3542 and its standard error equals 0.3004 slash 0.7385 squared equals 0.5509 by the delta method (Billingsley 1986; Cox 1998). Note that this particular approximation produces a t-statistic identical to that for the estimate of beta 1. Not shown is the eta data set, which contains the original 16 observations and predictions of the eta Subscript i j.

Last updated: December 09, 2022