The PLM Procedure

LSMESTIMATE Statement

  • LSMESTIMATE model-effect <'label'> values <divisor=n> <, …<'label'> values <divisor=n>></ options>;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least squares means.

Table 8 summarizes the options available in the LSMESTIMATE statement.

Table 8: LSMESTIMATE Statement Options

Option Description
Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as determined by a data set
SINGULAR= Tunes estimability checking
Degrees of Freedom and p-Values
ADJUST= Determines the method of multiple-comparison adjustment of LS-means differences
ALPHA=alpha Determines the confidence level (1 minus alpha)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the bold upper L matrix
ELSM Prints the bold upper K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-means differences
PLOTS= Produces graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random numbers
Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions for multinomial data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means (but not differences) on the inverse linked scale


For more information about the syntax of the LSMESTIMATE statement, see the section LSMESTIMATE Statement in Chapter 20, Shared Concepts and Topics.

Last updated: December 09, 2022