The POWER Procedure

Analyses in the ONESAMPLEMEANS Statement

One-Sample t Test (TEST=T)

The hypotheses for the one-sample t test are

StartLayout 1st Row 1st Column upper H 0 colon 2nd Column mu equals mu 0 2nd Row 1st Column upper H 1 colon 2nd Column StartLayout Enlarged left-brace 1st Row 1st Column mu not-equals mu 0 comma 2nd Column two hyphen sided 2nd Row 1st Column mu greater-than mu 0 comma 2nd Column upper one hyphen sided 3rd Row 1st Column mu less-than mu 0 comma 2nd Column lower one hyphen sided EndLayout EndLayout

The test assumes normally distributed data and requires upper N greater-than-or-equal-to 2. The test statistics are

StartLayout 1st Row 1st Column t 2nd Column equals upper N Superscript one-half Baseline left-parenthesis StartFraction x overbar minus mu 0 Over s EndFraction right-parenthesis tilde t left-parenthesis upper N minus 1 comma delta right-parenthesis 2nd Row 1st Column t squared 2nd Column tilde upper F left-parenthesis 1 comma upper N minus 1 comma delta squared right-parenthesis EndLayout

where x overbar is the sample mean, s is the sample standard deviation, and

delta equals upper N Superscript one-half Baseline left-parenthesis StartFraction mu minus mu 0 Over sigma EndFraction right-parenthesis

The test is

Reject upper H 0 if StartLayout Enlarged left-brace 1st Row 1st Column t squared greater-than-or-equal-to upper F Subscript 1 minus alpha Baseline left-parenthesis 1 comma upper N minus 1 right-parenthesis comma 2nd Column two hyphen sided 2nd Row 1st Column t greater-than-or-equal-to t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis comma 2nd Column upper one hyphen sided 3rd Row 1st Column t less-than-or-equal-to t Subscript alpha Baseline left-parenthesis upper N minus 1 right-parenthesis comma 2nd Column lower one hyphen sided EndLayout

Exact power computations for t tests are discussed in O’Brien and Muller (1993, Section 8.2), although not specifically for the one-sample case. The power is based on the noncentral t and F distributions:

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-parenthesis upper F left-parenthesis 1 comma upper N minus 1 comma delta squared right-parenthesis greater-than-or-equal-to upper F Subscript 1 minus alpha Baseline left-parenthesis 1 comma upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column two hyphen sided 2nd Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 1 comma delta right-parenthesis greater-than-or-equal-to t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column upper one hyphen sided 3rd Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 1 comma delta right-parenthesis less-than-or-equal-to t Subscript alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column lower one hyphen sided EndLayout EndLayout

Solutions for N, alpha, and delta are obtained by numerically inverting the power equation. Closed-form solutions for other parameters, in terms of delta, are as follows:

StartLayout 1st Row 1st Column mu 2nd Column equals delta sigma upper N Superscript negative one-half Baseline plus mu 0 2nd Row 1st Column sigma 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column delta Superscript negative 1 Baseline upper N Superscript one-half Baseline left-parenthesis mu minus mu 0 right-parenthesis comma 2nd Column StartAbsoluteValue delta EndAbsoluteValue greater-than 0 2nd Row 1st Column undefined comma 2nd Column otherwise EndLayout EndLayout
One-Sample t Test with Lognormal Data (TEST=T DIST=LOGNORMAL)

The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and Balakrishnan (1994, Chapter 14). The approaches in the section One-Sample t Test (TEST=T) then apply.

In contrast to the usual t test on normal data, the hypotheses with lognormal data are defined in terms of geometric means rather than arithmetic means. This is because the transformation of a null arithmetic mean of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural for lognormal data.

The hypotheses for the one-sample t test with lognormal data are

StartLayout 1st Row 1st Column upper H 0 colon 2nd Column StartFraction gamma Over gamma 0 EndFraction equals 1 2nd Row 1st Column upper H 1 colon 2nd Column StartLayout Enlarged left-brace 1st Row 1st Column StartFraction gamma Over gamma 0 EndFraction not-equals 1 comma 2nd Column two hyphen sided 2nd Row 1st Column StartFraction gamma Over gamma 0 EndFraction greater-than 1 comma 2nd Column upper one hyphen sided 3rd Row 1st Column StartFraction gamma Over gamma 0 EndFraction less-than 1 comma 2nd Column lower one hyphen sided EndLayout EndLayout

Let mu Superscript star and sigma Superscript star be the (arithmetic) mean and standard deviation of the normal distribution of the log-transformed data. The hypotheses can be rewritten as follows:

StartLayout 1st Row 1st Column upper H 0 colon 2nd Column mu Superscript star Baseline equals log left-parenthesis gamma 0 right-parenthesis 2nd Row 1st Column upper H 1 colon 2nd Column StartLayout Enlarged left-brace 1st Row 1st Column mu Superscript star Baseline not-equals log left-parenthesis gamma 0 right-parenthesis comma 2nd Column two hyphen sided 2nd Row 1st Column mu Superscript star Baseline greater-than log left-parenthesis gamma 0 right-parenthesis comma 2nd Column upper one hyphen sided 3rd Row 1st Column mu Superscript star Baseline less-than log left-parenthesis gamma 0 right-parenthesis comma 2nd Column lower one hyphen sided EndLayout EndLayout

where mu Superscript star Baseline equals log left-parenthesis gamma right-parenthesis.

The test assumes lognormally distributed data and requires upper N greater-than-or-equal-to 2.

The power is

normal p normal o normal w normal e normal r equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-parenthesis upper F left-parenthesis 1 comma upper N minus 1 comma delta squared right-parenthesis greater-than-or-equal-to upper F Subscript 1 minus alpha Baseline left-parenthesis 1 comma upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column two hyphen sided 2nd Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 1 comma delta right-parenthesis greater-than-or-equal-to t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column upper one hyphen sided 3rd Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 1 comma delta right-parenthesis less-than-or-equal-to t Subscript alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 2nd Column lower one hyphen sided EndLayout

where

StartLayout 1st Row 1st Column delta 2nd Column equals upper N Superscript one-half Baseline left-parenthesis StartFraction mu Superscript star Baseline minus log left-parenthesis gamma 0 right-parenthesis Over sigma Superscript star Baseline EndFraction right-parenthesis 2nd Row 1st Column sigma Superscript star 2nd Column equals left-bracket log left-parenthesis normal upper C normal upper V squared plus 1 right-parenthesis right-bracket Superscript one-half EndLayout
Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL)

The hypotheses for the equivalence test are

StartLayout 1st Row 1st Column upper H 0 colon 2nd Column mu less-than theta Subscript upper L Baseline or mu greater-than theta Subscript upper U Baseline 2nd Row 1st Column upper H 1 colon 2nd Column theta Subscript upper L Baseline less-than-or-equal-to mu less-than-or-equal-to theta Subscript upper U EndLayout

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987). Two different hypothesis tests are carried out:

StartLayout 1st Row 1st Column upper H Subscript a Baseline 0 Baseline colon 2nd Column mu less than theta Subscript upper L Baseline 2nd Row 1st Column upper H Subscript a Baseline 1 Baseline colon 2nd Column mu greater than or equals theta Subscript upper L EndLayout

and

StartLayout 1st Row 1st Column upper H Subscript b Baseline 0 Baseline colon 2nd Column mu greater than theta Subscript upper U Baseline 2nd Row 1st Column upper H Subscript b Baseline 1 Baseline colon 2nd Column mu less than or equals theta Subscript upper U EndLayout

If upper H Subscript a Baseline 0 is rejected in favor of upper H Subscript a Baseline 1 and upper H Subscript b Baseline 0 is rejected in favor of upper H Subscript b Baseline 1, then upper H 0 is rejected in favor of upper H 1. Rejection of upper H 0 in favor of upper H 1 at significance level alpha occurs if and only if the 100(1 – 2 alpha)% confidence interval for mu is contained completely within left parenthesis theta Subscript upper L Baseline comma theta Subscript upper U Baseline right parenthesis.

The test assumes normally distributed data and requires upper N greater-than-or-equal-to 2. Phillips (1990) derives an expression for the exact power assuming a two-sample balanced design; the results are easily adapted to a one-sample design:

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis minus t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma StartFraction mu minus theta Subscript upper U Baseline Over sigma upper N Superscript negative one-half Baseline EndFraction semicolon 0 comma StartFraction left-parenthesis upper N minus 1 right-parenthesis Superscript one-half Baseline left-parenthesis theta Subscript upper U Baseline minus theta Subscript upper L Baseline right-parenthesis Over 2 sigma upper N Superscript negative one-half Baseline left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis minus 2nd Row 1st Column Blank 2nd Column upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma StartFraction mu minus theta Subscript upper L Baseline Over sigma upper N Superscript negative one-half Baseline EndFraction semicolon 0 comma StartFraction left-parenthesis upper N minus 1 right-parenthesis Superscript one-half Baseline left-parenthesis theta Subscript upper U Baseline minus theta Subscript upper L Baseline right-parenthesis Over 2 sigma upper N Superscript negative one-half Baseline left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis EndLayout

where upper Q Subscript dot Baseline left-parenthesis dot comma dot semicolon dot comma dot right-parenthesis is Owen’s Q function, defined in the section Common Notation.

Equivalence Test for Mean of Lognormal Data (TEST=EQUIV DIST=LOGNORMAL)

The lognormal case is handled by reexpressing the analysis equivalently as a normality-based test on the log-transformed data, by using properties of the lognormal distribution as discussed in Johnson, Kotz, and Balakrishnan (1994, Chapter 14). The approaches in the section Equivalence Test for Mean of Normal Data (TEST=EQUIV DIST=NORMAL) then apply.

In contrast to the additive equivalence test on normal data, the hypotheses with lognormal data are defined in terms of geometric means rather than arithmetic means. This is because the transformation of an arithmetic mean of lognormal data to the normal scale depends on the unknown coefficient of variation, resulting in an ill-defined hypothesis on the log-transformed data. Geometric means transform cleanly and are more natural for lognormal data.

The hypotheses for the equivalence test are

StartLayout 1st Row 1st Column upper H 0 colon 2nd Column gamma less-than-or-equal-to theta Subscript upper L Baseline or gamma greater-than-or-equal-to theta Subscript upper U Baseline 2nd Row 1st Column upper H 1 colon 2nd Column theta Subscript upper L Baseline less-than gamma less-than theta Subscript upper U EndLayout
where 0 less-than theta Subscript upper L Baseline less-than theta Subscript upper U Baseline

The analysis is the two one-sided tests (TOST) procedure of Schuirmann (1987) on the log-transformed data. Two different hypothesis tests are carried out:

StartLayout 1st Row 1st Column upper H Subscript a Baseline 0 Baseline colon 2nd Column gamma less than theta Subscript upper L Baseline 2nd Row 1st Column upper H Subscript a Baseline 1 Baseline colon 2nd Column gamma greater than or equals theta Subscript upper L EndLayout

and

StartLayout 1st Row 1st Column upper H Subscript b Baseline 0 Baseline colon 2nd Column gamma greater than theta Subscript upper U Baseline 2nd Row 1st Column upper H Subscript b Baseline 1 Baseline colon 2nd Column gamma less than or equals theta Subscript upper U EndLayout

If upper H Subscript a Baseline 0 is rejected in favor of upper H Subscript a Baseline 1 and upper H Subscript b Baseline 0 is rejected in favor of upper H Subscript b Baseline 1, then upper H 0 is rejected in favor of upper H 1. Rejection of upper H 0 in favor of upper H 1 at significance level alpha occurs if and only if the 100(1 – 2 alpha)% confidence interval for gamma is contained completely within left parenthesis theta Subscript upper L Baseline comma theta Subscript upper U Baseline right parenthesis.

The test assumes lognormally distributed data and requires upper N greater-than-or-equal-to 2. Diletti, Hauschke, and Steinijans (1991) derive an expression for the exact power assuming a crossover design; the results are easily adapted to a one-sample design:

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis minus t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma StartFraction log left-parenthesis gamma right-parenthesis minus log left-parenthesis theta Subscript upper U Baseline right-parenthesis Over sigma Superscript star Baseline upper N Superscript negative one-half Baseline EndFraction semicolon 0 comma StartFraction left-parenthesis upper N minus 1 right-parenthesis Superscript one-half Baseline left-parenthesis log left-parenthesis theta Subscript upper U Baseline right-parenthesis minus log left-parenthesis theta Subscript upper L Baseline right-parenthesis right-parenthesis Over 2 sigma Superscript star Baseline upper N Superscript negative one-half Baseline left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis minus 2nd Row 1st Column Blank 2nd Column upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma StartFraction log left-parenthesis gamma right-parenthesis minus log left-parenthesis theta Subscript upper L Baseline right-parenthesis Over sigma Superscript star Baseline upper N Superscript negative one-half Baseline EndFraction semicolon 0 comma StartFraction left-parenthesis upper N minus 1 right-parenthesis Superscript one-half Baseline left-parenthesis log left-parenthesis theta Subscript upper U Baseline right-parenthesis minus log left-parenthesis theta Subscript upper L Baseline right-parenthesis right-parenthesis Over 2 sigma Superscript star Baseline upper N Superscript negative one-half Baseline left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis EndLayout

where

sigma Superscript star Baseline equals left-bracket log left-parenthesis normal upper C normal upper V squared plus 1 right-parenthesis right-bracket Superscript one-half

is the standard deviation of the log-transformed data, and upper Q Subscript dot Baseline left-parenthesis dot comma dot semicolon dot comma dot right-parenthesis is Owen’s Q function, defined in the section Common Notation.

Confidence Interval for Mean (CI=T)

This analysis of precision applies to the standard t-based confidence interval:

StartLayout 1st Row 1st Column left-bracket x overbar minus t Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction comma x overbar plus t Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction right-bracket comma 2nd Column two hyphen sided 2nd Row 1st Column left-bracket x overbar minus t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction comma normal infinity right-parenthesis comma 2nd Column upper one hyphen sided 3rd Row 1st Column left-parenthesis negative normal infinity comma x overbar plus t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction right-bracket comma 2nd Column lower one hyphen sided EndLayout

where x overbar is the sample mean and s is the sample standard deviation. The "half-width" is defined as the distance from the point estimate x overbar to a finite endpoint,

half hyphen width equals StartLayout Enlarged left-brace 1st Row 1st Column t Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction comma 2nd Column two hyphen sided 2nd Row 1st Column t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis StartFraction s Over StartRoot upper N EndRoot EndFraction comma 2nd Column one hyphen sided EndLayout

A "valid" conference interval captures the true mean. The exact probability of obtaining at most the target confidence interval half-width h, unconditional or conditional on validity, is given by Beal (1989):

StartLayout 1st Row 1st Column probability left-parenthesis half hyphen width less-than-or-equal-to h right-parenthesis 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-parenthesis chi squared left-parenthesis upper N minus 1 right-parenthesis less-than-or-equal-to StartFraction h squared upper N left-parenthesis upper N minus 1 right-parenthesis Over sigma squared left-parenthesis t Subscript 1 minus StartFraction alpha Over 2 EndFraction Superscript 2 Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis comma 2nd Column two hyphen sided 2nd Row 1st Column upper P left-parenthesis chi squared left-parenthesis upper N minus 1 right-parenthesis less-than-or-equal-to StartFraction h squared upper N left-parenthesis upper N minus 1 right-parenthesis Over sigma squared left-parenthesis t Subscript 1 minus alpha Superscript 2 Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis EndFraction right-parenthesis comma 2nd Column one hyphen sided EndLayout 2nd Row 1st Column StartLayout 1st Row  probability left-parenthesis half hyphen width less-than-or-equal-to h vertical-bar 2nd Row  validity right-parenthesis EndLayout 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column left-parenthesis StartFraction 1 Over 1 minus alpha EndFraction right-parenthesis 2 left-bracket upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis t Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 0 semicolon 2nd Row 1st Column 0 comma b 1 right-parenthesis minus upper Q Subscript upper N minus 1 Baseline left-parenthesis 0 comma 0 semicolon 0 comma b 1 right-parenthesis right-bracket comma 2nd Column two hyphen sided 3rd Row 1st Column left-parenthesis StartFraction 1 Over 1 minus alpha EndFraction right-parenthesis upper Q Subscript upper N minus 1 Baseline left-parenthesis left-parenthesis t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis comma 0 semicolon 0 comma b 1 right-parenthesis comma 2nd Column one hyphen sided EndLayout EndLayout

where

StartLayout 1st Row 1st Column b 1 2nd Column equals StartFraction h left-parenthesis upper N minus 1 right-parenthesis Superscript one-half Baseline Over sigma left-parenthesis t Subscript 1 minus StartFraction alpha Over c EndFraction Baseline left-parenthesis upper N minus 1 right-parenthesis right-parenthesis upper N Superscript negative one-half Baseline EndFraction 2nd Row 1st Column c 2nd Column equals number of sides EndLayout

and upper Q Subscript dot Baseline left-parenthesis dot comma dot semicolon dot comma dot right-parenthesis is Owen’s Q function, defined in the section Common Notation.

A "quality" confidence interval is both sufficiently narrow (half-width less-than-or-equal-to h) and valid:

StartLayout 1st Row 1st Column probability left-parenthesis quality right-parenthesis 2nd Column equals probability left-parenthesis half hyphen width less-than-or-equal-to h and validity right-parenthesis 2nd Row 1st Column Blank 2nd Column equals probability left-parenthesis half hyphen width less-than-or-equal-to h vertical-bar validity right-parenthesis left-parenthesis 1 minus alpha right-parenthesis EndLayout
Last updated: December 09, 2022