Alternative Equation Formats

The equation on this page is available in multiple formats. Depending on your browser, some formats might not render correctly.

MathML

N = # subjects ( NTOTAL ) K = # predictors (not counting intercept) x = ( x 1 , , x K ) = random variables for predictor vector x 1 = ( x 2 , , x K ) μ = ( μ 1 , , μ K ) = E x = mean predictor vector x i = ( x i 1 , , x i K ) = predictor vector for subject  i ( i 1 , , N ) Y = random variable for response (0 or 1) Y i = response for subject  i ( i 1 , , N ) p i = P r o b ( Y i = 1 | x i ) ( i 1 , , N ) ϕ = P r o b ( Y i = 1 | x i = μ ) ( RESPONSEPROB ) U j = unit change for  j th predictor ( UNITS ) O R j = O d d s ( Y i = 1 | x i j = c ) / O d d s ( Y i = 1 | x i j = c U j ) ( c  arbitrary , i 1 , , N , j 1 , , K ) (TESTODDSRATIO if  j = 1 , COVODDSRATIOS if  j > 1 ) Ψ 0 = intercept in full model (INTERCEPT) Ψ = ( Ψ 1 , , Ψ K ) = regression coefficients in full model ( Ψ 1 = TESTREGCOEFF, others = COVREGCOEFFS ) ρ = C o r r ( x 1 , x 1 ) ( CORR ) c j = # distinct possible values of  x i j ( j 1 , , K ) ( for any  i ) ( NBINS ) x g j = g th possible value of  x i j ( g 1 , , c j ) ( j 1 , , K ) ( for any  i ) ( VARDIST )

Math Rendered as SVG

Math as LaTeX Source

\begin{align*} N & = \# \text {subjects}\quad (\text {NTOTAL}) \\ K & = \# \text {predictors (not counting intercept)} \\ \mb{x} & = (x_{1}, \ldots , x_{K})' = \text {random variables for predictor vector} \\ \mb{x}_{-1} & = (x_{2}, \ldots , x_{K})' \\ \bmu & = (\mu _{1}, \ldots , \mu _{K})' = \mr{E}\mb{x} = \text {mean predictor vector} \\ \mb{x}_ i & = (x_{i1}, \ldots , x_{iK})' = \text {predictor vector for subject } i \quad (i \in 1, \ldots , N) \\ Y & = \text {random variable for response (0 or 1)} \\ Y_ i & = \text {response for subject } i \quad (i \in 1, \ldots , N) \\ p_ i & = \mr{Prob} (Y_ i = 1 | \mb{x}_ i) \quad (i \in 1, \ldots , N) \\ \phi & = \mr{Prob} (Y_ i = 1 | \mb{x}_ i = \bmu ) \quad (\text {RESPONSEPROB}) \\ U_ j & = \text {unit change for }j\text {th predictor} \quad (\text {UNITS})\\ \mr{OR}_ j & = \mr{Odds} (Y_ i = 1 | x_{ij} = c) / \mr{Odds} (Y_ i = 1 | x_{ij} = c - U_ j) \quad (c \text { arbitrary}, i \in 1, \ldots , N, \\ & \quad j \in 1, \ldots , K)\quad \text {(TESTODDSRATIO if }j = 1, \text {COVODDSRATIOS if }j > 1) \\ \Psi _0 & = \text {intercept in full model (INTERCEPT)} \\ \bPsi & = (\Psi _1, \ldots , \Psi _ K)' = \text {regression coefficients in full model} \\ & \quad (\Psi _1 = \text {TESTREGCOEFF, others = COVREGCOEFFS}) \\ \rho & = \mr{Corr}(\mb{x}_{-1}, x_1) \quad (\text {CORR}) \\ c_ j & = \# \text {distinct possible values of } x_{ij} \quad (j \in 1,\ldots , K) (\text {for any }i) \quad (\text {NBINS}) \\ x^\star _{gj}& = g\text {th possible value of } x_{ij} \quad (g \in 1, \ldots , c_ j) (j \in 1, \ldots , K) \\ & \quad (\mbox{for any }i) \quad (\mbox{VARDIST}) \\ \end{align*}