Alternative Equation Formats
The equation on this page is available in multiple formats.
Depending on your browser, some formats might not render correctly.
MathML
Math Rendered as SVG
Math as LaTeX Source
\begin{align*} N & = \# \text {subjects}\quad (\text {NTOTAL}) \\ K & = \# \text {predictors (not counting intercept)} \\ \mb{x} & = (x_{1}, \ldots , x_{K})' = \text {random variables for predictor vector} \\ \mb{x}_{-1} & = (x_{2}, \ldots , x_{K})' \\ \bmu & = (\mu _{1}, \ldots , \mu _{K})' = \mr{E}\mb{x} = \text {mean predictor vector} \\ \mb{x}_ i & = (x_{i1}, \ldots , x_{iK})' = \text {predictor vector for subject } i \quad (i \in 1, \ldots , N) \\ Y & = \text {random variable for response (0 or 1)} \\ Y_ i & = \text {response for subject } i \quad (i \in 1, \ldots , N) \\ p_ i & = \mr{Prob} (Y_ i = 1 | \mb{x}_ i) \quad (i \in 1, \ldots , N) \\ \phi & = \mr{Prob} (Y_ i = 1 | \mb{x}_ i = \bmu ) \quad (\text {RESPONSEPROB}) \\ U_ j & = \text {unit change for }j\text {th predictor} \quad (\text {UNITS})\\ \mr{OR}_ j & = \mr{Odds} (Y_ i = 1 | x_{ij} = c) / \mr{Odds} (Y_ i = 1 | x_{ij} = c - U_ j) \quad (c \text { arbitrary}, i \in 1, \ldots , N, \\ & \quad j \in 1, \ldots , K)\quad \text {(TESTODDSRATIO if }j = 1, \text {COVODDSRATIOS if }j > 1) \\ \Psi _0 & = \text {intercept in full model (INTERCEPT)} \\ \bPsi & = (\Psi _1, \ldots , \Psi _ K)' = \text {regression coefficients in full model} \\ & \quad (\Psi _1 = \text {TESTREGCOEFF, others = COVREGCOEFFS}) \\ \rho & = \mr{Corr}(\mb{x}_{-1}, x_1) \quad (\text {CORR}) \\ c_ j & = \# \text {distinct possible values of } x_{ij} \quad (j \in 1,\ldots , K) (\text {for any }i) \quad (\text {NBINS}) \\ x^\star _{gj}& = g\text {th possible value of } x_{ij} \quad (g \in 1, \ldots , c_ j) (j \in 1, \ldots , K) \\ & \quad (\mbox{for any }i) \quad (\mbox{VARDIST}) \\ \end{align*}
Copyright © SAS Institute Inc. All rights reserved.