Alternative Equation Formats

The equation on this page is available in multiple formats. Depending on your browser, some formats might not render correctly.

MathML

p o w e r = { Φ ( ( p 2 ~ R R 0 p 1 ~ ) ( N w 1 w 2 ) 1 2 z 1 α [ w 2 R R 0 2 p 1 ~ ( 1 p 1 ~ ) + w 1 p 2 ~ ( 1 p 2 ~ ) ] 1 2 [ w 2 R R 0 2 p 1 ( 1 p 1 ) + w 1 p 2 ( 1 p 2 ) ] 1 2 ) , upper one-sided Φ ( ( p 2 ~ R R 0 p 1 ~ ) ( N w 1 w 2 ) 1 2 z 1 α [ w 2 R R 0 2 p 1 ~ ( 1 p 1 ~ ) + w 1 p 2 ~ ( 1 p 2 ~ ) ] 1 2 [ w 2 R R 0 2 p 1 ( 1 p 1 ) + w 1 p 2 ( 1 p 2 ) ] 1 2 ) , lower one-sided Φ ( ( p 2 ~ R R 0 p 1 ~ ) ( N w 1 w 2 ) 1 2 z 1 α 2 [ w 2 R R 0 2 p 1 ~ ( 1 p 1 ~ ) + w 1 p 2 ~ ( 1 p 2 ~ ) ] 1 2 [ w 2 R R 0 2 p 1 ( 1 p 1 ) + w 1 p 2 ( 1 p 2 ) ] 1 2 ) + Φ ( ( p 2 ~ R R 0 p 1 ~ ) ( N w 1 w 2 ) 1 2 z 1 α 2 [ w 2 R R 0 2 p 1 ~ ( 1 p 1 ~ ) + w 1 p 2 ~ ( 1 p 2 ~ ) ] 1 2 [ w 2 R R 0 2 p 1 ( 1 p 1 ) + w 1 p 2 ( 1 p 2 ) ] 1 2 ) , two-sided

Math Rendered as SVG

Math as LaTeX Source

\[ \mr{power} = \left\{ \begin{array}{ll} \Phi \left( \frac{(\tilde{p_2} - \mr{RR}_0 \tilde{p_1}) (N w_1 w_2)^\frac {1}{2} - z_{1-\alpha } \left[ w_2\mr{RR}^2_0\tilde{p_1}(1-\tilde{p_1}) + w_1\tilde{p_2}(1-\tilde{p_2}) \right]^\frac {1}{2}}{\left[ w_2 \mr{RR}^2_0 p_1 (1 - p_1) + w_1 p_2 (1 - p_2) \right]^\frac {1}{2}} \right), & \mbox{upper one-sided} \\ \Phi \left( \frac{-(\tilde{p_2} - \mr{RR}_0 \tilde{p_1}) (N w_1 w_2)^\frac {1}{2} - z_{1-\alpha } \left[ w_2\mr{RR}^2_0\tilde{p_1}(1-\tilde{p_1}) + w_1\tilde{p_2}(1-\tilde{p_2}) \right]^\frac {1}{2}}{\left[ w_2 \mr{RR}^2_0 p_1 (1 - p_1) + w_1 p_2 (1 - p_2) \right]^\frac {1}{2}} \right), & \mbox{lower one-sided} \\ \Phi \left( \frac{(\tilde{p_2} - \mr{RR}_0 \tilde{p_1}) (N w_1 w_2)^\frac {1}{2} - z_{1-\frac{\alpha }{2}} \left[ w_2\mr{RR}^2_0\tilde{p_1}(1-\tilde{p_1}) + w_1\tilde{p_2}(1-\tilde{p_2}) \right]^\frac {1}{2}}{\left[ w_2 \mr{RR}^2_0 p_1 (1 - p_1) + w_1 p_2 (1 - p_2) \right]^\frac {1}{2}} \right) + \\ \quad \Phi \left( \frac{-(\tilde{p_2} - \mr{RR}_0 \tilde{p_1}) (N w_1 w_2)^\frac {1}{2} - z_{1-\frac{\alpha }{2}} \left[ w_2\mr{RR}^2_0\tilde{p_1}(1-\tilde{p_1}) + w_1\tilde{p_2}(1-\tilde{p_2}) \right]^\frac {1}{2}}{\left[ w_2 \mr{RR}^2_0 p_1 (1 - p_1) + w_1 p_2 (1 - p_2) \right]^\frac {1}{2}} \right), & \mbox{two-sided} \\ \end{array} \right. \]