Alternative Equation Formats

The equation on this page is available in multiple formats. Depending on your browser, some formats might not render correctly.

MathML

p o w e r = { 0 P ( F ( 1 , N 2 , λ ) > h ( u ) F 1 α ( 1 , v ( u ) ) | u ) f ( u ) d u , two-sided 0 P ( t ( N 2 , λ 1 2 ) > [ h ( u ) ] 1 2 t 1 α ( v ( u ) ) | u ) f ( u ) d u , upper one-sided 0 P ( t ( N 2 , λ 1 2 ) < [ h ( u ) ] 1 2 t α ( v ( u ) ) | u ) f ( u ) d u , lower one-sided where h ( u ) = ( 1 n 1 + u n 2 ) ( n 1 + n 2 2 ) [ ( n 1 1 ) + ( n 2 1 ) u σ 1 2 σ 2 2 ] ( 1 n 1 + σ 2 2 σ 1 2 n 2 ) v ( u ) = ( 1 n 1 + u n 2 ) 2 1 n 1 2 ( n 1 1 ) + u 2 n 2 2 ( n 2 1 ) λ = ( μ d i f f μ 0 ) 2 σ 1 2 n 1 + σ 2 2 n 2 f ( u ) = Γ ( n 1 + n 2 2 2 ) Γ ( n 1 1 2 ) Γ ( n 2 1 2 ) [ σ 1 2 ( n 2 1 ) σ 2 2 ( n 1 1 ) ] n 2 1 2 u n 2 3 2 [ 1 + ( n 2 1 n 1 1 ) u σ 1 2 σ 2 2 ] ( n 1 + n 2 2 2 )

Math Rendered as SVG

Math as LaTeX Source

\begin{align*} \mr{power} & = \left\{ \begin{array}{ll} \int _0^\infty P\left(F(1,N-2, \lambda ) > \right. \\ \quad \left. h(u) F_{1-\alpha }(1, v(u)) | u\right) f(u) \mr{d}u, & \mbox{two-sided} \\ \int _0^\infty P\left(t(N-2, \lambda ^\frac {1}{2}) > \right. \\ \quad \left. \left[h(u)\right]^\frac {1}{2} t_{1-\alpha }(v(u)) | u\right) f(u) \mr{d}u, & \mbox{upper one-sided} \\ \int _0^\infty P\left(t(N-2, \lambda ^\frac {1}{2}) < \right. \\ \quad \left. \left[h(u)\right]^\frac {1}{2} t_{\alpha }(v(u)) | u\right) f(u) \mr{d}u, & \mbox{lower one-sided} \\ \end{array} \right. \\ \mbox{where} & \\ h(u) & = \frac{\left(\frac{1}{n_1} + \frac{u}{n_2}\right) (n_1+n_2-2)}{\left[(n_1-1) + (n_2-1)\frac{u\sigma _1^2}{\sigma _2^2}\right] \left(\frac{1}{n_1} + \frac{\sigma _2^2}{\sigma _1^2n_2}\right)} \\ v(u) & = \frac{\left(\frac{1}{n_1} + \frac{u}{n_2}\right)^2}{\frac{1}{n_1^2(n_1-1)} + \frac{u^2}{n_2^2(n_2-1)}} \\ \lambda & = \frac{(\mu _\mr {diff}-\mu _0)^2}{\frac{\sigma _1^2}{n_1} + \frac{\sigma _2^2}{n_2}} \\ f(u) & = \frac{\Gamma \left(\frac{n_1+n_2-2}{2}\right)}{\Gamma \left(\frac{n_1-1}{2}\right) \Gamma \left(\frac{n_2-1}{2}\right)} \left[ \frac{\sigma _1^2(n_2-1)}{\sigma _2^2(n_1-1)}\right]^\frac {n_2-1}{2} u^\frac {n_2-3}{2} \left[1+\left(\frac{n_2-1}{n_1-1}\right) \frac{u\sigma _1^2}{\sigma _2^2}\right]^{-\left(\frac{n_1+n_2-2}{2}\right)} \end{align*}