The RMSTREG Procedure

Pseudovalue Regression

Pseudovalue regression is a generic method of fitting generalized linear models to time-to-event data (Andersen, Klein, and Rosthøj 2003). This section describes how the method works and how you can apply it to analyze models of the RMST.

Let bold upper D 1 comma ellipsis comma bold upper D Subscript n Baseline be independent and identically distributed quantities that might be random variables or vectors of variables. Let bold-italic theta equals upper E left-bracket f left-parenthesis bold upper D Subscript i Baseline right-parenthesis right-bracket for some function f left-parenthesis dot right-parenthesis. Suppose ModifyingAbove bold-italic theta With caret is an unbiased estimator of bold-italic theta.

Let bold x 1 comma ellipsis comma bold x Subscript n Baseline be independent and identically distributed samples of covariates, and define the conditional expectation of f left-parenthesis bold upper D Subscript i Baseline right-parenthesis given by bold x Subscript i as

bold-italic theta Subscript i Baseline equals upper E left-bracket f left-parenthesis bold upper D Subscript i Baseline right-parenthesis vertical-bar bold x Subscript i Baseline right-bracket

The ith pseudo-observation of bold-italic theta is computed as

ModifyingAbove bold-italic theta With caret Subscript i Baseline equals n ModifyingAbove bold-italic theta With caret minus left-parenthesis n minus 1 right-parenthesis ModifyingAbove bold-italic theta With caret Superscript negative i

where ModifyingAbove bold-italic theta With caret Superscript negative i is the jackknife leave-one-out estimator for bold-italic theta based on StartSet bold upper D Subscript j Baseline colon j not-equals i EndSet.

The generalized linear model (Nelder and Wedderburn 1972) for bold-italic theta assumes

g left-parenthesis bold-italic theta Subscript i Baseline right-parenthesis equals bold x prime Subscript i Baseline bold-italic beta

where g left-parenthesis dot right-parenthesis is a suitable link function. Note that an additional column can be added to upper X Subscript i for an intercept effect.

Using pseudo-observations, you can estimate the regression parameters bold-italic beta by solving the following estimating equations

bold upper U left-parenthesis bold-italic beta right-parenthesis equals sigma-summation Underscript i equals 1 Overscript n Endscripts bold upper U Subscript i Baseline left-parenthesis bold-italic beta right-parenthesis equals sigma-summation Underscript i equals 1 Overscript n Endscripts left-parenthesis StartFraction partial-differential bold-italic theta Subscript i Baseline Over partial-differential bold-italic beta EndFraction right-parenthesis prime bold upper V Subscript i Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic theta With caret Subscript i Baseline minus bold-italic theta Subscript i Baseline right-parenthesis equals bold 0

where bold upper V Subscript i is a working covariance matrix.

Let ModifyingAbove bold-italic beta With caret be a solution of the estimating equations. You can use a sandwich estimator to estimate the variance of ModifyingAbove bold-italic beta With caret. It takes the form

bold upper Sigma Subscript e Baseline equals bold upper I 0 Superscript negative 1 Baseline bold upper I 1 bold upper I 0 Superscript negative 1

bold upper I 0 Superscript negative 1 is the model-based estimator of Cov left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis and is given by

bold upper I 0 equals sigma-summation Underscript i equals 1 Overscript n Endscripts StartFraction partial-differential bold-italic theta Subscript i Baseline Over partial-differential bold-italic beta EndFraction prime bold upper V Subscript i Superscript negative 1 Baseline StartFraction partial-differential bold-italic theta Subscript i Baseline Over partial-differential bold-italic beta EndFraction

bold upper I 1 Superscript negative 1 is the empirical estimator of Cov left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis and is computed as

bold upper I 1 equals sigma-summation Underscript i equals 1 Overscript n Endscripts bold upper U Subscript i Baseline left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis prime bold upper U Subscript i Baseline left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis

Andersen, Hansen, and Klein (2004) proposed using pseudovalue regression to analyze the RMST models. Assume tau is a prespecified time point of interest. Let upper T Subscript i be the time-to-event variable for the ith subject. The RMST models can be fitted using pseudovalue regression by letting

bold-italic theta Subscript i Baseline equals normal upper R normal upper M normal upper S normal upper T Subscript i Baseline left-parenthesis tau right-parenthesis equals upper E left-parenthesis upper T Subscript i Baseline logical-and tau vertical-bar bold x Subscript i Baseline right-parenthesis
StartLayout 1st Row  bold upper V Subscript i Baseline equals StartLayout Enlarged left-brace 1st Row 1st Column theta Subscript i Baseline equals normal upper R normal upper M normal upper S normal upper T Subscript i Baseline left-parenthesis tau right-parenthesis 2nd Column g left-parenthesis u right-parenthesis equals log left-parenthesis u right-parenthesis 2nd Row 1st Column 1 2nd Column g left-parenthesis u right-parenthesis equals u EndLayout EndLayout

Because the nonparametric estimator ModifyingAbove normal upper R normal upper M normal upper S normal upper T With caret left-parenthesis tau right-parenthesis is unbiased, it can be used in place of ModifyingAbove bold-italic theta With caret in the estimation process.

Last updated: December 09, 2022