The SEQDESIGN Procedure

Type I and Type II Errors

The Type I error is the error of rejecting the null hypothesis when the null hypothesis is correct, and the Type II error is the error of not rejecting the null hypothesis when the null hypothesis is incorrect. The level of significance alpha is the probability of making a Type I error. The Type II error depends on the hypothetical reference of the alternative hypothesis, and the Type II error probability beta is defined as the probability of not rejecting the null hypothesis when a specific alternative reference is true. The power 1 minus beta is then defined as the probability of rejecting the null hypothesis at the alternative reference.

In a sequential design, if the maximum information and alternative reference are not both specified, the critical values are created such that both the specified Type I and the specified Type II error probability levels are maintained in the design. Otherwise, the critical values are created such that either the specified Type I error probability or the specified Type II error probability is maintained.

One-Sided Tests

For a K-stage group sequential design with an upper alternative hypothesis upper H 1 colon theta equals theta 1 and early stopping to reject or accept the null hypothesis upper H 0 colon theta equals 0, the boundaries contain the upper alpha critical values a Subscript k and upper beta critical values b Subscript k, k equals 1 comma 2 comma ellipsis comma upper K. At each interim stage, b Subscript k Baseline less-than a Subscript k, the null hypothesis upper H 0 is rejected if the observed statistic z Subscript k Baseline greater-than-or-equal-to a Subscript k, upper H 0 is accepted if z Subscript k Baseline less-than b Subscript k, or the process is continued to the next stage if b Subscript k Baseline less-than-or-equal-to z Subscript k Baseline less-than a Subscript k. At the final stage b Subscript upper K Baseline equals a Subscript upper K, the hypothesis is either rejected or accepted.

The overall Type I error probability alpha is given by

alpha equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts alpha Subscript k

where alpha Subscript k is the alpha spending at stage k. That is, at stage 1,

alpha 1 equals upper P Subscript theta equals 0 Baseline left-parenthesis z 1 greater-than-or-equal-to a 1 right-parenthesis

At a subsequent stage k,

alpha Subscript k Baseline equals upper P Subscript theta equals 0 Baseline left-parenthesis b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline greater-than-or-equal-to a Subscript k Baseline right-parenthesis

Similarly, the Type II error probability

beta equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts beta Subscript k

where beta Subscript k is the beta spending at stage k. That is, at stage 1,

beta 1 equals upper P Subscript theta equals theta 1 Baseline left-parenthesis z 1 less-than b 1 right-parenthesis

At a subsequent stage k,

beta Subscript k Baseline equals upper P Subscript theta equals theta 1 Baseline left-parenthesis b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline less-than b Subscript k Baseline right-parenthesis

With an upper alternative hypothesis upper H 1 colon theta equals theta 1 greater-than 0, the power 1 minus beta is the probability of rejecting the null hypothesis for the upper alternative.

1 minus beta equals 1 minus sigma-summation Underscript k equals 1 Overscript upper K Endscripts beta Subscript k Baseline equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts upper P Subscript theta equals theta 1 Baseline left-parenthesis b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline greater-than-or-equal-to a Subscript k Baseline right-parenthesis

For a design with early stopping to reject upper H 0 only, the interim upper beta critical values are set to negative normal infinity, b Subscript k Baseline equals negative normal infinity comma k equals 1 comma 2 comma ellipsis comma upper K minus 1, and beta equals beta Subscript upper K. For a design with early stopping to accept upper H 0 only, the interim upper alpha critical values are set to normal infinity, a Subscript k Baseline equals normal infinity comma k equals 1 comma 2 comma ellipsis comma upper K minus 1, and alpha equals alpha Subscript upper K.

Similarly, the Type I and Type II error probabilities for a K-stage design with a lower alternative hypothesis upper H 0 colon theta equals minus theta 1 can also be derived.

Two-Sided Tests

For a K-stage group sequential design with two-sided alternative hypotheses upper H Subscript 1 u Baseline colon theta equals theta Subscript 1 u Baseline and upper H Subscript 1 l Baseline colon theta equals theta Subscript 1 l Baseline, and early stopping to reject or accept the null hypothesis upper H 0 colon theta equals 0, the boundaries contain the upper alpha critical values a Subscript k, upper beta critical values b Subscript k, lower beta critical values normal bar b Subscript k, and lower alpha critical values normal bar a Subscript k, k equals 1 comma 2 comma ellipsis comma upper K. At each interim stage, normal bar a Subscript k Baseline less-than normal bar b Subscript k Baseline less-than-or-equal-to b Subscript k Baseline less-than a Subscript k, the null hypothesis upper H 0 is rejected if the observed statistic z Subscript k Baseline greater-than-or-equal-to a Subscript k or z Subscript k Baseline less-than-or-equal-to normal bar a Subscript k, upper H 0 is accepted if normal bar b Subscript k Baseline less-than z Subscript k Baseline less-than b Subscript k, or the process is continued to the next stage if b Subscript k Baseline less-than-or-equal-to z Subscript k Baseline less-than a Subscript k or normal bar a Subscript k Baseline less-than z Subscript k Baseline less-than-or-equal-to normal bar b Subscript k. At the final stage b Subscript upper K Baseline equals a Subscript upper K and normal bar b Subscript upper K Baseline equals normal bar a Subscript upper K, the hypothesis is either rejected or accepted.

The overall upper Type I error probability alpha Subscript u is given by

alpha Subscript u Baseline equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts alpha Subscript u k

where alpha Subscript u k is the alpha spending at stage k for the upper alternative. That is, at stage 1,

alpha Subscript u Baseline 1 Baseline equals upper P Subscript theta equals 0 Baseline left-parenthesis z 1 greater-than-or-equal-to a 1 right-parenthesis

At a subsequent stage k,

alpha Subscript u k Baseline equals upper P Subscript theta equals 0 Baseline left-parenthesis normal bar a Subscript j Baseline less-than z Subscript j Baseline less-than-or-equal-to normal bar b Subscript j Baseline normal o normal r b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline greater-than-or-equal-to a Subscript k Baseline right-parenthesis

Similarly, the overall lower Type I error probability alpha Subscript l can also be derived, and the overall Type I error probability alpha equals alpha Subscript l Baseline plus alpha Subscript u.

The overall upper Type II error probability beta Subscript u is given by

beta Subscript u Baseline equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts beta Subscript u k

where beta Subscript u k is the upper beta spending at stage k. That is, at stage 1,

beta Subscript u Baseline 1 Baseline equals upper P Subscript theta equals theta Sub Subscript 1 u Baseline left-parenthesis z 1 less-than normal bar a 1 normal o normal r normal bar b 1 less-than z 1 less-than b 1 right-parenthesis

At a subsequent stage k,

StartLayout 1st Row  beta Subscript u k Baseline equals upper P Subscript theta equals theta Sub Subscript 1 u Baseline left-parenthesis normal bar a Subscript j Baseline less-than z Subscript j Baseline less-than-or-equal-to normal bar b Subscript j Baseline or b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline less-than normal bar a Subscript k Baseline or normal bar b Subscript k Baseline less-than z Subscript k Baseline less-than b Subscript k Baseline right-parenthesis EndLayout

With an upper alternative hypothesis upper H 1 colon theta equals theta Subscript 1 u Baseline greater-than 0, the power 1 minus beta Subscript u is the probability of rejecting the null hypothesis for the upper alternative:

1 minus beta Subscript u Baseline equals 1 minus sigma-summation Underscript k equals 1 Overscript upper K Endscripts beta Subscript u k

which is

upper P Subscript theta equals theta Sub Subscript 1 u Baseline left-parenthesis normal bar a Subscript j Baseline less-than z Subscript j Baseline less-than-or-equal-to normal bar b Subscript j Baseline normal o normal r b Subscript j Baseline less-than-or-equal-to z Subscript j Baseline less-than a Subscript j Baseline comma j equals 1 comma 2 comma ellipsis comma k minus 1 comma z Subscript k Baseline greater-than-or-equal-to a Subscript k Baseline right-parenthesis

The overall lower Type II error probability beta Subscript l and power 1 minus beta Subscript l can be similarly derived.

For a design with early stopping only to reject upper H 0, both the interim lower and upper beta critical values are set to missing, k equals 1 comma 2 comma ellipsis comma upper K minus 1, and beta Subscript l upper K Baseline equals beta Subscript l, beta Subscript u upper K Baseline equals beta Subscript u. For a design with early stopping only to accept upper H 0, the interim upper alpha critical values are set to normal infinity, a Subscript u k Baseline equals normal infinity, and the interim lower alpha critical values are set to negative normal infinity, a Subscript l k Baseline equals negative normal infinity, k equals 1 comma 2 comma ellipsis comma upper K minus 1, and alpha Subscript u upper K Baseline equals alpha Subscript u, alpha Subscript l upper K Baseline equals alpha Subscript l.

Last updated: December 09, 2022