The SEQDESIGN Procedure

Example 110.8 Creating a One-Sided Error Spending Design

(View the complete code for this example.)

This example requests a five-stage, one-sided group sequential design for normally distributed statistics. The design uses an O’Brien-Fleming-type error spending function for the alpha boundary and a Pocock-type error spending function for the beta boundary. The following statements request a one-sided design by using different alpha and beta spending functions:

ods graphics on;
proc seqdesign altref=0.2  errspend
               pss(cref=0 0.5 1)
               stopprob(cref=0 0.5 1)
               plots=(asn power errspend)
               ;
   OneSidedErrorSpending: design nstages=5
                          method(alpha)=errfuncobf
                          method(beta)=errfuncpoc
                          alt=upper  stop=both
                          alpha=0.025
                          ;
run;

The "Design Information" table in Output 110.8.1 displays design specifications and the derived statistics. With the specified alternative reference, the maximum information is derived.

Output 110.8.1: Error Spending Method Design Information

The SEQDESIGN Procedure
Design: OneSidedErrorSpending

Design Information
Statistic Distribution Normal
Boundary Scale Standardized Z
Alternative Hypothesis Upper
Early Stop Accept/Reject Null
Method Error Spending
Boundary Key Both
Alternative Reference 0.2
Number of Stages 5
Alpha 0.025
Beta 0.1
Power 0.9
Max Information (Percent of Fixed Sample) 119.4278
Max Information 313.7196
Null Ref ASN (Percent of Fixed Sample) 50.35408
Alt Ref ASN (Percent of Fixed Sample) 78.77223


The "Method Information" table in Output 110.8.2 displays the alpha and beta errors, alternative reference, and derived drift parameter, which is the standardized alternative reference at the final stage.

Output 110.8.2: Method Information

Method Information
Boundary Method Alpha Beta Error Spending Alternative
Reference
Drift
Function
Upper Alpha Error Spending 0.02500 . Approx O'Brien-Fleming 0.2 3.542426
Upper Beta Error Spending . 0.10000 Approx Pocock 0.2 3.542426


With the STOPPROB option, the "Expected Cumulative Stopping Probabilities" table in Output 110.8.3 displays the expected stopping stage and cumulative stopping probability to reject the null hypothesis at each stage under various hypothetical references theta equals c Subscript i Baseline theta 1, where theta 1 is the alternative reference and c Subscript i are values specified in the CREF= option.

Output 110.8.3: Stopping Probabilities

Expected Cumulative Stopping Probabilities
Reference = CRef * (Alt Reference)
CRef Expected
Stopping Stage
Source Stopping Probabilities
Stage_1 Stage_2 Stage_3 Stage_4 Stage_5
0.0000 2.108 Reject Null 0.00000 0.00039 0.00381 0.01221 0.02500
0.0000 2.108 Accept Null 0.38080 0.69133 0.86162 0.94170 0.97500
0.0000 2.108 Total 0.38080 0.69173 0.86543 0.95391 1.00000
0.5000 3.296 Reject Null 0.00002 0.01265 0.09650 0.24465 0.38724
0.5000 3.296 Accept Null 0.13665 0.28063 0.41080 0.52230 0.61276
0.5000 3.296 Total 0.13667 0.29328 0.50730 0.76695 1.00000
1.0000 3.298 Reject Null 0.00050 0.13209 0.52642 0.80390 0.90000
1.0000 3.298 Accept Null 0.02954 0.05231 0.07085 0.08648 0.10000
1.0000 3.298 Total 0.03004 0.18440 0.59728 0.89039 1.00000


With the PSS option, the "Power and Expected Sample Sizes" table in Output 110.8.4 displays powers and expected sample sizes under various hypothetical references theta equals c Subscript i Baseline theta 1, where theta 1 is the alternative reference and c Subscript i Baseline equals 0 comma 0.5 comma 1 comma 1.5 are the default values in the CREF= option.

Output 110.8.4: Power and Expected Sample Size Information

Powers and Expected Sample Sizes
Reference = CRef * (Alt Reference)
CRef Power Sample Size
Percent
Fixed-Sample
0.0000 0.02500 50.3541
0.5000 0.38724 78.7219
1.0000 0.90000 78.7722


With the PLOTS=ASN option, the procedure displays a plot of expected sample sizes under various hypothetical references, as shown in Output 110.8.5. By default, expected sample sizes under the hypotheses theta equals c Subscript i Baseline theta 1, c Subscript i Baseline equals 0 comma 0.01 comma 0.02 comma ellipsis comma 1.50, are displayed, where theta 1 is the alternative reference.

Output 110.8.5: ASN Plot

ASN Plot


With the PLOTS=POWER option, the procedure displays a plot of the power curves under various hypothetical references for all designs simultaneously, as shown in Output 110.8.6. By default, the option CREF= 0 comma 0.01 comma 0.02 comma ellipsis comma 1.50 and powers under hypothetical references theta equals c Subscript i Baseline theta 1 are displayed, where c Subscript i are values specified in the CREF= option. These CREF= values are displayed on the horizontal axis.

Under the null hypothesis, c Subscript i Baseline equals 0, the power is 0.025, the upper Type I error probability. Under the alternative hypothesis, c Subscript i Baseline equals 1, the power is 0.9, one minus the Type II error probability. The plot shows only minor difference between the two designs.

Output 110.8.6: Power Plot

Power Plot


The "Boundary Information" table in Output 110.8.7 displays information level, alternative reference, and boundary values. By default (or equivalently if you specify BOUNDARYSCALE=STDZ), the alternative reference and boundary values are displayed with the standardized Z scale. That is, the resulting standardized alternative reference at stage k is given by theta 1 StartRoot upper I Subscript k Baseline EndRoot, where theta 1 is the specified alternative reference and upper I Subscript k is the information level at stage k, k equals 1 comma 2 comma ellipsis comma 5.

Output 110.8.7: Boundary Information

Boundary Information (Standardized Z Scale)
Null Reference = 0
_Stage_   Alternative Boundary Values
Information Level Reference Upper
Proportion Actual Upper Beta Alpha
1 0.2000 62.74393 1.58422 -0.30338 4.87688
2 0.4000 125.4879 2.24043 0.41667 3.35706
3 0.6000 188.2318 2.74395 0.97165 2.67766
4 0.8000 250.9757 3.16844 1.43627 2.26535
5 1.0000 313.7196 3.54243 1.87522 1.87522


With ODS Graphics enabled, a detailed boundary plot with the rejection and acceptance regions is displayed, as shown in Output 110.8.8. This plot displays the boundary values in the "Boundary Information" table in Output 110.8.7.

Output 110.8.8: Boundary Plot

Boundary Plot


The "Error Spending Information" table in Output 110.8.9 displays cumulative error spending at each stage for each boundary.

Output 110.8.9: Error Spending Information

Error Spending Information
_Stage_ Information
Level
Cumulative Error Spending
Upper
Proportion Beta Alpha
1 0.2000 0.02954 0.00000
2 0.4000 0.05231 0.00039
3 0.6000 0.07085 0.00381
4 0.8000 0.08648 0.01221
5 1.0000 0.10000 0.02500


With the PLOTS=ERRSPEND option, the procedure displays a plot of error spending for each boundary, as shown in Output 110.8.10. This plot displays the cumulative error spending at each stage in the "Error Spending Information" table in Output 110.8.9. The O’Brien-Fleming-type alpha spending function is conservative in early stages because it uses much less at early stages than in the later stages. In contrast, the Pocock-type beta spending function uses more at early stages than in the later stages.

Output 110.8.10: Error Spending Plot

Error Spending Plot


Last updated: December 09, 2022