The SPP Procedure

Border Edge Correction for Distance Functions

To compute the edge correction factors e left-parenthesis x Subscript i Baseline comma r right-parenthesis that appear in the formulas of the distance functions, the SPP procedure implements border edge correction  (Illian et al. 2008; Ripley 1988; Baddeley 2007). Border edge correction is necessary because the data are given for a bounded observation window W, but the pattern itself is assumed to extend beyond the observation window. However, because you can observe only what is within the window, a disc b left-parenthesis x comma r right-parenthesis of radius r around a point x that lies close to the boundary of W might extend outside W. Because the original process X is not observed outside W, the number of points of X in b left-parenthesis x comma r right-parenthesis is not observable (Baddeley 2007). Ignoring the fact that the observable quantity n left-parenthesis upper X intersection upper W intersection b left-parenthesis x comma r right-parenthesis right-parenthesis is less than or equal to n left-parenthesis upper X intersection b left-parenthesis x comma r right-parenthesis right-parenthesis leads to a bias that is caused by edge effects. The border edge corrector is a simple strategy to eliminate the bias that is caused by edge effects. Under the border method, the window W is replaced by a reduced window,

upper W Subscript circled-dash r Baseline equals upper W circled-dash b left-parenthesis 0 comma r right-parenthesis equals StartSet x element-of upper W colon StartAbsoluteValue EndAbsoluteValue x minus partial-differential upper W StartAbsoluteValue EndAbsoluteValue greater-than-or-equal-to r EndSet

where StartAbsoluteValue EndAbsoluteValue x minus partial-differential upper W StartAbsoluteValue EndAbsoluteValue denotes the minimum distance from X to a point on the boundary. The reduced window contains all the points in W that are at least r units away from the boundary partial-differential upper W.

Based on the preceding definition, the border edge corrected F, K, and G functions are

ModifyingAbove upper F With caret left-parenthesis r right-parenthesis equals StartFraction 1 Over lamda StartAbsoluteValue upper W Subscript circled-dash r Baseline EndAbsoluteValue EndFraction sigma-summation Underscript g Subscript j Baseline element-of upper W Subscript circled-dash r Baseline Endscripts bold 1 StartSet d left-parenthesis g Subscript j Baseline comma x right-parenthesis less-than-or-equal-to r EndSet
ModifyingAbove upper K With caret left-parenthesis r right-parenthesis equals StartFraction sigma-summation Underscript i equals 1 Overscript n Endscripts sigma-summation Underscript j not-equals i Endscripts bold 1 StartSet StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue less-than-or-equal-to r EndSet Over ModifyingAbove beta With caret n left-parenthesis x intersection upper W Subscript circled-dash r Baseline right-parenthesis EndFraction
ModifyingAbove upper G With caret left-parenthesis r right-parenthesis equals StartFraction sigma-summation Underscript x Subscript i Baseline element-of upper W Subscript circled-dash r Baseline Endscripts bold 1 StartSet StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus upper X slash x Subscript i Baseline StartAbsoluteValue EndAbsoluteValue less-than-or-equal-to r EndSet Over n left-parenthesis upper X intersection upper W Subscript circled-dash r Baseline right-parenthesis EndFraction
ModifyingAbove upper G With caret left-parenthesis r right-parenthesis equals StartFraction sigma-summation Underscript i Endscripts bold 1 StartSet d Subscript i Baseline less-than-or-equal-to r comma b Subscript i Baseline greater-than-or-equal-to r EndSet Over sigma-summation Underscript i Endscripts bold 1 StartSet b Subscript i Baseline greater-than-or-equal-to r EndSet EndFraction

where ModifyingAbove beta With caret equals n left-parenthesis x right-parenthesis slash lamda StartAbsoluteValue upper W EndAbsoluteValue; StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus upper X slash x Subscript i Baseline StartAbsoluteValue EndAbsoluteValue is the observed nearest-neighbor distance, d Subscript i, for the ith point x Subscript i; and b Subscript i is the distance from x Subscript i to the boundary partial-differential upper W. For more information about these border-edge-corrected functions, see  Baddeley (2007).

Last updated: December 09, 2022