Alternative Equation Formats

The equation on this page is available in multiple formats. Depending on your browser, some formats might not render correctly.

MathML

V L P = G 1 2 S P 4 + H 3 2 S P O 4 + G 13 S P 2 S P O 2 V U P = H 1 2 S P 4 + G 3 2 S P O 4 + H 13 S P 2 S P O 2 V L M = G 2 2 S O 4 + G 3 2 ( p 1 ) 2 S P O 4 + G 4 2 p 2 ( r 1 ) 2 S E 4 V U M = H 2 2 S O 4 + H 3 2 ( p 1 ) 2 S P O 4 + H 4 2 p 2 ( r 1 ) 2 S E 4 V L T = G 1 2 p 2 S P 4 + G 2 2 o 2 S O 4 + G 3 2 ( p o p o ) 2 S P O 4 + G 4 2 ( p o ) 2 ( r 1 ) 2 S E 4 V U T = H 1 2 p 2 S P 4 + H 2 2 o 2 S O 4 + H 3 2 ( p o p o ) 2 S P O 4 + H 4 2 ( p o ) 2 ( r 1 ) 2 S E 4 L R = p ( 1 G 1 ) ( S P 2 F 1 S P O 2 ) p o ( r 1 ) S E 2 + o ( 1 G 1 ) F 3 S O 2 + o ( p 1 ) S P O 2 U R = p ( 1 + H 1 ) ( S P 2 F 2 S P O 2 ) p o ( r 1 ) S E 2 + o ( 1 + H 1 ) F 4 S O 2 + o ( p 1 ) S P O 2 G 1 = 1 F α / 2 : , p 1 G 2 = 1 F α / 2 : , o 1 G 3 = 1 F α / 2 : , ( p 1 ) ( o 1 ) G 4 = 1 F α / 2 : , p o ( r 1 ) H 1 = F 1 α / 2 : , p 1 1 H 2 = F 1 α / 2 : , o 1 1 H 3 = F 1 α / 2 : , ( p 1 ) ( o 1 ) 1 H 4 = F 1 α / 2 : , p o ( r 1 ) 1 F 1 = F 1 α / 2 : p 1 , ( p 1 ) ( o 1 ) F 2 = F α / 2 : p 1 , ( p 1 ) ( o 1 ) F 3 = F 1 α / 2 : p 1 , o 1 F 4 = F α / 2 : p 1 , o 1 G 13 = ( F 1 1 ) 2 G 1 2 F 1 2 H 3 2 F 1 H 13 = ( 1 F 2 ) 2 H 1 2 F 2 2 G 3 2 F 2 K = s P 2 + s O 2 s P O 2 C = s P 2 F 1 α : 1 , p 1 + s O 2 F 1 α : 1 , o 1 s P O 2 F 1 α : 1 , ( p 1 ) ( o 1 ) K

Math Rendered as SVG

Math as LaTeX Source

\begin{align*} V_{LP} & = G^2_1 S^4_ P + H^2_3 S^4_{PO} + G_{13} S^2_ P S^2_{PO} \\ V_{UP} & = H^2_1 S^4_ P + G^2_3 S^4_{PO} + H_{13} S^2_ P S^2_{PO} \\ V_{LM} & = G^2_2 S^4_ O + G^2_3(p-1)^2 S^4_{PO} + G^2_4 p^2 (r-1)^2 S^4_ E \\ V_{UM} & = H^2_2 S^4_ O + H^2_3(p-1)^2 S^4_{PO} + H^2_4 p^2 (r-1)^2 S^4_ E \\ V_{LT} & = G^2_1 p^2 S^4_ P + G^2_2 o^2 S^4_ O + G^2_3(po-p-o)^2 S^4_{PO} + G^2_4(po)^2 (r-1)^2 S^4_ E \\ V_{UT} & = H^2_1 p^2 S^4_ P + H^2_2 o^2 S^4_ O + H^2_3(po-p-o)^2 S^4_{PO} + H^2_4(po)^2 (r-1)^2 S^4_ E \\ L_ R & = \frac{p(1-G_1)(S^2_ P - F_1 S^2_{PO})}{ po(r-1)S^2_ E + o(1-G_1)F_3 S^2_ O + o(p-1)S^2_{PO}} \\ U_ R & = \frac{p(1+H_1)(S^2_ P - F_2 S^2_{PO})}{ po(r-1)S^2_ E + o(1+H_1)F_4 S^2_ O + o(p-1)S^2_{PO}} \\ G_1 & = 1 - F_{\alpha /2:\infty ,p-1} \\ G_2 & = 1 - F_{\alpha /2:\infty ,o-1} \\ G_3 & = 1 - F_{\alpha /2:\infty ,(p-1)(o-1)} \\ G_4 & = 1 - F_{\alpha /2:\infty ,po(r-1)} \\ H_1 & = F_{1-\alpha /2:\infty ,p-1} - 1 \\ H_2 & = F_{1-\alpha /2:\infty ,o-1} - 1 \\ H_3 & = F_{1-\alpha /2:\infty ,(p-1)(o-1)} - 1 \\ H_4 & = F_{1-\alpha /2:\infty ,po(r-1)} - 1 \\ F_1 & = F_{1-\alpha /2:p-1,(p-1)(o-1)} \\ F_2 & = F_{\alpha /2:p-1,(p-1)(o-1)} \\ F_3 & = F_{1-\alpha /2:p-1,o-1} \\ F_4 & = F_{\alpha /2:p-1,o-1} \\ G_{13} & = \frac{(F_1 - 1)^2 - G^2_1 F^2_1 - H^2_3}{F_1} \\ H_{13} & = \frac{(1 - F_2)^2 - H^2_1 F^2_2 - G^2_3}{F_2} \\ K & = s^2_ P + s^2_ O - s^2_{PO} \\ C & = \frac{s^2_ P\sqrt{F_{1-\alpha :1,p-1}} + s^2_ O\sqrt{F_{1-\alpha :1,o-1}} - s^2_{PO}\sqrt{F_{1-\alpha :1,(p-1)(o-1)}}}{K} \end{align*}