The PHREG Procedure

Analysis of Competing-Risks Data

Competing risks arise in the analysis of time-to-event data when the event of interest can be impeded by a prior event of a different type. For example, a leukemia patient’s relapse might be unobservable because the patient dies before relapse is diagnosed. In the presence of competing risks, the Kaplan-Meier method of estimating the survivor function is biased, because you can no longer assume that a subject will experience the event of interest if the follow-up period is long enough. An increasingly common practice of assessing the probability of a failure in competing-risks analysis is to estimate the cumulative incidence function (CIF), which is the probability subdistribution function of failure from a specific cause.

PROC PHREG provides two commonly used approaches of evaluating the relationship of the covariates to the cause-specific outcome in competing-risks data. One approach models the cause-specific hazard for each cause of failure separately, by applying the Cox regression to target each cause of failure and censor all other causes. This approach can be considered to be a direct generalization of the Cox model to the competing-risks setting, because the overall hazard function for any failure is the sum of the cause-specific hazard functions from all observable causes. Estimation of the CIF for a specific cause requires a complete analysis of all failure causes and entails fitting multiple cause-specific models, one for each observable cause. This method of analyzing competing-risks data is often called the cause-specific analysis or the Cox model. To request this method, specify the EVENTCODE(COX)= option in the MODEL statement.

Alternatively, Fine and Gray (1999) propose a proportional hazards model for the cumulative incidence of a failure cause of interest. The proportional hazard assumption is imposed on the subdistribution hazard, which is the hazard of the cumulative incidence. This method is often called as the proportional subdistribution hazard regression or the Fine and Gray model. To request this method, specify the EVENTCODE(FG)= option (or simply the EVENTCODE= option) in the MODEL statement.

You can request the CIF curves for a specified set of covariates by using the BASELINE statement. To request the cumulative incidence at specific time points, use the TIMELIST= option in the BASELINE statement. The PLOTS=CIF option in the PROC PHREG statement displays the CIF curves.

Modeling the Cause-Specific Hazard

For each observable cause of failure k, the cause-specific hazard for a subject that has a covariate vector Z follows the proportional hazards assumption,

lamda Subscript k Baseline left-parenthesis t vertical-bar bold upper Z right-parenthesis equals lamda Subscript k Baseline 0 Baseline left-parenthesis t right-parenthesis exp left-parenthesis bold-italic beta prime Subscript k Baseline bold upper Z right-parenthesis

where lamda Subscript k Baseline 0 Baseline left-parenthesis t right-parenthesis is an arbitrary and unspecified baseline cause-specific hazard function and bold-italic beta Subscript k is the vector of regression coefficients. The regression coefficients for cause k, bold-italic beta Subscript k, are estimated by fitting a standard Cox model where observations that have the kth cause of failure are treated as event observations and all other observations are treated as censored observations.

You request a Cox regression analysis by specifying the EVENTCODE(COX)= option in the MODEL statement. When you specify this option, the following statements and options are ignored: the ASSESS, BAYES, HAZARDRATIO, RANDOM, STRATA, and WEIGHT statements; the ATRISK and COVS options in the PROC PHREG statement; and the following options in the MODEL statement: BEST=, DETAILS, ENTRY=, HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, RISKLIMITS=PL, SELECTION=, SEQUENTIAL, SLENTRY=, SLSTAY=, TYPE1, and TYPE3(LR, SCORE).

Cumulative Incidence Prediction

For the ith subject, i equals 1 comma ellipsis comma n, let upper X Subscript i, normal upper Delta Subscript i, epsilon Subscript i, and bold upper Z Subscript i Baseline left-parenthesis t right-parenthesis be the observed time, event indicator, cause of failure, and covariate vector at time t, respectively. Assume that K causes of failure are observable (epsilon Subscript i Baseline element-of left-parenthesis 1 comma ellipsis comma upper K right-parenthesis). Let

StartLayout 1st Row 1st Column upper N Subscript i Superscript l Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to t comma epsilon Subscript i Baseline equals l right-parenthesis 2nd Row 1st Column upper Y Subscript i Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column 1 minus sigma-summation Underscript l equals 1 Overscript upper K Endscripts upper N Subscript i Superscript l Baseline left-parenthesis t minus right-parenthesis EndLayout

Note that if epsilon Subscript i Baseline equals l, then upper N Subscript i Superscript l Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to t right-parenthesis and upper Y Subscript i Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline greater-than-or-equal-to t right-parenthesis; if epsilon Subscript i Baseline not-equals l, then upper N Subscript i Superscript l Baseline left-parenthesis t right-parenthesis equals 0 and upper Y Subscript i Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline greater-than-or-equal-to t right-parenthesis.

For the lth cause-specific Cox model, denote the maximum partial likelihood estimates as ModifyingAbove bold-italic beta With caret Subscript l and the baseline cumulative hazard function as ModifyingAbove normal upper Lamda With caret Subscript l Baseline 0 Baseline left-parenthesis t right-parenthesis. For an individual that has covariates bold upper Z equals bold z 0, the predicted cumulative hazard function estimate for cause l is

ModifyingAbove normal upper Lamda With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis equals exp left-parenthesis ModifyingAbove bold-italic beta With caret prime Subscript l Baseline bold z 0 right-parenthesis ModifyingAbove normal upper Lamda With caret Subscript l Baseline 0 Baseline left-parenthesis t right-parenthesis

The predicted survivor function is

ModifyingAbove upper S With caret left-parenthesis t semicolon bold z 0 right-parenthesis equals product Underscript s colon upper X Subscript i Baseline equals s less-than-or-equal-to t comma normal upper Delta Subscript i Baseline greater-than 0 Endscripts left-bracket 1 minus ModifyingAbove normal upper Lamda With caret Subscript 0 Baseline left-parenthesis s semicolon bold z 0 right-parenthesis right-bracket

where ModifyingAbove normal upper Lamda With caret Subscript 0 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis equals sigma-summation Underscript l equals 1 Overscript upper K Endscripts ModifyingAbove normal upper Lamda With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis

The predicted cumulative incidence for cause l is

ModifyingAbove upper F With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis equals integral Subscript 0 Superscript t Baseline ModifyingAbove upper S With caret left-parenthesis s Superscript minus Baseline semicolon bold z 0 right-parenthesis d ModifyingAbove normal upper Lamda With caret Subscript l Baseline left-parenthesis s semicolon bold z 0 right-parenthesis

Based on the counting process and martingale theory (Andersen et al. 1992), the variance estimator of ModifyingAbove upper F With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis is a sum of two terms,

ModifyingAbove sigma With caret Subscript l Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis equals ModifyingAbove sigma With caret Subscript l Baseline 1 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis plus ModifyingAbove sigma With caret Subscript l Baseline 2 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis

First, consider TIES=BRESLOW. Let

StartLayout 1st Row 1st Column upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript i Endscripts upper Y Subscript i Baseline left-parenthesis t right-parenthesis exp left-parenthesis bold-italic beta prime Subscript l Baseline bold upper Z Subscript i Baseline right-parenthesis 2nd Row 1st Column bold upper S Subscript l Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript i Endscripts upper Y Subscript i Baseline left-parenthesis t right-parenthesis exp left-parenthesis bold-italic beta prime Subscript l Baseline bold upper Z Subscript i Baseline right-parenthesis bold upper Z Subscript i 3rd Row 1st Column ModifyingAbove bold upper Z With bar Subscript l Baseline left-parenthesis bold-italic beta Subscript l Baseline comma t right-parenthesis 2nd Column equals 3rd Column StartFraction bold upper S Subscript l Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma t right-parenthesis Over upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma t right-parenthesis EndFraction 4th Row 1st Column bold upper W Subscript l Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis bold-italic beta prime Subscript l Baseline bold z 0 right-parenthesis sigma-summation Underscript i Endscripts integral Subscript 0 Superscript t Baseline upper Y Subscript i Baseline left-parenthesis s right-parenthesis left-parenthesis bold z 0 minus ModifyingAbove bold upper Z With bar Subscript l Baseline left-parenthesis bold-italic beta Subscript l Baseline comma s right-parenthesis right-parenthesis StartFraction d upper N Subscript i Superscript l Baseline left-parenthesis s right-parenthesis Over upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma s right-parenthesis EndFraction EndLayout

Replacing bold-italic beta Subscript l by the maximum partial likelihood estimate ModifyingAbove bold-italic beta With caret Subscript l, let

ModifyingAbove bold upper W With caret Subscript 0 Baseline left-parenthesis t right-parenthesis equals minus sigma-summation Underscript l equals 1 Overscript upper K Endscripts ModifyingAbove bold upper W With caret Subscript l Baseline left-parenthesis t right-parenthesis

and

ModifyingAbove bold upper H With caret Subscript l Baseline left-parenthesis t right-parenthesis equals sigma-summation Underscript h equals 0 Overscript upper K Endscripts integral Subscript 0 Superscript t Baseline ModifyingAbove upper S With caret left-parenthesis s Superscript minus Baseline semicolon bold z 0 right-parenthesis ModifyingAbove upper Q With caret Subscript h l Baseline left-parenthesis s comma t semicolon bold z 0 right-parenthesis d ModifyingAbove bold upper W With caret Subscript h Baseline left-parenthesis s right-parenthesis

where ModifyingAbove upper Q With caret Subscript 0 l Baseline left-parenthesis s comma t semicolon bold z 0 right-parenthesis equals left-parenthesis ModifyingAbove upper F With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis minus ModifyingAbove upper F With caret Subscript l Baseline left-parenthesis s semicolon bold z 0 right-parenthesis right-parenthesis slash ModifyingAbove upper S With caret left-parenthesis s Superscript minus Baseline semicolon bold z 0 right-parenthesis; and when h greater-than 0, ModifyingAbove upper Q With caret Subscript h l Baseline left-parenthesis s comma t semicolon bold z 0 right-parenthesis equals 1 if h equals l and 0 otherwise.

The first term of the variance estimator is

ModifyingAbove sigma With caret Subscript l Baseline 1 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis equals ModifyingAbove bold upper H With caret Subscript l Baseline left-parenthesis t right-parenthesis prime script upper I Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript l Baseline right-parenthesis ModifyingAbove bold upper H With caret Subscript l Baseline left-parenthesis t right-parenthesis

where script upper I left-parenthesis ModifyingAbove bold-italic beta With caret Subscript l Baseline right-parenthesis is the observed information matrix.

The second term of the variance estimator is

ModifyingAbove sigma With caret Subscript l Baseline 2 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis equals sigma-summation Underscript h equals 1 Overscript upper K Endscripts sigma-summation Underscript i Endscripts integral Subscript 0 Superscript t Baseline StartSet ModifyingAbove upper S With caret left-parenthesis s Superscript minus Baseline semicolon bold z 0 right-parenthesis left-bracket upper I left-parenthesis h equals l right-parenthesis minus ModifyingAbove upper Q With caret Subscript 0 l Baseline left-parenthesis s Superscript minus Baseline comma t semicolon bold z 0 right-parenthesis right-bracket exp left-parenthesis ModifyingAbove bold-italic beta With caret prime Subscript l Baseline bold z 0 right-parenthesis EndSet squared StartFraction d upper N Subscript i Superscript h Baseline left-parenthesis s right-parenthesis Over left-bracket upper S Subscript h Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript h Baseline comma s right-parenthesis right-bracket squared EndFraction

For TIES=EFRON, the preceding computation is modified to comply with the Efron partial likelihood. For a particular time t, let normal upper Delta Subscript i Baseline left-parenthesis t right-parenthesis=1 if the t is an event time of the ith subject and 0 otherwise. Let d left-parenthesis t right-parenthesis equals sigma-summation Underscript i Endscripts normal upper Delta Subscript i Baseline left-parenthesis t right-parenthesis, which is the number of subjects that have an event at t. For 1 less-than-or-equal-to k less-than-or-equal-to d left-parenthesis t right-parenthesis, let

StartLayout 1st Row 1st Column upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript i Endscripts upper Y Subscript i Baseline left-parenthesis t right-parenthesis StartSet 1 minus StartFraction k minus 1 Over d left-parenthesis t right-parenthesis EndFraction normal upper Delta Subscript i Baseline left-parenthesis t right-parenthesis EndSet exp left-parenthesis bold-italic beta prime Subscript l Baseline bold upper Z Subscript i Baseline right-parenthesis 2nd Row 1st Column bold upper S Subscript l Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma t right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript i Endscripts upper Y Subscript i Baseline left-parenthesis t right-parenthesis StartSet 1 minus StartFraction k minus 1 Over d left-parenthesis t right-parenthesis EndFraction normal upper Delta Subscript i Baseline left-parenthesis t right-parenthesis EndSet exp left-parenthesis bold-italic beta prime Subscript l Baseline bold upper Z Subscript i Baseline right-parenthesis bold upper Z Subscript i 3rd Row 1st Column ModifyingAbove bold upper Z With bar Subscript l Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma t right-parenthesis 2nd Column equals 3rd Column StartFraction upper S Subscript l Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma t right-parenthesis Over upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma t right-parenthesis EndFraction 4th Row 1st Column bold upper W Subscript l Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis bold-italic beta prime Subscript l Baseline bold z 0 right-parenthesis sigma-summation Underscript i Endscripts integral Subscript 0 Superscript t Baseline StartFraction 1 Over d left-parenthesis s right-parenthesis EndFraction sigma-summation Underscript k equals 1 Overscript d left-parenthesis s right-parenthesis Endscripts upper Y Subscript i Baseline left-parenthesis s right-parenthesis left-parenthesis bold z 0 minus ModifyingAbove bold upper Z With bar Subscript l Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma s right-parenthesis right-parenthesis StartFraction d upper N Subscript i Superscript l Baseline left-parenthesis s right-parenthesis Over upper S Subscript l Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta Subscript l Baseline comma k comma s right-parenthesis EndFraction EndLayout

The second term of the variance estimator becomes

ModifyingAbove sigma With caret Subscript l Baseline 2 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis equals sigma-summation Underscript h equals 1 Overscript upper K Endscripts sigma-summation Underscript i Endscripts integral Subscript 0 Superscript t Baseline StartFraction 1 Over d left-parenthesis s right-parenthesis EndFraction sigma-summation Underscript k equals 1 Overscript d left-parenthesis s right-parenthesis Endscripts StartSet ModifyingAbove upper S With caret left-parenthesis s Superscript minus Baseline semicolon bold z 0 right-parenthesis left-bracket upper I left-parenthesis h equals l right-parenthesis minus ModifyingAbove upper Q With caret Subscript 0 l Baseline left-parenthesis s Superscript minus Baseline comma t semicolon bold z 0 right-parenthesis right-bracket exp left-parenthesis ModifyingAbove bold-italic beta With caret prime Subscript l Baseline bold z 0 right-parenthesis EndSet squared upper Y Subscript i Baseline left-parenthesis s right-parenthesis StartFraction d upper N Subscript i Superscript h Baseline left-parenthesis s right-parenthesis Over left-bracket upper S Subscript h Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript h Baseline comma k comma s right-parenthesis right-bracket squared EndFraction

Confidence intervals for the cumulative incidence upper F Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis are computed from ModifyingAbove upper F With caret Subscript l Baseline left-parenthesis t semicolon bold z 0 right-parenthesis and ModifyingAbove sigma With caret Subscript l Baseline 1 Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis in the same fashion as those of the survival function. The CLTYPE option in the BASELINE statement enables you to choose the LOG transformation, the LOGLOG (log of negative log) transformation, or no transformation to compute the confidence limits. For more information, see the section Confidence Intervals for the Survivor Function.

Modeling the Cumulative Incidence

The proportional hazards model for the subdistribution that Fine and Gray (1999) propose aims to model the cumulative incidence of an event of interest. They define a subdistribution hazard,

ModifyingAbove lamda With bar Subscript k Baseline left-parenthesis t right-parenthesis equals minus StartFraction d Over d t EndFraction log left-parenthesis 1 minus upper F Subscript k Baseline left-parenthesis t right-parenthesis right-parenthesis

where upper F Subscript k Baseline left-parenthesis t right-parenthesis is the cumulative incidence function for the failure of cause k. They also impose a proportional hazards assumption on the subdistribution hazards:

ModifyingAbove lamda With bar Subscript k Baseline left-parenthesis t vertical-bar bold upper Z right-parenthesis equals ModifyingAbove lamda With bar Subscript k comma 0 Baseline left-parenthesis t right-parenthesis exp left-parenthesis bold-italic beta prime Subscript k Baseline bold upper Z right-parenthesis

The estimation of the regression coefficients is based on modified risk sets, where subjects that experience a competing event are retained after their event. The weight of subjects that are artificially retained in the risk sets is gradually reduced according to the conditional probability of being under follow-up if the competing event had not occurred.

You use PROC PHREG to fit the Fine and Gray (1999) model by specifying the EVENTCODE= option in the MODEL statement to indicate the event of interest. Maximum likelihood estimates of the regression coefficients are obtained by the Newton-Raphson algorithm. The covariance matrix of the parameter estimator is computed as a sandwich estimate. You can request the CIF curves for a particular set of covariates by using the BASELINE statement. The PLOTS=CIF option in the PROC PHREG statement displays a plot of the curves. You can obtain Schoenfeld residuals and score residuals by using the OUTPUT statement.

To model the subdistribution hazards for clustered data (Zhou et al. 2012), you use the COVS(AGGREGATE) option in the PROC PHREG statement. You need to specify the ID statement to identify the clusters. To model the subdistribution hazards for stratified data (Zhou et al. 2011), you use the STRATA statement. PROC PHREG handles only regular stratified data that have a small number of large subject groups.

When you specify the EVENTCODE= option in the MODEL statement, the following statements and options are ignored: the ASSESS, BAYES, and RANDOM statements; the ATRISK and COVM options in the PROC PHREG statement; and the following options in the MODEL statement: BEST=, DETAILS, HIERARCHY=, INCLUDE=, NOFIT, PLCONV=, RISKLIMITS=PL, SELECTION=, SEQUENTIAL, SLENTRY=, SLSTAY=, TYPE1, and TYPE3(LR, SCORE). Profile likelihood confidence intervals for the hazard ratios are not available for the Fine and Gray competing-risks analysis.

Parameter Estimation

For the ith subject, i equals 1 comma ellipsis comma n, let upper X Subscript i, normal upper Delta Subscript i, epsilon Subscript i, and bold upper Z Subscript i Baseline left-parenthesis t right-parenthesis be the observed time, event indicator, cause of failure, and covariate vector at time t, respectively. Assume that K causes of failure are observable (epsilon Subscript i Baseline element-of left-parenthesis 1 comma ellipsis comma upper K right-parenthesis). Consider failure from cause 1 to be the failure of interest, with failures of other causes as competing events. Let

StartLayout 1st Row 1st Column upper N Subscript i Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to t comma epsilon Subscript i Baseline equals 1 right-parenthesis 2nd Row 1st Column upper Y Subscript i Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column 1 minus upper N Subscript i Baseline left-parenthesis t minus right-parenthesis EndLayout

Note that if epsilon Subscript i Baseline equals 1, then upper N Subscript i Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to t right-parenthesis and upper Y Subscript i Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline greater-than-or-equal-to t right-parenthesis; if epsilon Subscript i Baseline not-equals 1, then upper N Subscript i Baseline left-parenthesis t right-parenthesis equals 0 and upper Y Subscript i Baseline left-parenthesis t right-parenthesis equals 1. Let

StartLayout 1st Row 1st Column r Subscript i Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column upper I left-parenthesis upper C Subscript i Baseline greater-than-or-equal-to upper T Subscript i Baseline logical-and t right-parenthesis 2nd Row 1st Column w Subscript i Baseline left-parenthesis t right-parenthesis 2nd Column equals 3rd Column r Subscript i Baseline left-parenthesis t right-parenthesis StartFraction upper G left-parenthesis t right-parenthesis Over upper G left-parenthesis upper X Subscript i Baseline logical-and t right-parenthesis EndFraction EndLayout

where upper G left-parenthesis t right-parenthesis is the Kaplan-Meier estimate (alternatively, the Breslow estimate) of the survivor function of the censoring variable, which is calculated using StartSet upper X Subscript i Baseline comma 1 minus normal upper Delta Subscript i Baseline comma i equals 1 comma 2 comma ellipsis comma n EndSet. If normal upper Delta Subscript i Baseline equals 0, then r Subscript i Baseline left-parenthesis t right-parenthesis equals 1 when t less-than-or-equal-to upper X Subscript i and is 0 otherwise; if normal upper Delta Subscript i Baseline equals 1, then r Subscript i Baseline left-parenthesis t right-parenthesis equals 1. Table 12 displays the weight of a subject as a function of time.

Table 12: Weight for the ith Subject

t comma upper X Subscript i Baseline Status r Subscript i Baseline left-parenthesis t right-parenthesis upper Y Subscript i Baseline left-parenthesis t right-parenthesis w Subscript i Baseline left-parenthesis t right-parenthesis
t less-than-or-equal-to upper X Subscript i normal upper Delta Subscript i Baseline equals 0 1 1 1
normal upper Delta Subscript i Baseline epsilon Subscript i Baseline equals 1 1 1 1
normal upper Delta Subscript i Baseline epsilon Subscript i Baseline not-equals 1 1 1 1
t greater-than upper X Subscript i normal upper Delta Subscript i Baseline equals 0 0 1 0
normal upper Delta Subscript i Baseline epsilon Subscript i Baseline equals 1 1 0 upper G left-parenthesis t right-parenthesis slash upper G left-parenthesis upper X Subscript i Baseline right-parenthesis
normal upper Delta Subscript i Baseline epsilon Subscript i Baseline not-equals 1 1 1 upper G left-parenthesis t right-parenthesis slash upper G left-parenthesis upper X Subscript i Baseline right-parenthesis


The regression coefficients bold-italic beta are estimated by maximizing the pseudo-likelihood upper L left-parenthesis bold-italic beta right-parenthesis with respect to bold-italic beta:

upper L left-parenthesis bold-italic beta right-parenthesis equals product Underscript i equals 1 Overscript n Endscripts left-parenthesis StartFraction exp left-parenthesis bold-italic beta prime bold upper Z Subscript i Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis right-parenthesis Over sigma-summation Underscript j equals 1 Overscript n Endscripts upper Y Subscript j Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis w Subscript j Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis exp left-parenthesis bold-italic beta prime bold upper Z Subscript j Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis right-parenthesis EndFraction right-parenthesis Superscript upper I left-parenthesis normal upper Delta Super Subscript i Superscript epsilon Super Subscript i Superscript equals 1 right-parenthesis

The variance-covariance matrix of the maximum likelihood estimator ModifyingAbove bold-italic beta With caret is approximated by a sandwich estimate.

With bold a Superscript left-parenthesis 0 right-parenthesis Baseline equals 1, bold a Superscript left-parenthesis 1 right-parenthesis Baseline equals bold a, and bold a Superscript left-parenthesis 2 right-parenthesis Baseline equals bold a bold a prime, let

StartLayout 1st Row 1st Column bold upper S 2 Superscript left-parenthesis r right-parenthesis Baseline left-parenthesis bold-italic beta comma u right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript j equals 1 Overscript n Endscripts w Subscript j Baseline left-parenthesis u right-parenthesis upper Y Subscript j Baseline left-parenthesis u right-parenthesis bold upper Z Subscript j Baseline left-parenthesis u right-parenthesis Superscript circled-times r Baseline exp left-parenthesis bold-italic beta prime bold upper Z Subscript j Baseline left-parenthesis u right-parenthesis right-parenthesis comma r equals 0 comma 1 comma 2 2nd Row 1st Column ModifyingAbove bold upper Z With bar left-parenthesis bold-italic beta comma u right-parenthesis 2nd Column equals 3rd Column StartFraction bold upper S 2 Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta comma u right-parenthesis Over upper S 2 Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta comma u right-parenthesis EndFraction EndLayout

The score function bold upper U 2 left-parenthesis bold-italic beta right-parenthesis and the observed information matrix ModifyingAbove bold upper Omega With caret are given by

StartLayout 1st Row 1st Column bold upper U 2 left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript i equals 1 Overscript n Endscripts left-parenthesis bold upper Z Subscript i Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis minus ModifyingAbove bold upper Z With bar left-parenthesis bold-italic beta comma upper X Subscript i Baseline right-parenthesis right-parenthesis upper I left-parenthesis normal upper Delta Subscript i Baseline epsilon Subscript i Baseline equals 1 right-parenthesis 2nd Row 1st Column ModifyingAbove bold upper Omega With caret 2nd Column equals 3rd Column minus StartFraction partial-differential bold upper U 2 left-parenthesis ModifyingAbove bold-italic beta right-parenthesis With caret Over partial-differential bold-italic beta EndFraction equals sigma-summation Underscript i equals 1 Overscript n Endscripts left-parenthesis StartFraction bold upper S 2 Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma upper X Subscript i Baseline right-parenthesis Over upper S 2 Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma upper X Subscript i Baseline right-parenthesis EndFraction minus ModifyingAbove bold upper Z With bar Superscript circled-times 2 Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma upper X Subscript i Baseline right-parenthesis right-parenthesis upper I left-parenthesis normal upper Delta Subscript i Baseline epsilon Subscript i Baseline equals 1 right-parenthesis EndLayout

The sandwich variance estimate of ModifyingAbove bold-italic beta With caret is

ModifyingAbove normal v normal a normal r With caret left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis equals ModifyingAbove bold upper Omega With caret Superscript negative 1 Baseline ModifyingAbove bold upper Sigma With caret ModifyingAbove bold upper Omega With caret Superscript negative 1

where ModifyingAbove bold upper Sigma With caret is the estimate of the variance-covariance matrix of bold upper U 2 left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis that is given by

ModifyingAbove bold upper Sigma With caret equals sigma-summation Underscript i equals 1 Overscript n Endscripts left-parenthesis ModifyingAbove bold-italic eta With caret Subscript i Baseline plus ModifyingAbove bold-italic psi With caret Subscript i Baseline right-parenthesis Superscript circled-times 2

where

ModifyingAbove bold-italic eta With caret Subscript i Baseline equals integral Subscript 0 Superscript normal infinity Baseline left-parenthesis bold upper Z Subscript i Baseline left-parenthesis u right-parenthesis minus ModifyingAbove bold upper Z With bar left-parenthesis ModifyingAbove bold-italic beta With caret comma u right-parenthesis right-parenthesis w Subscript i Baseline left-parenthesis u right-parenthesis d ModifyingAbove upper M With caret Subscript i Superscript 1 Baseline left-parenthesis u right-parenthesis
ModifyingAbove bold-italic psi With caret Subscript i Baseline equals integral Subscript 0 Superscript normal infinity Baseline StartFraction ModifyingAbove bold q With caret left-parenthesis u right-parenthesis Over pi left-parenthesis u right-parenthesis EndFraction d ModifyingAbove upper M With caret Subscript i Superscript c Baseline left-parenthesis u right-parenthesis
ModifyingAbove bold q With caret left-parenthesis u right-parenthesis equals minus sigma-summation Underscript i equals 1 Overscript n Endscripts integral Subscript 0 Superscript normal infinity Baseline left-parenthesis bold upper Z Subscript i Baseline left-parenthesis s right-parenthesis minus ModifyingAbove bold upper Z With bar left-parenthesis ModifyingAbove bold-italic beta With caret comma s right-parenthesis right-parenthesis w Subscript i Baseline left-parenthesis s right-parenthesis d ModifyingAbove upper M With caret Subscript i Superscript 1 Baseline upper I left-parenthesis s greater-than-or-equal-to u greater-than upper X Subscript i Baseline right-parenthesis
pi left-parenthesis u right-parenthesis equals sigma-summation Underscript j Endscripts upper I left-parenthesis upper X Subscript j Baseline greater-than-or-equal-to u right-parenthesis
ModifyingAbove upper M With caret Subscript i Superscript 1 Baseline left-parenthesis t right-parenthesis equals upper N Subscript i Baseline left-parenthesis t right-parenthesis minus integral Subscript 0 Superscript t Baseline upper Y Subscript i Baseline left-parenthesis s right-parenthesis exp left-parenthesis ModifyingAbove bold-italic beta With caret prime bold upper Z Subscript i Baseline left-parenthesis s right-parenthesis right-parenthesis d ModifyingAbove normal upper Lamda With caret Subscript 10 Baseline left-parenthesis s right-parenthesis
ModifyingAbove upper M With caret Subscript i Superscript c Baseline left-parenthesis t right-parenthesis equals upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to t comma normal upper Delta Subscript i Baseline equals 0 right-parenthesis minus integral Subscript 0 Superscript t Baseline upper I left-parenthesis upper X Subscript i Baseline greater-than-or-equal-to u right-parenthesis d ModifyingAbove normal upper Lamda With caret Superscript c Baseline left-parenthesis u right-parenthesis
ModifyingAbove normal upper Lamda With caret Subscript 10 Baseline left-parenthesis t right-parenthesis equals sigma-summation Underscript i equals 1 Overscript n Endscripts integral Subscript 0 Superscript t Baseline StartFraction 1 Over upper S 2 Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma u right-parenthesis EndFraction w Subscript i Baseline left-parenthesis u right-parenthesis d upper N Subscript i Baseline left-parenthesis u right-parenthesis
ModifyingAbove normal upper Lamda With caret Superscript c Baseline left-parenthesis t right-parenthesis equals integral Subscript 0 Superscript t Baseline StartFraction sigma-summation Underscript i Endscripts d left-brace upper I left-parenthesis upper X Subscript i Baseline less-than-or-equal-to u comma normal upper Delta Subscript i Baseline equals 0 right-parenthesis right-brace Over sigma-summation Underscript i Endscripts upper I left-parenthesis upper X Subscript i Baseline greater-than-or-equal-to u right-parenthesis EndFraction
Residuals

You can use the OUTPUT statement to output Schoenfeld residuals and score residuals to a SAS data set.

Schoenfeld residuals: bold upper Z Subscript i Baseline left-parenthesis upper X Subscript i Baseline right-parenthesis minus ModifyingAbove bold upper Z With bar left-parenthesis ModifyingAbove bold-italic beta With caret comma upper X Subscript i Baseline right-parenthesis comma normal upper Delta Subscript i Baseline epsilon Subscript i Baseline equals 1 1 less-than-or-equal-to i less-than-or-equal-to n
Score residuals: ModifyingAbove bold-italic eta With caret Subscript i Baseline plus ModifyingAbove bold-italic psi With caret Subscript i 1 less-than-or-equal-to i less-than-or-equal-to n

Cumulative Incidence Prediction

For an individual that has covariates bold upper Z equals bold z 0, the cumulative subdistribution hazard is estimated by

ModifyingAbove normal upper Lamda With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis equals integral Subscript 0 Superscript t Baseline exp left-bracket ModifyingAbove bold-italic beta With caret prime bold z 0 right-bracket d ModifyingAbove normal upper Lamda With caret Subscript 10 Baseline left-parenthesis u right-parenthesis

and the predicted cumulative incidence is

ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis equals 1 minus exp left-bracket minus ModifyingAbove normal upper Lamda With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-bracket

To compute the confidence interval for the cumulative incidence, consider a monotone transformation m left-parenthesis p right-parenthesis with first derivative ModifyingAbove m With dot left-parenthesis p right-parenthesis. Fine and Gray (1999, Section 5) give the following method to calculate pointwise confidence intervals. First, you generate B samples of normal random deviates StartSet left-parenthesis upper A Subscript k Baseline 1 Baseline comma ellipsis comma upper A Subscript k n Baseline right-parenthesis comma 1 less-than-or-equal-to k less-than-or-equal-to upper B EndSet. You can specify the value of B by using the NORMALSAMPLE= option in the BASELINE statement. Then, you compute the estimate of varStartSet m left-bracket ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis right-bracket minus m left-bracket upper F 1 left-parenthesis t semicolon bold-italic z 0 right-parenthesis right-bracket EndSet as

ModifyingAbove sigma With caret squared left-parenthesis t semicolon bold-italic z 0 right-parenthesis equals StartFraction 1 Over upper B EndFraction sigma-summation Underscript k equals 1 Overscript upper B Endscripts ModifyingAbove upper J With caret Subscript 1 k Superscript 2 Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis

where

StartLayout 1st Row 1st Column ModifyingAbove upper J With caret Subscript 1 k Baseline left-parenthesis t semicolon bold-italic z 0 right-parenthesis 2nd Column equals 3rd Column ModifyingAbove m With dot left-bracket ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-bracket exp left-bracket minus ModifyingAbove normal upper Lamda With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-bracket sigma-summation Underscript i equals 1 Overscript n Endscripts upper A Subscript k i Baseline left-brace integral Subscript 0 Superscript t Baseline StartFraction exp left-parenthesis ModifyingAbove bold-italic beta With caret prime bold-italic z 0 right-parenthesis Over upper S 2 Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma u right-parenthesis EndFraction w Subscript i Baseline left-parenthesis u right-parenthesis d ModifyingAbove upper M With caret Subscript i Superscript 1 Baseline left-parenthesis u right-parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column plus ModifyingAbove bold-italic h With caret prime left-parenthesis t semicolon bold-italic z 0 right-parenthesis ModifyingAbove bold upper Omega With caret Superscript negative 1 Baseline left-parenthesis ModifyingAbove bold-italic eta With caret Subscript i Baseline plus ModifyingAbove bold-italic psi With caret Subscript i Baseline right-parenthesis plus integral Subscript 0 Superscript normal infinity Baseline StartFraction ModifyingAbove bold-italic v With caret left-parenthesis u comma t comma bold-italic z 0 right-parenthesis Over ModifyingAbove pi With caret left-parenthesis u right-parenthesis EndFraction d ModifyingAbove upper M With caret Subscript i Superscript c Baseline left-parenthesis u right-parenthesis right-brace EndLayout
ModifyingAbove bold h With caret left-parenthesis t semicolon bold z 0 right-parenthesis equals exp left-parenthesis ModifyingAbove bold-italic beta With caret prime normal z 0 right-parenthesis StartSet ModifyingAbove normal upper Lamda With caret Subscript 10 Baseline left-parenthesis t right-parenthesis bold z 0 minus integral Subscript 0 Superscript t Baseline ModifyingAbove bold upper Z With bar left-parenthesis ModifyingAbove bold-italic beta With caret comma u right-parenthesis d ModifyingAbove normal upper Lamda With caret Subscript 10 Baseline left-parenthesis u right-parenthesis EndSet
ModifyingAbove v With caret left-parenthesis u comma t comma bold z 0 right-parenthesis equals minus exp left-parenthesis ModifyingAbove bold-italic beta With caret prime normal z 0 right-parenthesis sigma-summation Underscript i equals 1 Overscript n Endscripts integral Subscript 0 Superscript t Baseline StartFraction 1 Over upper S 2 Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis ModifyingAbove bold-italic beta With caret comma s right-parenthesis EndFraction w Subscript i Baseline left-parenthesis s right-parenthesis d ModifyingAbove upper M With caret Subscript i Superscript 1 Baseline left-parenthesis s right-parenthesis upper I left-parenthesis s greater-than-or-equal-to u greater-than upper X Subscript i Baseline right-parenthesis

A 100(1–alpha)% confidence interval for ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis is given by

m Superscript negative 1 Baseline left-parenthesis m left-bracket ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-bracket plus-or-minus z Subscript alpha Baseline ModifyingAbove sigma With caret left-parenthesis t semicolon bold z 0 right-parenthesis right-parenthesis

where z Subscript alpha is the 100 left-parenthesis 1 minus alpha slash 2 right-parenthesis percentile of a standard normal distribution.

The CLTYPE= option in the BASELINE statement enables you to choose the LOG transformation, the LOGLOG (log of negative log) transformation, or the IDENTITY transformation. You can also output the standard error of the cumulative incidence, which is approximated by the delta method as follows:

ModifyingAbove sigma With caret squared left-parenthesis ModifyingAbove upper F With caret left-parenthesis t semicolon bold z 0 right-parenthesis right-parenthesis equals left-parenthesis ModifyingAbove m With dot left-bracket ModifyingAbove upper F With caret left-parenthesis t semicolon bold z 0 right-parenthesis right-bracket right-parenthesis Superscript negative 2 Baseline ModifyingAbove sigma With caret squared left-parenthesis t semicolon bold z 0 right-parenthesis

where ModifyingAbove m With dot left-parenthesis x right-parenthesis equals StartFraction d Over d x EndFraction m left-parenthesis x right-parenthesis. Table 13 displays the variance estimator for each transformation that is available in PROC PHREG.

Table 13: Variance Estimate of the CIF Predictor

CLTYPE= Transformation ModifyingAbove normal v normal a normal r With caret left-parenthesis ModifyingAbove upper F With caret left-parenthesis t semicolon bold z 0 right-parenthesis right-parenthesis
IDENTITY m left-parenthesis p right-parenthesis equals p ModifyingAbove sigma With caret squared left-parenthesis t semicolon bold z 0 right-parenthesis
LOG m left-parenthesis p right-parenthesis equals log left-parenthesis p right-parenthesis left-parenthesis ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-parenthesis squared ModifyingAbove sigma With caret squared left-parenthesis t semicolon bold z 0 right-parenthesis
LOGLOG m left-parenthesis p right-parenthesis equals log left-parenthesis minus log left-parenthesis p right-parenthesis right-parenthesis left-parenthesis ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis log left-parenthesis ModifyingAbove upper F With caret Subscript 1 Baseline left-parenthesis t semicolon bold z 0 right-parenthesis right-parenthesis right-parenthesis squared ModifyingAbove sigma With caret squared left-parenthesis t semicolon bold z 0 right-parenthesis


Last updated: March 08, 2022