The BGLIMM Procedure

GLMM with Random Effects

In a random-effects model, the conditional distribution of bold-italic beta is similar to that of the fixed-effects-only model,

log left-parenthesis p left-parenthesis bold-italic beta vertical-bar bold-italic gamma comma bold y comma bold upper R right-parenthesis right-parenthesis equals log left-parenthesis pi left-parenthesis bold-italic beta right-parenthesis right-parenthesis plus sigma-summation Underscript i equals 1 Overscript n Endscripts log left-parenthesis f left-parenthesis bold y Subscript i Baseline vertical-bar bold-italic beta comma bold-italic gamma comma bold upper R right-parenthesis right-parenthesis

where the log-likelihood function now includes the random effects bold-italic gamma. This construction reflects two PROC BGLIMM modeling settings: all random-effects parameters enter the likelihood function (linearly at the mean level), and the fixed-effects parameters cannot be hyperparameters of bold-italic gamma (hence no log left-parenthesis pi left-parenthesis gamma Subscript j Baseline vertical-bar bold-italic beta right-parenthesis right-parenthesis terms).

The conditional distribution of bold upper R again mirrors that of bold-italic beta:

log left-parenthesis p left-parenthesis bold upper R vertical-bar bold-italic gamma comma bold y comma bold-italic beta right-parenthesis right-parenthesis equals log left-parenthesis pi left-parenthesis bold upper R right-parenthesis right-parenthesis plus sigma-summation Underscript i equals 1 Overscript n Endscripts log left-parenthesis f left-parenthesis bold y Subscript i Baseline vertical-bar bold-italic beta comma bold-italic gamma comma bold upper R right-parenthesis right-parenthesis

For bold-italic gamma Subscript j, the following conditional is used:

log left-parenthesis p left-parenthesis bold-italic gamma Subscript j Baseline vertical-bar bold-italic theta comma bold y right-parenthesis right-parenthesis equals log left-parenthesis pi left-parenthesis bold-italic gamma Subscript j Baseline vertical-bar bold upper G right-parenthesis right-parenthesis plus sigma-summation Underscript i element-of StartSet j th cluster EndSet Endscripts log left-parenthesis f left-parenthesis bold y Subscript i Baseline vertical-bar bold-italic beta comma bold-italic gamma Subscript j Baseline comma bold upper R right-parenthesis right-parenthesis

In this computation, only subjects from the jth cluster are used. This reflects the conditional independence assumption that the RANDOM statement makes. This simplification in the calculation makes updating the random-effects parameters computationally efficient and enables the procedure to handle random effects that contain large number of clusters just as easily.

The G-side covariance matrix bold upper G depends only on the random effects gamma and not on the data or other parameters, bold-italic beta or bold upper R,

log left-parenthesis p left-parenthesis bold upper G vertical-bar bold-italic gamma right-parenthesis right-parenthesis equals log left-parenthesis pi left-parenthesis bold upper G right-parenthesis right-parenthesis right-parenthesis plus sigma-summation Underscript j Endscripts log left-parenthesis pi left-parenthesis bold-italic gamma Subscript j Baseline vertical-bar bold upper G right-parenthesis right-parenthesis

where pi left-parenthesis bold upper G right-parenthesis is the prior distribution of bold upper G.

Last updated: December 09, 2022