The BGLIMM Procedure

ODS Table Names

Each table that the BGLIMM procedure creates has a name that is associated with it. You must use this name to refer to the table when you use ODS statements. These names are listed in Table 18.

Table 18: ODS Tables Produced by PROC BGLIMM

Table Name Description Statement or Option
AutoCorr Autocorrelation statistics for each parameter DIAG=AUTOCORR
ClassLevels Class level information Default
Coef bold upper L matrix coefficients E option in ESTIMATE or LSMEANS
CoeffPrior Constant prior information for fixed effects Default
CoeffPrior Independent normal prior information for fixed effects COEFFPRIOR=NORMAL(VAR=c)
CoeffPrior Normal prior information for fixed effects COEFFPRIOR=NORMAL(INPUT=SAS-data-set)
Corr Correlation matrix of the posterior samples STATS=CORR
Cov Covariance matrix of the posterior samples STATS=COV
DIC Deviance information criterion DIC
Diffs Differences of LS-means DIFF option in LSMEANS
ESS Effective sample size for each parameter Default
Estimates Results from ESTIMATE statements ESTIMATE
G Estimated bold upper G matrix G
GCORR Correlation matrix of the estimated bold upper G matrix GCORR
Geweke Geweke diagnostics for each parameter DIAG=GEWEKE
Heidelberger Heidelberger-Welch diagnostics for each parameter DIAG=HEIDEL
LSMeans LS-means LSMEANS
MCSE Monte Carlo standard error for each parameter DIAG=MCSE
ModelInfo Model information Default
NObs Number of observations Default
ParametersInit Parameter initial values INIT=PINIT
PostIntervals Equal-tail and HPD intervals for each parameter STATS=INT
PostSumInt Posterior statistics for each parameter, including sample size, mean, standard deviation, and HPD intervals Default
PostSummaries Posterior statistics for each parameter, including sample size, mean, standard deviation, and percentiles STATS=SUM
R Estimated bold upper R matrix R
Raftery Raftery-Lewis diagnostics for each parameter DIAG=RAFTERY
REInfo Random Effect Information Default
RCORR Correlation matrix of the estimated bold upper R matrix RCORR
ResponseProfile Frequency counts for response categories Default output in models with binary or multinomial responses
ScaleCovPrior Priors for scale and covariance parameters Default
WAIC Watanabe-Akaike information criterion WAIC


Last updated: December 09, 2022