The GLIMMIX Procedure

Odds and Odds Ratio Estimation

In models with a logit, generalized logit, or cumulative logit link, you can obtain estimates of odds ratios through the ODDSRATIO options in the PROC GLIMMIX, LSMEANS, and MODEL statements. This section provides details about the computation and interpretation of the computed quantities. Note that for these link functions the EXP option in the ESTIMATE and LSMESTIMATE statements also produces odds or odds ratios.

Consider first a model with a dichotomous outcome variable, linear predictor eta equals bold x prime bold-italic beta plus bold z prime bold-italic gamma, and logit link function. Suppose that eta 0 represents the linear predictor for a condition of interest. For example, in a simple logistic regression model with eta equals alpha plus beta x, eta 0 might correspond to the linear predictor at a particular value of the covariate—say, eta 0 equals alpha plus beta x 0.

The modeled probability is pi equals 1 slash left-parenthesis 1 plus exp left-brace negative eta right-brace right-parenthesis, and the odds for eta equals eta 0 are

StartFraction pi 0 Over 1 minus pi 0 EndFraction equals StartFraction 1 slash left-parenthesis 1 plus exp left-brace minus eta 0 right-brace right-parenthesis Over exp left-brace minus eta 0 right-brace slash left-parenthesis 1 plus exp left-brace minus eta 0 right-brace right-parenthesis EndFraction equals exp left-brace eta 0 right-brace

Because eta 0 is a logit, it represents the log odds. The odds ratio psi left-parenthesis eta 1 comma eta 0 right-parenthesis is defined as the ratio of odds for eta 1 and eta 0,

psi left-parenthesis eta 1 comma eta 0 right-parenthesis equals exp left-brace eta 1 minus eta 0 right-brace

The odds ratio compares the odds of the outcome under the condition expressed by eta 1 to the odds under the condition expressed by eta 0. In the preceding simple logistic regression example, this ratio equals exp left-brace beta left-parenthesis x 1 minus x 0 right-parenthesis right-brace. The exponentiation of the estimate of beta is thus an estimate of the odds ratio comparing conditions for which x 1 minus x 0 equals 1. If x and x + 1 represent standard and experimental conditions, for example, exp left-brace beta right-brace compares the odds of the outcome under the experimental condition to the odds under the standard condition. For many other types of models, odds ratios can be expressed as simple functions of parameter estimates. For example, suppose you are fitting a logistic model with a single classification effect with three levels:

proc glimmix;
   class A;
   model y = A / dist=binary;
run;

The estimated linear predictor for level j of A is ModifyingAbove eta With caret Subscript j Baseline equals ModifyingAbove beta With caret plus ModifyingAbove alpha With caret Subscript j, j equals 1 comma 2 comma 3. Because the bold upper X matrix is singular in this model due to the presence of an overall intercept, the solution for the intercept estimates beta plus alpha 3, and the solution for the jth treatment effect estimates alpha Subscript j Baseline minus alpha 3. Exponentiating the solutions for alpha 1 and alpha 2 thus produces odds ratios comparing the odds for these levels against the third level of A.

Results designated as odds or odds ratios in the GLIMMIX procedure might reduce to simple exponentiations of solutions in the "Parameter Estimates" table, but they are computed by a different mechanism if the model contains classification variables. The computations rely on general estimable functions; for the MODEL, LSMEANS, and LSMESTIMATE statements, these functions are based on least squares means. This enables you to obtain odds ratio estimates in more complicated models that involve main effects and interactions, including interactions between continuous and classification variables.

In all cases, the results represent the exponentiation of a linear function of the fixed-effects parameters, eta equals bold l prime bold-italic beta. If upper L Subscript eta and upper U Subscript eta are the confidence limits for eta on the logit scale, confidence limits for the odds or the odds ratio are obtained as exp left-brace upper L Subscript eta Baseline right-brace and exp left-brace upper U Subscript eta Baseline right-brace.

Last updated: December 09, 2022