The HPQUANTSELECT Procedure

Linear Model with iid Errors

You can specify the SPARSITY(IID) option in the MODEL statement to assume that the distribution of upper Y Subscript i conditional on bold x Subscript i follows the linear model

upper Y Subscript i Baseline equals bold x prime Subscript i Baseline bold-italic beta plus epsilon Subscript i

where epsilon Subscript i for i equals 1 comma ellipsis comma n are iid in the distribution function F. Let f equals upper F prime denote the density function of F. Further assume that f left-parenthesis upper F Superscript negative 1 Baseline left-parenthesis tau right-parenthesis right-parenthesis greater-than 0 in a neighborhood of tau. Then, under some mild conditions, Koenker and Bassett (1982) prove that the asymptotic distribution of the quantile regression estimates is

StartRoot n EndRoot left-parenthesis ModifyingAbove bold-italic beta With caret left-parenthesis tau right-parenthesis minus bold-italic beta left-parenthesis tau right-parenthesis right-parenthesis right-arrow upper N left-parenthesis 0 comma omega squared left-parenthesis tau comma upper F right-parenthesis bold upper Omega Superscript negative 1 Baseline right-parenthesis

where omega squared left-parenthesis tau comma upper F right-parenthesis equals tau left-parenthesis 1 minus tau right-parenthesis slash f squared left-parenthesis upper F Superscript negative 1 Baseline left-parenthesis tau right-parenthesis right-parenthesis and bold upper Omega equals limit Underscript n right-arrow normal infinity Endscripts n Superscript negative 1 Baseline sigma-summation bold x Subscript i Baseline bold x Subscript i Superscript prime Baseline period The reciprocal of the density function, s left-parenthesis tau right-parenthesis equals 1 slash f left-parenthesis upper F Superscript negative 1 Baseline left-parenthesis tau right-parenthesis right-parenthesis, is called the sparsity function.

Accordingly, the covariance matrix of ModifyingAbove bold-italic beta With caret left-parenthesis tau right-parenthesis can be estimated as

ModifyingAbove normal upper Sigma With caret left-parenthesis tau right-parenthesis equals tau left-parenthesis 1 minus tau right-parenthesis ModifyingAbove s With caret squared left-parenthesis tau right-parenthesis left-parenthesis bold upper X prime bold upper X right-parenthesis Superscript minus

where bold upper X equals left-parenthesis bold x 1 comma ellipsis comma bold x Subscript n Baseline right-parenthesis prime is the design matrix and ModifyingAbove s With caret left-parenthesis tau right-parenthesis is an estimate of s left-parenthesis tau right-parenthesis. Under the iid assumption, the algorithm for computing ModifyingAbove s With caret left-parenthesis tau right-parenthesis is as follows:

  1. Fit a quantile regression model and compute the residuals. Each residual r Subscript i Baseline equals y Subscript i Baseline minus bold x prime Subscript i Baseline ModifyingAbove bold-italic beta With caret left-parenthesis tau right-parenthesis can be viewed as an estimated realization of the corresponding error epsilon Subscript i.

  2. Compute the quantile level bandwidth h Subscript n. The HPQUANTSELECT procedure provides two bandwidth methods:

    • The Bofinger bandwidth is an optimizer of mean squared error for standard density estimation:

      h Subscript n Baseline equals n Superscript negative 1 slash 5 Baseline left-parenthesis 4.5 v squared left-parenthesis tau right-parenthesis right-parenthesis Superscript 1 slash 5
    • The Hall-Sheather bandwidth is based on Edgeworth expansions for studentized quantiles,

      h Subscript n Baseline equals n Superscript negative 1 slash 3 Baseline z Subscript alpha Superscript 2 slash 3 Baseline left-parenthesis 1.5 v left-parenthesis tau right-parenthesis right-parenthesis Superscript 1 slash 3

      z Subscript alpha satisfies upper T left-parenthesis z Subscript alpha Baseline comma d f right-parenthesis equals 1 minus alpha slash 2 for the construction of 1 minus alpha confidence intervals, where T is the cumulative distribution function for the t distribution and d f is the residual degrees of freedom.

    The quantity

    v left-parenthesis tau right-parenthesis equals StartFraction s left-parenthesis tau right-parenthesis Over s Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis tau right-parenthesis EndFraction equals StartFraction f squared Over 2 left-parenthesis f Superscript left-parenthesis 1 right-parenthesis Baseline slash f right-parenthesis squared plus left-bracket left-parenthesis f Superscript left-parenthesis 1 right-parenthesis Baseline slash f right-parenthesis squared minus f Superscript left-parenthesis 2 right-parenthesis Baseline slash f right-bracket EndFraction

    is not sensitive to f and can be estimated by assuming f is Gaussian as

    ModifyingAbove v With caret left-parenthesis tau right-parenthesis equals StartFraction exp left-parenthesis minus q squared right-parenthesis Over 2 pi left-parenthesis q squared plus 1 right-parenthesis EndFraction

    where q equals normal upper Phi Superscript negative 1 Baseline left-parenthesis tau right-parenthesis.

  3. Compute residual quantiles ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis and ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis as follows:

    1. Set tau 0 equals max left-parenthesis 0 comma tau minus h Subscript n Baseline right-parenthesis and tau 1 equals min left-parenthesis 1 comma tau plus h Subscript n Baseline right-parenthesis.

    2. Use the equation

      ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis t right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column r Subscript left-parenthesis 1 right-parenthesis Baseline 2nd Column if t element-of left-bracket 0 comma 0.5 slash n right-parenthesis 2nd Row 1st Column StartFraction 0.5 plus left-parenthesis n t minus i right-parenthesis Over n EndFraction r Subscript left-parenthesis i plus 1 right-parenthesis Baseline plus StartFraction 0.5 minus left-parenthesis n t minus i right-parenthesis Over n EndFraction r Subscript left-parenthesis i right-parenthesis Baseline 2nd Column if t element-of left-bracket left-parenthesis i minus 0.5 right-parenthesis slash n comma left-parenthesis i plus 0.5 right-parenthesis slash n right-parenthesis 3rd Row 1st Column r Subscript left-parenthesis n right-parenthesis Baseline 2nd Column if t element-of left-bracket left-parenthesis n minus 0.5 right-parenthesis slash n comma 1 right-bracket EndLayout

      where r Subscript left-parenthesis i right-parenthesis is the ith smallest residual.

    3. If ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis equals ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis, find i that satisfies r Subscript left-parenthesis i right-parenthesis Baseline less-than ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis and r Subscript left-parenthesis i plus 1 right-parenthesis Baseline greater-than-or-equal-to ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis. If such an i exists, reset tau 0 equals left-parenthesis i minus 0.5 right-parenthesis slash n so that ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis equals r Subscript left-parenthesis i right-parenthesis. Also find j that satisfies r Subscript left-parenthesis j right-parenthesis Baseline greater-than ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis and r Subscript left-parenthesis j minus 1 right-parenthesis Baseline less-than-or-equal-to ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis. If such a j exists, reset tau 1 equals left-parenthesis j minus 0.5 right-parenthesis slash n so that ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis equals r Subscript left-parenthesis j right-parenthesis.

  4. Estimate the sparsity function s left-parenthesis tau right-parenthesis as

    ModifyingAbove s With caret left-parenthesis tau right-parenthesis equals StartFraction ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 1 right-parenthesis minus ModifyingAbove upper F With caret Superscript negative 1 Baseline left-parenthesis tau 0 right-parenthesis Over tau 1 minus tau 0 EndFraction
Last updated: December 09, 2022