The HPQUANTSELECT Procedure

Quasi-likelihood Information Criteria

Given the quantile level tau, assume that the distribution of upper Y Subscript i conditional on bold x Subscript i follows the linear model

upper Y Subscript i Baseline equals bold x prime Subscript i Baseline bold-italic beta plus epsilon Subscript i

where epsilon Subscript i for i equals 1 comma ellipsis comma n are iid in distribution F. Further assume that F is an asymmetric Laplace distribution whose density function is

f Subscript tau Baseline left-parenthesis r right-parenthesis equals StartFraction tau left-parenthesis 1 minus tau right-parenthesis Over sigma EndFraction exp left-parenthesis minus StartFraction rho Subscript tau Baseline left-parenthesis r right-parenthesis Over sigma EndFraction right-parenthesis

where sigma is the scale parameter. Then, the negative log-likelihood function is

l Subscript tau Baseline left-parenthesis bold-italic beta comma sigma right-parenthesis equals n log left-parenthesis sigma right-parenthesis plus sigma Superscript negative 1 Baseline sigma-summation Underscript i equals 1 Overscript n Endscripts rho Subscript tau Baseline left-parenthesis y Subscript i Baseline minus bold x prime Subscript i Baseline bold-italic beta right-parenthesis minus n log left-parenthesis tau left-parenthesis 1 minus tau right-parenthesis right-parenthesis

Under these settings, the maximum likelihood estimate (MLE) of bold-italic beta is the same as the relevant level-tau quantile regression solution ModifyingAbove bold-italic beta With caret left-parenthesis tau right-parenthesis, and the MLE for sigma is

ModifyingAbove sigma With caret left-parenthesis tau right-parenthesis equals n Superscript negative 1 Baseline sigma-summation Underscript i equals 1 Overscript n Endscripts rho Subscript tau Baseline left-parenthesis y Subscript i Baseline minus bold x prime Subscript i Baseline ModifyingAbove bold-italic beta With caret left-parenthesis tau right-parenthesis right-parenthesis

where ModifyingAbove sigma With caret left-parenthesis tau right-parenthesis equals the level-tau average check loss ACL left-parenthesis tau right-parenthesis for the quantile regression solution.

Because the general form of Akaike’s information criterion (AIC) is AIC equals left-parenthesis minus 2 l plus 2 p right-parenthesis, the quasi-likelihood AIC for quantile regression is

AIC left-parenthesis tau right-parenthesis equals 2 n ln left-parenthesis ACL left-parenthesis tau right-parenthesis right-parenthesis plus 2 p

where p is the degrees of freedom for the fitted model.

Similarly, the quasi-likelihood AICC (corrected AIC) and SBC (Schwarz Bayesian information criterion) can be formulated as follows:

AICC left-parenthesis tau right-parenthesis equals 2 n ln left-parenthesis ACL left-parenthesis tau right-parenthesis right-parenthesis plus StartFraction 2 p n Over n minus p minus 1 EndFraction
SBC left-parenthesis tau right-parenthesis equals 2 n ln left-parenthesis ACL left-parenthesis tau right-parenthesis right-parenthesis plus p ln left-parenthesis n right-parenthesis

In fact, the quasi-likelihood AIC, AICC, and SBC are fairly robust, and you can use them to select effects for data sets without the iid assumption in asymmetric Laplace distribution. For a simulation study that applies SBC for effect selection, see Simulation Study. The study generates a data set by using a naive instrumental model (Chernozhukov and Hansen 2008).

Last updated: December 09, 2022