The HPQUANTSELECT Procedure

Example 66.1 Simulation Study

(View the complete code for this example.)

This example is based on Simulation Study. This simulation study shows how you can use the forward selection method to select quantile regression models for single quantile levels. The following statements simulate a data set from a naive instrumental model (Chernozhukov and Hansen 2008):

%let seed=321;
%let p=20;
%let n=3000;

data analysisData;
   array x{&p} x1-x&p;
   do i=1 to &n;
      U  = ranuni(&seed);
      x1 = ranuni(&seed);
      x2 = ranexp(&seed);
      x3 = abs(rannor(&seed));
      y  = x1*(U-0.1) + x2*(U*U-0.25) + x3*(exp(U)-exp(0.9));
      do j=4 to &p;
         x{j} = ranuni(&seed);
      end;
      output;
   end;
run;

Variable U in the data set indicates the true quantile level of the response y conditional on bold x equals left-parenthesis x 1 comma ellipsis comma x Subscript p Baseline right-parenthesis.

Let upper Q Subscript upper Y Baseline left-parenthesis tau vertical-bar bold x right-parenthesis equals bold x bold-italic beta left-parenthesis tau right-parenthesis denote the underlying quantile regression model, where bold-italic beta left-parenthesis tau right-parenthesis equals left-parenthesis beta 1 left-parenthesis tau right-parenthesis comma ellipsis comma beta Subscript p Baseline left-parenthesis tau right-parenthesis right-parenthesis prime. Then, the true parameter functions are

StartLayout 1st Row 1st Column beta 1 left-parenthesis tau right-parenthesis 2nd Column equals 3rd Column tau minus 0.1 2nd Row 1st Column beta 2 left-parenthesis tau right-parenthesis 2nd Column equals 3rd Column tau squared minus 0.25 3rd Row 1st Column beta 3 left-parenthesis tau right-parenthesis 2nd Column equals 3rd Column exp left-parenthesis tau right-parenthesis minus exp left-parenthesis 0.9 right-parenthesis 4th Row 1st Column beta 4 left-parenthesis tau right-parenthesis 2nd Column equals 3rd Column midline-horizontal-ellipsis equals beta Subscript p Baseline left-parenthesis tau right-parenthesis equals 0 EndLayout

It is easy to see that, at tau equals 0.1, only beta 2 left-parenthesis 0.1 right-parenthesis equals negative 0.24 and beta 3 left-parenthesis 0.1 right-parenthesis equals exp left-parenthesis 0.1 right-parenthesis minus exp left-parenthesis 0.9 right-parenthesis almost-equals negative 1.354432 are nonzero parameters. Therefore, an effective effect-selection method should select x2 and x3 and drop all the other effects in this data set at tau equals 0.1. By the same rationale, x1 and x3 should be selected at tau equals 0.5 with beta 1 left-parenthesis 0.5 right-parenthesis equals 0.4 and beta 3 left-parenthesis 0.5 right-parenthesis almost-equals negative 0.810882, and x1 and x2 should be selected at tau equals 0.9 with beta 1 left-parenthesis 0.9 right-parenthesis equals 0.8 and beta 2 left-parenthesis 0.9 right-parenthesis equals 0.56.

The following statements use PROC HPQUANTSELECT with the forward selection method. The STB option and the CLB option in the MODEL statement request the standardized parameter estimates and the confidence limits of parameter estimates, respectively.

proc hpquantselect data=analysisData;
   model y= x1-x&p / quantile=0.1 0.5 0.9 stb clb;
   selection method=forward;
   output out=out p=pred;
run;

Output 66.1.1 shows that, by default, the CHOOSE= and STOP= options are both set to SBC.

Output 66.1.1: Model Information

The HPQUANTSELECT Procedure

Selection Information
Selection Method Forward
Select Criterion SBC
Stop Criterion SBC
Effect Hierarchy Enforced None
Stop Horizon 3


Output 66.1.2, Output 66.1.3, and Output 66.1.4 display the selected effects and the parameter estimates for tau equals 0.1, tau equals 0.5, and tau equals 0.9, respectively. You can see that the forward selection method correctly selects active effects for all three quantile levels.

Output 66.1.2: Parameter Estimates at tau equals 0.1

The HPQUANTSELECT Procedure
Quantile Level = 0.1
Selected Model

Selected Effects: Intercept x2 x3

Parameter Estimates
Parameter DF Estimate Standardized
Estimate
Standard
Error
95% Confidence Limits t Value Pr > |t|
Intercept 1 0.01179 0 0.01192 -0.01158 0.03516 0.99 0.3225
x2 1 -0.22871 -0.21829 0.00946 -0.24725 -0.21017 -24.19 <.0001
x3 1 -1.37991 -0.78452 0.01556 -1.41042 -1.34939 -88.67 <.0001


Output 66.1.3: Parameter Estimates at tau equals 0.5

The HPQUANTSELECT Procedure
Quantile Level = 0.5
Selected Model

Selected Effects: Intercept x1 x3

Parameter Estimates
Parameter DF Estimate Standardized
Estimate
Standard
Error
95% Confidence Limits t Value Pr > |t|
Intercept 1 0.01178 0 0.03418 -0.05524 0.07879 0.34 0.7304
x1 1 0.42584 0.11879 0.06237 0.30355 0.54814 6.83 <.0001
x3 1 -0.86332 -0.49082 0.04765 -0.95674 -0.76989 -18.12 <.0001


Output 66.1.4: Parameter Estimates at tau equals 0.9

The HPQUANTSELECT Procedure
Quantile Level = 0.9
Selected Model

Selected Effects: Intercept x1 x2

Parameter Estimates
Parameter DF Estimate Standardized
Estimate
Standard
Error
95% Confidence Limits t Value Pr > |t|
Intercept 1 -0.00774 0 0.03292 -0.07228 0.05680 -0.24 0.8142
x1 1 0.78294 0.21841 0.05134 0.68228 0.88360 15.25 <.0001
x2 1 0.57644 0.55018 0.03422 0.50935 0.64354 16.85 <.0001


Last updated: December 09, 2022