The POWER Procedure

Analyses in the ONECORR Statement

Fisher’s z Test for Pearson Correlation (TEST=PEARSON DIST=FISHERZ)

Fisher’s z transformation (Fisher 1921) of the sample correlation upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis is defined as

z equals one-half log left-parenthesis StartFraction 1 plus upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline Over 1 minus upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline EndFraction right-parenthesis

Fisher’s z test assumes the approximate normal distribution upper N left-parenthesis mu comma sigma squared right-parenthesis for z, where

mu equals one-half log left-parenthesis StartFraction 1 plus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline Over 1 minus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline EndFraction right-parenthesis plus StartFraction rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline Over 2 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction

and

sigma squared equals StartFraction 1 Over upper N minus 3 minus p Superscript star Baseline EndFraction

where p Superscript star is the number of variables partialed out (Anderson 1984, pp. 132–133) and rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis is the partial correlation between Y and upper X 1 adjusting for the set of zero or more variables upper X Subscript negative 1.

The test statistic

z Superscript star Baseline equals left-parenthesis upper N minus 3 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline left-bracket z minus one-half log left-parenthesis StartFraction 1 plus rho 0 Over 1 minus rho 0 EndFraction right-parenthesis minus StartFraction rho 0 Over 2 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction right-bracket

is assumed to have a normal distribution upper N left-parenthesis delta comma nu right-parenthesis, where rho 0 is the null partial correlation and delta and nu are derived from Section 16.33 of Stuart and Ord (1994):

StartLayout 1st Row 1st Column delta 2nd Column equals left-parenthesis upper N minus 3 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline left-bracket one-half log left-parenthesis StartFraction 1 plus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline Over 1 minus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline EndFraction right-parenthesis plus StartFraction rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline Over 2 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction left-parenthesis 1 plus StartFraction 5 plus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 2 Baseline Over 4 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction plus 2nd Row 1st Column Blank 2nd Column StartFraction 11 plus 2 rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 2 Baseline plus 3 rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 4 Baseline Over 8 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis squared EndFraction right-parenthesis minus one-half log left-parenthesis StartFraction 1 plus rho 0 Over 1 minus rho 0 EndFraction right-parenthesis minus StartFraction rho 0 Over 2 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction right-bracket 3rd Row 1st Column nu 2nd Column equals StartFraction upper N minus 3 minus p Superscript star Baseline Over upper N minus 1 minus p Superscript star Baseline EndFraction left-bracket 1 plus StartFraction 4 minus rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 2 Baseline Over 2 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis EndFraction plus StartFraction 22 minus 6 rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 2 Baseline minus 3 rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Superscript 4 Baseline Over 6 left-parenthesis upper N minus 1 minus p Superscript star Baseline right-parenthesis squared EndFraction right-bracket EndLayout

The approximate power is computed as

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column normal upper Phi left-parenthesis StartFraction delta minus z Subscript 1 minus alpha Baseline Over nu Superscript one-half Baseline EndFraction right-parenthesis comma 2nd Column upper one hyphen sided 2nd Row 1st Column normal upper Phi left-parenthesis StartFraction negative delta minus z Subscript 1 minus alpha Baseline Over nu Superscript one-half Baseline EndFraction right-parenthesis comma 2nd Column lower one hyphen sided 3rd Row 1st Column normal upper Phi left-parenthesis StartFraction delta minus z Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline Over nu Superscript one-half Baseline EndFraction right-parenthesis plus normal upper Phi left-parenthesis StartFraction negative delta minus z Subscript 1 minus StartFraction alpha Over 2 EndFraction Baseline Over nu Superscript one-half Baseline EndFraction right-parenthesis comma 2nd Column two hyphen sided EndLayout EndLayout

Because the test is biased, the achieved significance level might differ from the nominal significance level. The actual alpha is computed in the same way as the power, except that the correlation rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis is replaced by the null correlation rho 0.

t Test for Pearson Correlation (TEST=PEARSON DIST=T)

The two-sided case is identical to multiple regression with an intercept and p 1 equals 1, which is discussed in the section Analyses in the MULTREG Statement.

Let p Superscript star denote the number of variables partialed out. For the one-sided cases, the test statistic is

t equals left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline StartFraction upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Baseline Over left-parenthesis 1 minus upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Superscript 2 Baseline right-parenthesis Superscript one-half Baseline EndFraction

which is assumed to have a null distribution of t left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis.

If the X and Y variables are assumed to have a joint multivariate normal distribution, then the exact power is given by the following formula:

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-bracket left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline StartFraction upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Baseline Over left-parenthesis 1 minus upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Superscript 2 Baseline right-parenthesis Superscript one-half Baseline EndFraction greater-than-or-equal-to t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis right-bracket comma 2nd Column upper one hyphen sided 2nd Row 1st Column upper P left-bracket left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline StartFraction upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Baseline Over left-parenthesis 1 minus upper R Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Superscript 2 Baseline right-parenthesis Superscript one-half Baseline EndFraction less-than-or-equal-to t Subscript alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis right-bracket comma 2nd Column lower one hyphen sided EndLayout 2nd Row 1st Column Blank 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-bracket upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline greater-than-or-equal-to StartFraction t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis Over left-parenthesis t Subscript 1 minus alpha Superscript 2 Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis plus upper N minus 2 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline EndFraction right-bracket comma 2nd Column upper one hyphen sided 2nd Row 1st Column upper P left-bracket upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis Baseline less-than-or-equal-to StartFraction t Subscript alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis Over left-parenthesis t Subscript alpha Superscript 2 Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis plus upper N minus 2 minus p Superscript star Baseline right-parenthesis Superscript one-half Baseline EndFraction right-bracket comma 2nd Column lower one hyphen sided EndLayout EndLayout

The distribution of upper R Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis (given the underlying true correlation rho Subscript upper Y vertical-bar left-parenthesis upper X 1 comma upper X Sub Subscript negative 1 Subscript right-parenthesis) is given in Chapter 32 of Johnson, Kotz, and Balakrishnan (1995).

If the X variables are assumed to have fixed values, then the exact power is given by the noncentral t distribution t left-parenthesis upper N minus 2 minus p Superscript star Baseline comma delta right-parenthesis, where the noncentrality is

delta equals upper N Superscript one-half Baseline StartFraction rho Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Baseline Over left-parenthesis 1 minus rho Subscript upper Y upper X 1 vertical-bar upper X Sub Subscript negative 1 Subscript Superscript 2 Baseline right-parenthesis Superscript one-half Baseline EndFraction

The power is

StartLayout 1st Row 1st Column normal p normal o normal w normal e normal r 2nd Column equals StartLayout Enlarged left-brace 1st Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 2 minus p Superscript star Baseline comma delta right-parenthesis greater-than-or-equal-to t Subscript 1 minus alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis right-parenthesis comma 2nd Column upper one hyphen sided 2nd Row 1st Column upper P left-parenthesis t left-parenthesis upper N minus 2 minus p Superscript star Baseline comma delta right-parenthesis less-than-or-equal-to t Subscript alpha Baseline left-parenthesis upper N minus 2 minus p Superscript star Baseline right-parenthesis right-parenthesis comma 2nd Column lower one hyphen sided EndLayout EndLayout
Last updated: December 09, 2022