The SPP Procedure

Statistics Based on Second-Order Characteristics

Statistics that are based on second-order characteristics include Ripley’s K function, Besag’s L function, and the pair correlation function (also called the g function). To understand why these functions are based on second-order characteristics, see  Illian et al. (2008, p. 223-243). These functions usually involve computation of pairwise distances between points.

The K function of a stationary point process is defined such that lamda upper K left-parenthesis r right-parenthesis is the expected number of points within a distance of r from an arbitrary point of the process. The empirical K function of a set of points is the weighted and renormalized empirical distribution function of the set of pairwise distances between points. The empirical K function can be written as

ModifyingAbove upper K With caret left-parenthesis r right-parenthesis equals StartFraction 1 Over ModifyingAbove lamda With caret squared StartAbsoluteValue upper W EndAbsoluteValue EndFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j not-equals i Endscripts bold 1 StartSet StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue less-than-or-equal-to r EndSet e left-parenthesis x Subscript i Baseline comma x Subscript j Baseline semicolon r right-parenthesis

where e left-parenthesis x Subscript i Baseline comma x Subscript j Baseline semicolon r right-parenthesis is the border edge correction that is described in the section Border Edge Correction for Distance Functions.

For a homogeneous Poisson process, upper K Subscript upper P Baseline left-parenthesis r right-parenthesis can be written as

upper K Subscript upper P Baseline left-parenthesis r right-parenthesis equals pi r squared

Exploratory analysis usually involves computing both the empirical K function, ModifyingAbove upper K With caret left-parenthesis r right-parenthesis, and the K function for a Poisson process, upper K Subscript upper P Baseline left-parenthesis r right-parenthesis. A comparison of ModifyingAbove upper K left-parenthesis r right-parenthesis With caret and upper K Subscript upper P Baseline left-parenthesis r right-parenthesis might indicate clustering or regularity depending on whether ModifyingAbove upper K With caret left-parenthesis r right-parenthesis greater-than upper K Subscript upper P Baseline left-parenthesis r right-parenthesis or ModifyingAbove upper K With caret left-parenthesis r right-parenthesis less-than upper K Subscript upper P Baseline left-parenthesis r right-parenthesis.

Besag’s L function is a transformation of the K function and is defined as

upper L left-parenthesis r right-parenthesis equals StartRoot StartFraction upper K left-parenthesis r right-parenthesis Over pi EndFraction EndRoot

For a homogeneous Poisson process, upper L Subscript upper P Baseline left-parenthesis r right-parenthesis equals r.

The pair correlation function, g(r), can also be expressed as a transformation of the K function:

g left-parenthesis r right-parenthesis equals StartFraction upper K prime left-parenthesis r right-parenthesis Over 2 pi r EndFraction

Illian et al. (2008), Stoyan (1987), and Fiksel (1988) suggest an alternative expression for g left-parenthesis r right-parenthesis:

g left-parenthesis r right-parenthesis equals rho left-parenthesis r right-parenthesis slash lamda squared

where rho left-parenthesis r right-parenthesis is the second-order product density function. Cressie and Collins (2001) provides an expression for rho left-parenthesis r right-parenthesis as

rho left-parenthesis r right-parenthesis equals StartFraction ModifyingAbove lamda squared With caret upper K prime left-parenthesis r right-parenthesis Over 2 pi r EndFraction

where ModifyingAbove lamda With caret squared upper K prime left-parenthesis r right-parenthesis can be written as a kernel estimate,

ModifyingAbove lamda With caret squared upper K prime left-parenthesis r right-parenthesis equals StartFraction 1 Over a EndFraction sigma-summation Underscript i equals 1 Overscript n Endscripts sigma-summation Underscript j not-equals i Endscripts k Subscript h Baseline left-parenthesis StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue minus r right-parenthesis

where a is the area, k Subscript h Baseline left-parenthesis u right-parenthesis equals k left-parenthesis u slash h right-parenthesis slash h, and k left-parenthesis period right-parenthesis is a kernel such as the uniform kernel or the Epanechnikov kernel (Silverman 1986). PROC SPP uses the version that is based on the uniform kernel; for more information about the uniform kernel, see the section Nonparametric Intensity Estimation. Based on the formula for the second-order product density rho left-parenthesis r right-parenthesis in terms of the kernel estimate, Stoyan (1987) gives an edge-corrected kernel estimate for rho left-parenthesis r right-parenthesis as

rho left-parenthesis r right-parenthesis equals StartFraction 1 Over 2 pi r EndFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j not-equals i Endscripts StartFraction k Subscript h Baseline left-parenthesis StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue minus r right-parenthesis Over a left-parenthesis upper W Subscript x Sub Subscript i Subscript Baseline intersection upper W Subscript x Sub Subscript j Subscript Baseline right-parenthesis EndFraction

Dividing rho left-parenthesis r right-parenthesis by ModifyingAbove lamda With caret squared gives the pair correlation function g left-parenthesis r right-parenthesis as

g left-parenthesis r right-parenthesis equals StartFraction 1 Over 2 pi r ModifyingAbove lamda With caret squared EndFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j not-equals i Endscripts StartFraction k Subscript h Baseline left-parenthesis StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue minus r right-parenthesis Over a left-parenthesis upper W Subscript x Sub Subscript i Subscript Baseline intersection upper W Subscript x Sub Subscript j Subscript Baseline right-parenthesis EndFraction

where upper W Subscript x Sub Subscript i indicates the translation of the study area window W by the distance x Subscript i from its origin. The above expression for g left-parenthesis r right-parenthesis was given by Stoyan and Stoyan (1994) using the translation edge correction.

A border-edge-corrected version of g left-parenthesis r right-parenthesis can be written as

g left-parenthesis r right-parenthesis equals StartFraction 1 Over 2 pi r ModifyingAbove lamda With caret EndFraction StartFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j not-equals i Endscripts k Subscript h Baseline left-parenthesis StartAbsoluteValue EndAbsoluteValue x Subscript i Baseline minus x Subscript j Baseline StartAbsoluteValue EndAbsoluteValue minus r right-parenthesis Over sigma-summation Underscript i Endscripts bold 1 StartSet b Subscript i Baseline greater-than-or-equal-to r EndSet EndFraction

where x Subscript i and x Subscript j are points within the boundary at a distance greater than or equal to r; where b Subscript i is the distance of x Subscript i to the boundary of W, partial-differential upper W; and where k Subscript h Baseline left-parenthesis u right-parenthesis equals k left-parenthesis u slash h right-parenthesis slash h for a kernel k left-parenthesis period right-parenthesis, such as the uniform kernel or the Epanechnikov kernel. For more information about the uniform kernel, see the section Nonparametric Intensity Estimation. For a homogeneous Poisson process, g left-parenthesis r right-parenthesis equals 1. For any point pattern, values of g left-parenthesis r right-parenthesis greater than 1 indicate clustering or attraction at distance r, whereas values of g left-parenthesis r right-parenthesis less than 1 indicate regularity.

Last updated: December 09, 2022