The SURVEYPHREG Procedure

Firth’s Modification for Maximum Likelihood Estimation

In fitting a Cox model, the phenomenon of monotone likelihood is observed if the likelihood converges to a finite value while at least one parameter diverges (Mukhopadhyay 2020; Heinze and Schemper 2001).

Firth (1993) recommended using the penalized likelihood upper L Superscript asterisk Baseline left-parenthesis bold-italic beta right-parenthesis equals upper L left-parenthesis bold-italic beta right-parenthesis StartAbsoluteValue script upper I left-parenthesis bold-italic beta right-parenthesis EndAbsoluteValue Superscript 0.5 to reduce the first-order bias in estimating the canonical parameters of an exponential family model, where upper L left-parenthesis bold-italic beta right-parenthesis and script upper I left-parenthesis bold-italic beta right-parenthesis are the unpenalized likelihood and information matrix, respectively.

Heinze (1999) and Heinze and Schemper (2001) applied the idea of Firth (1993) by maximizing the penalized partial log likelihood

l Superscript asterisk Baseline left-parenthesis bold-italic beta right-parenthesis equals l left-parenthesis bold-italic beta right-parenthesis plus 0.5 log left-parenthesis StartAbsoluteValue script upper I left-parenthesis bold-italic beta right-parenthesis EndAbsoluteValue right-parenthesis

to obtain estimates of regression parameters when a monotone likelihood is observed.

The score function bold upper U left-parenthesis bold-italic beta right-parenthesis is replaced by the penalized score function, bold upper U Superscript asterisk Baseline left-parenthesis bold-italic beta right-parenthesis identical-to left-parenthesis upper U Superscript asterisk Baseline left-parenthesis beta 1 right-parenthesis comma ellipsis comma upper U Superscript asterisk Baseline left-parenthesis beta Subscript p Baseline right-parenthesis right-parenthesis prime, where

upper U Superscript asterisk Baseline left-parenthesis beta Subscript r Baseline right-parenthesis equals upper U left-parenthesis beta Subscript r Baseline right-parenthesis plus 0.5 normal t normal r StartSet script upper I Superscript negative 1 Baseline left-parenthesis bold-italic beta right-parenthesis StartFraction partial-differential script upper I left-parenthesis bold-italic beta right-parenthesis Over partial-differential beta Subscript r Baseline EndFraction EndSet r equals 1 comma ellipsis comma p

The Firth estimate is obtained iteratively as

bold-italic beta Superscript left-parenthesis s plus 1 right-parenthesis Baseline equals bold-italic beta Superscript left-parenthesis s right-parenthesis Baseline plus script upper I Superscript negative 1 Baseline left-parenthesis bold-italic beta Superscript left-parenthesis s right-parenthesis Baseline right-parenthesis bold upper U Superscript asterisk Baseline left-parenthesis bold-italic beta Superscript left-parenthesis s right-parenthesis Baseline right-parenthesis

Although the estimated regression parameters, ModifyingAbove bold-italic beta With caret, are obtained by maximizing the penalized partial likelihood, the Taylor series linearized variance estimator uses the score residuals and the information matrix from the unpenalized likelihood that are evaluated at ModifyingAbove bold-italic beta With caret. For more information, see the section Taylor Series Linearization.

The replication variance estimation methods use the replicated version of the penalized score function to obtain replicate estimates, ModifyingAbove bold-italic beta With caret Superscript left-parenthesis r right-parenthesis, for the regression parameters. The replicate estimates are then used in the replication variance estimation, as described in the sections Balanced Repeated Replication (BRR) Method, Bootstrap Method, Jackknife Method, and Replicate Weights Method.

Explicit Formulas for the Score Function, Fisher Information, and Partial Derivatives for the Information Matrix

Mukhopadhyay (2020) recommended using normalized weights to construct the penalized log partial likelihood for weighted data. Using the notation in the sections Notation and Estimation and Partial Likelihood Function for the Cox Model, the Breslow unpenalized log partial likelihood is given by

l left-parenthesis bold-italic beta right-parenthesis equals log left-parenthesis upper L Subscript Breslow Baseline left-parenthesis bold-italic beta right-parenthesis right-parenthesis equals sigma-summation Underscript k equals 1 Overscript upper K Endscripts StartSet bold-italic beta prime sigma-summation Underscript h i j element-of script upper D Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis minus left-parenthesis sigma-summation Underscript h i j element-of script upper D Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline right-parenthesis log sigma-summation Underscript h i j element-of script upper R Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline exp left-parenthesis bold-italic beta prime bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis right-parenthesis EndSet

where w overTilde Subscript h i j Baseline equals n left-parenthesis sigma-summation Underscript h i j element-of script upper A Endscripts w Subscript h i j Baseline right-parenthesis Superscript negative 1 Baseline w Subscript h i j is the normalized weight, n is the number of observation units, and w Subscript h i j is the weight for unit j in PSU i and stratum h.

Denote

bold upper S Subscript k Superscript left-parenthesis a right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis equals sigma-summation Underscript h i j element-of script upper R Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline exp left-parenthesis bold-italic beta prime bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis right-parenthesis left-bracket bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis right-bracket Superscript circled-times a

where a equals 0 comma 1 comma 2.

Then the score function is given by

StartLayout 1st Row 1st Column bold upper U left-parenthesis bold-italic beta right-parenthesis 2nd Column identical-to 3rd Column left-parenthesis upper U left-parenthesis beta 1 right-parenthesis comma ellipsis comma upper U left-parenthesis beta Subscript p Baseline right-parenthesis right-parenthesis prime 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartFraction partial-differential l left-parenthesis bold-italic beta right-parenthesis Over partial-differential bold-italic beta EndFraction 3rd Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript k equals 1 Overscript upper K Endscripts StartSet sigma-summation Underscript h i j element-of script upper D Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis minus sigma-summation Underscript h i j element-of script upper D Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript 0 Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction EndSet EndLayout

and the Fisher information matrix is given by

StartLayout 1st Row 1st Column script upper I left-parenthesis bold-italic beta right-parenthesis 2nd Column equals 3rd Column minus StartFraction partial-differential squared l left-parenthesis bold-italic beta right-parenthesis Over partial-differential bold-italic beta squared EndFraction 2nd Row 1st Column Blank 2nd Column equals 3rd Column sigma-summation Underscript k equals 1 Overscript upper K Endscripts sigma-summation Underscript h i j element-of script upper D Subscript k Endscripts w overTilde Subscript h i j Baseline StartSet StartFraction bold upper S Subscript k Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction minus left-bracket StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over bold upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket left-bracket StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over bold upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket prime EndSet EndLayout

Denote

StartLayout 1st Row 1st Column bold upper Q Subscript k r Superscript left-parenthesis a right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript h i j element-of script upper R Subscript k Endscripts w overTilde Subscript h i j Baseline exp left-parenthesis bold-italic beta prime bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis right-parenthesis upper Z Subscript h i j comma r Baseline left-parenthesis t Subscript k Baseline right-parenthesis left-bracket bold upper Z Subscript h i j Baseline left-parenthesis t Subscript k Baseline right-parenthesis right-bracket Superscript circled-times a EndLayout

where a equals 0 comma 1 comma 2; r equals 1 comma ellipsis comma p; and bold upper Z Subscript h i j Baseline left-parenthesis t right-parenthesis equals left-parenthesis upper Z Subscript h i j comma 1 Baseline left-parenthesis t right-parenthesis comma ellipsis comma upper Z Subscript h i j comma p Baseline left-parenthesis t right-parenthesis right-parenthesis. Then

StartLayout 1st Row 1st Column StartFraction partial-differential script upper I left-parenthesis bold-italic beta right-parenthesis Over partial-differential beta Subscript r Baseline EndFraction 2nd Column equals 3rd Column sigma-summation Underscript k equals 1 Overscript upper K Endscripts sigma-summation Underscript h i j element-of script upper D Subscript k Baseline Endscripts w overTilde Subscript h i j Baseline left-brace left-bracket StartFraction bold upper Q Subscript k r Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction minus StartFraction bold upper Q Subscript k r Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction StartFraction bold upper S Subscript k Superscript left-parenthesis 2 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket 2nd Row 1st Column Blank 2nd Column Blank 3rd Column minus left-bracket StartFraction bold upper Q Subscript k r Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction minus StartFraction bold upper Q Subscript k r Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket left-bracket StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket prime 3rd Row 1st Column Blank 2nd Column Blank 3rd Column minus left-bracket StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket left-bracket StartFraction bold upper Q Subscript k r Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction minus StartFraction bold upper Q Subscript k r Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction StartFraction bold upper S Subscript k Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis Over upper S Subscript k Superscript left-parenthesis 0 right-parenthesis Baseline left-parenthesis bold-italic beta right-parenthesis EndFraction right-bracket Superscript prime Baseline right-brace EndLayout

where r equals 1 comma ellipsis comma p.

Last updated: December 09, 2022