The SURVEYPHREG Procedure

Variance Adjustment Factors

PROC SURVEYPHREG provides options for adjusting the default variance estimators. VADJUST=NONE and VADJUST=DF are available for the Taylor series linearization variance estimator. VADJUST=AVGREPSS is available for the jackknife replication variance estimators.

For models with large number of parameters, it is reasonable to adjust the Taylor series linearized variance estimator by the number of estimable parameters in the analysis model. Fuller et al. (1989, pp. 77–81) use an adjustment factor left-parenthesis n minus 1 right-parenthesis slash left-parenthesis n minus p right-parenthesis to estimate the linearized variance for regression coefficients, where n is the total number of observation units and p is the number of estimable parameters in the analysis model. By default, PROC SURVEYPHREG uses this adjustment in the computation of the matrix bold upper G for the Taylor series linearization variance estimation. If you do not want to use this adjustment, then specify VADJUST=NONE.

Variance adjustment factors can be useful for replication variance estimations, especially if some replicate samples are not usable. A replicate sample might not provide useful parameter estimates (replicate estimates) for reasons such as nonconvergence of the optimization or inestimability of some parameters in that subsample. For example, consider the jackknife variance estimator with R replicates. Suppose that only upper R Subscript a Baseline left-parenthesis less-than upper R right-parenthesis replicates are used to obtain replicate estimates and upper R minus upper R Subscript a replicates cannot be used due to, say, nonconvergence of the optimization. Without loss of generality, assume that the first upper R Subscript a replicates are used. By default SURVEYPHREG uses

ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis equals sigma-summation Underscript r equals 1 Overscript upper R Subscript a Baseline Endscripts alpha Subscript r Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis prime

as the jackknife variance estimator. An alternative estimator is

StartLayout 1st Row 1st Column ModifyingAbove bold upper V With caret left-parenthesis ModifyingAbove bold-italic beta With caret right-parenthesis 2nd Column equals 3rd Column sigma-summation Underscript r equals 1 Overscript upper R Subscript a Endscripts alpha Subscript r Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis prime plus left-parenthesis upper R minus upper R Subscript a Baseline right-parenthesis StartSet StartFraction 1 Over upper R Subscript a Baseline EndFraction sigma-summation Underscript r equals 1 Overscript upper R Subscript a Baseline Endscripts alpha Subscript r Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis prime EndSet 2nd Row 1st Column Blank 2nd Column equals 3rd Column StartFraction upper R Over upper R Subscript a Baseline EndFraction sigma-summation Underscript r equals 1 Overscript upper R Subscript a Endscripts alpha Subscript r Baseline left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis left-parenthesis ModifyingAbove bold-italic beta With caret Subscript r Baseline minus ModifyingAbove bold-italic beta With caret right-parenthesis prime EndLayout

which uses the average replicate sum of squares for the upper R minus upper R Subscript a unusable replicate samples. If you specify the VADJUST=AVGREPSS option, PROC SURVEYPHREG uses the second variance estimator for the jackknife replication method. Note that you can specify the FAY method-option for the BRR method to avoid nonconvergence of the optimization or inestimability of some parameters in subsamples.

Last updated: December 09, 2022